ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.83 by root, Fri Nov 9 21:48:23 2007 UTC vs.
Revision 1.248 by root, Wed May 21 23:25:21 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
33 51
34# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
37# endif 66# endif
38 67
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
41# endif 74# endif
42 75
43# if HAVE_POLL && HAVE_POLL_H 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
45# endif 82# endif
46 83
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
49# endif 90# endif
50 91
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
53# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
54 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
55#endif 132#endif
56 133
57#include <math.h> 134#include <math.h>
58#include <stdlib.h> 135#include <stdlib.h>
59#include <fcntl.h> 136#include <fcntl.h>
66#include <sys/types.h> 143#include <sys/types.h>
67#include <time.h> 144#include <time.h>
68 145
69#include <signal.h> 146#include <signal.h>
70 147
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
76/**/
77
78#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1
80#endif
81
82#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1
84#endif
85
86#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88#endif
89
90#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0
92#endif
93
94#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME
109# define EV_USE_REALTIME 1
110#endif
111
112/**/
113
114#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0
117#endif
118
119#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0
122#endif
123
124/**/
125
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130
131#ifdef EV_H 148#ifdef EV_H
132# include EV_H 149# include EV_H
133#else 150#else
134# include "ev.h" 151# include "ev.h"
135#endif 152#endif
136 153
154#ifndef _WIN32
155# include <sys/time.h>
156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
163# endif
164#endif
165
166/* this block tries to deduce configuration from header-defined symbols and defaults */
167
168#ifndef EV_USE_MONOTONIC
169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
178#endif
179
180#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1
182#endif
183
184#ifndef EV_USE_POLL
185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
189# endif
190#endif
191
192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
196# define EV_USE_EPOLL 0
197# endif
198#endif
199
200#ifndef EV_USE_KQUEUE
201# define EV_USE_KQUEUE 0
202#endif
203
204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
249
250#ifndef CLOCK_MONOTONIC
251# undef EV_USE_MONOTONIC
252# define EV_USE_MONOTONIC 0
253#endif
254
255#ifndef CLOCK_REALTIME
256# undef EV_USE_REALTIME
257# define EV_USE_REALTIME 0
258#endif
259
260#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0
263#endif
264
265#if !EV_USE_NANOSLEEP
266# ifndef _WIN32
267# include <sys/select.h>
268# endif
269#endif
270
271#if EV_USE_INOTIFY
272# include <sys/inotify.h>
273#endif
274
275#if EV_SELECT_IS_WINSOCKET
276# include <winsock.h>
277#endif
278
279#if EV_USE_EVENTFD
280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
284# endif
285int eventfd (unsigned int initval, int flags);
286# ifdef __cplusplus
287}
288# endif
289#endif
290
291/**/
292
293/* undefined or zero: no verification done or available */
294/* 1 or higher: ev_loop_verify function available */
295/* 2 or higher: ev_loop_verify is called frequently */
296#define EV_VERIFY 1
297
298#if EV_VERIFY > 1
299# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
300#else
301# define EV_FREQUENT_CHECK do { } while (0)
302#endif
303
304/*
305 * This is used to avoid floating point rounding problems.
306 * It is added to ev_rt_now when scheduling periodics
307 * to ensure progress, time-wise, even when rounding
308 * errors are against us.
309 * This value is good at least till the year 4000.
310 * Better solutions welcome.
311 */
312#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
313
314#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
315#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
316/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
317
137#if __GNUC__ >= 3 318#if __GNUC__ >= 4
138# define expect(expr,value) __builtin_expect ((expr),(value)) 319# define expect(expr,value) __builtin_expect ((expr),(value))
139# define inline inline 320# define noinline __attribute__ ((noinline))
140#else 321#else
141# define expect(expr,value) (expr) 322# define expect(expr,value) (expr)
142# define inline static 323# define noinline
324# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
325# define inline
326# endif
143#endif 327#endif
144 328
145#define expect_false(expr) expect ((expr) != 0, 0) 329#define expect_false(expr) expect ((expr) != 0, 0)
146#define expect_true(expr) expect ((expr) != 0, 1) 330#define expect_true(expr) expect ((expr) != 0, 1)
331#define inline_size static inline
332
333#if EV_MINIMAL
334# define inline_speed static noinline
335#else
336# define inline_speed static inline
337#endif
147 338
148#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 339#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
149#define ABSPRI(w) ((w)->priority - EV_MINPRI) 340#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
150 341
342#define EMPTY /* required for microsofts broken pseudo-c compiler */
343#define EMPTY2(a,b) /* used to suppress some warnings */
344
151typedef struct ev_watcher *W; 345typedef ev_watcher *W;
152typedef struct ev_watcher_list *WL; 346typedef ev_watcher_list *WL;
153typedef struct ev_watcher_time *WT; 347typedef ev_watcher_time *WT;
154 348
349#define ev_active(w) ((W)(w))->active
350#define ev_at(w) ((WT)(w))->at
351
352#if EV_USE_MONOTONIC
353/* sig_atomic_t is used to avoid per-thread variables or locking but still */
354/* giving it a reasonably high chance of working on typical architetcures */
155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 355static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
356#endif
156 357
358#ifdef _WIN32
157#include "ev_win32.c" 359# include "ev_win32.c"
360#endif
158 361
159/*****************************************************************************/ 362/*****************************************************************************/
160 363
161static void (*syserr_cb)(const char *msg); 364static void (*syserr_cb)(const char *msg);
162 365
366void
163void ev_set_syserr_cb (void (*cb)(const char *msg)) 367ev_set_syserr_cb (void (*cb)(const char *msg))
164{ 368{
165 syserr_cb = cb; 369 syserr_cb = cb;
166} 370}
167 371
168static void 372static void noinline
169syserr (const char *msg) 373syserr (const char *msg)
170{ 374{
171 if (!msg) 375 if (!msg)
172 msg = "(libev) system error"; 376 msg = "(libev) system error";
173 377
178 perror (msg); 382 perror (msg);
179 abort (); 383 abort ();
180 } 384 }
181} 385}
182 386
387static void *
388ev_realloc_emul (void *ptr, long size)
389{
390 /* some systems, notably openbsd and darwin, fail to properly
391 * implement realloc (x, 0) (as required by both ansi c-98 and
392 * the single unix specification, so work around them here.
393 */
394
395 if (size)
396 return realloc (ptr, size);
397
398 free (ptr);
399 return 0;
400}
401
183static void *(*alloc)(void *ptr, long size); 402static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
184 403
404void
185void ev_set_allocator (void *(*cb)(void *ptr, long size)) 405ev_set_allocator (void *(*cb)(void *ptr, long size))
186{ 406{
187 alloc = cb; 407 alloc = cb;
188} 408}
189 409
190static void * 410inline_speed void *
191ev_realloc (void *ptr, long size) 411ev_realloc (void *ptr, long size)
192{ 412{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 413 ptr = alloc (ptr, size);
194 414
195 if (!ptr && size) 415 if (!ptr && size)
196 { 416 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 417 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort (); 418 abort ();
209typedef struct 429typedef struct
210{ 430{
211 WL head; 431 WL head;
212 unsigned char events; 432 unsigned char events;
213 unsigned char reify; 433 unsigned char reify;
434#if EV_SELECT_IS_WINSOCKET
435 SOCKET handle;
436#endif
214} ANFD; 437} ANFD;
215 438
216typedef struct 439typedef struct
217{ 440{
218 W w; 441 W w;
219 int events; 442 int events;
220} ANPENDING; 443} ANPENDING;
221 444
445#if EV_USE_INOTIFY
446/* hash table entry per inotify-id */
447typedef struct
448{
449 WL head;
450} ANFS;
451#endif
452
453/* Heap Entry */
454#if EV_HEAP_CACHE_AT
455 typedef struct {
456 ev_tstamp at;
457 WT w;
458 } ANHE;
459
460 #define ANHE_w(he) (he).w /* access watcher, read-write */
461 #define ANHE_at(he) (he).at /* access cached at, read-only */
462 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
463#else
464 typedef WT ANHE;
465
466 #define ANHE_w(he) (he)
467 #define ANHE_at(he) (he)->at
468 #define ANHE_at_cache(he)
469#endif
470
222#if EV_MULTIPLICITY 471#if EV_MULTIPLICITY
223 472
224 struct ev_loop 473 struct ev_loop
225 { 474 {
475 ev_tstamp ev_rt_now;
476 #define ev_rt_now ((loop)->ev_rt_now)
226 #define VAR(name,decl) decl; 477 #define VAR(name,decl) decl;
227 #include "ev_vars.h" 478 #include "ev_vars.h"
228 #undef VAR 479 #undef VAR
229 }; 480 };
230 #include "ev_wrap.h" 481 #include "ev_wrap.h"
231 482
232 struct ev_loop default_loop_struct; 483 static struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop; 484 struct ev_loop *ev_default_loop_ptr;
234 485
235#else 486#else
236 487
488 ev_tstamp ev_rt_now;
237 #define VAR(name,decl) static decl; 489 #define VAR(name,decl) static decl;
238 #include "ev_vars.h" 490 #include "ev_vars.h"
239 #undef VAR 491 #undef VAR
240 492
241 static int default_loop; 493 static int ev_default_loop_ptr;
242 494
243#endif 495#endif
244 496
245/*****************************************************************************/ 497/*****************************************************************************/
246 498
247inline ev_tstamp 499ev_tstamp
248ev_time (void) 500ev_time (void)
249{ 501{
250#if EV_USE_REALTIME 502#if EV_USE_REALTIME
251 struct timespec ts; 503 struct timespec ts;
252 clock_gettime (CLOCK_REALTIME, &ts); 504 clock_gettime (CLOCK_REALTIME, &ts);
256 gettimeofday (&tv, 0); 508 gettimeofday (&tv, 0);
257 return tv.tv_sec + tv.tv_usec * 1e-6; 509 return tv.tv_sec + tv.tv_usec * 1e-6;
258#endif 510#endif
259} 511}
260 512
261inline ev_tstamp 513ev_tstamp inline_size
262get_clock (void) 514get_clock (void)
263{ 515{
264#if EV_USE_MONOTONIC 516#if EV_USE_MONOTONIC
265 if (expect_true (have_monotonic)) 517 if (expect_true (have_monotonic))
266 { 518 {
271#endif 523#endif
272 524
273 return ev_time (); 525 return ev_time ();
274} 526}
275 527
528#if EV_MULTIPLICITY
276ev_tstamp 529ev_tstamp
277ev_now (EV_P) 530ev_now (EV_P)
278{ 531{
279 return rt_now; 532 return ev_rt_now;
280} 533}
534#endif
281 535
282#define array_roundsize(type,n) ((n) | 4 & ~3) 536void
537ev_sleep (ev_tstamp delay)
538{
539 if (delay > 0.)
540 {
541#if EV_USE_NANOSLEEP
542 struct timespec ts;
543
544 ts.tv_sec = (time_t)delay;
545 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
546
547 nanosleep (&ts, 0);
548#elif defined(_WIN32)
549 Sleep ((unsigned long)(delay * 1e3));
550#else
551 struct timeval tv;
552
553 tv.tv_sec = (time_t)delay;
554 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
555
556 select (0, 0, 0, 0, &tv);
557#endif
558 }
559}
560
561/*****************************************************************************/
562
563#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
564
565int inline_size
566array_nextsize (int elem, int cur, int cnt)
567{
568 int ncur = cur + 1;
569
570 do
571 ncur <<= 1;
572 while (cnt > ncur);
573
574 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
575 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
576 {
577 ncur *= elem;
578 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
579 ncur = ncur - sizeof (void *) * 4;
580 ncur /= elem;
581 }
582
583 return ncur;
584}
585
586static noinline void *
587array_realloc (int elem, void *base, int *cur, int cnt)
588{
589 *cur = array_nextsize (elem, *cur, cnt);
590 return ev_realloc (base, elem * *cur);
591}
283 592
284#define array_needsize(type,base,cur,cnt,init) \ 593#define array_needsize(type,base,cur,cnt,init) \
285 if (expect_false ((cnt) > cur)) \ 594 if (expect_false ((cnt) > (cur))) \
286 { \ 595 { \
287 int newcnt = cur; \ 596 int ocur_ = (cur); \
288 do \ 597 (base) = (type *)array_realloc \
289 { \ 598 (sizeof (type), (base), &(cur), (cnt)); \
290 newcnt = array_roundsize (type, newcnt << 1); \ 599 init ((base) + (ocur_), (cur) - ocur_); \
291 } \
292 while ((cnt) > newcnt); \
293 \
294 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
295 init (base + cur, newcnt - cur); \
296 cur = newcnt; \
297 } 600 }
298 601
602#if 0
299#define array_slim(type,stem) \ 603#define array_slim(type,stem) \
300 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 604 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
301 { \ 605 { \
302 stem ## max = array_roundsize (stem ## cnt >> 1); \ 606 stem ## max = array_roundsize (stem ## cnt >> 1); \
303 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 607 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
304 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 608 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
305 } 609 }
306 610#endif
307/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
308/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
309#define array_free_microshit(stem) \
310 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
311 611
312#define array_free(stem, idx) \ 612#define array_free(stem, idx) \
313 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 613 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
314 614
315/*****************************************************************************/ 615/*****************************************************************************/
316 616
317static void 617void noinline
618ev_feed_event (EV_P_ void *w, int revents)
619{
620 W w_ = (W)w;
621 int pri = ABSPRI (w_);
622
623 if (expect_false (w_->pending))
624 pendings [pri][w_->pending - 1].events |= revents;
625 else
626 {
627 w_->pending = ++pendingcnt [pri];
628 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
629 pendings [pri][w_->pending - 1].w = w_;
630 pendings [pri][w_->pending - 1].events = revents;
631 }
632}
633
634void inline_speed
635queue_events (EV_P_ W *events, int eventcnt, int type)
636{
637 int i;
638
639 for (i = 0; i < eventcnt; ++i)
640 ev_feed_event (EV_A_ events [i], type);
641}
642
643/*****************************************************************************/
644
645void inline_size
318anfds_init (ANFD *base, int count) 646anfds_init (ANFD *base, int count)
319{ 647{
320 while (count--) 648 while (count--)
321 { 649 {
322 base->head = 0; 650 base->head = 0;
325 653
326 ++base; 654 ++base;
327 } 655 }
328} 656}
329 657
330void 658void inline_speed
331ev_feed_event (EV_P_ void *w, int revents)
332{
333 W w_ = (W)w;
334
335 if (w_->pending)
336 {
337 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
338 return;
339 }
340
341 w_->pending = ++pendingcnt [ABSPRI (w_)];
342 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
343 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
344 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
345}
346
347static void
348queue_events (EV_P_ W *events, int eventcnt, int type)
349{
350 int i;
351
352 for (i = 0; i < eventcnt; ++i)
353 ev_feed_event (EV_A_ events [i], type);
354}
355
356inline void
357fd_event (EV_P_ int fd, int revents) 659fd_event (EV_P_ int fd, int revents)
358{ 660{
359 ANFD *anfd = anfds + fd; 661 ANFD *anfd = anfds + fd;
360 struct ev_io *w; 662 ev_io *w;
361 663
362 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 664 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
363 { 665 {
364 int ev = w->events & revents; 666 int ev = w->events & revents;
365 667
366 if (ev) 668 if (ev)
367 ev_feed_event (EV_A_ (W)w, ev); 669 ev_feed_event (EV_A_ (W)w, ev);
369} 671}
370 672
371void 673void
372ev_feed_fd_event (EV_P_ int fd, int revents) 674ev_feed_fd_event (EV_P_ int fd, int revents)
373{ 675{
676 if (fd >= 0 && fd < anfdmax)
374 fd_event (EV_A_ fd, revents); 677 fd_event (EV_A_ fd, revents);
375} 678}
376 679
377/*****************************************************************************/ 680void inline_size
378
379static void
380fd_reify (EV_P) 681fd_reify (EV_P)
381{ 682{
382 int i; 683 int i;
383 684
384 for (i = 0; i < fdchangecnt; ++i) 685 for (i = 0; i < fdchangecnt; ++i)
385 { 686 {
386 int fd = fdchanges [i]; 687 int fd = fdchanges [i];
387 ANFD *anfd = anfds + fd; 688 ANFD *anfd = anfds + fd;
388 struct ev_io *w; 689 ev_io *w;
389 690
390 int events = 0; 691 unsigned char events = 0;
391 692
392 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 693 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
393 events |= w->events; 694 events |= (unsigned char)w->events;
394 695
696#if EV_SELECT_IS_WINSOCKET
697 if (events)
698 {
699 unsigned long argp;
700 #ifdef EV_FD_TO_WIN32_HANDLE
701 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
702 #else
703 anfd->handle = _get_osfhandle (fd);
704 #endif
705 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
706 }
707#endif
708
709 {
710 unsigned char o_events = anfd->events;
711 unsigned char o_reify = anfd->reify;
712
395 anfd->reify = 0; 713 anfd->reify = 0;
396
397 method_modify (EV_A_ fd, anfd->events, events);
398 anfd->events = events; 714 anfd->events = events;
715
716 if (o_events != events || o_reify & EV_IOFDSET)
717 backend_modify (EV_A_ fd, o_events, events);
718 }
399 } 719 }
400 720
401 fdchangecnt = 0; 721 fdchangecnt = 0;
402} 722}
403 723
404static void 724void inline_size
405fd_change (EV_P_ int fd) 725fd_change (EV_P_ int fd, int flags)
406{ 726{
407 if (anfds [fd].reify) 727 unsigned char reify = anfds [fd].reify;
408 return;
409
410 anfds [fd].reify = 1; 728 anfds [fd].reify |= flags;
411 729
730 if (expect_true (!reify))
731 {
412 ++fdchangecnt; 732 ++fdchangecnt;
413 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 733 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
414 fdchanges [fdchangecnt - 1] = fd; 734 fdchanges [fdchangecnt - 1] = fd;
735 }
415} 736}
416 737
417static void 738void inline_speed
418fd_kill (EV_P_ int fd) 739fd_kill (EV_P_ int fd)
419{ 740{
420 struct ev_io *w; 741 ev_io *w;
421 742
422 while ((w = (struct ev_io *)anfds [fd].head)) 743 while ((w = (ev_io *)anfds [fd].head))
423 { 744 {
424 ev_io_stop (EV_A_ w); 745 ev_io_stop (EV_A_ w);
425 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 746 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
426 } 747 }
427} 748}
428 749
429static int 750int inline_size
430fd_valid (int fd) 751fd_valid (int fd)
431{ 752{
432#ifdef WIN32 753#ifdef _WIN32
433 return !!win32_get_osfhandle (fd); 754 return _get_osfhandle (fd) != -1;
434#else 755#else
435 return fcntl (fd, F_GETFD) != -1; 756 return fcntl (fd, F_GETFD) != -1;
436#endif 757#endif
437} 758}
438 759
439/* called on EBADF to verify fds */ 760/* called on EBADF to verify fds */
440static void 761static void noinline
441fd_ebadf (EV_P) 762fd_ebadf (EV_P)
442{ 763{
443 int fd; 764 int fd;
444 765
445 for (fd = 0; fd < anfdmax; ++fd) 766 for (fd = 0; fd < anfdmax; ++fd)
447 if (!fd_valid (fd) == -1 && errno == EBADF) 768 if (!fd_valid (fd) == -1 && errno == EBADF)
448 fd_kill (EV_A_ fd); 769 fd_kill (EV_A_ fd);
449} 770}
450 771
451/* called on ENOMEM in select/poll to kill some fds and retry */ 772/* called on ENOMEM in select/poll to kill some fds and retry */
452static void 773static void noinline
453fd_enomem (EV_P) 774fd_enomem (EV_P)
454{ 775{
455 int fd; 776 int fd;
456 777
457 for (fd = anfdmax; fd--; ) 778 for (fd = anfdmax; fd--; )
460 fd_kill (EV_A_ fd); 781 fd_kill (EV_A_ fd);
461 return; 782 return;
462 } 783 }
463} 784}
464 785
465/* usually called after fork if method needs to re-arm all fds from scratch */ 786/* usually called after fork if backend needs to re-arm all fds from scratch */
466static void 787static void noinline
467fd_rearm_all (EV_P) 788fd_rearm_all (EV_P)
468{ 789{
469 int fd; 790 int fd;
470 791
471 /* this should be highly optimised to not do anything but set a flag */
472 for (fd = 0; fd < anfdmax; ++fd) 792 for (fd = 0; fd < anfdmax; ++fd)
473 if (anfds [fd].events) 793 if (anfds [fd].events)
474 { 794 {
475 anfds [fd].events = 0; 795 anfds [fd].events = 0;
476 fd_change (EV_A_ fd); 796 fd_change (EV_A_ fd, EV_IOFDSET | 1);
477 } 797 }
478} 798}
479 799
480/*****************************************************************************/ 800/*****************************************************************************/
481 801
802/*
803 * the heap functions want a real array index. array index 0 uis guaranteed to not
804 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
805 * the branching factor of the d-tree.
806 */
807
808/*
809 * at the moment we allow libev the luxury of two heaps,
810 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
811 * which is more cache-efficient.
812 * the difference is about 5% with 50000+ watchers.
813 */
814#if EV_USE_4HEAP
815
816#define DHEAP 4
817#define HEAP0 (DHEAP - 1) /* index of first element in heap */
818#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
819#define UPHEAP_DONE(p,k) ((p) == (k))
820
821/* away from the root */
822void inline_speed
823downheap (ANHE *heap, int N, int k)
824{
825 ANHE he = heap [k];
826 ANHE *E = heap + N + HEAP0;
827
828 for (;;)
829 {
830 ev_tstamp minat;
831 ANHE *minpos;
832 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
833
834 /* find minimum child */
835 if (expect_true (pos + DHEAP - 1 < E))
836 {
837 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
838 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
839 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
840 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
841 }
842 else if (pos < E)
843 {
844 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
845 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
846 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
847 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
848 }
849 else
850 break;
851
852 if (ANHE_at (he) <= minat)
853 break;
854
855 heap [k] = *minpos;
856 ev_active (ANHE_w (*minpos)) = k;
857
858 k = minpos - heap;
859 }
860
861 heap [k] = he;
862 ev_active (ANHE_w (he)) = k;
863}
864
865#else /* 4HEAP */
866
867#define HEAP0 1
868#define HPARENT(k) ((k) >> 1)
869#define UPHEAP_DONE(p,k) (!(p))
870
871/* away from the root */
872void inline_speed
873downheap (ANHE *heap, int N, int k)
874{
875 ANHE he = heap [k];
876
877 for (;;)
878 {
879 int c = k << 1;
880
881 if (c > N + HEAP0 - 1)
882 break;
883
884 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
885 ? 1 : 0;
886
887 if (ANHE_at (he) <= ANHE_at (heap [c]))
888 break;
889
890 heap [k] = heap [c];
891 ev_active (ANHE_w (heap [k])) = k;
892
893 k = c;
894 }
895
896 heap [k] = he;
897 ev_active (ANHE_w (he)) = k;
898}
899#endif
900
901/* towards the root */
902void inline_speed
903upheap (ANHE *heap, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int p = HPARENT (k);
910
911 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
912 break;
913
914 heap [k] = heap [p];
915 ev_active (ANHE_w (heap [k])) = k;
916 k = p;
917 }
918
919 heap [k] = he;
920 ev_active (ANHE_w (he)) = k;
921}
922
923void inline_size
924adjustheap (ANHE *heap, int N, int k)
925{
926 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
927 upheap (heap, k);
928 else
929 downheap (heap, N, k);
930}
931
932/* rebuild the heap: this function is used only once and executed rarely */
933void inline_size
934reheap (ANHE *heap, int N)
935{
936 int i;
937 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
938 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
939 for (i = 0; i < N; ++i)
940 upheap (heap, i + HEAP0);
941}
942
943#if EV_VERIFY
482static void 944static void
483upheap (WT *heap, int k) 945checkheap (ANHE *heap, int N)
484{ 946{
485 WT w = heap [k]; 947 int i;
486 948
487 while (k && heap [k >> 1]->at > w->at) 949 for (i = HEAP0; i < N + HEAP0; ++i)
488 {
489 heap [k] = heap [k >> 1];
490 ((W)heap [k])->active = k + 1;
491 k >>= 1;
492 } 950 {
493 951 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
494 heap [k] = w; 952 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
495 ((W)heap [k])->active = k + 1; 953 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
496
497}
498
499static void
500downheap (WT *heap, int N, int k)
501{
502 WT w = heap [k];
503
504 while (k < (N >> 1))
505 { 954 }
506 int j = k << 1;
507
508 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
509 ++j;
510
511 if (w->at <= heap [j]->at)
512 break;
513
514 heap [k] = heap [j];
515 ((W)heap [k])->active = k + 1;
516 k = j;
517 }
518
519 heap [k] = w;
520 ((W)heap [k])->active = k + 1;
521} 955}
956#endif
522 957
523/*****************************************************************************/ 958/*****************************************************************************/
524 959
525typedef struct 960typedef struct
526{ 961{
527 WL head; 962 WL head;
528 sig_atomic_t volatile gotsig; 963 EV_ATOMIC_T gotsig;
529} ANSIG; 964} ANSIG;
530 965
531static ANSIG *signals; 966static ANSIG *signals;
532static int signalmax; 967static int signalmax;
533 968
534static int sigpipe [2]; 969static EV_ATOMIC_T gotsig;
535static sig_atomic_t volatile gotsig;
536static struct ev_io sigev;
537 970
538static void 971void inline_size
539signals_init (ANSIG *base, int count) 972signals_init (ANSIG *base, int count)
540{ 973{
541 while (count--) 974 while (count--)
542 { 975 {
543 base->head = 0; 976 base->head = 0;
545 978
546 ++base; 979 ++base;
547 } 980 }
548} 981}
549 982
983/*****************************************************************************/
984
985void inline_speed
986fd_intern (int fd)
987{
988#ifdef _WIN32
989 int arg = 1;
990 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
991#else
992 fcntl (fd, F_SETFD, FD_CLOEXEC);
993 fcntl (fd, F_SETFL, O_NONBLOCK);
994#endif
995}
996
997static void noinline
998evpipe_init (EV_P)
999{
1000 if (!ev_is_active (&pipeev))
1001 {
1002#if EV_USE_EVENTFD
1003 if ((evfd = eventfd (0, 0)) >= 0)
1004 {
1005 evpipe [0] = -1;
1006 fd_intern (evfd);
1007 ev_io_set (&pipeev, evfd, EV_READ);
1008 }
1009 else
1010#endif
1011 {
1012 while (pipe (evpipe))
1013 syserr ("(libev) error creating signal/async pipe");
1014
1015 fd_intern (evpipe [0]);
1016 fd_intern (evpipe [1]);
1017 ev_io_set (&pipeev, evpipe [0], EV_READ);
1018 }
1019
1020 ev_io_start (EV_A_ &pipeev);
1021 ev_unref (EV_A); /* watcher should not keep loop alive */
1022 }
1023}
1024
1025void inline_size
1026evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1027{
1028 if (!*flag)
1029 {
1030 int old_errno = errno; /* save errno because write might clobber it */
1031
1032 *flag = 1;
1033
1034#if EV_USE_EVENTFD
1035 if (evfd >= 0)
1036 {
1037 uint64_t counter = 1;
1038 write (evfd, &counter, sizeof (uint64_t));
1039 }
1040 else
1041#endif
1042 write (evpipe [1], &old_errno, 1);
1043
1044 errno = old_errno;
1045 }
1046}
1047
550static void 1048static void
1049pipecb (EV_P_ ev_io *iow, int revents)
1050{
1051#if EV_USE_EVENTFD
1052 if (evfd >= 0)
1053 {
1054 uint64_t counter;
1055 read (evfd, &counter, sizeof (uint64_t));
1056 }
1057 else
1058#endif
1059 {
1060 char dummy;
1061 read (evpipe [0], &dummy, 1);
1062 }
1063
1064 if (gotsig && ev_is_default_loop (EV_A))
1065 {
1066 int signum;
1067 gotsig = 0;
1068
1069 for (signum = signalmax; signum--; )
1070 if (signals [signum].gotsig)
1071 ev_feed_signal_event (EV_A_ signum + 1);
1072 }
1073
1074#if EV_ASYNC_ENABLE
1075 if (gotasync)
1076 {
1077 int i;
1078 gotasync = 0;
1079
1080 for (i = asynccnt; i--; )
1081 if (asyncs [i]->sent)
1082 {
1083 asyncs [i]->sent = 0;
1084 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1085 }
1086 }
1087#endif
1088}
1089
1090/*****************************************************************************/
1091
1092static void
551sighandler (int signum) 1093ev_sighandler (int signum)
552{ 1094{
1095#if EV_MULTIPLICITY
1096 struct ev_loop *loop = &default_loop_struct;
1097#endif
1098
553#if WIN32 1099#if _WIN32
554 signal (signum, sighandler); 1100 signal (signum, ev_sighandler);
555#endif 1101#endif
556 1102
557 signals [signum - 1].gotsig = 1; 1103 signals [signum - 1].gotsig = 1;
558 1104 evpipe_write (EV_A_ &gotsig);
559 if (!gotsig)
560 {
561 int old_errno = errno;
562 gotsig = 1;
563#ifdef WIN32
564 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
565#else
566 write (sigpipe [1], &signum, 1);
567#endif
568 errno = old_errno;
569 }
570} 1105}
571 1106
572void 1107void noinline
573ev_feed_signal_event (EV_P_ int signum) 1108ev_feed_signal_event (EV_P_ int signum)
574{ 1109{
575 WL w; 1110 WL w;
576 1111
577#if EV_MULTIPLICITY 1112#if EV_MULTIPLICITY
578 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 1113 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
579#endif 1114#endif
580 1115
581 --signum; 1116 --signum;
582 1117
583 if (signum < 0 || signum >= signalmax) 1118 if (signum < 0 || signum >= signalmax)
587 1122
588 for (w = signals [signum].head; w; w = w->next) 1123 for (w = signals [signum].head; w; w = w->next)
589 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1124 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
590} 1125}
591 1126
592static void
593sigcb (EV_P_ struct ev_io *iow, int revents)
594{
595 int signum;
596
597#ifdef WIN32
598 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
599#else
600 read (sigpipe [0], &revents, 1);
601#endif
602 gotsig = 0;
603
604 for (signum = signalmax; signum--; )
605 if (signals [signum].gotsig)
606 ev_feed_signal_event (EV_A_ signum + 1);
607}
608
609static void
610siginit (EV_P)
611{
612#ifndef WIN32
613 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
614 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
615
616 /* rather than sort out wether we really need nb, set it */
617 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
618 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
619#endif
620
621 ev_io_set (&sigev, sigpipe [0], EV_READ);
622 ev_io_start (EV_A_ &sigev);
623 ev_unref (EV_A); /* child watcher should not keep loop alive */
624}
625
626/*****************************************************************************/ 1127/*****************************************************************************/
627 1128
628static struct ev_child *childs [PID_HASHSIZE]; 1129static WL childs [EV_PID_HASHSIZE];
629 1130
630#ifndef WIN32 1131#ifndef _WIN32
631 1132
632static struct ev_signal childev; 1133static ev_signal childev;
1134
1135#ifndef WIFCONTINUED
1136# define WIFCONTINUED(status) 0
1137#endif
1138
1139void inline_speed
1140child_reap (EV_P_ int chain, int pid, int status)
1141{
1142 ev_child *w;
1143 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1144
1145 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1146 {
1147 if ((w->pid == pid || !w->pid)
1148 && (!traced || (w->flags & 1)))
1149 {
1150 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1151 w->rpid = pid;
1152 w->rstatus = status;
1153 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1154 }
1155 }
1156}
633 1157
634#ifndef WCONTINUED 1158#ifndef WCONTINUED
635# define WCONTINUED 0 1159# define WCONTINUED 0
636#endif 1160#endif
637 1161
638static void 1162static void
639child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
640{
641 struct ev_child *w;
642
643 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
644 if (w->pid == pid || !w->pid)
645 {
646 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
647 w->rpid = pid;
648 w->rstatus = status;
649 ev_feed_event (EV_A_ (W)w, EV_CHILD);
650 }
651}
652
653static void
654childcb (EV_P_ struct ev_signal *sw, int revents) 1163childcb (EV_P_ ev_signal *sw, int revents)
655{ 1164{
656 int pid, status; 1165 int pid, status;
657 1166
1167 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
658 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1168 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
659 { 1169 if (!WCONTINUED
1170 || errno != EINVAL
1171 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1172 return;
1173
660 /* make sure we are called again until all childs have been reaped */ 1174 /* make sure we are called again until all children have been reaped */
1175 /* we need to do it this way so that the callback gets called before we continue */
661 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1176 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
662 1177
663 child_reap (EV_A_ sw, pid, pid, status); 1178 child_reap (EV_A_ pid, pid, status);
1179 if (EV_PID_HASHSIZE > 1)
664 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1180 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
665 }
666} 1181}
667 1182
668#endif 1183#endif
669 1184
670/*****************************************************************************/ 1185/*****************************************************************************/
671 1186
1187#if EV_USE_PORT
1188# include "ev_port.c"
1189#endif
672#if EV_USE_KQUEUE 1190#if EV_USE_KQUEUE
673# include "ev_kqueue.c" 1191# include "ev_kqueue.c"
674#endif 1192#endif
675#if EV_USE_EPOLL 1193#if EV_USE_EPOLL
676# include "ev_epoll.c" 1194# include "ev_epoll.c"
693{ 1211{
694 return EV_VERSION_MINOR; 1212 return EV_VERSION_MINOR;
695} 1213}
696 1214
697/* return true if we are running with elevated privileges and should ignore env variables */ 1215/* return true if we are running with elevated privileges and should ignore env variables */
698static int 1216int inline_size
699enable_secure (void) 1217enable_secure (void)
700{ 1218{
701#ifdef WIN32 1219#ifdef _WIN32
702 return 0; 1220 return 0;
703#else 1221#else
704 return getuid () != geteuid () 1222 return getuid () != geteuid ()
705 || getgid () != getegid (); 1223 || getgid () != getegid ();
706#endif 1224#endif
707} 1225}
708 1226
709int 1227unsigned int
710ev_method (EV_P) 1228ev_supported_backends (void)
711{ 1229{
712 return method; 1230 unsigned int flags = 0;
713}
714 1231
715static void 1232 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
716loop_init (EV_P_ int methods) 1233 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1234 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1235 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1236 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1237
1238 return flags;
1239}
1240
1241unsigned int
1242ev_recommended_backends (void)
717{ 1243{
718 if (!method) 1244 unsigned int flags = ev_supported_backends ();
1245
1246#ifndef __NetBSD__
1247 /* kqueue is borked on everything but netbsd apparently */
1248 /* it usually doesn't work correctly on anything but sockets and pipes */
1249 flags &= ~EVBACKEND_KQUEUE;
1250#endif
1251#ifdef __APPLE__
1252 // flags &= ~EVBACKEND_KQUEUE; for documentation
1253 flags &= ~EVBACKEND_POLL;
1254#endif
1255
1256 return flags;
1257}
1258
1259unsigned int
1260ev_embeddable_backends (void)
1261{
1262 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1263
1264 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1265 /* please fix it and tell me how to detect the fix */
1266 flags &= ~EVBACKEND_EPOLL;
1267
1268 return flags;
1269}
1270
1271unsigned int
1272ev_backend (EV_P)
1273{
1274 return backend;
1275}
1276
1277unsigned int
1278ev_loop_count (EV_P)
1279{
1280 return loop_count;
1281}
1282
1283void
1284ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1285{
1286 io_blocktime = interval;
1287}
1288
1289void
1290ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1291{
1292 timeout_blocktime = interval;
1293}
1294
1295static void noinline
1296loop_init (EV_P_ unsigned int flags)
1297{
1298 if (!backend)
719 { 1299 {
720#if EV_USE_MONOTONIC 1300#if EV_USE_MONOTONIC
721 { 1301 {
722 struct timespec ts; 1302 struct timespec ts;
723 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1303 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
724 have_monotonic = 1; 1304 have_monotonic = 1;
725 } 1305 }
726#endif 1306#endif
727 1307
728 rt_now = ev_time (); 1308 ev_rt_now = ev_time ();
729 mn_now = get_clock (); 1309 mn_now = get_clock ();
730 now_floor = mn_now; 1310 now_floor = mn_now;
731 rtmn_diff = rt_now - mn_now; 1311 rtmn_diff = ev_rt_now - mn_now;
732 1312
733 if (methods == EVMETHOD_AUTO) 1313 io_blocktime = 0.;
734 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1314 timeout_blocktime = 0.;
1315 backend = 0;
1316 backend_fd = -1;
1317 gotasync = 0;
1318#if EV_USE_INOTIFY
1319 fs_fd = -2;
1320#endif
1321
1322 /* pid check not overridable via env */
1323#ifndef _WIN32
1324 if (flags & EVFLAG_FORKCHECK)
1325 curpid = getpid ();
1326#endif
1327
1328 if (!(flags & EVFLAG_NOENV)
1329 && !enable_secure ()
1330 && getenv ("LIBEV_FLAGS"))
735 methods = atoi (getenv ("LIBEV_METHODS")); 1331 flags = atoi (getenv ("LIBEV_FLAGS"));
736 else
737 methods = EVMETHOD_ANY;
738 1332
739 method = 0; 1333 if (!(flags & 0x0000ffffU))
740#if EV_USE_WIN32 1334 flags |= ev_recommended_backends ();
741 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1335
1336#if EV_USE_PORT
1337 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
742#endif 1338#endif
743#if EV_USE_KQUEUE 1339#if EV_USE_KQUEUE
744 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1340 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
745#endif 1341#endif
746#if EV_USE_EPOLL 1342#if EV_USE_EPOLL
747 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1343 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
748#endif 1344#endif
749#if EV_USE_POLL 1345#if EV_USE_POLL
750 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1346 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
751#endif 1347#endif
752#if EV_USE_SELECT 1348#if EV_USE_SELECT
753 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1349 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
754#endif 1350#endif
755 1351
756 ev_init (&sigev, sigcb); 1352 ev_init (&pipeev, pipecb);
757 ev_set_priority (&sigev, EV_MAXPRI); 1353 ev_set_priority (&pipeev, EV_MAXPRI);
758 } 1354 }
759} 1355}
760 1356
761void 1357static void noinline
762loop_destroy (EV_P) 1358loop_destroy (EV_P)
763{ 1359{
764 int i; 1360 int i;
765 1361
1362 if (ev_is_active (&pipeev))
1363 {
1364 ev_ref (EV_A); /* signal watcher */
1365 ev_io_stop (EV_A_ &pipeev);
1366
1367#if EV_USE_EVENTFD
1368 if (evfd >= 0)
1369 close (evfd);
1370#endif
1371
1372 if (evpipe [0] >= 0)
1373 {
1374 close (evpipe [0]);
1375 close (evpipe [1]);
1376 }
1377 }
1378
766#if EV_USE_WIN32 1379#if EV_USE_INOTIFY
767 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1380 if (fs_fd >= 0)
1381 close (fs_fd);
1382#endif
1383
1384 if (backend_fd >= 0)
1385 close (backend_fd);
1386
1387#if EV_USE_PORT
1388 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
768#endif 1389#endif
769#if EV_USE_KQUEUE 1390#if EV_USE_KQUEUE
770 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1391 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
771#endif 1392#endif
772#if EV_USE_EPOLL 1393#if EV_USE_EPOLL
773 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1394 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
774#endif 1395#endif
775#if EV_USE_POLL 1396#if EV_USE_POLL
776 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1397 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
777#endif 1398#endif
778#if EV_USE_SELECT 1399#if EV_USE_SELECT
779 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1400 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
780#endif 1401#endif
781 1402
782 for (i = NUMPRI; i--; ) 1403 for (i = NUMPRI; i--; )
1404 {
783 array_free (pending, [i]); 1405 array_free (pending, [i]);
1406#if EV_IDLE_ENABLE
1407 array_free (idle, [i]);
1408#endif
1409 }
1410
1411 ev_free (anfds); anfdmax = 0;
784 1412
785 /* have to use the microsoft-never-gets-it-right macro */ 1413 /* have to use the microsoft-never-gets-it-right macro */
786 array_free_microshit (fdchange); 1414 array_free (fdchange, EMPTY);
787 array_free_microshit (timer); 1415 array_free (timer, EMPTY);
788 array_free_microshit (periodic); 1416#if EV_PERIODIC_ENABLE
789 array_free_microshit (idle); 1417 array_free (periodic, EMPTY);
790 array_free_microshit (prepare); 1418#endif
791 array_free_microshit (check); 1419#if EV_FORK_ENABLE
1420 array_free (fork, EMPTY);
1421#endif
1422 array_free (prepare, EMPTY);
1423 array_free (check, EMPTY);
1424#if EV_ASYNC_ENABLE
1425 array_free (async, EMPTY);
1426#endif
792 1427
793 method = 0; 1428 backend = 0;
794} 1429}
795 1430
796static void 1431#if EV_USE_INOTIFY
1432void inline_size infy_fork (EV_P);
1433#endif
1434
1435void inline_size
797loop_fork (EV_P) 1436loop_fork (EV_P)
798{ 1437{
1438#if EV_USE_PORT
1439 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1440#endif
1441#if EV_USE_KQUEUE
1442 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1443#endif
799#if EV_USE_EPOLL 1444#if EV_USE_EPOLL
800 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1445 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
801#endif 1446#endif
802#if EV_USE_KQUEUE 1447#if EV_USE_INOTIFY
803 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1448 infy_fork (EV_A);
804#endif 1449#endif
805 1450
806 if (ev_is_active (&sigev)) 1451 if (ev_is_active (&pipeev))
807 { 1452 {
808 /* default loop */ 1453 /* this "locks" the handlers against writing to the pipe */
1454 /* while we modify the fd vars */
1455 gotsig = 1;
1456#if EV_ASYNC_ENABLE
1457 gotasync = 1;
1458#endif
809 1459
810 ev_ref (EV_A); 1460 ev_ref (EV_A);
811 ev_io_stop (EV_A_ &sigev); 1461 ev_io_stop (EV_A_ &pipeev);
1462
1463#if EV_USE_EVENTFD
1464 if (evfd >= 0)
1465 close (evfd);
1466#endif
1467
1468 if (evpipe [0] >= 0)
1469 {
812 close (sigpipe [0]); 1470 close (evpipe [0]);
813 close (sigpipe [1]); 1471 close (evpipe [1]);
1472 }
814 1473
815 while (pipe (sigpipe))
816 syserr ("(libev) error creating pipe");
817
818 siginit (EV_A); 1474 evpipe_init (EV_A);
1475 /* now iterate over everything, in case we missed something */
1476 pipecb (EV_A_ &pipeev, EV_READ);
819 } 1477 }
820 1478
821 postfork = 0; 1479 postfork = 0;
822} 1480}
823 1481
824#if EV_MULTIPLICITY 1482#if EV_MULTIPLICITY
825struct ev_loop * 1483struct ev_loop *
826ev_loop_new (int methods) 1484ev_loop_new (unsigned int flags)
827{ 1485{
828 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
829 1487
830 memset (loop, 0, sizeof (struct ev_loop)); 1488 memset (loop, 0, sizeof (struct ev_loop));
831 1489
832 loop_init (EV_A_ methods); 1490 loop_init (EV_A_ flags);
833 1491
834 if (ev_method (EV_A)) 1492 if (ev_backend (EV_A))
835 return loop; 1493 return loop;
836 1494
837 return 0; 1495 return 0;
838} 1496}
839 1497
845} 1503}
846 1504
847void 1505void
848ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
849{ 1507{
850 postfork = 1; 1508 postfork = 1; /* must be in line with ev_default_fork */
851} 1509}
1510
1511#if EV_VERIFY
1512static void
1513array_check (W **ws, int cnt)
1514{
1515 while (cnt--)
1516 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1517}
1518
1519static void
1520ev_loop_verify (EV_P)
1521{
1522 int i;
1523
1524 checkheap (timers, timercnt);
1525#if EV_PERIODIC_ENABLE
1526 checkheap (periodics, periodiccnt);
1527#endif
1528
1529#if EV_IDLE_ENABLE
1530 for (i = NUMPRI; i--; )
1531 array_check ((W **)idles [i], idlecnt [i]);
1532#endif
1533#if EV_FORK_ENABLE
1534 array_check ((W **)forks, forkcnt);
1535#endif
1536 array_check ((W **)prepares, preparecnt);
1537 array_check ((W **)checks, checkcnt);
1538#if EV_ASYNC_ENABLE
1539 array_check ((W **)asyncs, asynccnt);
1540#endif
1541}
1542#endif
852 1543
853#endif 1544#endif
854 1545
855#if EV_MULTIPLICITY 1546#if EV_MULTIPLICITY
856struct ev_loop * 1547struct ev_loop *
1548ev_default_loop_init (unsigned int flags)
857#else 1549#else
858int 1550int
1551ev_default_loop (unsigned int flags)
859#endif 1552#endif
860ev_default_loop (int methods)
861{ 1553{
862 if (sigpipe [0] == sigpipe [1])
863 if (pipe (sigpipe))
864 return 0;
865
866 if (!default_loop) 1554 if (!ev_default_loop_ptr)
867 { 1555 {
868#if EV_MULTIPLICITY 1556#if EV_MULTIPLICITY
869 struct ev_loop *loop = default_loop = &default_loop_struct; 1557 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
870#else 1558#else
871 default_loop = 1; 1559 ev_default_loop_ptr = 1;
872#endif 1560#endif
873 1561
874 loop_init (EV_A_ methods); 1562 loop_init (EV_A_ flags);
875 1563
876 if (ev_method (EV_A)) 1564 if (ev_backend (EV_A))
877 { 1565 {
878 siginit (EV_A);
879
880#ifndef WIN32 1566#ifndef _WIN32
881 ev_signal_init (&childev, childcb, SIGCHLD); 1567 ev_signal_init (&childev, childcb, SIGCHLD);
882 ev_set_priority (&childev, EV_MAXPRI); 1568 ev_set_priority (&childev, EV_MAXPRI);
883 ev_signal_start (EV_A_ &childev); 1569 ev_signal_start (EV_A_ &childev);
884 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1570 ev_unref (EV_A); /* child watcher should not keep loop alive */
885#endif 1571#endif
886 } 1572 }
887 else 1573 else
888 default_loop = 0; 1574 ev_default_loop_ptr = 0;
889 } 1575 }
890 1576
891 return default_loop; 1577 return ev_default_loop_ptr;
892} 1578}
893 1579
894void 1580void
895ev_default_destroy (void) 1581ev_default_destroy (void)
896{ 1582{
897#if EV_MULTIPLICITY 1583#if EV_MULTIPLICITY
898 struct ev_loop *loop = default_loop; 1584 struct ev_loop *loop = ev_default_loop_ptr;
899#endif 1585#endif
900 1586
901#ifndef WIN32 1587#ifndef _WIN32
902 ev_ref (EV_A); /* child watcher */ 1588 ev_ref (EV_A); /* child watcher */
903 ev_signal_stop (EV_A_ &childev); 1589 ev_signal_stop (EV_A_ &childev);
904#endif 1590#endif
905 1591
906 ev_ref (EV_A); /* signal watcher */
907 ev_io_stop (EV_A_ &sigev);
908
909 close (sigpipe [0]); sigpipe [0] = 0;
910 close (sigpipe [1]); sigpipe [1] = 0;
911
912 loop_destroy (EV_A); 1592 loop_destroy (EV_A);
913} 1593}
914 1594
915void 1595void
916ev_default_fork (void) 1596ev_default_fork (void)
917{ 1597{
918#if EV_MULTIPLICITY 1598#if EV_MULTIPLICITY
919 struct ev_loop *loop = default_loop; 1599 struct ev_loop *loop = ev_default_loop_ptr;
920#endif 1600#endif
921 1601
922 if (method) 1602 if (backend)
923 postfork = 1; 1603 postfork = 1; /* must be in line with ev_loop_fork */
924} 1604}
925 1605
926/*****************************************************************************/ 1606/*****************************************************************************/
927 1607
928static int 1608void
1609ev_invoke (EV_P_ void *w, int revents)
1610{
1611 EV_CB_INVOKE ((W)w, revents);
1612}
1613
1614void inline_speed
929any_pending (EV_P) 1615call_pending (EV_P)
930{ 1616{
931 int pri; 1617 int pri;
932 1618
933 for (pri = NUMPRI; pri--; ) 1619 EV_FREQUENT_CHECK;
934 if (pendingcnt [pri])
935 return 1;
936
937 return 0;
938}
939
940static void
941call_pending (EV_P)
942{
943 int pri;
944 1620
945 for (pri = NUMPRI; pri--; ) 1621 for (pri = NUMPRI; pri--; )
946 while (pendingcnt [pri]) 1622 while (pendingcnt [pri])
947 { 1623 {
948 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1624 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
949 1625
950 if (p->w) 1626 if (expect_true (p->w))
951 { 1627 {
1628 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1629
952 p->w->pending = 0; 1630 p->w->pending = 0;
953 EV_CB_INVOKE (p->w, p->events); 1631 EV_CB_INVOKE (p->w, p->events);
954 } 1632 }
955 } 1633 }
956}
957 1634
958static void 1635 EV_FREQUENT_CHECK;
1636}
1637
1638#if EV_IDLE_ENABLE
1639void inline_size
1640idle_reify (EV_P)
1641{
1642 if (expect_false (idleall))
1643 {
1644 int pri;
1645
1646 for (pri = NUMPRI; pri--; )
1647 {
1648 if (pendingcnt [pri])
1649 break;
1650
1651 if (idlecnt [pri])
1652 {
1653 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1654 break;
1655 }
1656 }
1657 }
1658}
1659#endif
1660
1661void inline_size
959timers_reify (EV_P) 1662timers_reify (EV_P)
960{ 1663{
1664 EV_FREQUENT_CHECK;
1665
961 while (timercnt && ((WT)timers [0])->at <= mn_now) 1666 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
962 { 1667 {
963 struct ev_timer *w = timers [0]; 1668 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
964 1669
965 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1670 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
966 1671
967 /* first reschedule or stop timer */ 1672 /* first reschedule or stop timer */
968 if (w->repeat) 1673 if (w->repeat)
969 { 1674 {
1675 ev_at (w) += w->repeat;
1676 if (ev_at (w) < mn_now)
1677 ev_at (w) = mn_now;
1678
970 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1679 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
971 ((WT)w)->at = mn_now + w->repeat; 1680
1681 ANHE_at_cache (timers [HEAP0]);
972 downheap ((WT *)timers, timercnt, 0); 1682 downheap (timers, timercnt, HEAP0);
973 } 1683 }
974 else 1684 else
975 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1685 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
976 1686
1687 EV_FREQUENT_CHECK;
977 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1688 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
978 } 1689 }
979} 1690}
980 1691
981static void 1692#if EV_PERIODIC_ENABLE
1693void inline_size
982periodics_reify (EV_P) 1694periodics_reify (EV_P)
983{ 1695{
1696 EV_FREQUENT_CHECK;
984 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1697 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
985 { 1698 {
986 struct ev_periodic *w = periodics [0]; 1699 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
987 1700
988 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1701 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
989 1702
990 /* first reschedule or stop timer */ 1703 /* first reschedule or stop timer */
991 if (w->reschedule_cb) 1704 if (w->reschedule_cb)
992 { 1705 {
993 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001); 1706 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
994 1707
995 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now)); 1708 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1709
1710 ANHE_at_cache (periodics [HEAP0]);
996 downheap ((WT *)periodics, periodiccnt, 0); 1711 downheap (periodics, periodiccnt, HEAP0);
1712 EV_FREQUENT_CHECK;
997 } 1713 }
998 else if (w->interval) 1714 else if (w->interval)
999 { 1715 {
1000 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1716 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1001 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1717 /* if next trigger time is not sufficiently in the future, put it there */
1718 /* this might happen because of floating point inexactness */
1719 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1720 {
1721 ev_at (w) += w->interval;
1722
1723 /* if interval is unreasonably low we might still have a time in the past */
1724 /* so correct this. this will make the periodic very inexact, but the user */
1725 /* has effectively asked to get triggered more often than possible */
1726 if (ev_at (w) < ev_rt_now)
1727 ev_at (w) = ev_rt_now;
1728 }
1729
1730 ANHE_at_cache (periodics [HEAP0]);
1002 downheap ((WT *)periodics, periodiccnt, 0); 1731 downheap (periodics, periodiccnt, HEAP0);
1003 } 1732 }
1004 else 1733 else
1005 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1734 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1006 1735
1736 EV_FREQUENT_CHECK;
1007 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1737 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1008 } 1738 }
1009} 1739}
1010 1740
1011static void 1741static void noinline
1012periodics_reschedule (EV_P) 1742periodics_reschedule (EV_P)
1013{ 1743{
1014 int i; 1744 int i;
1015 1745
1016 /* adjust periodics after time jump */ 1746 /* adjust periodics after time jump */
1017 for (i = 0; i < periodiccnt; ++i) 1747 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1018 { 1748 {
1019 struct ev_periodic *w = periodics [i]; 1749 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1020 1750
1021 if (w->reschedule_cb) 1751 if (w->reschedule_cb)
1022 ((WT)w)->at = w->reschedule_cb (w, rt_now); 1752 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1023 else if (w->interval) 1753 else if (w->interval)
1024 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1754 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1025 }
1026 1755
1027 /* now rebuild the heap */ 1756 ANHE_at_cache (periodics [i]);
1028 for (i = periodiccnt >> 1; i--; )
1029 downheap ((WT *)periodics, periodiccnt, i);
1030}
1031
1032inline int
1033time_update_monotonic (EV_P)
1034{
1035 mn_now = get_clock ();
1036
1037 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1038 { 1757 }
1039 rt_now = rtmn_diff + mn_now;
1040 return 0;
1041 }
1042 else
1043 {
1044 now_floor = mn_now;
1045 rt_now = ev_time ();
1046 return 1;
1047 }
1048}
1049 1758
1050static void 1759 reheap (periodics, periodiccnt);
1051time_update (EV_P) 1760}
1761#endif
1762
1763void inline_speed
1764time_update (EV_P_ ev_tstamp max_block)
1052{ 1765{
1053 int i; 1766 int i;
1054 1767
1055#if EV_USE_MONOTONIC 1768#if EV_USE_MONOTONIC
1056 if (expect_true (have_monotonic)) 1769 if (expect_true (have_monotonic))
1057 { 1770 {
1058 if (time_update_monotonic (EV_A)) 1771 ev_tstamp odiff = rtmn_diff;
1772
1773 mn_now = get_clock ();
1774
1775 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1776 /* interpolate in the meantime */
1777 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1059 { 1778 {
1060 ev_tstamp odiff = rtmn_diff; 1779 ev_rt_now = rtmn_diff + mn_now;
1780 return;
1781 }
1061 1782
1783 now_floor = mn_now;
1784 ev_rt_now = ev_time ();
1785
1062 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1786 /* loop a few times, before making important decisions.
1787 * on the choice of "4": one iteration isn't enough,
1788 * in case we get preempted during the calls to
1789 * ev_time and get_clock. a second call is almost guaranteed
1790 * to succeed in that case, though. and looping a few more times
1791 * doesn't hurt either as we only do this on time-jumps or
1792 * in the unlikely event of having been preempted here.
1793 */
1794 for (i = 4; --i; )
1795 {
1796 rtmn_diff = ev_rt_now - mn_now;
1797
1798 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1799 return; /* all is well */
1800
1801 ev_rt_now = ev_time ();
1802 mn_now = get_clock ();
1803 now_floor = mn_now;
1804 }
1805
1806# if EV_PERIODIC_ENABLE
1807 periodics_reschedule (EV_A);
1808# endif
1809 /* no timer adjustment, as the monotonic clock doesn't jump */
1810 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1811 }
1812 else
1813#endif
1814 {
1815 ev_rt_now = ev_time ();
1816
1817 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1818 {
1819#if EV_PERIODIC_ENABLE
1820 periodics_reschedule (EV_A);
1821#endif
1822 /* adjust timers. this is easy, as the offset is the same for all of them */
1823 for (i = 0; i < timercnt; ++i)
1063 { 1824 {
1064 rtmn_diff = rt_now - mn_now; 1825 ANHE *he = timers + i + HEAP0;
1065 1826 ANHE_w (*he)->at += ev_rt_now - mn_now;
1066 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1827 ANHE_at_cache (*he);
1067 return; /* all is well */
1068
1069 rt_now = ev_time ();
1070 mn_now = get_clock ();
1071 now_floor = mn_now;
1072 } 1828 }
1073
1074 periodics_reschedule (EV_A);
1075 /* no timer adjustment, as the monotonic clock doesn't jump */
1076 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1077 } 1829 }
1078 }
1079 else
1080#endif
1081 {
1082 rt_now = ev_time ();
1083 1830
1084 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1085 {
1086 periodics_reschedule (EV_A);
1087
1088 /* adjust timers. this is easy, as the offset is the same for all */
1089 for (i = 0; i < timercnt; ++i)
1090 ((WT)timers [i])->at += rt_now - mn_now;
1091 }
1092
1093 mn_now = rt_now; 1831 mn_now = ev_rt_now;
1094 } 1832 }
1095} 1833}
1096 1834
1097void 1835void
1098ev_ref (EV_P) 1836ev_ref (EV_P)
1109static int loop_done; 1847static int loop_done;
1110 1848
1111void 1849void
1112ev_loop (EV_P_ int flags) 1850ev_loop (EV_P_ int flags)
1113{ 1851{
1114 double block; 1852 loop_done = EVUNLOOP_CANCEL;
1115 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1853
1854 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1116 1855
1117 do 1856 do
1118 { 1857 {
1858#ifndef _WIN32
1859 if (expect_false (curpid)) /* penalise the forking check even more */
1860 if (expect_false (getpid () != curpid))
1861 {
1862 curpid = getpid ();
1863 postfork = 1;
1864 }
1865#endif
1866
1867#if EV_FORK_ENABLE
1868 /* we might have forked, so queue fork handlers */
1869 if (expect_false (postfork))
1870 if (forkcnt)
1871 {
1872 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1873 call_pending (EV_A);
1874 }
1875#endif
1876
1119 /* queue check watchers (and execute them) */ 1877 /* queue prepare watchers (and execute them) */
1120 if (expect_false (preparecnt)) 1878 if (expect_false (preparecnt))
1121 { 1879 {
1122 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1880 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1123 call_pending (EV_A); 1881 call_pending (EV_A);
1124 } 1882 }
1125 1883
1884 if (expect_false (!activecnt))
1885 break;
1886
1126 /* we might have forked, so reify kernel state if necessary */ 1887 /* we might have forked, so reify kernel state if necessary */
1127 if (expect_false (postfork)) 1888 if (expect_false (postfork))
1128 loop_fork (EV_A); 1889 loop_fork (EV_A);
1129 1890
1130 /* update fd-related kernel structures */ 1891 /* update fd-related kernel structures */
1131 fd_reify (EV_A); 1892 fd_reify (EV_A);
1132 1893
1133 /* calculate blocking time */ 1894 /* calculate blocking time */
1895 {
1896 ev_tstamp waittime = 0.;
1897 ev_tstamp sleeptime = 0.;
1134 1898
1135 /* we only need this for !monotonic clock or timers, but as we basically 1899 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1136 always have timers, we just calculate it always */
1137#if EV_USE_MONOTONIC
1138 if (expect_true (have_monotonic))
1139 time_update_monotonic (EV_A);
1140 else
1141#endif
1142 { 1900 {
1143 rt_now = ev_time (); 1901 /* update time to cancel out callback processing overhead */
1144 mn_now = rt_now; 1902 time_update (EV_A_ 1e100);
1145 }
1146 1903
1147 if (flags & EVLOOP_NONBLOCK || idlecnt)
1148 block = 0.;
1149 else
1150 {
1151 block = MAX_BLOCKTIME; 1904 waittime = MAX_BLOCKTIME;
1152 1905
1153 if (timercnt) 1906 if (timercnt)
1154 { 1907 {
1155 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1908 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1156 if (block > to) block = to; 1909 if (waittime > to) waittime = to;
1157 } 1910 }
1158 1911
1912#if EV_PERIODIC_ENABLE
1159 if (periodiccnt) 1913 if (periodiccnt)
1160 { 1914 {
1161 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1915 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1162 if (block > to) block = to; 1916 if (waittime > to) waittime = to;
1163 } 1917 }
1918#endif
1164 1919
1165 if (block < 0.) block = 0.; 1920 if (expect_false (waittime < timeout_blocktime))
1921 waittime = timeout_blocktime;
1922
1923 sleeptime = waittime - backend_fudge;
1924
1925 if (expect_true (sleeptime > io_blocktime))
1926 sleeptime = io_blocktime;
1927
1928 if (sleeptime)
1929 {
1930 ev_sleep (sleeptime);
1931 waittime -= sleeptime;
1932 }
1166 } 1933 }
1167 1934
1168 method_poll (EV_A_ block); 1935 ++loop_count;
1936 backend_poll (EV_A_ waittime);
1169 1937
1170 /* update rt_now, do magic */ 1938 /* update ev_rt_now, do magic */
1171 time_update (EV_A); 1939 time_update (EV_A_ waittime + sleeptime);
1940 }
1172 1941
1173 /* queue pending timers and reschedule them */ 1942 /* queue pending timers and reschedule them */
1174 timers_reify (EV_A); /* relative timers called last */ 1943 timers_reify (EV_A); /* relative timers called last */
1944#if EV_PERIODIC_ENABLE
1175 periodics_reify (EV_A); /* absolute timers called first */ 1945 periodics_reify (EV_A); /* absolute timers called first */
1946#endif
1176 1947
1948#if EV_IDLE_ENABLE
1177 /* queue idle watchers unless io or timers are pending */ 1949 /* queue idle watchers unless other events are pending */
1178 if (idlecnt && !any_pending (EV_A)) 1950 idle_reify (EV_A);
1179 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1951#endif
1180 1952
1181 /* queue check watchers, to be executed first */ 1953 /* queue check watchers, to be executed first */
1182 if (checkcnt) 1954 if (expect_false (checkcnt))
1183 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1955 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1184 1956
1185 call_pending (EV_A); 1957 call_pending (EV_A);
1186 } 1958 }
1187 while (activecnt && !loop_done); 1959 while (expect_true (
1960 activecnt
1961 && !loop_done
1962 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1963 ));
1188 1964
1189 if (loop_done != 2) 1965 if (loop_done == EVUNLOOP_ONE)
1190 loop_done = 0; 1966 loop_done = EVUNLOOP_CANCEL;
1191} 1967}
1192 1968
1193void 1969void
1194ev_unloop (EV_P_ int how) 1970ev_unloop (EV_P_ int how)
1195{ 1971{
1196 loop_done = how; 1972 loop_done = how;
1197} 1973}
1198 1974
1199/*****************************************************************************/ 1975/*****************************************************************************/
1200 1976
1201inline void 1977void inline_size
1202wlist_add (WL *head, WL elem) 1978wlist_add (WL *head, WL elem)
1203{ 1979{
1204 elem->next = *head; 1980 elem->next = *head;
1205 *head = elem; 1981 *head = elem;
1206} 1982}
1207 1983
1208inline void 1984void inline_size
1209wlist_del (WL *head, WL elem) 1985wlist_del (WL *head, WL elem)
1210{ 1986{
1211 while (*head) 1987 while (*head)
1212 { 1988 {
1213 if (*head == elem) 1989 if (*head == elem)
1218 1994
1219 head = &(*head)->next; 1995 head = &(*head)->next;
1220 } 1996 }
1221} 1997}
1222 1998
1223inline void 1999void inline_speed
1224ev_clear_pending (EV_P_ W w) 2000clear_pending (EV_P_ W w)
1225{ 2001{
1226 if (w->pending) 2002 if (w->pending)
1227 { 2003 {
1228 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2004 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1229 w->pending = 0; 2005 w->pending = 0;
1230 } 2006 }
1231} 2007}
1232 2008
1233inline void 2009int
2010ev_clear_pending (EV_P_ void *w)
2011{
2012 W w_ = (W)w;
2013 int pending = w_->pending;
2014
2015 if (expect_true (pending))
2016 {
2017 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2018 w_->pending = 0;
2019 p->w = 0;
2020 return p->events;
2021 }
2022 else
2023 return 0;
2024}
2025
2026void inline_size
2027pri_adjust (EV_P_ W w)
2028{
2029 int pri = w->priority;
2030 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2031 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2032 w->priority = pri;
2033}
2034
2035void inline_speed
1234ev_start (EV_P_ W w, int active) 2036ev_start (EV_P_ W w, int active)
1235{ 2037{
1236 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2038 pri_adjust (EV_A_ w);
1237 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1238
1239 w->active = active; 2039 w->active = active;
1240 ev_ref (EV_A); 2040 ev_ref (EV_A);
1241} 2041}
1242 2042
1243inline void 2043void inline_size
1244ev_stop (EV_P_ W w) 2044ev_stop (EV_P_ W w)
1245{ 2045{
1246 ev_unref (EV_A); 2046 ev_unref (EV_A);
1247 w->active = 0; 2047 w->active = 0;
1248} 2048}
1249 2049
1250/*****************************************************************************/ 2050/*****************************************************************************/
1251 2051
1252void 2052void noinline
1253ev_io_start (EV_P_ struct ev_io *w) 2053ev_io_start (EV_P_ ev_io *w)
1254{ 2054{
1255 int fd = w->fd; 2055 int fd = w->fd;
1256 2056
1257 if (ev_is_active (w)) 2057 if (expect_false (ev_is_active (w)))
1258 return; 2058 return;
1259 2059
1260 assert (("ev_io_start called with negative fd", fd >= 0)); 2060 assert (("ev_io_start called with negative fd", fd >= 0));
2061
2062 EV_FREQUENT_CHECK;
1261 2063
1262 ev_start (EV_A_ (W)w, 1); 2064 ev_start (EV_A_ (W)w, 1);
1263 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2065 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1264 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2066 wlist_add (&anfds[fd].head, (WL)w);
1265 2067
1266 fd_change (EV_A_ fd); 2068 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1267} 2069 w->events &= ~EV_IOFDSET;
1268 2070
1269void 2071 EV_FREQUENT_CHECK;
2072}
2073
2074void noinline
1270ev_io_stop (EV_P_ struct ev_io *w) 2075ev_io_stop (EV_P_ ev_io *w)
1271{ 2076{
1272 ev_clear_pending (EV_A_ (W)w); 2077 clear_pending (EV_A_ (W)w);
1273 if (!ev_is_active (w)) 2078 if (expect_false (!ev_is_active (w)))
1274 return; 2079 return;
1275 2080
2081 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2082
2083 EV_FREQUENT_CHECK;
2084
1276 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2085 wlist_del (&anfds[w->fd].head, (WL)w);
1277 ev_stop (EV_A_ (W)w); 2086 ev_stop (EV_A_ (W)w);
1278 2087
1279 fd_change (EV_A_ w->fd); 2088 fd_change (EV_A_ w->fd, 1);
1280}
1281 2089
1282void 2090 EV_FREQUENT_CHECK;
2091}
2092
2093void noinline
1283ev_timer_start (EV_P_ struct ev_timer *w) 2094ev_timer_start (EV_P_ ev_timer *w)
1284{ 2095{
1285 if (ev_is_active (w)) 2096 if (expect_false (ev_is_active (w)))
1286 return; 2097 return;
1287 2098
1288 ((WT)w)->at += mn_now; 2099 ev_at (w) += mn_now;
1289 2100
1290 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2101 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1291 2102
2103 EV_FREQUENT_CHECK;
2104
2105 ++timercnt;
1292 ev_start (EV_A_ (W)w, ++timercnt); 2106 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1293 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 2107 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1294 timers [timercnt - 1] = w; 2108 ANHE_w (timers [ev_active (w)]) = (WT)w;
1295 upheap ((WT *)timers, timercnt - 1); 2109 ANHE_at_cache (timers [ev_active (w)]);
2110 upheap (timers, ev_active (w));
1296 2111
2112 EV_FREQUENT_CHECK;
2113
1297 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2114 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1298} 2115}
1299 2116
1300void 2117void noinline
1301ev_timer_stop (EV_P_ struct ev_timer *w) 2118ev_timer_stop (EV_P_ ev_timer *w)
1302{ 2119{
1303 ev_clear_pending (EV_A_ (W)w); 2120 clear_pending (EV_A_ (W)w);
1304 if (!ev_is_active (w)) 2121 if (expect_false (!ev_is_active (w)))
1305 return; 2122 return;
1306 2123
2124 EV_FREQUENT_CHECK;
2125
2126 {
2127 int active = ev_active (w);
2128
1307 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2129 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1308 2130
1309 if (((W)w)->active < timercnt--) 2131 --timercnt;
2132
2133 if (expect_true (active < timercnt + HEAP0))
1310 { 2134 {
1311 timers [((W)w)->active - 1] = timers [timercnt]; 2135 timers [active] = timers [timercnt + HEAP0];
1312 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2136 adjustheap (timers, timercnt, active);
1313 } 2137 }
2138 }
1314 2139
1315 ((WT)w)->at = w->repeat; 2140 EV_FREQUENT_CHECK;
2141
2142 ev_at (w) -= mn_now;
1316 2143
1317 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1318} 2145}
1319 2146
1320void 2147void noinline
1321ev_timer_again (EV_P_ struct ev_timer *w) 2148ev_timer_again (EV_P_ ev_timer *w)
1322{ 2149{
2150 EV_FREQUENT_CHECK;
2151
1323 if (ev_is_active (w)) 2152 if (ev_is_active (w))
1324 { 2153 {
1325 if (w->repeat) 2154 if (w->repeat)
1326 { 2155 {
1327 ((WT)w)->at = mn_now + w->repeat; 2156 ev_at (w) = mn_now + w->repeat;
1328 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2157 ANHE_at_cache (timers [ev_active (w)]);
2158 adjustheap (timers, timercnt, ev_active (w));
1329 } 2159 }
1330 else 2160 else
1331 ev_timer_stop (EV_A_ w); 2161 ev_timer_stop (EV_A_ w);
1332 } 2162 }
1333 else if (w->repeat) 2163 else if (w->repeat)
2164 {
2165 ev_at (w) = w->repeat;
1334 ev_timer_start (EV_A_ w); 2166 ev_timer_start (EV_A_ w);
1335} 2167 }
1336 2168
1337void 2169 EV_FREQUENT_CHECK;
2170}
2171
2172#if EV_PERIODIC_ENABLE
2173void noinline
1338ev_periodic_start (EV_P_ struct ev_periodic *w) 2174ev_periodic_start (EV_P_ ev_periodic *w)
1339{ 2175{
1340 if (ev_is_active (w)) 2176 if (expect_false (ev_is_active (w)))
1341 return; 2177 return;
1342 2178
1343 if (w->reschedule_cb) 2179 if (w->reschedule_cb)
1344 ((WT)w)->at = w->reschedule_cb (w, rt_now); 2180 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1345 else if (w->interval) 2181 else if (w->interval)
1346 { 2182 {
1347 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2183 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1348 /* this formula differs from the one in periodic_reify because we do not always round up */ 2184 /* this formula differs from the one in periodic_reify because we do not always round up */
1349 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 2185 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1350 } 2186 }
2187 else
2188 ev_at (w) = w->offset;
1351 2189
2190 EV_FREQUENT_CHECK;
2191
2192 ++periodiccnt;
1352 ev_start (EV_A_ (W)w, ++periodiccnt); 2193 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1353 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2194 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1354 periodics [periodiccnt - 1] = w; 2195 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1355 upheap ((WT *)periodics, periodiccnt - 1); 2196 ANHE_at_cache (periodics [ev_active (w)]);
2197 upheap (periodics, ev_active (w));
1356 2198
2199 EV_FREQUENT_CHECK;
2200
1357 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2201 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1358} 2202}
1359 2203
1360void 2204void noinline
1361ev_periodic_stop (EV_P_ struct ev_periodic *w) 2205ev_periodic_stop (EV_P_ ev_periodic *w)
1362{ 2206{
1363 ev_clear_pending (EV_A_ (W)w); 2207 clear_pending (EV_A_ (W)w);
1364 if (!ev_is_active (w)) 2208 if (expect_false (!ev_is_active (w)))
1365 return; 2209 return;
1366 2210
2211 EV_FREQUENT_CHECK;
2212
2213 {
2214 int active = ev_active (w);
2215
1367 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2216 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1368 2217
1369 if (((W)w)->active < periodiccnt--) 2218 --periodiccnt;
2219
2220 if (expect_true (active < periodiccnt + HEAP0))
1370 { 2221 {
1371 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2222 periodics [active] = periodics [periodiccnt + HEAP0];
1372 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2223 adjustheap (periodics, periodiccnt, active);
1373 } 2224 }
2225 }
2226
2227 EV_FREQUENT_CHECK;
1374 2228
1375 ev_stop (EV_A_ (W)w); 2229 ev_stop (EV_A_ (W)w);
1376} 2230}
1377 2231
1378void 2232void noinline
1379ev_periodic_again (EV_P_ struct ev_periodic *w) 2233ev_periodic_again (EV_P_ ev_periodic *w)
1380{ 2234{
2235 /* TODO: use adjustheap and recalculation */
1381 ev_periodic_stop (EV_A_ w); 2236 ev_periodic_stop (EV_A_ w);
1382 ev_periodic_start (EV_A_ w); 2237 ev_periodic_start (EV_A_ w);
1383} 2238}
1384 2239#endif
1385void
1386ev_idle_start (EV_P_ struct ev_idle *w)
1387{
1388 if (ev_is_active (w))
1389 return;
1390
1391 ev_start (EV_A_ (W)w, ++idlecnt);
1392 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1393 idles [idlecnt - 1] = w;
1394}
1395
1396void
1397ev_idle_stop (EV_P_ struct ev_idle *w)
1398{
1399 ev_clear_pending (EV_A_ (W)w);
1400 if (ev_is_active (w))
1401 return;
1402
1403 idles [((W)w)->active - 1] = idles [--idlecnt];
1404 ev_stop (EV_A_ (W)w);
1405}
1406
1407void
1408ev_prepare_start (EV_P_ struct ev_prepare *w)
1409{
1410 if (ev_is_active (w))
1411 return;
1412
1413 ev_start (EV_A_ (W)w, ++preparecnt);
1414 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1415 prepares [preparecnt - 1] = w;
1416}
1417
1418void
1419ev_prepare_stop (EV_P_ struct ev_prepare *w)
1420{
1421 ev_clear_pending (EV_A_ (W)w);
1422 if (ev_is_active (w))
1423 return;
1424
1425 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1426 ev_stop (EV_A_ (W)w);
1427}
1428
1429void
1430ev_check_start (EV_P_ struct ev_check *w)
1431{
1432 if (ev_is_active (w))
1433 return;
1434
1435 ev_start (EV_A_ (W)w, ++checkcnt);
1436 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1437 checks [checkcnt - 1] = w;
1438}
1439
1440void
1441ev_check_stop (EV_P_ struct ev_check *w)
1442{
1443 ev_clear_pending (EV_A_ (W)w);
1444 if (ev_is_active (w))
1445 return;
1446
1447 checks [((W)w)->active - 1] = checks [--checkcnt];
1448 ev_stop (EV_A_ (W)w);
1449}
1450 2240
1451#ifndef SA_RESTART 2241#ifndef SA_RESTART
1452# define SA_RESTART 0 2242# define SA_RESTART 0
1453#endif 2243#endif
1454 2244
1455void 2245void noinline
1456ev_signal_start (EV_P_ struct ev_signal *w) 2246ev_signal_start (EV_P_ ev_signal *w)
1457{ 2247{
1458#if EV_MULTIPLICITY 2248#if EV_MULTIPLICITY
1459 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2249 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1460#endif 2250#endif
1461 if (ev_is_active (w)) 2251 if (expect_false (ev_is_active (w)))
1462 return; 2252 return;
1463 2253
1464 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2254 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1465 2255
2256 evpipe_init (EV_A);
2257
2258 EV_FREQUENT_CHECK;
2259
2260 {
2261#ifndef _WIN32
2262 sigset_t full, prev;
2263 sigfillset (&full);
2264 sigprocmask (SIG_SETMASK, &full, &prev);
2265#endif
2266
2267 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2268
2269#ifndef _WIN32
2270 sigprocmask (SIG_SETMASK, &prev, 0);
2271#endif
2272 }
2273
1466 ev_start (EV_A_ (W)w, 1); 2274 ev_start (EV_A_ (W)w, 1);
1467 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1468 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2275 wlist_add (&signals [w->signum - 1].head, (WL)w);
1469 2276
1470 if (!((WL)w)->next) 2277 if (!((WL)w)->next)
1471 { 2278 {
1472#if WIN32 2279#if _WIN32
1473 signal (w->signum, sighandler); 2280 signal (w->signum, ev_sighandler);
1474#else 2281#else
1475 struct sigaction sa; 2282 struct sigaction sa;
1476 sa.sa_handler = sighandler; 2283 sa.sa_handler = ev_sighandler;
1477 sigfillset (&sa.sa_mask); 2284 sigfillset (&sa.sa_mask);
1478 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2285 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1479 sigaction (w->signum, &sa, 0); 2286 sigaction (w->signum, &sa, 0);
1480#endif 2287#endif
1481 } 2288 }
1482}
1483 2289
1484void 2290 EV_FREQUENT_CHECK;
2291}
2292
2293void noinline
1485ev_signal_stop (EV_P_ struct ev_signal *w) 2294ev_signal_stop (EV_P_ ev_signal *w)
1486{ 2295{
1487 ev_clear_pending (EV_A_ (W)w); 2296 clear_pending (EV_A_ (W)w);
1488 if (!ev_is_active (w)) 2297 if (expect_false (!ev_is_active (w)))
1489 return; 2298 return;
1490 2299
2300 EV_FREQUENT_CHECK;
2301
1491 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2302 wlist_del (&signals [w->signum - 1].head, (WL)w);
1492 ev_stop (EV_A_ (W)w); 2303 ev_stop (EV_A_ (W)w);
1493 2304
1494 if (!signals [w->signum - 1].head) 2305 if (!signals [w->signum - 1].head)
1495 signal (w->signum, SIG_DFL); 2306 signal (w->signum, SIG_DFL);
1496}
1497 2307
2308 EV_FREQUENT_CHECK;
2309}
2310
1498void 2311void
1499ev_child_start (EV_P_ struct ev_child *w) 2312ev_child_start (EV_P_ ev_child *w)
1500{ 2313{
1501#if EV_MULTIPLICITY 2314#if EV_MULTIPLICITY
1502 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2315 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1503#endif 2316#endif
1504 if (ev_is_active (w)) 2317 if (expect_false (ev_is_active (w)))
1505 return; 2318 return;
1506 2319
2320 EV_FREQUENT_CHECK;
2321
1507 ev_start (EV_A_ (W)w, 1); 2322 ev_start (EV_A_ (W)w, 1);
1508 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2323 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1509}
1510 2324
2325 EV_FREQUENT_CHECK;
2326}
2327
1511void 2328void
1512ev_child_stop (EV_P_ struct ev_child *w) 2329ev_child_stop (EV_P_ ev_child *w)
1513{ 2330{
1514 ev_clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
1515 if (ev_is_active (w)) 2332 if (expect_false (!ev_is_active (w)))
1516 return; 2333 return;
1517 2334
2335 EV_FREQUENT_CHECK;
2336
1518 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2337 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1519 ev_stop (EV_A_ (W)w); 2338 ev_stop (EV_A_ (W)w);
2339
2340 EV_FREQUENT_CHECK;
1520} 2341}
2342
2343#if EV_STAT_ENABLE
2344
2345# ifdef _WIN32
2346# undef lstat
2347# define lstat(a,b) _stati64 (a,b)
2348# endif
2349
2350#define DEF_STAT_INTERVAL 5.0074891
2351#define MIN_STAT_INTERVAL 0.1074891
2352
2353static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2354
2355#if EV_USE_INOTIFY
2356# define EV_INOTIFY_BUFSIZE 8192
2357
2358static void noinline
2359infy_add (EV_P_ ev_stat *w)
2360{
2361 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2362
2363 if (w->wd < 0)
2364 {
2365 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2366
2367 /* monitor some parent directory for speedup hints */
2368 /* note that exceeding the hardcoded limit is not a correctness issue, */
2369 /* but an efficiency issue only */
2370 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2371 {
2372 char path [4096];
2373 strcpy (path, w->path);
2374
2375 do
2376 {
2377 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2378 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2379
2380 char *pend = strrchr (path, '/');
2381
2382 if (!pend)
2383 break; /* whoops, no '/', complain to your admin */
2384
2385 *pend = 0;
2386 w->wd = inotify_add_watch (fs_fd, path, mask);
2387 }
2388 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2389 }
2390 }
2391 else
2392 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2393
2394 if (w->wd >= 0)
2395 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2396}
2397
2398static void noinline
2399infy_del (EV_P_ ev_stat *w)
2400{
2401 int slot;
2402 int wd = w->wd;
2403
2404 if (wd < 0)
2405 return;
2406
2407 w->wd = -2;
2408 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2409 wlist_del (&fs_hash [slot].head, (WL)w);
2410
2411 /* remove this watcher, if others are watching it, they will rearm */
2412 inotify_rm_watch (fs_fd, wd);
2413}
2414
2415static void noinline
2416infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2417{
2418 if (slot < 0)
2419 /* overflow, need to check for all hahs slots */
2420 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2421 infy_wd (EV_A_ slot, wd, ev);
2422 else
2423 {
2424 WL w_;
2425
2426 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2427 {
2428 ev_stat *w = (ev_stat *)w_;
2429 w_ = w_->next; /* lets us remove this watcher and all before it */
2430
2431 if (w->wd == wd || wd == -1)
2432 {
2433 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2434 {
2435 w->wd = -1;
2436 infy_add (EV_A_ w); /* re-add, no matter what */
2437 }
2438
2439 stat_timer_cb (EV_A_ &w->timer, 0);
2440 }
2441 }
2442 }
2443}
2444
2445static void
2446infy_cb (EV_P_ ev_io *w, int revents)
2447{
2448 char buf [EV_INOTIFY_BUFSIZE];
2449 struct inotify_event *ev = (struct inotify_event *)buf;
2450 int ofs;
2451 int len = read (fs_fd, buf, sizeof (buf));
2452
2453 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2454 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2455}
2456
2457void inline_size
2458infy_init (EV_P)
2459{
2460 if (fs_fd != -2)
2461 return;
2462
2463 fs_fd = inotify_init ();
2464
2465 if (fs_fd >= 0)
2466 {
2467 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2468 ev_set_priority (&fs_w, EV_MAXPRI);
2469 ev_io_start (EV_A_ &fs_w);
2470 }
2471}
2472
2473void inline_size
2474infy_fork (EV_P)
2475{
2476 int slot;
2477
2478 if (fs_fd < 0)
2479 return;
2480
2481 close (fs_fd);
2482 fs_fd = inotify_init ();
2483
2484 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2485 {
2486 WL w_ = fs_hash [slot].head;
2487 fs_hash [slot].head = 0;
2488
2489 while (w_)
2490 {
2491 ev_stat *w = (ev_stat *)w_;
2492 w_ = w_->next; /* lets us add this watcher */
2493
2494 w->wd = -1;
2495
2496 if (fs_fd >= 0)
2497 infy_add (EV_A_ w); /* re-add, no matter what */
2498 else
2499 ev_timer_start (EV_A_ &w->timer);
2500 }
2501
2502 }
2503}
2504
2505#endif
2506
2507void
2508ev_stat_stat (EV_P_ ev_stat *w)
2509{
2510 if (lstat (w->path, &w->attr) < 0)
2511 w->attr.st_nlink = 0;
2512 else if (!w->attr.st_nlink)
2513 w->attr.st_nlink = 1;
2514}
2515
2516static void noinline
2517stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2518{
2519 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2520
2521 /* we copy this here each the time so that */
2522 /* prev has the old value when the callback gets invoked */
2523 w->prev = w->attr;
2524 ev_stat_stat (EV_A_ w);
2525
2526 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2527 if (
2528 w->prev.st_dev != w->attr.st_dev
2529 || w->prev.st_ino != w->attr.st_ino
2530 || w->prev.st_mode != w->attr.st_mode
2531 || w->prev.st_nlink != w->attr.st_nlink
2532 || w->prev.st_uid != w->attr.st_uid
2533 || w->prev.st_gid != w->attr.st_gid
2534 || w->prev.st_rdev != w->attr.st_rdev
2535 || w->prev.st_size != w->attr.st_size
2536 || w->prev.st_atime != w->attr.st_atime
2537 || w->prev.st_mtime != w->attr.st_mtime
2538 || w->prev.st_ctime != w->attr.st_ctime
2539 ) {
2540 #if EV_USE_INOTIFY
2541 infy_del (EV_A_ w);
2542 infy_add (EV_A_ w);
2543 ev_stat_stat (EV_A_ w); /* avoid race... */
2544 #endif
2545
2546 ev_feed_event (EV_A_ w, EV_STAT);
2547 }
2548}
2549
2550void
2551ev_stat_start (EV_P_ ev_stat *w)
2552{
2553 if (expect_false (ev_is_active (w)))
2554 return;
2555
2556 /* since we use memcmp, we need to clear any padding data etc. */
2557 memset (&w->prev, 0, sizeof (ev_statdata));
2558 memset (&w->attr, 0, sizeof (ev_statdata));
2559
2560 ev_stat_stat (EV_A_ w);
2561
2562 if (w->interval < MIN_STAT_INTERVAL)
2563 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2564
2565 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2566 ev_set_priority (&w->timer, ev_priority (w));
2567
2568#if EV_USE_INOTIFY
2569 infy_init (EV_A);
2570
2571 if (fs_fd >= 0)
2572 infy_add (EV_A_ w);
2573 else
2574#endif
2575 ev_timer_start (EV_A_ &w->timer);
2576
2577 ev_start (EV_A_ (W)w, 1);
2578
2579 EV_FREQUENT_CHECK;
2580}
2581
2582void
2583ev_stat_stop (EV_P_ ev_stat *w)
2584{
2585 clear_pending (EV_A_ (W)w);
2586 if (expect_false (!ev_is_active (w)))
2587 return;
2588
2589 EV_FREQUENT_CHECK;
2590
2591#if EV_USE_INOTIFY
2592 infy_del (EV_A_ w);
2593#endif
2594 ev_timer_stop (EV_A_ &w->timer);
2595
2596 ev_stop (EV_A_ (W)w);
2597
2598 EV_FREQUENT_CHECK;
2599}
2600#endif
2601
2602#if EV_IDLE_ENABLE
2603void
2604ev_idle_start (EV_P_ ev_idle *w)
2605{
2606 if (expect_false (ev_is_active (w)))
2607 return;
2608
2609 pri_adjust (EV_A_ (W)w);
2610
2611 EV_FREQUENT_CHECK;
2612
2613 {
2614 int active = ++idlecnt [ABSPRI (w)];
2615
2616 ++idleall;
2617 ev_start (EV_A_ (W)w, active);
2618
2619 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2620 idles [ABSPRI (w)][active - 1] = w;
2621 }
2622
2623 EV_FREQUENT_CHECK;
2624}
2625
2626void
2627ev_idle_stop (EV_P_ ev_idle *w)
2628{
2629 clear_pending (EV_A_ (W)w);
2630 if (expect_false (!ev_is_active (w)))
2631 return;
2632
2633 EV_FREQUENT_CHECK;
2634
2635 {
2636 int active = ev_active (w);
2637
2638 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2639 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2640
2641 ev_stop (EV_A_ (W)w);
2642 --idleall;
2643 }
2644
2645 EV_FREQUENT_CHECK;
2646}
2647#endif
2648
2649void
2650ev_prepare_start (EV_P_ ev_prepare *w)
2651{
2652 if (expect_false (ev_is_active (w)))
2653 return;
2654
2655 EV_FREQUENT_CHECK;
2656
2657 ev_start (EV_A_ (W)w, ++preparecnt);
2658 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2659 prepares [preparecnt - 1] = w;
2660
2661 EV_FREQUENT_CHECK;
2662}
2663
2664void
2665ev_prepare_stop (EV_P_ ev_prepare *w)
2666{
2667 clear_pending (EV_A_ (W)w);
2668 if (expect_false (!ev_is_active (w)))
2669 return;
2670
2671 EV_FREQUENT_CHECK;
2672
2673 {
2674 int active = ev_active (w);
2675
2676 prepares [active - 1] = prepares [--preparecnt];
2677 ev_active (prepares [active - 1]) = active;
2678 }
2679
2680 ev_stop (EV_A_ (W)w);
2681
2682 EV_FREQUENT_CHECK;
2683}
2684
2685void
2686ev_check_start (EV_P_ ev_check *w)
2687{
2688 if (expect_false (ev_is_active (w)))
2689 return;
2690
2691 EV_FREQUENT_CHECK;
2692
2693 ev_start (EV_A_ (W)w, ++checkcnt);
2694 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2695 checks [checkcnt - 1] = w;
2696
2697 EV_FREQUENT_CHECK;
2698}
2699
2700void
2701ev_check_stop (EV_P_ ev_check *w)
2702{
2703 clear_pending (EV_A_ (W)w);
2704 if (expect_false (!ev_is_active (w)))
2705 return;
2706
2707 EV_FREQUENT_CHECK;
2708
2709 {
2710 int active = ev_active (w);
2711
2712 checks [active - 1] = checks [--checkcnt];
2713 ev_active (checks [active - 1]) = active;
2714 }
2715
2716 ev_stop (EV_A_ (W)w);
2717
2718 EV_FREQUENT_CHECK;
2719}
2720
2721#if EV_EMBED_ENABLE
2722void noinline
2723ev_embed_sweep (EV_P_ ev_embed *w)
2724{
2725 ev_loop (w->other, EVLOOP_NONBLOCK);
2726}
2727
2728static void
2729embed_io_cb (EV_P_ ev_io *io, int revents)
2730{
2731 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2732
2733 if (ev_cb (w))
2734 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2735 else
2736 ev_loop (w->other, EVLOOP_NONBLOCK);
2737}
2738
2739static void
2740embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2741{
2742 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2743
2744 {
2745 struct ev_loop *loop = w->other;
2746
2747 while (fdchangecnt)
2748 {
2749 fd_reify (EV_A);
2750 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2751 }
2752 }
2753}
2754
2755#if 0
2756static void
2757embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2758{
2759 ev_idle_stop (EV_A_ idle);
2760}
2761#endif
2762
2763void
2764ev_embed_start (EV_P_ ev_embed *w)
2765{
2766 if (expect_false (ev_is_active (w)))
2767 return;
2768
2769 {
2770 struct ev_loop *loop = w->other;
2771 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2772 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2773 }
2774
2775 EV_FREQUENT_CHECK;
2776
2777 ev_set_priority (&w->io, ev_priority (w));
2778 ev_io_start (EV_A_ &w->io);
2779
2780 ev_prepare_init (&w->prepare, embed_prepare_cb);
2781 ev_set_priority (&w->prepare, EV_MINPRI);
2782 ev_prepare_start (EV_A_ &w->prepare);
2783
2784 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2785
2786 ev_start (EV_A_ (W)w, 1);
2787
2788 EV_FREQUENT_CHECK;
2789}
2790
2791void
2792ev_embed_stop (EV_P_ ev_embed *w)
2793{
2794 clear_pending (EV_A_ (W)w);
2795 if (expect_false (!ev_is_active (w)))
2796 return;
2797
2798 EV_FREQUENT_CHECK;
2799
2800 ev_io_stop (EV_A_ &w->io);
2801 ev_prepare_stop (EV_A_ &w->prepare);
2802
2803 ev_stop (EV_A_ (W)w);
2804
2805 EV_FREQUENT_CHECK;
2806}
2807#endif
2808
2809#if EV_FORK_ENABLE
2810void
2811ev_fork_start (EV_P_ ev_fork *w)
2812{
2813 if (expect_false (ev_is_active (w)))
2814 return;
2815
2816 EV_FREQUENT_CHECK;
2817
2818 ev_start (EV_A_ (W)w, ++forkcnt);
2819 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2820 forks [forkcnt - 1] = w;
2821
2822 EV_FREQUENT_CHECK;
2823}
2824
2825void
2826ev_fork_stop (EV_P_ ev_fork *w)
2827{
2828 clear_pending (EV_A_ (W)w);
2829 if (expect_false (!ev_is_active (w)))
2830 return;
2831
2832 EV_FREQUENT_CHECK;
2833
2834 {
2835 int active = ev_active (w);
2836
2837 forks [active - 1] = forks [--forkcnt];
2838 ev_active (forks [active - 1]) = active;
2839 }
2840
2841 ev_stop (EV_A_ (W)w);
2842
2843 EV_FREQUENT_CHECK;
2844}
2845#endif
2846
2847#if EV_ASYNC_ENABLE
2848void
2849ev_async_start (EV_P_ ev_async *w)
2850{
2851 if (expect_false (ev_is_active (w)))
2852 return;
2853
2854 evpipe_init (EV_A);
2855
2856 EV_FREQUENT_CHECK;
2857
2858 ev_start (EV_A_ (W)w, ++asynccnt);
2859 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2860 asyncs [asynccnt - 1] = w;
2861
2862 EV_FREQUENT_CHECK;
2863}
2864
2865void
2866ev_async_stop (EV_P_ ev_async *w)
2867{
2868 clear_pending (EV_A_ (W)w);
2869 if (expect_false (!ev_is_active (w)))
2870 return;
2871
2872 EV_FREQUENT_CHECK;
2873
2874 {
2875 int active = ev_active (w);
2876
2877 asyncs [active - 1] = asyncs [--asynccnt];
2878 ev_active (asyncs [active - 1]) = active;
2879 }
2880
2881 ev_stop (EV_A_ (W)w);
2882
2883 EV_FREQUENT_CHECK;
2884}
2885
2886void
2887ev_async_send (EV_P_ ev_async *w)
2888{
2889 w->sent = 1;
2890 evpipe_write (EV_A_ &gotasync);
2891}
2892#endif
1521 2893
1522/*****************************************************************************/ 2894/*****************************************************************************/
1523 2895
1524struct ev_once 2896struct ev_once
1525{ 2897{
1526 struct ev_io io; 2898 ev_io io;
1527 struct ev_timer to; 2899 ev_timer to;
1528 void (*cb)(int revents, void *arg); 2900 void (*cb)(int revents, void *arg);
1529 void *arg; 2901 void *arg;
1530}; 2902};
1531 2903
1532static void 2904static void
1541 2913
1542 cb (revents, arg); 2914 cb (revents, arg);
1543} 2915}
1544 2916
1545static void 2917static void
1546once_cb_io (EV_P_ struct ev_io *w, int revents) 2918once_cb_io (EV_P_ ev_io *w, int revents)
1547{ 2919{
1548 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2920 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1549} 2921}
1550 2922
1551static void 2923static void
1552once_cb_to (EV_P_ struct ev_timer *w, int revents) 2924once_cb_to (EV_P_ ev_timer *w, int revents)
1553{ 2925{
1554 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2926 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1555} 2927}
1556 2928
1557void 2929void
1558ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2930ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1559{ 2931{
1560 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2932 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1561 2933
1562 if (!once) 2934 if (expect_false (!once))
2935 {
1563 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2936 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1564 else 2937 return;
1565 { 2938 }
2939
1566 once->cb = cb; 2940 once->cb = cb;
1567 once->arg = arg; 2941 once->arg = arg;
1568 2942
1569 ev_init (&once->io, once_cb_io); 2943 ev_init (&once->io, once_cb_io);
1570 if (fd >= 0) 2944 if (fd >= 0)
1571 { 2945 {
1572 ev_io_set (&once->io, fd, events); 2946 ev_io_set (&once->io, fd, events);
1573 ev_io_start (EV_A_ &once->io); 2947 ev_io_start (EV_A_ &once->io);
1574 } 2948 }
1575 2949
1576 ev_init (&once->to, once_cb_to); 2950 ev_init (&once->to, once_cb_to);
1577 if (timeout >= 0.) 2951 if (timeout >= 0.)
1578 { 2952 {
1579 ev_timer_set (&once->to, timeout, 0.); 2953 ev_timer_set (&once->to, timeout, 0.);
1580 ev_timer_start (EV_A_ &once->to); 2954 ev_timer_start (EV_A_ &once->to);
1581 }
1582 } 2955 }
1583} 2956}
1584 2957
2958#if EV_MULTIPLICITY
2959 #include "ev_wrap.h"
2960#endif
2961
2962#ifdef __cplusplus
2963}
2964#endif
2965

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines