ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.43 by root, Fri Nov 2 20:21:33 2007 UTC vs.
Revision 1.83 by root, Fri Nov 9 21:48:23 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 59#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 60#include <stddef.h>
41 61
42#include <stdio.h> 62#include <stdio.h>
43 63
44#include <assert.h> 64#include <assert.h>
45#include <errno.h> 65#include <errno.h>
46#include <sys/types.h> 66#include <sys/types.h>
47#include <sys/wait.h>
48#include <sys/time.h>
49#include <time.h> 67#include <time.h>
50 68
69#include <signal.h>
70
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
51/**/ 76/**/
52 77
53#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
55#endif 80#endif
62# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
63#endif 88#endif
64 89
65#ifndef EV_USE_EPOLL 90#ifndef EV_USE_EPOLL
66# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
92#endif
93
94#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
67#endif 106#endif
68 107
69#ifndef EV_USE_REALTIME 108#ifndef EV_USE_REALTIME
70# define EV_USE_REALTIME 1 109# define EV_USE_REALTIME 1
71#endif 110#endif
87#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
88#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
89#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
90/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
91 130
131#ifdef EV_H
132# include EV_H
133#else
92#include "ev.h" 134# include "ev.h"
135#endif
93 136
94#if __GNUC__ >= 3 137#if __GNUC__ >= 3
95# define expect(expr,value) __builtin_expect ((expr),(value)) 138# define expect(expr,value) __builtin_expect ((expr),(value))
96# define inline inline 139# define inline inline
97#else 140#else
107 150
108typedef struct ev_watcher *W; 151typedef struct ev_watcher *W;
109typedef struct ev_watcher_list *WL; 152typedef struct ev_watcher_list *WL;
110typedef struct ev_watcher_time *WT; 153typedef struct ev_watcher_time *WT;
111 154
112static ev_tstamp now_floor, now, diff; /* monotonic clock */ 155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
113ev_tstamp ev_now;
114int ev_method;
115 156
116static int have_monotonic; /* runtime */ 157#include "ev_win32.c"
117
118static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
119static void (*method_modify)(int fd, int oev, int nev);
120static void (*method_poll)(ev_tstamp timeout);
121 158
122/*****************************************************************************/ 159/*****************************************************************************/
123 160
124ev_tstamp 161static void (*syserr_cb)(const char *msg);
162
163void ev_set_syserr_cb (void (*cb)(const char *msg))
164{
165 syserr_cb = cb;
166}
167
168static void
169syserr (const char *msg)
170{
171 if (!msg)
172 msg = "(libev) system error";
173
174 if (syserr_cb)
175 syserr_cb (msg);
176 else
177 {
178 perror (msg);
179 abort ();
180 }
181}
182
183static void *(*alloc)(void *ptr, long size);
184
185void ev_set_allocator (void *(*cb)(void *ptr, long size))
186{
187 alloc = cb;
188}
189
190static void *
191ev_realloc (void *ptr, long size)
192{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194
195 if (!ptr && size)
196 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort ();
199 }
200
201 return ptr;
202}
203
204#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0)
206
207/*****************************************************************************/
208
209typedef struct
210{
211 WL head;
212 unsigned char events;
213 unsigned char reify;
214} ANFD;
215
216typedef struct
217{
218 W w;
219 int events;
220} ANPENDING;
221
222#if EV_MULTIPLICITY
223
224 struct ev_loop
225 {
226 #define VAR(name,decl) decl;
227 #include "ev_vars.h"
228 #undef VAR
229 };
230 #include "ev_wrap.h"
231
232 struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop;
234
235#else
236
237 #define VAR(name,decl) static decl;
238 #include "ev_vars.h"
239 #undef VAR
240
241 static int default_loop;
242
243#endif
244
245/*****************************************************************************/
246
247inline ev_tstamp
125ev_time (void) 248ev_time (void)
126{ 249{
127#if EV_USE_REALTIME 250#if EV_USE_REALTIME
128 struct timespec ts; 251 struct timespec ts;
129 clock_gettime (CLOCK_REALTIME, &ts); 252 clock_gettime (CLOCK_REALTIME, &ts);
133 gettimeofday (&tv, 0); 256 gettimeofday (&tv, 0);
134 return tv.tv_sec + tv.tv_usec * 1e-6; 257 return tv.tv_sec + tv.tv_usec * 1e-6;
135#endif 258#endif
136} 259}
137 260
138static ev_tstamp 261inline ev_tstamp
139get_clock (void) 262get_clock (void)
140{ 263{
141#if EV_USE_MONOTONIC 264#if EV_USE_MONOTONIC
142 if (expect_true (have_monotonic)) 265 if (expect_true (have_monotonic))
143 { 266 {
148#endif 271#endif
149 272
150 return ev_time (); 273 return ev_time ();
151} 274}
152 275
276ev_tstamp
277ev_now (EV_P)
278{
279 return rt_now;
280}
281
153#define array_roundsize(base,n) ((n) | 4 & ~3) 282#define array_roundsize(type,n) ((n) | 4 & ~3)
154 283
155#define array_needsize(base,cur,cnt,init) \ 284#define array_needsize(type,base,cur,cnt,init) \
156 if (expect_false ((cnt) > cur)) \ 285 if (expect_false ((cnt) > cur)) \
157 { \ 286 { \
158 int newcnt = cur; \ 287 int newcnt = cur; \
159 do \ 288 do \
160 { \ 289 { \
161 newcnt = array_roundsize (base, newcnt << 1); \ 290 newcnt = array_roundsize (type, newcnt << 1); \
162 } \ 291 } \
163 while ((cnt) > newcnt); \ 292 while ((cnt) > newcnt); \
164 \ 293 \
165 base = realloc (base, sizeof (*base) * (newcnt)); \ 294 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
166 init (base + cur, newcnt - cur); \ 295 init (base + cur, newcnt - cur); \
167 cur = newcnt; \ 296 cur = newcnt; \
168 } 297 }
298
299#define array_slim(type,stem) \
300 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
301 { \
302 stem ## max = array_roundsize (stem ## cnt >> 1); \
303 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
304 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
305 }
306
307/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
308/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
309#define array_free_microshit(stem) \
310 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
311
312#define array_free(stem, idx) \
313 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
169 314
170/*****************************************************************************/ 315/*****************************************************************************/
171
172typedef struct
173{
174 struct ev_io *head;
175 unsigned char events;
176 unsigned char reify;
177} ANFD;
178
179static ANFD *anfds;
180static int anfdmax;
181 316
182static void 317static void
183anfds_init (ANFD *base, int count) 318anfds_init (ANFD *base, int count)
184{ 319{
185 while (count--) 320 while (count--)
190 325
191 ++base; 326 ++base;
192 } 327 }
193} 328}
194 329
195typedef struct 330void
331ev_feed_event (EV_P_ void *w, int revents)
196{ 332{
197 W w; 333 W w_ = (W)w;
198 int events;
199} ANPENDING;
200 334
201static ANPENDING *pendings [NUMPRI];
202static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
203
204static void
205event (W w, int events)
206{
207 if (w->pending) 335 if (w_->pending)
208 { 336 {
209 pendings [ABSPRI (w)][w->pending - 1].events |= events; 337 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
210 return; 338 return;
211 } 339 }
212 340
213 w->pending = ++pendingcnt [ABSPRI (w)]; 341 w_->pending = ++pendingcnt [ABSPRI (w_)];
214 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 342 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
215 pendings [ABSPRI (w)][w->pending - 1].w = w; 343 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
216 pendings [ABSPRI (w)][w->pending - 1].events = events; 344 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
217} 345}
218 346
219static void 347static void
220queue_events (W *events, int eventcnt, int type) 348queue_events (EV_P_ W *events, int eventcnt, int type)
221{ 349{
222 int i; 350 int i;
223 351
224 for (i = 0; i < eventcnt; ++i) 352 for (i = 0; i < eventcnt; ++i)
225 event (events [i], type); 353 ev_feed_event (EV_A_ events [i], type);
226} 354}
227 355
228static void 356inline void
229fd_event (int fd, int events) 357fd_event (EV_P_ int fd, int revents)
230{ 358{
231 ANFD *anfd = anfds + fd; 359 ANFD *anfd = anfds + fd;
232 struct ev_io *w; 360 struct ev_io *w;
233 361
234 for (w = anfd->head; w; w = w->next) 362 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
235 { 363 {
236 int ev = w->events & events; 364 int ev = w->events & revents;
237 365
238 if (ev) 366 if (ev)
239 event ((W)w, ev); 367 ev_feed_event (EV_A_ (W)w, ev);
240 } 368 }
369}
370
371void
372ev_feed_fd_event (EV_P_ int fd, int revents)
373{
374 fd_event (EV_A_ fd, revents);
241} 375}
242 376
243/*****************************************************************************/ 377/*****************************************************************************/
244 378
245static int *fdchanges;
246static int fdchangemax, fdchangecnt;
247
248static void 379static void
249fd_reify (void) 380fd_reify (EV_P)
250{ 381{
251 int i; 382 int i;
252 383
253 for (i = 0; i < fdchangecnt; ++i) 384 for (i = 0; i < fdchangecnt; ++i)
254 { 385 {
256 ANFD *anfd = anfds + fd; 387 ANFD *anfd = anfds + fd;
257 struct ev_io *w; 388 struct ev_io *w;
258 389
259 int events = 0; 390 int events = 0;
260 391
261 for (w = anfd->head; w; w = w->next) 392 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
262 events |= w->events; 393 events |= w->events;
263 394
264 anfd->reify = 0; 395 anfd->reify = 0;
265 396
266 if (anfd->events != events)
267 {
268 method_modify (fd, anfd->events, events); 397 method_modify (EV_A_ fd, anfd->events, events);
269 anfd->events = events; 398 anfd->events = events;
270 }
271 } 399 }
272 400
273 fdchangecnt = 0; 401 fdchangecnt = 0;
274} 402}
275 403
276static void 404static void
277fd_change (int fd) 405fd_change (EV_P_ int fd)
278{ 406{
279 if (anfds [fd].reify || fdchangecnt < 0) 407 if (anfds [fd].reify)
280 return; 408 return;
281 409
282 anfds [fd].reify = 1; 410 anfds [fd].reify = 1;
283 411
284 ++fdchangecnt; 412 ++fdchangecnt;
285 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 413 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
286 fdchanges [fdchangecnt - 1] = fd; 414 fdchanges [fdchangecnt - 1] = fd;
287} 415}
288 416
289static void 417static void
290fd_kill (int fd) 418fd_kill (EV_P_ int fd)
291{ 419{
292 struct ev_io *w; 420 struct ev_io *w;
293 421
294 printf ("killing fd %d\n", fd);//D
295 while ((w = anfds [fd].head)) 422 while ((w = (struct ev_io *)anfds [fd].head))
296 { 423 {
297 ev_io_stop (w); 424 ev_io_stop (EV_A_ w);
298 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 425 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
299 } 426 }
427}
428
429static int
430fd_valid (int fd)
431{
432#ifdef WIN32
433 return !!win32_get_osfhandle (fd);
434#else
435 return fcntl (fd, F_GETFD) != -1;
436#endif
300} 437}
301 438
302/* called on EBADF to verify fds */ 439/* called on EBADF to verify fds */
303static void 440static void
304fd_ebadf (void) 441fd_ebadf (EV_P)
305{ 442{
306 int fd; 443 int fd;
307 444
308 for (fd = 0; fd < anfdmax; ++fd) 445 for (fd = 0; fd < anfdmax; ++fd)
309 if (anfds [fd].events) 446 if (anfds [fd].events)
310 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 447 if (!fd_valid (fd) == -1 && errno == EBADF)
311 fd_kill (fd); 448 fd_kill (EV_A_ fd);
312} 449}
313 450
314/* called on ENOMEM in select/poll to kill some fds and retry */ 451/* called on ENOMEM in select/poll to kill some fds and retry */
315static void 452static void
316fd_enomem (void) 453fd_enomem (EV_P)
317{ 454{
318 int fd = anfdmax; 455 int fd;
319 456
320 while (fd--) 457 for (fd = anfdmax; fd--; )
321 if (anfds [fd].events) 458 if (anfds [fd].events)
322 { 459 {
323 close (fd);
324 fd_kill (fd); 460 fd_kill (EV_A_ fd);
325 return; 461 return;
326 } 462 }
327} 463}
328 464
465/* usually called after fork if method needs to re-arm all fds from scratch */
466static void
467fd_rearm_all (EV_P)
468{
469 int fd;
470
471 /* this should be highly optimised to not do anything but set a flag */
472 for (fd = 0; fd < anfdmax; ++fd)
473 if (anfds [fd].events)
474 {
475 anfds [fd].events = 0;
476 fd_change (EV_A_ fd);
477 }
478}
479
329/*****************************************************************************/ 480/*****************************************************************************/
330 481
331static struct ev_timer **timers;
332static int timermax, timercnt;
333
334static struct ev_periodic **periodics;
335static int periodicmax, periodiccnt;
336
337static void 482static void
338upheap (WT *timers, int k) 483upheap (WT *heap, int k)
339{ 484{
340 WT w = timers [k]; 485 WT w = heap [k];
341 486
342 while (k && timers [k >> 1]->at > w->at) 487 while (k && heap [k >> 1]->at > w->at)
343 { 488 {
344 timers [k] = timers [k >> 1]; 489 heap [k] = heap [k >> 1];
345 timers [k]->active = k + 1; 490 ((W)heap [k])->active = k + 1;
346 k >>= 1; 491 k >>= 1;
347 } 492 }
348 493
349 timers [k] = w; 494 heap [k] = w;
350 timers [k]->active = k + 1; 495 ((W)heap [k])->active = k + 1;
351 496
352} 497}
353 498
354static void 499static void
355downheap (WT *timers, int N, int k) 500downheap (WT *heap, int N, int k)
356{ 501{
357 WT w = timers [k]; 502 WT w = heap [k];
358 503
359 while (k < (N >> 1)) 504 while (k < (N >> 1))
360 { 505 {
361 int j = k << 1; 506 int j = k << 1;
362 507
363 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 508 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
364 ++j; 509 ++j;
365 510
366 if (w->at <= timers [j]->at) 511 if (w->at <= heap [j]->at)
367 break; 512 break;
368 513
369 timers [k] = timers [j]; 514 heap [k] = heap [j];
370 timers [k]->active = k + 1; 515 ((W)heap [k])->active = k + 1;
371 k = j; 516 k = j;
372 } 517 }
373 518
374 timers [k] = w; 519 heap [k] = w;
375 timers [k]->active = k + 1; 520 ((W)heap [k])->active = k + 1;
376} 521}
377 522
378/*****************************************************************************/ 523/*****************************************************************************/
379 524
380typedef struct 525typedef struct
381{ 526{
382 struct ev_signal *head; 527 WL head;
383 sig_atomic_t volatile gotsig; 528 sig_atomic_t volatile gotsig;
384} ANSIG; 529} ANSIG;
385 530
386static ANSIG *signals; 531static ANSIG *signals;
387static int signalmax; 532static int signalmax;
403} 548}
404 549
405static void 550static void
406sighandler (int signum) 551sighandler (int signum)
407{ 552{
553#if WIN32
554 signal (signum, sighandler);
555#endif
556
408 signals [signum - 1].gotsig = 1; 557 signals [signum - 1].gotsig = 1;
409 558
410 if (!gotsig) 559 if (!gotsig)
411 { 560 {
561 int old_errno = errno;
412 gotsig = 1; 562 gotsig = 1;
563#ifdef WIN32
564 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
565#else
413 write (sigpipe [1], &signum, 1); 566 write (sigpipe [1], &signum, 1);
567#endif
568 errno = old_errno;
414 } 569 }
415} 570}
416 571
572void
573ev_feed_signal_event (EV_P_ int signum)
574{
575 WL w;
576
577#if EV_MULTIPLICITY
578 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
579#endif
580
581 --signum;
582
583 if (signum < 0 || signum >= signalmax)
584 return;
585
586 signals [signum].gotsig = 0;
587
588 for (w = signals [signum].head; w; w = w->next)
589 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
590}
591
417static void 592static void
418sigcb (struct ev_io *iow, int revents) 593sigcb (EV_P_ struct ev_io *iow, int revents)
419{ 594{
420 struct ev_signal *w;
421 int signum; 595 int signum;
422 596
597#ifdef WIN32
598 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
599#else
423 read (sigpipe [0], &revents, 1); 600 read (sigpipe [0], &revents, 1);
601#endif
424 gotsig = 0; 602 gotsig = 0;
425 603
426 for (signum = signalmax; signum--; ) 604 for (signum = signalmax; signum--; )
427 if (signals [signum].gotsig) 605 if (signals [signum].gotsig)
428 { 606 ev_feed_signal_event (EV_A_ signum + 1);
429 signals [signum].gotsig = 0;
430
431 for (w = signals [signum].head; w; w = w->next)
432 event ((W)w, EV_SIGNAL);
433 }
434} 607}
435 608
436static void 609static void
437siginit (void) 610siginit (EV_P)
438{ 611{
612#ifndef WIN32
439 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 613 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
440 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 614 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
441 615
442 /* rather than sort out wether we really need nb, set it */ 616 /* rather than sort out wether we really need nb, set it */
443 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 617 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
444 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 618 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
619#endif
445 620
446 ev_io_set (&sigev, sigpipe [0], EV_READ); 621 ev_io_set (&sigev, sigpipe [0], EV_READ);
447 ev_io_start (&sigev); 622 ev_io_start (EV_A_ &sigev);
623 ev_unref (EV_A); /* child watcher should not keep loop alive */
448} 624}
449 625
450/*****************************************************************************/ 626/*****************************************************************************/
451 627
452static struct ev_idle **idles;
453static int idlemax, idlecnt;
454
455static struct ev_prepare **prepares;
456static int preparemax, preparecnt;
457
458static struct ev_check **checks;
459static int checkmax, checkcnt;
460
461/*****************************************************************************/
462
463static struct ev_child *childs [PID_HASHSIZE]; 628static struct ev_child *childs [PID_HASHSIZE];
629
630#ifndef WIN32
631
464static struct ev_signal childev; 632static struct ev_signal childev;
465 633
466#ifndef WCONTINUED 634#ifndef WCONTINUED
467# define WCONTINUED 0 635# define WCONTINUED 0
468#endif 636#endif
469 637
470static void 638static void
471childcb (struct ev_signal *sw, int revents) 639child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
472{ 640{
473 struct ev_child *w; 641 struct ev_child *w;
642
643 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
644 if (w->pid == pid || !w->pid)
645 {
646 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
647 w->rpid = pid;
648 w->rstatus = status;
649 ev_feed_event (EV_A_ (W)w, EV_CHILD);
650 }
651}
652
653static void
654childcb (EV_P_ struct ev_signal *sw, int revents)
655{
474 int pid, status; 656 int pid, status;
475 657
476 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 658 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
477 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 659 {
478 if (w->pid == pid || !w->pid) 660 /* make sure we are called again until all childs have been reaped */
479 { 661 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
480 w->status = status; 662
481 event ((W)w, EV_CHILD); 663 child_reap (EV_A_ sw, pid, pid, status);
482 } 664 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
665 }
483} 666}
667
668#endif
484 669
485/*****************************************************************************/ 670/*****************************************************************************/
486 671
672#if EV_USE_KQUEUE
673# include "ev_kqueue.c"
674#endif
487#if EV_USE_EPOLL 675#if EV_USE_EPOLL
488# include "ev_epoll.c" 676# include "ev_epoll.c"
489#endif 677#endif
490#if EV_USE_POLL 678#if EV_USE_POLL
491# include "ev_poll.c" 679# include "ev_poll.c"
504ev_version_minor (void) 692ev_version_minor (void)
505{ 693{
506 return EV_VERSION_MINOR; 694 return EV_VERSION_MINOR;
507} 695}
508 696
509/* return true if we are running with elevated privileges and ignore env variables */ 697/* return true if we are running with elevated privileges and should ignore env variables */
510static int 698static int
511enable_secure () 699enable_secure (void)
512{ 700{
701#ifdef WIN32
702 return 0;
703#else
513 return getuid () != geteuid () 704 return getuid () != geteuid ()
514 || getgid () != getegid (); 705 || getgid () != getegid ();
706#endif
515} 707}
516 708
517int ev_init (int methods) 709int
710ev_method (EV_P)
518{ 711{
712 return method;
713}
714
715static void
716loop_init (EV_P_ int methods)
717{
519 if (!ev_method) 718 if (!method)
520 { 719 {
521#if EV_USE_MONOTONIC 720#if EV_USE_MONOTONIC
522 { 721 {
523 struct timespec ts; 722 struct timespec ts;
524 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 723 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
525 have_monotonic = 1; 724 have_monotonic = 1;
526 } 725 }
527#endif 726#endif
528 727
529 ev_now = ev_time (); 728 rt_now = ev_time ();
530 now = get_clock (); 729 mn_now = get_clock ();
531 now_floor = now; 730 now_floor = mn_now;
532 diff = ev_now - now; 731 rtmn_diff = rt_now - mn_now;
533
534 if (pipe (sigpipe))
535 return 0;
536 732
537 if (methods == EVMETHOD_AUTO) 733 if (methods == EVMETHOD_AUTO)
538 if (!enable_secure () && getenv ("LIBEV_METHODS")) 734 if (!enable_secure () && getenv ("LIBEV_METHODS"))
539 methods = atoi (getenv ("LIBEV_METHODS")); 735 methods = atoi (getenv ("LIBEV_METHODS"));
540 else 736 else
541 methods = EVMETHOD_ANY; 737 methods = EVMETHOD_ANY;
542 738
543 ev_method = 0; 739 method = 0;
740#if EV_USE_WIN32
741 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
742#endif
743#if EV_USE_KQUEUE
744 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
745#endif
544#if EV_USE_EPOLL 746#if EV_USE_EPOLL
545 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 747 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
546#endif 748#endif
547#if EV_USE_POLL 749#if EV_USE_POLL
548 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 750 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
549#endif 751#endif
550#if EV_USE_SELECT 752#if EV_USE_SELECT
551 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 753 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
552#endif 754#endif
553 755
756 ev_init (&sigev, sigcb);
757 ev_set_priority (&sigev, EV_MAXPRI);
758 }
759}
760
761void
762loop_destroy (EV_P)
763{
764 int i;
765
766#if EV_USE_WIN32
767 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
768#endif
769#if EV_USE_KQUEUE
770 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
771#endif
772#if EV_USE_EPOLL
773 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
774#endif
775#if EV_USE_POLL
776 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
777#endif
778#if EV_USE_SELECT
779 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
780#endif
781
782 for (i = NUMPRI; i--; )
783 array_free (pending, [i]);
784
785 /* have to use the microsoft-never-gets-it-right macro */
786 array_free_microshit (fdchange);
787 array_free_microshit (timer);
788 array_free_microshit (periodic);
789 array_free_microshit (idle);
790 array_free_microshit (prepare);
791 array_free_microshit (check);
792
793 method = 0;
794}
795
796static void
797loop_fork (EV_P)
798{
799#if EV_USE_EPOLL
800 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
801#endif
802#if EV_USE_KQUEUE
803 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
804#endif
805
806 if (ev_is_active (&sigev))
807 {
808 /* default loop */
809
810 ev_ref (EV_A);
811 ev_io_stop (EV_A_ &sigev);
812 close (sigpipe [0]);
813 close (sigpipe [1]);
814
815 while (pipe (sigpipe))
816 syserr ("(libev) error creating pipe");
817
818 siginit (EV_A);
819 }
820
821 postfork = 0;
822}
823
824#if EV_MULTIPLICITY
825struct ev_loop *
826ev_loop_new (int methods)
827{
828 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
829
830 memset (loop, 0, sizeof (struct ev_loop));
831
832 loop_init (EV_A_ methods);
833
834 if (ev_method (EV_A))
835 return loop;
836
837 return 0;
838}
839
840void
841ev_loop_destroy (EV_P)
842{
843 loop_destroy (EV_A);
844 ev_free (loop);
845}
846
847void
848ev_loop_fork (EV_P)
849{
850 postfork = 1;
851}
852
853#endif
854
855#if EV_MULTIPLICITY
856struct ev_loop *
857#else
858int
859#endif
860ev_default_loop (int methods)
861{
862 if (sigpipe [0] == sigpipe [1])
863 if (pipe (sigpipe))
864 return 0;
865
866 if (!default_loop)
867 {
868#if EV_MULTIPLICITY
869 struct ev_loop *loop = default_loop = &default_loop_struct;
870#else
871 default_loop = 1;
872#endif
873
874 loop_init (EV_A_ methods);
875
554 if (ev_method) 876 if (ev_method (EV_A))
555 { 877 {
556 ev_watcher_init (&sigev, sigcb);
557 siginit (); 878 siginit (EV_A);
558 879
880#ifndef WIN32
559 ev_signal_init (&childev, childcb, SIGCHLD); 881 ev_signal_init (&childev, childcb, SIGCHLD);
882 ev_set_priority (&childev, EV_MAXPRI);
560 ev_signal_start (&childev); 883 ev_signal_start (EV_A_ &childev);
884 ev_unref (EV_A); /* child watcher should not keep loop alive */
885#endif
561 } 886 }
887 else
888 default_loop = 0;
562 } 889 }
563 890
564 return ev_method; 891 return default_loop;
892}
893
894void
895ev_default_destroy (void)
896{
897#if EV_MULTIPLICITY
898 struct ev_loop *loop = default_loop;
899#endif
900
901#ifndef WIN32
902 ev_ref (EV_A); /* child watcher */
903 ev_signal_stop (EV_A_ &childev);
904#endif
905
906 ev_ref (EV_A); /* signal watcher */
907 ev_io_stop (EV_A_ &sigev);
908
909 close (sigpipe [0]); sigpipe [0] = 0;
910 close (sigpipe [1]); sigpipe [1] = 0;
911
912 loop_destroy (EV_A);
913}
914
915void
916ev_default_fork (void)
917{
918#if EV_MULTIPLICITY
919 struct ev_loop *loop = default_loop;
920#endif
921
922 if (method)
923 postfork = 1;
565} 924}
566 925
567/*****************************************************************************/ 926/*****************************************************************************/
568 927
569void
570ev_fork_prepare (void)
571{
572 /* nop */
573}
574
575void
576ev_fork_parent (void)
577{
578 /* nop */
579}
580
581void
582ev_fork_child (void)
583{
584#if EV_USE_EPOLL
585 if (ev_method == EVMETHOD_EPOLL)
586 epoll_postfork_child ();
587#endif
588
589 ev_io_stop (&sigev);
590 close (sigpipe [0]);
591 close (sigpipe [1]);
592 pipe (sigpipe);
593 siginit ();
594}
595
596/*****************************************************************************/
597
598static void 928static int
929any_pending (EV_P)
930{
931 int pri;
932
933 for (pri = NUMPRI; pri--; )
934 if (pendingcnt [pri])
935 return 1;
936
937 return 0;
938}
939
940static void
599call_pending (void) 941call_pending (EV_P)
600{ 942{
601 int pri; 943 int pri;
602 944
603 for (pri = NUMPRI; pri--; ) 945 for (pri = NUMPRI; pri--; )
604 while (pendingcnt [pri]) 946 while (pendingcnt [pri])
606 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 948 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
607 949
608 if (p->w) 950 if (p->w)
609 { 951 {
610 p->w->pending = 0; 952 p->w->pending = 0;
611 p->w->cb (p->w, p->events); 953 EV_CB_INVOKE (p->w, p->events);
612 } 954 }
613 } 955 }
614} 956}
615 957
616static void 958static void
617timers_reify (void) 959timers_reify (EV_P)
618{ 960{
619 while (timercnt && timers [0]->at <= now) 961 while (timercnt && ((WT)timers [0])->at <= mn_now)
620 { 962 {
621 struct ev_timer *w = timers [0]; 963 struct ev_timer *w = timers [0];
964
965 assert (("inactive timer on timer heap detected", ev_is_active (w)));
622 966
623 /* first reschedule or stop timer */ 967 /* first reschedule or stop timer */
624 if (w->repeat) 968 if (w->repeat)
625 { 969 {
626 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 970 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
627 w->at = now + w->repeat; 971 ((WT)w)->at = mn_now + w->repeat;
628 downheap ((WT *)timers, timercnt, 0); 972 downheap ((WT *)timers, timercnt, 0);
629 } 973 }
630 else 974 else
631 ev_timer_stop (w); /* nonrepeating: stop timer */ 975 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
632 976
633 event ((W)w, EV_TIMEOUT); 977 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
634 } 978 }
635} 979}
636 980
637static void 981static void
638periodics_reify (void) 982periodics_reify (EV_P)
639{ 983{
640 while (periodiccnt && periodics [0]->at <= ev_now) 984 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
641 { 985 {
642 struct ev_periodic *w = periodics [0]; 986 struct ev_periodic *w = periodics [0];
643 987
988 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
989
644 /* first reschedule or stop timer */ 990 /* first reschedule or stop timer */
645 if (w->interval) 991 if (w->reschedule_cb)
646 { 992 {
993 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
994
995 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
996 downheap ((WT *)periodics, periodiccnt, 0);
997 }
998 else if (w->interval)
999 {
647 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1000 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
648 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 1001 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
649 downheap ((WT *)periodics, periodiccnt, 0); 1002 downheap ((WT *)periodics, periodiccnt, 0);
650 } 1003 }
651 else 1004 else
652 ev_periodic_stop (w); /* nonrepeating: stop timer */ 1005 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
653 1006
654 event ((W)w, EV_PERIODIC); 1007 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
655 } 1008 }
656} 1009}
657 1010
658static void 1011static void
659periodics_reschedule (ev_tstamp diff) 1012periodics_reschedule (EV_P)
660{ 1013{
661 int i; 1014 int i;
662 1015
663 /* adjust periodics after time jump */ 1016 /* adjust periodics after time jump */
664 for (i = 0; i < periodiccnt; ++i) 1017 for (i = 0; i < periodiccnt; ++i)
665 { 1018 {
666 struct ev_periodic *w = periodics [i]; 1019 struct ev_periodic *w = periodics [i];
667 1020
1021 if (w->reschedule_cb)
1022 ((WT)w)->at = w->reschedule_cb (w, rt_now);
668 if (w->interval) 1023 else if (w->interval)
669 {
670 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1024 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
671
672 if (fabs (diff) >= 1e-4)
673 {
674 ev_periodic_stop (w);
675 ev_periodic_start (w);
676
677 i = 0; /* restart loop, inefficient, but time jumps should be rare */
678 }
679 }
680 } 1025 }
681}
682 1026
683static int 1027 /* now rebuild the heap */
1028 for (i = periodiccnt >> 1; i--; )
1029 downheap ((WT *)periodics, periodiccnt, i);
1030}
1031
1032inline int
684time_update_monotonic (void) 1033time_update_monotonic (EV_P)
685{ 1034{
686 now = get_clock (); 1035 mn_now = get_clock ();
687 1036
688 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 1037 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
689 { 1038 {
690 ev_now = now + diff; 1039 rt_now = rtmn_diff + mn_now;
691 return 0; 1040 return 0;
692 } 1041 }
693 else 1042 else
694 { 1043 {
695 now_floor = now; 1044 now_floor = mn_now;
696 ev_now = ev_time (); 1045 rt_now = ev_time ();
697 return 1; 1046 return 1;
698 } 1047 }
699} 1048}
700 1049
701static void 1050static void
702time_update (void) 1051time_update (EV_P)
703{ 1052{
704 int i; 1053 int i;
705 1054
706#if EV_USE_MONOTONIC 1055#if EV_USE_MONOTONIC
707 if (expect_true (have_monotonic)) 1056 if (expect_true (have_monotonic))
708 { 1057 {
709 if (time_update_monotonic ()) 1058 if (time_update_monotonic (EV_A))
710 { 1059 {
711 ev_tstamp odiff = diff; 1060 ev_tstamp odiff = rtmn_diff;
712 1061
713 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1062 for (i = 4; --i; ) /* loop a few times, before making important decisions */
714 { 1063 {
715 diff = ev_now - now; 1064 rtmn_diff = rt_now - mn_now;
716 1065
717 if (fabs (odiff - diff) < MIN_TIMEJUMP) 1066 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
718 return; /* all is well */ 1067 return; /* all is well */
719 1068
720 ev_now = ev_time (); 1069 rt_now = ev_time ();
721 now = get_clock (); 1070 mn_now = get_clock ();
722 now_floor = now; 1071 now_floor = mn_now;
723 } 1072 }
724 1073
725 periodics_reschedule (diff - odiff); 1074 periodics_reschedule (EV_A);
726 /* no timer adjustment, as the monotonic clock doesn't jump */ 1075 /* no timer adjustment, as the monotonic clock doesn't jump */
1076 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
727 } 1077 }
728 } 1078 }
729 else 1079 else
730#endif 1080#endif
731 { 1081 {
732 ev_now = ev_time (); 1082 rt_now = ev_time ();
733 1083
734 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1084 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
735 { 1085 {
736 periodics_reschedule (ev_now - now); 1086 periodics_reschedule (EV_A);
737 1087
738 /* adjust timers. this is easy, as the offset is the same for all */ 1088 /* adjust timers. this is easy, as the offset is the same for all */
739 for (i = 0; i < timercnt; ++i) 1089 for (i = 0; i < timercnt; ++i)
740 timers [i]->at += diff; 1090 ((WT)timers [i])->at += rt_now - mn_now;
741 } 1091 }
742 1092
743 now = ev_now; 1093 mn_now = rt_now;
744 } 1094 }
745} 1095}
746 1096
747int ev_loop_done; 1097void
1098ev_ref (EV_P)
1099{
1100 ++activecnt;
1101}
748 1102
1103void
1104ev_unref (EV_P)
1105{
1106 --activecnt;
1107}
1108
1109static int loop_done;
1110
1111void
749void ev_loop (int flags) 1112ev_loop (EV_P_ int flags)
750{ 1113{
751 double block; 1114 double block;
752 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1115 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
753 1116
754 do 1117 do
755 { 1118 {
756 /* queue check watchers (and execute them) */ 1119 /* queue check watchers (and execute them) */
757 if (expect_false (preparecnt)) 1120 if (expect_false (preparecnt))
758 { 1121 {
759 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1122 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
760 call_pending (); 1123 call_pending (EV_A);
761 } 1124 }
762 1125
1126 /* we might have forked, so reify kernel state if necessary */
1127 if (expect_false (postfork))
1128 loop_fork (EV_A);
1129
763 /* update fd-related kernel structures */ 1130 /* update fd-related kernel structures */
764 fd_reify (); 1131 fd_reify (EV_A);
765 1132
766 /* calculate blocking time */ 1133 /* calculate blocking time */
767 1134
768 /* we only need this for !monotonic clockor timers, but as we basically 1135 /* we only need this for !monotonic clock or timers, but as we basically
769 always have timers, we just calculate it always */ 1136 always have timers, we just calculate it always */
770#if EV_USE_MONOTONIC 1137#if EV_USE_MONOTONIC
771 if (expect_true (have_monotonic)) 1138 if (expect_true (have_monotonic))
772 time_update_monotonic (); 1139 time_update_monotonic (EV_A);
773 else 1140 else
774#endif 1141#endif
775 { 1142 {
776 ev_now = ev_time (); 1143 rt_now = ev_time ();
777 now = ev_now; 1144 mn_now = rt_now;
778 } 1145 }
779 1146
780 if (flags & EVLOOP_NONBLOCK || idlecnt) 1147 if (flags & EVLOOP_NONBLOCK || idlecnt)
781 block = 0.; 1148 block = 0.;
782 else 1149 else
783 { 1150 {
784 block = MAX_BLOCKTIME; 1151 block = MAX_BLOCKTIME;
785 1152
786 if (timercnt) 1153 if (timercnt)
787 { 1154 {
788 ev_tstamp to = timers [0]->at - now + method_fudge; 1155 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
789 if (block > to) block = to; 1156 if (block > to) block = to;
790 } 1157 }
791 1158
792 if (periodiccnt) 1159 if (periodiccnt)
793 { 1160 {
794 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1161 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
795 if (block > to) block = to; 1162 if (block > to) block = to;
796 } 1163 }
797 1164
798 if (block < 0.) block = 0.; 1165 if (block < 0.) block = 0.;
799 } 1166 }
800 1167
801 method_poll (block); 1168 method_poll (EV_A_ block);
802 1169
803 /* update ev_now, do magic */ 1170 /* update rt_now, do magic */
804 time_update (); 1171 time_update (EV_A);
805 1172
806 /* queue pending timers and reschedule them */ 1173 /* queue pending timers and reschedule them */
807 timers_reify (); /* relative timers called last */ 1174 timers_reify (EV_A); /* relative timers called last */
808 periodics_reify (); /* absolute timers called first */ 1175 periodics_reify (EV_A); /* absolute timers called first */
809 1176
810 /* queue idle watchers unless io or timers are pending */ 1177 /* queue idle watchers unless io or timers are pending */
811 if (!pendingcnt) 1178 if (idlecnt && !any_pending (EV_A))
812 queue_events ((W *)idles, idlecnt, EV_IDLE); 1179 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
813 1180
814 /* queue check watchers, to be executed first */ 1181 /* queue check watchers, to be executed first */
815 if (checkcnt) 1182 if (checkcnt)
816 queue_events ((W *)checks, checkcnt, EV_CHECK); 1183 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
817 1184
818 call_pending (); 1185 call_pending (EV_A);
819 } 1186 }
820 while (!ev_loop_done); 1187 while (activecnt && !loop_done);
821 1188
822 if (ev_loop_done != 2) 1189 if (loop_done != 2)
823 ev_loop_done = 0; 1190 loop_done = 0;
1191}
1192
1193void
1194ev_unloop (EV_P_ int how)
1195{
1196 loop_done = how;
824} 1197}
825 1198
826/*****************************************************************************/ 1199/*****************************************************************************/
827 1200
828static void 1201inline void
829wlist_add (WL *head, WL elem) 1202wlist_add (WL *head, WL elem)
830{ 1203{
831 elem->next = *head; 1204 elem->next = *head;
832 *head = elem; 1205 *head = elem;
833} 1206}
834 1207
835static void 1208inline void
836wlist_del (WL *head, WL elem) 1209wlist_del (WL *head, WL elem)
837{ 1210{
838 while (*head) 1211 while (*head)
839 { 1212 {
840 if (*head == elem) 1213 if (*head == elem)
845 1218
846 head = &(*head)->next; 1219 head = &(*head)->next;
847 } 1220 }
848} 1221}
849 1222
850static void 1223inline void
851ev_clear_pending (W w) 1224ev_clear_pending (EV_P_ W w)
852{ 1225{
853 if (w->pending) 1226 if (w->pending)
854 { 1227 {
855 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1228 pendings [ABSPRI (w)][w->pending - 1].w = 0;
856 w->pending = 0; 1229 w->pending = 0;
857 } 1230 }
858} 1231}
859 1232
860static void 1233inline void
861ev_start (W w, int active) 1234ev_start (EV_P_ W w, int active)
862{ 1235{
863 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1236 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
864 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1237 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
865 1238
866 w->active = active; 1239 w->active = active;
1240 ev_ref (EV_A);
867} 1241}
868 1242
869static void 1243inline void
870ev_stop (W w) 1244ev_stop (EV_P_ W w)
871{ 1245{
1246 ev_unref (EV_A);
872 w->active = 0; 1247 w->active = 0;
873} 1248}
874 1249
875/*****************************************************************************/ 1250/*****************************************************************************/
876 1251
877void 1252void
878ev_io_start (struct ev_io *w) 1253ev_io_start (EV_P_ struct ev_io *w)
879{ 1254{
880 int fd = w->fd; 1255 int fd = w->fd;
881 1256
882 if (ev_is_active (w)) 1257 if (ev_is_active (w))
883 return; 1258 return;
884 1259
885 assert (("ev_io_start called with negative fd", fd >= 0)); 1260 assert (("ev_io_start called with negative fd", fd >= 0));
886 1261
887 ev_start ((W)w, 1); 1262 ev_start (EV_A_ (W)w, 1);
888 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1263 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
889 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1264 wlist_add ((WL *)&anfds[fd].head, (WL)w);
890 1265
891 fd_change (fd); 1266 fd_change (EV_A_ fd);
892} 1267}
893 1268
894void 1269void
895ev_io_stop (struct ev_io *w) 1270ev_io_stop (EV_P_ struct ev_io *w)
896{ 1271{
897 ev_clear_pending ((W)w); 1272 ev_clear_pending (EV_A_ (W)w);
898 if (!ev_is_active (w)) 1273 if (!ev_is_active (w))
899 return; 1274 return;
900 1275
901 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1276 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
902 ev_stop ((W)w); 1277 ev_stop (EV_A_ (W)w);
903 1278
904 fd_change (w->fd); 1279 fd_change (EV_A_ w->fd);
905} 1280}
906 1281
907void 1282void
908ev_timer_start (struct ev_timer *w) 1283ev_timer_start (EV_P_ struct ev_timer *w)
909{ 1284{
910 if (ev_is_active (w)) 1285 if (ev_is_active (w))
911 return; 1286 return;
912 1287
913 w->at += now; 1288 ((WT)w)->at += mn_now;
914 1289
915 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1290 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
916 1291
917 ev_start ((W)w, ++timercnt); 1292 ev_start (EV_A_ (W)w, ++timercnt);
918 array_needsize (timers, timermax, timercnt, ); 1293 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
919 timers [timercnt - 1] = w; 1294 timers [timercnt - 1] = w;
920 upheap ((WT *)timers, timercnt - 1); 1295 upheap ((WT *)timers, timercnt - 1);
921}
922 1296
1297 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1298}
1299
923void 1300void
924ev_timer_stop (struct ev_timer *w) 1301ev_timer_stop (EV_P_ struct ev_timer *w)
925{ 1302{
926 ev_clear_pending ((W)w); 1303 ev_clear_pending (EV_A_ (W)w);
927 if (!ev_is_active (w)) 1304 if (!ev_is_active (w))
928 return; 1305 return;
929 1306
1307 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1308
930 if (w->active < timercnt--) 1309 if (((W)w)->active < timercnt--)
931 { 1310 {
932 timers [w->active - 1] = timers [timercnt]; 1311 timers [((W)w)->active - 1] = timers [timercnt];
933 downheap ((WT *)timers, timercnt, w->active - 1); 1312 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
934 } 1313 }
935 1314
936 w->at = w->repeat; 1315 ((WT)w)->at = w->repeat;
937 1316
938 ev_stop ((W)w); 1317 ev_stop (EV_A_ (W)w);
939} 1318}
940 1319
941void 1320void
942ev_timer_again (struct ev_timer *w) 1321ev_timer_again (EV_P_ struct ev_timer *w)
943{ 1322{
944 if (ev_is_active (w)) 1323 if (ev_is_active (w))
945 { 1324 {
946 if (w->repeat) 1325 if (w->repeat)
947 { 1326 {
948 w->at = now + w->repeat; 1327 ((WT)w)->at = mn_now + w->repeat;
949 downheap ((WT *)timers, timercnt, w->active - 1); 1328 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
950 } 1329 }
951 else 1330 else
952 ev_timer_stop (w); 1331 ev_timer_stop (EV_A_ w);
953 } 1332 }
954 else if (w->repeat) 1333 else if (w->repeat)
955 ev_timer_start (w); 1334 ev_timer_start (EV_A_ w);
956} 1335}
957 1336
958void 1337void
959ev_periodic_start (struct ev_periodic *w) 1338ev_periodic_start (EV_P_ struct ev_periodic *w)
960{ 1339{
961 if (ev_is_active (w)) 1340 if (ev_is_active (w))
962 return; 1341 return;
963 1342
1343 if (w->reschedule_cb)
1344 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1345 else if (w->interval)
1346 {
964 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1347 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
965
966 /* this formula differs from the one in periodic_reify because we do not always round up */ 1348 /* this formula differs from the one in periodic_reify because we do not always round up */
967 if (w->interval)
968 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1349 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1350 }
969 1351
970 ev_start ((W)w, ++periodiccnt); 1352 ev_start (EV_A_ (W)w, ++periodiccnt);
971 array_needsize (periodics, periodicmax, periodiccnt, ); 1353 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
972 periodics [periodiccnt - 1] = w; 1354 periodics [periodiccnt - 1] = w;
973 upheap ((WT *)periodics, periodiccnt - 1); 1355 upheap ((WT *)periodics, periodiccnt - 1);
974}
975 1356
1357 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1358}
1359
976void 1360void
977ev_periodic_stop (struct ev_periodic *w) 1361ev_periodic_stop (EV_P_ struct ev_periodic *w)
978{ 1362{
979 ev_clear_pending ((W)w); 1363 ev_clear_pending (EV_A_ (W)w);
980 if (!ev_is_active (w)) 1364 if (!ev_is_active (w))
981 return; 1365 return;
982 1366
1367 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1368
983 if (w->active < periodiccnt--) 1369 if (((W)w)->active < periodiccnt--)
984 { 1370 {
985 periodics [w->active - 1] = periodics [periodiccnt]; 1371 periodics [((W)w)->active - 1] = periodics [periodiccnt];
986 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1372 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
987 } 1373 }
988 1374
989 ev_stop ((W)w); 1375 ev_stop (EV_A_ (W)w);
990} 1376}
991 1377
992void 1378void
1379ev_periodic_again (EV_P_ struct ev_periodic *w)
1380{
1381 ev_periodic_stop (EV_A_ w);
1382 ev_periodic_start (EV_A_ w);
1383}
1384
1385void
993ev_signal_start (struct ev_signal *w) 1386ev_idle_start (EV_P_ struct ev_idle *w)
994{ 1387{
995 if (ev_is_active (w)) 1388 if (ev_is_active (w))
996 return; 1389 return;
997 1390
1391 ev_start (EV_A_ (W)w, ++idlecnt);
1392 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1393 idles [idlecnt - 1] = w;
1394}
1395
1396void
1397ev_idle_stop (EV_P_ struct ev_idle *w)
1398{
1399 ev_clear_pending (EV_A_ (W)w);
1400 if (ev_is_active (w))
1401 return;
1402
1403 idles [((W)w)->active - 1] = idles [--idlecnt];
1404 ev_stop (EV_A_ (W)w);
1405}
1406
1407void
1408ev_prepare_start (EV_P_ struct ev_prepare *w)
1409{
1410 if (ev_is_active (w))
1411 return;
1412
1413 ev_start (EV_A_ (W)w, ++preparecnt);
1414 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1415 prepares [preparecnt - 1] = w;
1416}
1417
1418void
1419ev_prepare_stop (EV_P_ struct ev_prepare *w)
1420{
1421 ev_clear_pending (EV_A_ (W)w);
1422 if (ev_is_active (w))
1423 return;
1424
1425 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1426 ev_stop (EV_A_ (W)w);
1427}
1428
1429void
1430ev_check_start (EV_P_ struct ev_check *w)
1431{
1432 if (ev_is_active (w))
1433 return;
1434
1435 ev_start (EV_A_ (W)w, ++checkcnt);
1436 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1437 checks [checkcnt - 1] = w;
1438}
1439
1440void
1441ev_check_stop (EV_P_ struct ev_check *w)
1442{
1443 ev_clear_pending (EV_A_ (W)w);
1444 if (ev_is_active (w))
1445 return;
1446
1447 checks [((W)w)->active - 1] = checks [--checkcnt];
1448 ev_stop (EV_A_ (W)w);
1449}
1450
1451#ifndef SA_RESTART
1452# define SA_RESTART 0
1453#endif
1454
1455void
1456ev_signal_start (EV_P_ struct ev_signal *w)
1457{
1458#if EV_MULTIPLICITY
1459 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1460#endif
1461 if (ev_is_active (w))
1462 return;
1463
998 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1464 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
999 1465
1000 ev_start ((W)w, 1); 1466 ev_start (EV_A_ (W)w, 1);
1001 array_needsize (signals, signalmax, w->signum, signals_init); 1467 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1002 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1468 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1003 1469
1004 if (!w->next) 1470 if (!((WL)w)->next)
1005 { 1471 {
1472#if WIN32
1473 signal (w->signum, sighandler);
1474#else
1006 struct sigaction sa; 1475 struct sigaction sa;
1007 sa.sa_handler = sighandler; 1476 sa.sa_handler = sighandler;
1008 sigfillset (&sa.sa_mask); 1477 sigfillset (&sa.sa_mask);
1009 sa.sa_flags = 0; 1478 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1010 sigaction (w->signum, &sa, 0); 1479 sigaction (w->signum, &sa, 0);
1480#endif
1011 } 1481 }
1012} 1482}
1013 1483
1014void 1484void
1015ev_signal_stop (struct ev_signal *w) 1485ev_signal_stop (EV_P_ struct ev_signal *w)
1016{ 1486{
1017 ev_clear_pending ((W)w); 1487 ev_clear_pending (EV_A_ (W)w);
1018 if (!ev_is_active (w)) 1488 if (!ev_is_active (w))
1019 return; 1489 return;
1020 1490
1021 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1491 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1022 ev_stop ((W)w); 1492 ev_stop (EV_A_ (W)w);
1023 1493
1024 if (!signals [w->signum - 1].head) 1494 if (!signals [w->signum - 1].head)
1025 signal (w->signum, SIG_DFL); 1495 signal (w->signum, SIG_DFL);
1026} 1496}
1027 1497
1028void 1498void
1029ev_idle_start (struct ev_idle *w) 1499ev_child_start (EV_P_ struct ev_child *w)
1030{ 1500{
1501#if EV_MULTIPLICITY
1502 assert (("child watchers are only supported in the default loop", loop == default_loop));
1503#endif
1031 if (ev_is_active (w)) 1504 if (ev_is_active (w))
1032 return; 1505 return;
1033 1506
1034 ev_start ((W)w, ++idlecnt); 1507 ev_start (EV_A_ (W)w, 1);
1035 array_needsize (idles, idlemax, idlecnt, ); 1508 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1036 idles [idlecnt - 1] = w;
1037} 1509}
1038 1510
1039void 1511void
1040ev_idle_stop (struct ev_idle *w) 1512ev_child_stop (EV_P_ struct ev_child *w)
1041{ 1513{
1042 ev_clear_pending ((W)w); 1514 ev_clear_pending (EV_A_ (W)w);
1043 if (ev_is_active (w)) 1515 if (ev_is_active (w))
1044 return; 1516 return;
1045 1517
1046 idles [w->active - 1] = idles [--idlecnt];
1047 ev_stop ((W)w);
1048}
1049
1050void
1051ev_prepare_start (struct ev_prepare *w)
1052{
1053 if (ev_is_active (w))
1054 return;
1055
1056 ev_start ((W)w, ++preparecnt);
1057 array_needsize (prepares, preparemax, preparecnt, );
1058 prepares [preparecnt - 1] = w;
1059}
1060
1061void
1062ev_prepare_stop (struct ev_prepare *w)
1063{
1064 ev_clear_pending ((W)w);
1065 if (ev_is_active (w))
1066 return;
1067
1068 prepares [w->active - 1] = prepares [--preparecnt];
1069 ev_stop ((W)w);
1070}
1071
1072void
1073ev_check_start (struct ev_check *w)
1074{
1075 if (ev_is_active (w))
1076 return;
1077
1078 ev_start ((W)w, ++checkcnt);
1079 array_needsize (checks, checkmax, checkcnt, );
1080 checks [checkcnt - 1] = w;
1081}
1082
1083void
1084ev_check_stop (struct ev_check *w)
1085{
1086 ev_clear_pending ((W)w);
1087 if (ev_is_active (w))
1088 return;
1089
1090 checks [w->active - 1] = checks [--checkcnt];
1091 ev_stop ((W)w);
1092}
1093
1094void
1095ev_child_start (struct ev_child *w)
1096{
1097 if (ev_is_active (w))
1098 return;
1099
1100 ev_start ((W)w, 1);
1101 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1102}
1103
1104void
1105ev_child_stop (struct ev_child *w)
1106{
1107 ev_clear_pending ((W)w);
1108 if (ev_is_active (w))
1109 return;
1110
1111 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1518 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1112 ev_stop ((W)w); 1519 ev_stop (EV_A_ (W)w);
1113} 1520}
1114 1521
1115/*****************************************************************************/ 1522/*****************************************************************************/
1116 1523
1117struct ev_once 1524struct ev_once
1121 void (*cb)(int revents, void *arg); 1528 void (*cb)(int revents, void *arg);
1122 void *arg; 1529 void *arg;
1123}; 1530};
1124 1531
1125static void 1532static void
1126once_cb (struct ev_once *once, int revents) 1533once_cb (EV_P_ struct ev_once *once, int revents)
1127{ 1534{
1128 void (*cb)(int revents, void *arg) = once->cb; 1535 void (*cb)(int revents, void *arg) = once->cb;
1129 void *arg = once->arg; 1536 void *arg = once->arg;
1130 1537
1131 ev_io_stop (&once->io); 1538 ev_io_stop (EV_A_ &once->io);
1132 ev_timer_stop (&once->to); 1539 ev_timer_stop (EV_A_ &once->to);
1133 free (once); 1540 ev_free (once);
1134 1541
1135 cb (revents, arg); 1542 cb (revents, arg);
1136} 1543}
1137 1544
1138static void 1545static void
1139once_cb_io (struct ev_io *w, int revents) 1546once_cb_io (EV_P_ struct ev_io *w, int revents)
1140{ 1547{
1141 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1548 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1142} 1549}
1143 1550
1144static void 1551static void
1145once_cb_to (struct ev_timer *w, int revents) 1552once_cb_to (EV_P_ struct ev_timer *w, int revents)
1146{ 1553{
1147 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1554 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1148} 1555}
1149 1556
1150void 1557void
1151ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1558ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1152{ 1559{
1153 struct ev_once *once = malloc (sizeof (struct ev_once)); 1560 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1154 1561
1155 if (!once) 1562 if (!once)
1156 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1563 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1157 else 1564 else
1158 { 1565 {
1159 once->cb = cb; 1566 once->cb = cb;
1160 once->arg = arg; 1567 once->arg = arg;
1161 1568
1162 ev_watcher_init (&once->io, once_cb_io); 1569 ev_init (&once->io, once_cb_io);
1163 if (fd >= 0) 1570 if (fd >= 0)
1164 { 1571 {
1165 ev_io_set (&once->io, fd, events); 1572 ev_io_set (&once->io, fd, events);
1166 ev_io_start (&once->io); 1573 ev_io_start (EV_A_ &once->io);
1167 } 1574 }
1168 1575
1169 ev_watcher_init (&once->to, once_cb_to); 1576 ev_init (&once->to, once_cb_to);
1170 if (timeout >= 0.) 1577 if (timeout >= 0.)
1171 { 1578 {
1172 ev_timer_set (&once->to, timeout, 0.); 1579 ev_timer_set (&once->to, timeout, 0.);
1173 ev_timer_start (&once->to); 1580 ev_timer_start (EV_A_ &once->to);
1174 } 1581 }
1175 } 1582 }
1176} 1583}
1177 1584
1178/*****************************************************************************/
1179
1180#if 0
1181
1182struct ev_io wio;
1183
1184static void
1185sin_cb (struct ev_io *w, int revents)
1186{
1187 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1188}
1189
1190static void
1191ocb (struct ev_timer *w, int revents)
1192{
1193 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1194 ev_timer_stop (w);
1195 ev_timer_start (w);
1196}
1197
1198static void
1199scb (struct ev_signal *w, int revents)
1200{
1201 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1202 ev_io_stop (&wio);
1203 ev_io_start (&wio);
1204}
1205
1206static void
1207gcb (struct ev_signal *w, int revents)
1208{
1209 fprintf (stderr, "generic %x\n", revents);
1210
1211}
1212
1213int main (void)
1214{
1215 ev_init (0);
1216
1217 ev_io_init (&wio, sin_cb, 0, EV_READ);
1218 ev_io_start (&wio);
1219
1220 struct ev_timer t[10000];
1221
1222#if 0
1223 int i;
1224 for (i = 0; i < 10000; ++i)
1225 {
1226 struct ev_timer *w = t + i;
1227 ev_watcher_init (w, ocb, i);
1228 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1229 ev_timer_start (w);
1230 if (drand48 () < 0.5)
1231 ev_timer_stop (w);
1232 }
1233#endif
1234
1235 struct ev_timer t1;
1236 ev_timer_init (&t1, ocb, 5, 10);
1237 ev_timer_start (&t1);
1238
1239 struct ev_signal sig;
1240 ev_signal_init (&sig, scb, SIGQUIT);
1241 ev_signal_start (&sig);
1242
1243 struct ev_check cw;
1244 ev_check_init (&cw, gcb);
1245 ev_check_start (&cw);
1246
1247 struct ev_idle iw;
1248 ev_idle_init (&iw, gcb);
1249 ev_idle_start (&iw);
1250
1251 ev_loop (0);
1252
1253 return 0;
1254}
1255
1256#endif
1257
1258
1259
1260

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines