ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.84 by root, Fri Nov 9 23:04:35 2007 UTC vs.
Revision 1.132 by root, Fri Nov 23 10:36:30 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
46# else
47# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0
49# endif
50# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0
52# endif
37# endif 53# endif
38 54
55# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 56# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 57# define EV_USE_SELECT 1
58# else
59# define EV_USE_SELECT 0
60# endif
41# endif 61# endif
42 62
63# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 64# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 65# define EV_USE_POLL 1
66# else
67# define EV_USE_POLL 0
68# endif
45# endif 69# endif
46 70
71# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 72# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 73# define EV_USE_EPOLL 1
74# else
75# define EV_USE_EPOLL 0
76# endif
49# endif 77# endif
50 78
79# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 80# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 81# define EV_USE_KQUEUE 1
82# else
83# define EV_USE_KQUEUE 0
84# endif
85# endif
86
87# ifndef EV_USE_PORT
88# if HAVE_PORT_H && HAVE_PORT_CREATE
89# define EV_USE_PORT 1
90# else
91# define EV_USE_PORT 0
92# endif
53# endif 93# endif
54 94
55#endif 95#endif
56 96
57#include <math.h> 97#include <math.h>
66#include <sys/types.h> 106#include <sys/types.h>
67#include <time.h> 107#include <time.h>
68 108
69#include <signal.h> 109#include <signal.h>
70 110
71#ifndef WIN32 111#ifndef _WIN32
72# include <unistd.h> 112# include <unistd.h>
73# include <sys/time.h> 113# include <sys/time.h>
74# include <sys/wait.h> 114# include <sys/wait.h>
115#else
116# define WIN32_LEAN_AND_MEAN
117# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1
75#endif 120# endif
121#endif
122
76/**/ 123/**/
77 124
78#ifndef EV_USE_MONOTONIC 125#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1 126# define EV_USE_MONOTONIC 0
127#endif
128
129#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0
80#endif 131#endif
81 132
82#ifndef EV_USE_SELECT 133#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 134# define EV_USE_SELECT 1
84#endif 135#endif
85 136
86#ifndef EV_USE_POLL 137#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 138# ifdef _WIN32
139# define EV_USE_POLL 0
140# else
141# define EV_USE_POLL 1
142# endif
88#endif 143#endif
89 144
90#ifndef EV_USE_EPOLL 145#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0 146# define EV_USE_EPOLL 0
92#endif 147#endif
93 148
94#ifndef EV_USE_KQUEUE 149#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 150# define EV_USE_KQUEUE 0
96#endif 151#endif
97 152
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME 153#ifndef EV_USE_PORT
109# define EV_USE_REALTIME 1 154# define EV_USE_PORT 0
110#endif 155#endif
111 156
112/**/ 157/**/
113 158
114#ifndef CLOCK_MONOTONIC 159#ifndef CLOCK_MONOTONIC
119#ifndef CLOCK_REALTIME 164#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 165# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 166# define EV_USE_REALTIME 0
122#endif 167#endif
123 168
169#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h>
171#endif
172
124/**/ 173/**/
125 174
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
130 179
131#ifdef EV_H 180#ifdef EV_H
132# include EV_H 181# include EV_H
133#else 182#else
134# include "ev.h" 183# include "ev.h"
135#endif 184#endif
136 185
137#if __GNUC__ >= 3 186#if __GNUC__ >= 3
138# define expect(expr,value) __builtin_expect ((expr),(value)) 187# define expect(expr,value) __builtin_expect ((expr),(value))
139# define inline inline 188# define inline static inline
140#else 189#else
141# define expect(expr,value) (expr) 190# define expect(expr,value) (expr)
142# define inline static 191# define inline static
143#endif 192#endif
144 193
146#define expect_true(expr) expect ((expr) != 0, 1) 195#define expect_true(expr) expect ((expr) != 0, 1)
147 196
148#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
149#define ABSPRI(w) ((w)->priority - EV_MINPRI) 198#define ABSPRI(w) ((w)->priority - EV_MINPRI)
150 199
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */
202
151typedef struct ev_watcher *W; 203typedef struct ev_watcher *W;
152typedef struct ev_watcher_list *WL; 204typedef struct ev_watcher_list *WL;
153typedef struct ev_watcher_time *WT; 205typedef struct ev_watcher_time *WT;
154 206
155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
156 208
209#ifdef _WIN32
157#include "ev_win32.c" 210# include "ev_win32.c"
211#endif
158 212
159/*****************************************************************************/ 213/*****************************************************************************/
160 214
161static void (*syserr_cb)(const char *msg); 215static void (*syserr_cb)(const char *msg);
162 216
209typedef struct 263typedef struct
210{ 264{
211 WL head; 265 WL head;
212 unsigned char events; 266 unsigned char events;
213 unsigned char reify; 267 unsigned char reify;
268#if EV_SELECT_IS_WINSOCKET
269 SOCKET handle;
270#endif
214} ANFD; 271} ANFD;
215 272
216typedef struct 273typedef struct
217{ 274{
218 W w; 275 W w;
221 278
222#if EV_MULTIPLICITY 279#if EV_MULTIPLICITY
223 280
224 struct ev_loop 281 struct ev_loop
225 { 282 {
283 ev_tstamp ev_rt_now;
284 #define ev_rt_now ((loop)->ev_rt_now)
226 #define VAR(name,decl) decl; 285 #define VAR(name,decl) decl;
227 #include "ev_vars.h" 286 #include "ev_vars.h"
228 #undef VAR 287 #undef VAR
229 }; 288 };
230 #include "ev_wrap.h" 289 #include "ev_wrap.h"
231 290
232 struct ev_loop default_loop_struct; 291 static struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop; 292 struct ev_loop *ev_default_loop_ptr;
234 293
235#else 294#else
236 295
296 ev_tstamp ev_rt_now;
237 #define VAR(name,decl) static decl; 297 #define VAR(name,decl) static decl;
238 #include "ev_vars.h" 298 #include "ev_vars.h"
239 #undef VAR 299 #undef VAR
240 300
241 static int default_loop; 301 static int ev_default_loop_ptr;
242 302
243#endif 303#endif
244 304
245/*****************************************************************************/ 305/*****************************************************************************/
246 306
247inline ev_tstamp 307ev_tstamp
248ev_time (void) 308ev_time (void)
249{ 309{
250#if EV_USE_REALTIME 310#if EV_USE_REALTIME
251 struct timespec ts; 311 struct timespec ts;
252 clock_gettime (CLOCK_REALTIME, &ts); 312 clock_gettime (CLOCK_REALTIME, &ts);
271#endif 331#endif
272 332
273 return ev_time (); 333 return ev_time ();
274} 334}
275 335
336#if EV_MULTIPLICITY
276ev_tstamp 337ev_tstamp
277ev_now (EV_P) 338ev_now (EV_P)
278{ 339{
279 return rt_now; 340 return ev_rt_now;
280} 341}
342#endif
281 343
282#define array_roundsize(type,n) ((n) | 4 & ~3) 344#define array_roundsize(type,n) (((n) | 4) & ~3)
283 345
284#define array_needsize(type,base,cur,cnt,init) \ 346#define array_needsize(type,base,cur,cnt,init) \
285 if (expect_false ((cnt) > cur)) \ 347 if (expect_false ((cnt) > cur)) \
286 { \ 348 { \
287 int newcnt = cur; \ 349 int newcnt = cur; \
302 stem ## max = array_roundsize (stem ## cnt >> 1); \ 364 stem ## max = array_roundsize (stem ## cnt >> 1); \
303 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
304 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
305 } 367 }
306 368
307/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
308/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
309#define array_free_microshit(stem) \
310 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
311
312#define array_free(stem, idx) \ 369#define array_free(stem, idx) \
313 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
314 371
315/*****************************************************************************/ 372/*****************************************************************************/
316 373
330void 387void
331ev_feed_event (EV_P_ void *w, int revents) 388ev_feed_event (EV_P_ void *w, int revents)
332{ 389{
333 W w_ = (W)w; 390 W w_ = (W)w;
334 391
335 if (w_->pending) 392 if (expect_false (w_->pending))
336 { 393 {
337 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
338 return; 395 return;
339 } 396 }
340 397
341 w_->pending = ++pendingcnt [ABSPRI (w_)]; 398 w_->pending = ++pendingcnt [ABSPRI (w_)];
342 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void)); 399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
343 pendings [ABSPRI (w_)][w_->pending - 1].w = w_; 400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
344 pendings [ABSPRI (w_)][w_->pending - 1].events = revents; 401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
345} 402}
346 403
347static void 404static void
374 fd_event (EV_A_ fd, revents); 431 fd_event (EV_A_ fd, revents);
375} 432}
376 433
377/*****************************************************************************/ 434/*****************************************************************************/
378 435
379static void 436inline void
380fd_reify (EV_P) 437fd_reify (EV_P)
381{ 438{
382 int i; 439 int i;
383 440
384 for (i = 0; i < fdchangecnt; ++i) 441 for (i = 0; i < fdchangecnt; ++i)
390 int events = 0; 447 int events = 0;
391 448
392 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
393 events |= w->events; 450 events |= w->events;
394 451
452#if EV_SELECT_IS_WINSOCKET
453 if (events)
454 {
455 unsigned long argp;
456 anfd->handle = _get_osfhandle (fd);
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
458 }
459#endif
460
395 anfd->reify = 0; 461 anfd->reify = 0;
396 462
397 method_modify (EV_A_ fd, anfd->events, events); 463 backend_modify (EV_A_ fd, anfd->events, events);
398 anfd->events = events; 464 anfd->events = events;
399 } 465 }
400 466
401 fdchangecnt = 0; 467 fdchangecnt = 0;
402} 468}
403 469
404static void 470static void
405fd_change (EV_P_ int fd) 471fd_change (EV_P_ int fd)
406{ 472{
407 if (anfds [fd].reify) 473 if (expect_false (anfds [fd].reify))
408 return; 474 return;
409 475
410 anfds [fd].reify = 1; 476 anfds [fd].reify = 1;
411 477
412 ++fdchangecnt; 478 ++fdchangecnt;
413 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
414 fdchanges [fdchangecnt - 1] = fd; 480 fdchanges [fdchangecnt - 1] = fd;
415} 481}
416 482
417static void 483static void
418fd_kill (EV_P_ int fd) 484fd_kill (EV_P_ int fd)
424 ev_io_stop (EV_A_ w); 490 ev_io_stop (EV_A_ w);
425 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
426 } 492 }
427} 493}
428 494
429static int 495inline int
430fd_valid (int fd) 496fd_valid (int fd)
431{ 497{
432#ifdef WIN32 498#ifdef _WIN32
433 return !!win32_get_osfhandle (fd); 499 return _get_osfhandle (fd) != -1;
434#else 500#else
435 return fcntl (fd, F_GETFD) != -1; 501 return fcntl (fd, F_GETFD) != -1;
436#endif 502#endif
437} 503}
438 504
460 fd_kill (EV_A_ fd); 526 fd_kill (EV_A_ fd);
461 return; 527 return;
462 } 528 }
463} 529}
464 530
465/* usually called after fork if method needs to re-arm all fds from scratch */ 531/* usually called after fork if backend needs to re-arm all fds from scratch */
466static void 532static void
467fd_rearm_all (EV_P) 533fd_rearm_all (EV_P)
468{ 534{
469 int fd; 535 int fd;
470 536
519 heap [k] = w; 585 heap [k] = w;
520 ((W)heap [k])->active = k + 1; 586 ((W)heap [k])->active = k + 1;
521} 587}
522 588
523inline void 589inline void
524adjustheap (WT *heap, int N, int k, ev_tstamp at) 590adjustheap (WT *heap, int N, int k)
525{ 591{
526 ev_tstamp old_at = heap [k]->at; 592 upheap (heap, k);
527 heap [k]->at = at;
528
529 if (old_at < at)
530 downheap (heap, N, k); 593 downheap (heap, N, k);
531 else
532 upheap (heap, k);
533} 594}
534 595
535/*****************************************************************************/ 596/*****************************************************************************/
536 597
537typedef struct 598typedef struct
560} 621}
561 622
562static void 623static void
563sighandler (int signum) 624sighandler (int signum)
564{ 625{
565#if WIN32 626#if _WIN32
566 signal (signum, sighandler); 627 signal (signum, sighandler);
567#endif 628#endif
568 629
569 signals [signum - 1].gotsig = 1; 630 signals [signum - 1].gotsig = 1;
570 631
571 if (!gotsig) 632 if (!gotsig)
572 { 633 {
573 int old_errno = errno; 634 int old_errno = errno;
574 gotsig = 1; 635 gotsig = 1;
575#ifdef WIN32
576 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
577#else
578 write (sigpipe [1], &signum, 1); 636 write (sigpipe [1], &signum, 1);
579#endif
580 errno = old_errno; 637 errno = old_errno;
581 } 638 }
582} 639}
583 640
584void 641void
585ev_feed_signal_event (EV_P_ int signum) 642ev_feed_signal_event (EV_P_ int signum)
586{ 643{
587 WL w; 644 WL w;
588 645
589#if EV_MULTIPLICITY 646#if EV_MULTIPLICITY
590 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 647 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
591#endif 648#endif
592 649
593 --signum; 650 --signum;
594 651
595 if (signum < 0 || signum >= signalmax) 652 if (signum < 0 || signum >= signalmax)
604static void 661static void
605sigcb (EV_P_ struct ev_io *iow, int revents) 662sigcb (EV_P_ struct ev_io *iow, int revents)
606{ 663{
607 int signum; 664 int signum;
608 665
609#ifdef WIN32
610 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
611#else
612 read (sigpipe [0], &revents, 1); 666 read (sigpipe [0], &revents, 1);
613#endif
614 gotsig = 0; 667 gotsig = 0;
615 668
616 for (signum = signalmax; signum--; ) 669 for (signum = signalmax; signum--; )
617 if (signals [signum].gotsig) 670 if (signals [signum].gotsig)
618 ev_feed_signal_event (EV_A_ signum + 1); 671 ev_feed_signal_event (EV_A_ signum + 1);
619} 672}
620 673
621static void 674static void
675fd_intern (int fd)
676{
677#ifdef _WIN32
678 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
680#else
681 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif
684}
685
686static void
622siginit (EV_P) 687siginit (EV_P)
623{ 688{
624#ifndef WIN32 689 fd_intern (sigpipe [0]);
625 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 690 fd_intern (sigpipe [1]);
626 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
627
628 /* rather than sort out wether we really need nb, set it */
629 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
630 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
631#endif
632 691
633 ev_io_set (&sigev, sigpipe [0], EV_READ); 692 ev_io_set (&sigev, sigpipe [0], EV_READ);
634 ev_io_start (EV_A_ &sigev); 693 ev_io_start (EV_A_ &sigev);
635 ev_unref (EV_A); /* child watcher should not keep loop alive */ 694 ev_unref (EV_A); /* child watcher should not keep loop alive */
636} 695}
637 696
638/*****************************************************************************/ 697/*****************************************************************************/
639 698
640static struct ev_child *childs [PID_HASHSIZE]; 699static struct ev_child *childs [PID_HASHSIZE];
641 700
642#ifndef WIN32 701#ifndef _WIN32
643 702
644static struct ev_signal childev; 703static struct ev_signal childev;
645 704
646#ifndef WCONTINUED 705#ifndef WCONTINUED
647# define WCONTINUED 0 706# define WCONTINUED 0
668 int pid, status; 727 int pid, status;
669 728
670 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
671 { 730 {
672 /* make sure we are called again until all childs have been reaped */ 731 /* make sure we are called again until all childs have been reaped */
732 /* we need to do it this way so that the callback gets called before we continue */
673 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 733 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
674 734
675 child_reap (EV_A_ sw, pid, pid, status); 735 child_reap (EV_A_ sw, pid, pid, status);
676 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 736 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
677 } 737 }
678} 738}
679 739
680#endif 740#endif
681 741
682/*****************************************************************************/ 742/*****************************************************************************/
683 743
744#if EV_USE_PORT
745# include "ev_port.c"
746#endif
684#if EV_USE_KQUEUE 747#if EV_USE_KQUEUE
685# include "ev_kqueue.c" 748# include "ev_kqueue.c"
686#endif 749#endif
687#if EV_USE_EPOLL 750#if EV_USE_EPOLL
688# include "ev_epoll.c" 751# include "ev_epoll.c"
708 771
709/* return true if we are running with elevated privileges and should ignore env variables */ 772/* return true if we are running with elevated privileges and should ignore env variables */
710static int 773static int
711enable_secure (void) 774enable_secure (void)
712{ 775{
713#ifdef WIN32 776#ifdef _WIN32
714 return 0; 777 return 0;
715#else 778#else
716 return getuid () != geteuid () 779 return getuid () != geteuid ()
717 || getgid () != getegid (); 780 || getgid () != getegid ();
718#endif 781#endif
719} 782}
720 783
721int 784unsigned int
722ev_method (EV_P) 785ev_supported_backends (void)
723{ 786{
724 return method; 787 unsigned int flags = 0;
725}
726 788
727static void 789 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
728loop_init (EV_P_ int methods) 790 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
791 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
792 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
793 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
794
795 return flags;
796}
797
798unsigned int
799ev_recommended_backends (void)
729{ 800{
730 if (!method) 801 unsigned int flags = ev_supported_backends ();
802
803#ifndef __NetBSD__
804 /* kqueue is borked on everything but netbsd apparently */
805 /* it usually doesn't work correctly on anything but sockets and pipes */
806 flags &= ~EVBACKEND_KQUEUE;
807#endif
808#ifdef __APPLE__
809 // flags &= ~EVBACKEND_KQUEUE; for documentation
810 flags &= ~EVBACKEND_POLL;
811#endif
812
813 return flags;
814}
815
816unsigned int
817ev_backend (EV_P)
818{
819 return backend;
820}
821
822static void
823loop_init (EV_P_ unsigned int flags)
824{
825 if (!backend)
731 { 826 {
732#if EV_USE_MONOTONIC 827#if EV_USE_MONOTONIC
733 { 828 {
734 struct timespec ts; 829 struct timespec ts;
735 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 830 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
736 have_monotonic = 1; 831 have_monotonic = 1;
737 } 832 }
738#endif 833#endif
739 834
740 rt_now = ev_time (); 835 ev_rt_now = ev_time ();
741 mn_now = get_clock (); 836 mn_now = get_clock ();
742 now_floor = mn_now; 837 now_floor = mn_now;
743 rtmn_diff = rt_now - mn_now; 838 rtmn_diff = ev_rt_now - mn_now;
744 839
745 if (methods == EVMETHOD_AUTO) 840 if (!(flags & EVFLAG_NOENV)
746 if (!enable_secure () && getenv ("LIBEV_METHODS")) 841 && !enable_secure ()
842 && getenv ("LIBEV_FLAGS"))
747 methods = atoi (getenv ("LIBEV_METHODS")); 843 flags = atoi (getenv ("LIBEV_FLAGS"));
748 else
749 methods = EVMETHOD_ANY;
750 844
751 method = 0; 845 if (!(flags & 0x0000ffffUL))
752#if EV_USE_WIN32 846 flags |= ev_recommended_backends ();
753 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 847
848 backend = 0;
849#if EV_USE_PORT
850 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
754#endif 851#endif
755#if EV_USE_KQUEUE 852#if EV_USE_KQUEUE
756 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 853 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
757#endif 854#endif
758#if EV_USE_EPOLL 855#if EV_USE_EPOLL
759 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 856 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
760#endif 857#endif
761#if EV_USE_POLL 858#if EV_USE_POLL
762 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 859 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
763#endif 860#endif
764#if EV_USE_SELECT 861#if EV_USE_SELECT
765 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 862 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
766#endif 863#endif
767 864
768 ev_init (&sigev, sigcb); 865 ev_init (&sigev, sigcb);
769 ev_set_priority (&sigev, EV_MAXPRI); 866 ev_set_priority (&sigev, EV_MAXPRI);
770 } 867 }
771} 868}
772 869
773void 870static void
774loop_destroy (EV_P) 871loop_destroy (EV_P)
775{ 872{
776 int i; 873 int i;
777 874
778#if EV_USE_WIN32 875#if EV_USE_PORT
779 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 876 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
780#endif 877#endif
781#if EV_USE_KQUEUE 878#if EV_USE_KQUEUE
782 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 879 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
783#endif 880#endif
784#if EV_USE_EPOLL 881#if EV_USE_EPOLL
785 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 882 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
786#endif 883#endif
787#if EV_USE_POLL 884#if EV_USE_POLL
788 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 885 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
789#endif 886#endif
790#if EV_USE_SELECT 887#if EV_USE_SELECT
791 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 888 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
792#endif 889#endif
793 890
794 for (i = NUMPRI; i--; ) 891 for (i = NUMPRI; i--; )
795 array_free (pending, [i]); 892 array_free (pending, [i]);
796 893
797 /* have to use the microsoft-never-gets-it-right macro */ 894 /* have to use the microsoft-never-gets-it-right macro */
798 array_free_microshit (fdchange); 895 array_free (fdchange, EMPTY0);
799 array_free_microshit (timer); 896 array_free (timer, EMPTY0);
800 array_free_microshit (periodic); 897#if EV_PERIODICS
801 array_free_microshit (idle); 898 array_free (periodic, EMPTY0);
802 array_free_microshit (prepare); 899#endif
803 array_free_microshit (check); 900 array_free (idle, EMPTY0);
901 array_free (prepare, EMPTY0);
902 array_free (check, EMPTY0);
804 903
805 method = 0; 904 backend = 0;
806} 905}
807 906
808static void 907static void
809loop_fork (EV_P) 908loop_fork (EV_P)
810{ 909{
910#if EV_USE_PORT
911 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
912#endif
913#if EV_USE_KQUEUE
914 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
915#endif
811#if EV_USE_EPOLL 916#if EV_USE_EPOLL
812 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 917 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
813#endif
814#if EV_USE_KQUEUE
815 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
816#endif 918#endif
817 919
818 if (ev_is_active (&sigev)) 920 if (ev_is_active (&sigev))
819 { 921 {
820 /* default loop */ 922 /* default loop */
833 postfork = 0; 935 postfork = 0;
834} 936}
835 937
836#if EV_MULTIPLICITY 938#if EV_MULTIPLICITY
837struct ev_loop * 939struct ev_loop *
838ev_loop_new (int methods) 940ev_loop_new (unsigned int flags)
839{ 941{
840 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 942 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
841 943
842 memset (loop, 0, sizeof (struct ev_loop)); 944 memset (loop, 0, sizeof (struct ev_loop));
843 945
844 loop_init (EV_A_ methods); 946 loop_init (EV_A_ flags);
845 947
846 if (ev_method (EV_A)) 948 if (ev_backend (EV_A))
847 return loop; 949 return loop;
848 950
849 return 0; 951 return 0;
850} 952}
851 953
864 966
865#endif 967#endif
866 968
867#if EV_MULTIPLICITY 969#if EV_MULTIPLICITY
868struct ev_loop * 970struct ev_loop *
971ev_default_loop_init (unsigned int flags)
869#else 972#else
870int 973int
974ev_default_loop (unsigned int flags)
871#endif 975#endif
872ev_default_loop (int methods)
873{ 976{
874 if (sigpipe [0] == sigpipe [1]) 977 if (sigpipe [0] == sigpipe [1])
875 if (pipe (sigpipe)) 978 if (pipe (sigpipe))
876 return 0; 979 return 0;
877 980
878 if (!default_loop) 981 if (!ev_default_loop_ptr)
879 { 982 {
880#if EV_MULTIPLICITY 983#if EV_MULTIPLICITY
881 struct ev_loop *loop = default_loop = &default_loop_struct; 984 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
882#else 985#else
883 default_loop = 1; 986 ev_default_loop_ptr = 1;
884#endif 987#endif
885 988
886 loop_init (EV_A_ methods); 989 loop_init (EV_A_ flags);
887 990
888 if (ev_method (EV_A)) 991 if (ev_backend (EV_A))
889 { 992 {
890 siginit (EV_A); 993 siginit (EV_A);
891 994
892#ifndef WIN32 995#ifndef _WIN32
893 ev_signal_init (&childev, childcb, SIGCHLD); 996 ev_signal_init (&childev, childcb, SIGCHLD);
894 ev_set_priority (&childev, EV_MAXPRI); 997 ev_set_priority (&childev, EV_MAXPRI);
895 ev_signal_start (EV_A_ &childev); 998 ev_signal_start (EV_A_ &childev);
896 ev_unref (EV_A); /* child watcher should not keep loop alive */ 999 ev_unref (EV_A); /* child watcher should not keep loop alive */
897#endif 1000#endif
898 } 1001 }
899 else 1002 else
900 default_loop = 0; 1003 ev_default_loop_ptr = 0;
901 } 1004 }
902 1005
903 return default_loop; 1006 return ev_default_loop_ptr;
904} 1007}
905 1008
906void 1009void
907ev_default_destroy (void) 1010ev_default_destroy (void)
908{ 1011{
909#if EV_MULTIPLICITY 1012#if EV_MULTIPLICITY
910 struct ev_loop *loop = default_loop; 1013 struct ev_loop *loop = ev_default_loop_ptr;
911#endif 1014#endif
912 1015
913#ifndef WIN32 1016#ifndef _WIN32
914 ev_ref (EV_A); /* child watcher */ 1017 ev_ref (EV_A); /* child watcher */
915 ev_signal_stop (EV_A_ &childev); 1018 ev_signal_stop (EV_A_ &childev);
916#endif 1019#endif
917 1020
918 ev_ref (EV_A); /* signal watcher */ 1021 ev_ref (EV_A); /* signal watcher */
926 1029
927void 1030void
928ev_default_fork (void) 1031ev_default_fork (void)
929{ 1032{
930#if EV_MULTIPLICITY 1033#if EV_MULTIPLICITY
931 struct ev_loop *loop = default_loop; 1034 struct ev_loop *loop = ev_default_loop_ptr;
932#endif 1035#endif
933 1036
934 if (method) 1037 if (backend)
935 postfork = 1; 1038 postfork = 1;
936} 1039}
937 1040
938/*****************************************************************************/ 1041/*****************************************************************************/
939 1042
947 return 1; 1050 return 1;
948 1051
949 return 0; 1052 return 0;
950} 1053}
951 1054
952static void 1055inline void
953call_pending (EV_P) 1056call_pending (EV_P)
954{ 1057{
955 int pri; 1058 int pri;
956 1059
957 for (pri = NUMPRI; pri--; ) 1060 for (pri = NUMPRI; pri--; )
958 while (pendingcnt [pri]) 1061 while (pendingcnt [pri])
959 { 1062 {
960 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1063 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
961 1064
962 if (p->w) 1065 if (expect_true (p->w))
963 { 1066 {
964 p->w->pending = 0; 1067 p->w->pending = 0;
965 EV_CB_INVOKE (p->w, p->events); 1068 EV_CB_INVOKE (p->w, p->events);
966 } 1069 }
967 } 1070 }
968} 1071}
969 1072
970static void 1073inline void
971timers_reify (EV_P) 1074timers_reify (EV_P)
972{ 1075{
973 while (timercnt && ((WT)timers [0])->at <= mn_now) 1076 while (timercnt && ((WT)timers [0])->at <= mn_now)
974 { 1077 {
975 struct ev_timer *w = timers [0]; 1078 struct ev_timer *w = timers [0];
978 1081
979 /* first reschedule or stop timer */ 1082 /* first reschedule or stop timer */
980 if (w->repeat) 1083 if (w->repeat)
981 { 1084 {
982 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1085 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1086
983 ((WT)w)->at = mn_now + w->repeat; 1087 ((WT)w)->at += w->repeat;
1088 if (((WT)w)->at < mn_now)
1089 ((WT)w)->at = mn_now;
1090
984 downheap ((WT *)timers, timercnt, 0); 1091 downheap ((WT *)timers, timercnt, 0);
985 } 1092 }
986 else 1093 else
987 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1094 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
988 1095
989 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1096 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
990 } 1097 }
991} 1098}
992 1099
993static void 1100#if EV_PERIODICS
1101inline void
994periodics_reify (EV_P) 1102periodics_reify (EV_P)
995{ 1103{
996 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1104 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
997 { 1105 {
998 struct ev_periodic *w = periodics [0]; 1106 struct ev_periodic *w = periodics [0];
999 1107
1000 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1108 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1001 1109
1002 /* first reschedule or stop timer */ 1110 /* first reschedule or stop timer */
1003 if (w->reschedule_cb) 1111 if (w->reschedule_cb)
1004 { 1112 {
1005 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001); 1113 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1006
1007 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now)); 1114 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1008 downheap ((WT *)periodics, periodiccnt, 0); 1115 downheap ((WT *)periodics, periodiccnt, 0);
1009 } 1116 }
1010 else if (w->interval) 1117 else if (w->interval)
1011 { 1118 {
1012 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1119 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1013 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1120 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1014 downheap ((WT *)periodics, periodiccnt, 0); 1121 downheap ((WT *)periodics, periodiccnt, 0);
1015 } 1122 }
1016 else 1123 else
1017 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1124 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1018 1125
1029 for (i = 0; i < periodiccnt; ++i) 1136 for (i = 0; i < periodiccnt; ++i)
1030 { 1137 {
1031 struct ev_periodic *w = periodics [i]; 1138 struct ev_periodic *w = periodics [i];
1032 1139
1033 if (w->reschedule_cb) 1140 if (w->reschedule_cb)
1034 ((WT)w)->at = w->reschedule_cb (w, rt_now); 1141 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1035 else if (w->interval) 1142 else if (w->interval)
1036 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1143 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1037 } 1144 }
1038 1145
1039 /* now rebuild the heap */ 1146 /* now rebuild the heap */
1040 for (i = periodiccnt >> 1; i--; ) 1147 for (i = periodiccnt >> 1; i--; )
1041 downheap ((WT *)periodics, periodiccnt, i); 1148 downheap ((WT *)periodics, periodiccnt, i);
1042} 1149}
1150#endif
1043 1151
1044inline int 1152inline int
1045time_update_monotonic (EV_P) 1153time_update_monotonic (EV_P)
1046{ 1154{
1047 mn_now = get_clock (); 1155 mn_now = get_clock ();
1048 1156
1049 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1157 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1050 { 1158 {
1051 rt_now = rtmn_diff + mn_now; 1159 ev_rt_now = rtmn_diff + mn_now;
1052 return 0; 1160 return 0;
1053 } 1161 }
1054 else 1162 else
1055 { 1163 {
1056 now_floor = mn_now; 1164 now_floor = mn_now;
1057 rt_now = ev_time (); 1165 ev_rt_now = ev_time ();
1058 return 1; 1166 return 1;
1059 } 1167 }
1060} 1168}
1061 1169
1062static void 1170inline void
1063time_update (EV_P) 1171time_update (EV_P)
1064{ 1172{
1065 int i; 1173 int i;
1066 1174
1067#if EV_USE_MONOTONIC 1175#if EV_USE_MONOTONIC
1071 { 1179 {
1072 ev_tstamp odiff = rtmn_diff; 1180 ev_tstamp odiff = rtmn_diff;
1073 1181
1074 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1182 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1075 { 1183 {
1076 rtmn_diff = rt_now - mn_now; 1184 rtmn_diff = ev_rt_now - mn_now;
1077 1185
1078 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1186 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1079 return; /* all is well */ 1187 return; /* all is well */
1080 1188
1081 rt_now = ev_time (); 1189 ev_rt_now = ev_time ();
1082 mn_now = get_clock (); 1190 mn_now = get_clock ();
1083 now_floor = mn_now; 1191 now_floor = mn_now;
1084 } 1192 }
1085 1193
1194# if EV_PERIODICS
1086 periodics_reschedule (EV_A); 1195 periodics_reschedule (EV_A);
1196# endif
1087 /* no timer adjustment, as the monotonic clock doesn't jump */ 1197 /* no timer adjustment, as the monotonic clock doesn't jump */
1088 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1198 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1089 } 1199 }
1090 } 1200 }
1091 else 1201 else
1092#endif 1202#endif
1093 { 1203 {
1094 rt_now = ev_time (); 1204 ev_rt_now = ev_time ();
1095 1205
1096 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1206 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1097 { 1207 {
1208#if EV_PERIODICS
1098 periodics_reschedule (EV_A); 1209 periodics_reschedule (EV_A);
1210#endif
1099 1211
1100 /* adjust timers. this is easy, as the offset is the same for all */ 1212 /* adjust timers. this is easy, as the offset is the same for all */
1101 for (i = 0; i < timercnt; ++i) 1213 for (i = 0; i < timercnt; ++i)
1102 ((WT)timers [i])->at += rt_now - mn_now; 1214 ((WT)timers [i])->at += ev_rt_now - mn_now;
1103 } 1215 }
1104 1216
1105 mn_now = rt_now; 1217 mn_now = ev_rt_now;
1106 } 1218 }
1107} 1219}
1108 1220
1109void 1221void
1110ev_ref (EV_P) 1222ev_ref (EV_P)
1124ev_loop (EV_P_ int flags) 1236ev_loop (EV_P_ int flags)
1125{ 1237{
1126 double block; 1238 double block;
1127 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1239 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1128 1240
1129 do 1241 while (activecnt)
1130 { 1242 {
1131 /* queue check watchers (and execute them) */ 1243 /* queue check watchers (and execute them) */
1132 if (expect_false (preparecnt)) 1244 if (expect_false (preparecnt))
1133 { 1245 {
1134 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1246 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1150 if (expect_true (have_monotonic)) 1262 if (expect_true (have_monotonic))
1151 time_update_monotonic (EV_A); 1263 time_update_monotonic (EV_A);
1152 else 1264 else
1153#endif 1265#endif
1154 { 1266 {
1155 rt_now = ev_time (); 1267 ev_rt_now = ev_time ();
1156 mn_now = rt_now; 1268 mn_now = ev_rt_now;
1157 } 1269 }
1158 1270
1159 if (flags & EVLOOP_NONBLOCK || idlecnt) 1271 if (flags & EVLOOP_NONBLOCK || idlecnt)
1160 block = 0.; 1272 block = 0.;
1161 else 1273 else
1162 { 1274 {
1163 block = MAX_BLOCKTIME; 1275 block = MAX_BLOCKTIME;
1164 1276
1165 if (timercnt) 1277 if (timercnt)
1166 { 1278 {
1167 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1279 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1168 if (block > to) block = to; 1280 if (block > to) block = to;
1169 } 1281 }
1170 1282
1283#if EV_PERIODICS
1171 if (periodiccnt) 1284 if (periodiccnt)
1172 { 1285 {
1173 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1286 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1174 if (block > to) block = to; 1287 if (block > to) block = to;
1175 } 1288 }
1289#endif
1176 1290
1177 if (block < 0.) block = 0.; 1291 if (expect_false (block < 0.)) block = 0.;
1178 } 1292 }
1179 1293
1180 method_poll (EV_A_ block); 1294 backend_poll (EV_A_ block);
1181 1295
1182 /* update rt_now, do magic */ 1296 /* update ev_rt_now, do magic */
1183 time_update (EV_A); 1297 time_update (EV_A);
1184 1298
1185 /* queue pending timers and reschedule them */ 1299 /* queue pending timers and reschedule them */
1186 timers_reify (EV_A); /* relative timers called last */ 1300 timers_reify (EV_A); /* relative timers called last */
1301#if EV_PERIODICS
1187 periodics_reify (EV_A); /* absolute timers called first */ 1302 periodics_reify (EV_A); /* absolute timers called first */
1303#endif
1188 1304
1189 /* queue idle watchers unless io or timers are pending */ 1305 /* queue idle watchers unless io or timers are pending */
1190 if (idlecnt && !any_pending (EV_A)) 1306 if (idlecnt && !any_pending (EV_A))
1191 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1307 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1192 1308
1193 /* queue check watchers, to be executed first */ 1309 /* queue check watchers, to be executed first */
1194 if (checkcnt) 1310 if (expect_false (checkcnt))
1195 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1311 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1196 1312
1197 call_pending (EV_A); 1313 call_pending (EV_A);
1314
1315 if (expect_false (loop_done))
1316 break;
1198 } 1317 }
1199 while (activecnt && !loop_done);
1200 1318
1201 if (loop_done != 2) 1319 if (loop_done != 2)
1202 loop_done = 0; 1320 loop_done = 0;
1203} 1321}
1204 1322
1264void 1382void
1265ev_io_start (EV_P_ struct ev_io *w) 1383ev_io_start (EV_P_ struct ev_io *w)
1266{ 1384{
1267 int fd = w->fd; 1385 int fd = w->fd;
1268 1386
1269 if (ev_is_active (w)) 1387 if (expect_false (ev_is_active (w)))
1270 return; 1388 return;
1271 1389
1272 assert (("ev_io_start called with negative fd", fd >= 0)); 1390 assert (("ev_io_start called with negative fd", fd >= 0));
1273 1391
1274 ev_start (EV_A_ (W)w, 1); 1392 ev_start (EV_A_ (W)w, 1);
1280 1398
1281void 1399void
1282ev_io_stop (EV_P_ struct ev_io *w) 1400ev_io_stop (EV_P_ struct ev_io *w)
1283{ 1401{
1284 ev_clear_pending (EV_A_ (W)w); 1402 ev_clear_pending (EV_A_ (W)w);
1285 if (!ev_is_active (w)) 1403 if (expect_false (!ev_is_active (w)))
1286 return; 1404 return;
1405
1406 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1287 1407
1288 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1408 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1289 ev_stop (EV_A_ (W)w); 1409 ev_stop (EV_A_ (W)w);
1290 1410
1291 fd_change (EV_A_ w->fd); 1411 fd_change (EV_A_ w->fd);
1292} 1412}
1293 1413
1294void 1414void
1295ev_timer_start (EV_P_ struct ev_timer *w) 1415ev_timer_start (EV_P_ struct ev_timer *w)
1296{ 1416{
1297 if (ev_is_active (w)) 1417 if (expect_false (ev_is_active (w)))
1298 return; 1418 return;
1299 1419
1300 ((WT)w)->at += mn_now; 1420 ((WT)w)->at += mn_now;
1301 1421
1302 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1422 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1303 1423
1304 ev_start (EV_A_ (W)w, ++timercnt); 1424 ev_start (EV_A_ (W)w, ++timercnt);
1305 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 1425 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2);
1306 timers [timercnt - 1] = w; 1426 timers [timercnt - 1] = w;
1307 upheap ((WT *)timers, timercnt - 1); 1427 upheap ((WT *)timers, timercnt - 1);
1308 1428
1309 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1429 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1310} 1430}
1311 1431
1312void 1432void
1313ev_timer_stop (EV_P_ struct ev_timer *w) 1433ev_timer_stop (EV_P_ struct ev_timer *w)
1314{ 1434{
1315 ev_clear_pending (EV_A_ (W)w); 1435 ev_clear_pending (EV_A_ (W)w);
1316 if (!ev_is_active (w)) 1436 if (expect_false (!ev_is_active (w)))
1317 return; 1437 return;
1318 1438
1319 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1439 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1320 1440
1321 if (((W)w)->active < timercnt--) 1441 if (expect_true (((W)w)->active < timercnt--))
1322 { 1442 {
1323 timers [((W)w)->active - 1] = timers [timercnt]; 1443 timers [((W)w)->active - 1] = timers [timercnt];
1324 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1444 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1325 } 1445 }
1326 1446
1327 ((WT)w)->at = w->repeat; 1447 ((WT)w)->at -= mn_now;
1328 1448
1329 ev_stop (EV_A_ (W)w); 1449 ev_stop (EV_A_ (W)w);
1330} 1450}
1331 1451
1332void 1452void
1333ev_timer_again (EV_P_ struct ev_timer *w) 1453ev_timer_again (EV_P_ struct ev_timer *w)
1334{ 1454{
1335 if (ev_is_active (w)) 1455 if (ev_is_active (w))
1336 { 1456 {
1337 if (w->repeat) 1457 if (w->repeat)
1458 {
1459 ((WT)w)->at = mn_now + w->repeat;
1338 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat); 1460 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1461 }
1339 else 1462 else
1340 ev_timer_stop (EV_A_ w); 1463 ev_timer_stop (EV_A_ w);
1341 } 1464 }
1342 else if (w->repeat) 1465 else if (w->repeat)
1466 {
1467 w->at = w->repeat;
1343 ev_timer_start (EV_A_ w); 1468 ev_timer_start (EV_A_ w);
1469 }
1344} 1470}
1345 1471
1472#if EV_PERIODICS
1346void 1473void
1347ev_periodic_start (EV_P_ struct ev_periodic *w) 1474ev_periodic_start (EV_P_ struct ev_periodic *w)
1348{ 1475{
1349 if (ev_is_active (w)) 1476 if (expect_false (ev_is_active (w)))
1350 return; 1477 return;
1351 1478
1352 if (w->reschedule_cb) 1479 if (w->reschedule_cb)
1353 ((WT)w)->at = w->reschedule_cb (w, rt_now); 1480 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1354 else if (w->interval) 1481 else if (w->interval)
1355 { 1482 {
1356 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1483 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1357 /* this formula differs from the one in periodic_reify because we do not always round up */ 1484 /* this formula differs from the one in periodic_reify because we do not always round up */
1358 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1485 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1359 } 1486 }
1360 1487
1361 ev_start (EV_A_ (W)w, ++periodiccnt); 1488 ev_start (EV_A_ (W)w, ++periodiccnt);
1362 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1489 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1363 periodics [periodiccnt - 1] = w; 1490 periodics [periodiccnt - 1] = w;
1364 upheap ((WT *)periodics, periodiccnt - 1); 1491 upheap ((WT *)periodics, periodiccnt - 1);
1365 1492
1366 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1493 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1367} 1494}
1368 1495
1369void 1496void
1370ev_periodic_stop (EV_P_ struct ev_periodic *w) 1497ev_periodic_stop (EV_P_ struct ev_periodic *w)
1371{ 1498{
1372 ev_clear_pending (EV_A_ (W)w); 1499 ev_clear_pending (EV_A_ (W)w);
1373 if (!ev_is_active (w)) 1500 if (expect_false (!ev_is_active (w)))
1374 return; 1501 return;
1375 1502
1376 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1503 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1377 1504
1378 if (((W)w)->active < periodiccnt--) 1505 if (expect_true (((W)w)->active < periodiccnt--))
1379 { 1506 {
1380 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1507 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1381 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1508 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1382 } 1509 }
1383 1510
1384 ev_stop (EV_A_ (W)w); 1511 ev_stop (EV_A_ (W)w);
1385} 1512}
1386 1513
1389{ 1516{
1390 /* TODO: use adjustheap and recalculation */ 1517 /* TODO: use adjustheap and recalculation */
1391 ev_periodic_stop (EV_A_ w); 1518 ev_periodic_stop (EV_A_ w);
1392 ev_periodic_start (EV_A_ w); 1519 ev_periodic_start (EV_A_ w);
1393} 1520}
1521#endif
1394 1522
1395void 1523void
1396ev_idle_start (EV_P_ struct ev_idle *w) 1524ev_idle_start (EV_P_ struct ev_idle *w)
1397{ 1525{
1398 if (ev_is_active (w)) 1526 if (expect_false (ev_is_active (w)))
1399 return; 1527 return;
1400 1528
1401 ev_start (EV_A_ (W)w, ++idlecnt); 1529 ev_start (EV_A_ (W)w, ++idlecnt);
1402 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void)); 1530 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1403 idles [idlecnt - 1] = w; 1531 idles [idlecnt - 1] = w;
1404} 1532}
1405 1533
1406void 1534void
1407ev_idle_stop (EV_P_ struct ev_idle *w) 1535ev_idle_stop (EV_P_ struct ev_idle *w)
1408{ 1536{
1409 ev_clear_pending (EV_A_ (W)w); 1537 ev_clear_pending (EV_A_ (W)w);
1410 if (ev_is_active (w)) 1538 if (expect_false (!ev_is_active (w)))
1411 return; 1539 return;
1412 1540
1413 idles [((W)w)->active - 1] = idles [--idlecnt]; 1541 idles [((W)w)->active - 1] = idles [--idlecnt];
1414 ev_stop (EV_A_ (W)w); 1542 ev_stop (EV_A_ (W)w);
1415} 1543}
1416 1544
1417void 1545void
1418ev_prepare_start (EV_P_ struct ev_prepare *w) 1546ev_prepare_start (EV_P_ struct ev_prepare *w)
1419{ 1547{
1420 if (ev_is_active (w)) 1548 if (expect_false (ev_is_active (w)))
1421 return; 1549 return;
1422 1550
1423 ev_start (EV_A_ (W)w, ++preparecnt); 1551 ev_start (EV_A_ (W)w, ++preparecnt);
1424 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void)); 1552 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1425 prepares [preparecnt - 1] = w; 1553 prepares [preparecnt - 1] = w;
1426} 1554}
1427 1555
1428void 1556void
1429ev_prepare_stop (EV_P_ struct ev_prepare *w) 1557ev_prepare_stop (EV_P_ struct ev_prepare *w)
1430{ 1558{
1431 ev_clear_pending (EV_A_ (W)w); 1559 ev_clear_pending (EV_A_ (W)w);
1432 if (ev_is_active (w)) 1560 if (expect_false (!ev_is_active (w)))
1433 return; 1561 return;
1434 1562
1435 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1563 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1436 ev_stop (EV_A_ (W)w); 1564 ev_stop (EV_A_ (W)w);
1437} 1565}
1438 1566
1439void 1567void
1440ev_check_start (EV_P_ struct ev_check *w) 1568ev_check_start (EV_P_ struct ev_check *w)
1441{ 1569{
1442 if (ev_is_active (w)) 1570 if (expect_false (ev_is_active (w)))
1443 return; 1571 return;
1444 1572
1445 ev_start (EV_A_ (W)w, ++checkcnt); 1573 ev_start (EV_A_ (W)w, ++checkcnt);
1446 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void)); 1574 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1447 checks [checkcnt - 1] = w; 1575 checks [checkcnt - 1] = w;
1448} 1576}
1449 1577
1450void 1578void
1451ev_check_stop (EV_P_ struct ev_check *w) 1579ev_check_stop (EV_P_ struct ev_check *w)
1452{ 1580{
1453 ev_clear_pending (EV_A_ (W)w); 1581 ev_clear_pending (EV_A_ (W)w);
1454 if (ev_is_active (w)) 1582 if (expect_false (!ev_is_active (w)))
1455 return; 1583 return;
1456 1584
1457 checks [((W)w)->active - 1] = checks [--checkcnt]; 1585 checks [((W)w)->active - 1] = checks [--checkcnt];
1458 ev_stop (EV_A_ (W)w); 1586 ev_stop (EV_A_ (W)w);
1459} 1587}
1464 1592
1465void 1593void
1466ev_signal_start (EV_P_ struct ev_signal *w) 1594ev_signal_start (EV_P_ struct ev_signal *w)
1467{ 1595{
1468#if EV_MULTIPLICITY 1596#if EV_MULTIPLICITY
1469 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1597 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1470#endif 1598#endif
1471 if (ev_is_active (w)) 1599 if (expect_false (ev_is_active (w)))
1472 return; 1600 return;
1473 1601
1474 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1602 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1475 1603
1476 ev_start (EV_A_ (W)w, 1); 1604 ev_start (EV_A_ (W)w, 1);
1477 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 1605 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1478 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1606 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1479 1607
1480 if (!((WL)w)->next) 1608 if (!((WL)w)->next)
1481 { 1609 {
1482#if WIN32 1610#if _WIN32
1483 signal (w->signum, sighandler); 1611 signal (w->signum, sighandler);
1484#else 1612#else
1485 struct sigaction sa; 1613 struct sigaction sa;
1486 sa.sa_handler = sighandler; 1614 sa.sa_handler = sighandler;
1487 sigfillset (&sa.sa_mask); 1615 sigfillset (&sa.sa_mask);
1493 1621
1494void 1622void
1495ev_signal_stop (EV_P_ struct ev_signal *w) 1623ev_signal_stop (EV_P_ struct ev_signal *w)
1496{ 1624{
1497 ev_clear_pending (EV_A_ (W)w); 1625 ev_clear_pending (EV_A_ (W)w);
1498 if (!ev_is_active (w)) 1626 if (expect_false (!ev_is_active (w)))
1499 return; 1627 return;
1500 1628
1501 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1629 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1502 ev_stop (EV_A_ (W)w); 1630 ev_stop (EV_A_ (W)w);
1503 1631
1507 1635
1508void 1636void
1509ev_child_start (EV_P_ struct ev_child *w) 1637ev_child_start (EV_P_ struct ev_child *w)
1510{ 1638{
1511#if EV_MULTIPLICITY 1639#if EV_MULTIPLICITY
1512 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1640 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1513#endif 1641#endif
1514 if (ev_is_active (w)) 1642 if (expect_false (ev_is_active (w)))
1515 return; 1643 return;
1516 1644
1517 ev_start (EV_A_ (W)w, 1); 1645 ev_start (EV_A_ (W)w, 1);
1518 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1646 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1519} 1647}
1520 1648
1521void 1649void
1522ev_child_stop (EV_P_ struct ev_child *w) 1650ev_child_stop (EV_P_ struct ev_child *w)
1523{ 1651{
1524 ev_clear_pending (EV_A_ (W)w); 1652 ev_clear_pending (EV_A_ (W)w);
1525 if (ev_is_active (w)) 1653 if (expect_false (!ev_is_active (w)))
1526 return; 1654 return;
1527 1655
1528 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1656 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1529 ev_stop (EV_A_ (W)w); 1657 ev_stop (EV_A_ (W)w);
1530} 1658}
1567void 1695void
1568ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1696ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1569{ 1697{
1570 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 1698 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1571 1699
1572 if (!once) 1700 if (expect_false (!once))
1701 {
1573 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1702 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1574 else 1703 return;
1575 { 1704 }
1705
1576 once->cb = cb; 1706 once->cb = cb;
1577 once->arg = arg; 1707 once->arg = arg;
1578 1708
1579 ev_init (&once->io, once_cb_io); 1709 ev_init (&once->io, once_cb_io);
1580 if (fd >= 0) 1710 if (fd >= 0)
1581 { 1711 {
1582 ev_io_set (&once->io, fd, events); 1712 ev_io_set (&once->io, fd, events);
1583 ev_io_start (EV_A_ &once->io); 1713 ev_io_start (EV_A_ &once->io);
1584 } 1714 }
1585 1715
1586 ev_init (&once->to, once_cb_to); 1716 ev_init (&once->to, once_cb_to);
1587 if (timeout >= 0.) 1717 if (timeout >= 0.)
1588 { 1718 {
1589 ev_timer_set (&once->to, timeout, 0.); 1719 ev_timer_set (&once->to, timeout, 0.);
1590 ev_timer_start (EV_A_ &once->to); 1720 ev_timer_start (EV_A_ &once->to);
1591 }
1592 } 1721 }
1593} 1722}
1594 1723
1724#ifdef __cplusplus
1725}
1726#endif
1727

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines