ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.84 by root, Fri Nov 9 23:04:35 2007 UTC vs.
Revision 1.139 by root, Sun Nov 25 09:24:37 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
59# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 60# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
41# endif 65# endif
42 66
67# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 68# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
45# endif 73# endif
46 74
75# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
53# endif 97# endif
54 98
55#endif 99#endif
56 100
57#include <math.h> 101#include <math.h>
66#include <sys/types.h> 110#include <sys/types.h>
67#include <time.h> 111#include <time.h>
68 112
69#include <signal.h> 113#include <signal.h>
70 114
71#ifndef WIN32 115#ifndef _WIN32
72# include <unistd.h> 116# include <unistd.h>
73# include <sys/time.h> 117# include <sys/time.h>
74# include <sys/wait.h> 118# include <sys/wait.h>
119#else
120# define WIN32_LEAN_AND_MEAN
121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1
75#endif 124# endif
125#endif
126
76/**/ 127/**/
77 128
78#ifndef EV_USE_MONOTONIC 129#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1 130# define EV_USE_MONOTONIC 0
131#endif
132
133#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0
80#endif 135#endif
81 136
82#ifndef EV_USE_SELECT 137#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1 138# define EV_USE_SELECT 1
84#endif 139#endif
85 140
86#ifndef EV_USE_POLL 141#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 142# ifdef _WIN32
143# define EV_USE_POLL 0
144# else
145# define EV_USE_POLL 1
146# endif
88#endif 147#endif
89 148
90#ifndef EV_USE_EPOLL 149#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0 150# define EV_USE_EPOLL 0
92#endif 151#endif
93 152
94#ifndef EV_USE_KQUEUE 153#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0 154# define EV_USE_KQUEUE 0
96#endif 155#endif
97 156
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME 157#ifndef EV_USE_PORT
109# define EV_USE_REALTIME 1 158# define EV_USE_PORT 0
110#endif 159#endif
111 160
112/**/ 161/**/
113 162
114#ifndef CLOCK_MONOTONIC 163#ifndef CLOCK_MONOTONIC
119#ifndef CLOCK_REALTIME 168#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME 169# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0 170# define EV_USE_REALTIME 0
122#endif 171#endif
123 172
173#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h>
175#endif
176
124/**/ 177/**/
125 178
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
130 183
131#ifdef EV_H 184#ifdef EV_H
132# include EV_H 185# include EV_H
133#else 186#else
134# include "ev.h" 187# include "ev.h"
135#endif 188#endif
136 189
137#if __GNUC__ >= 3 190#if __GNUC__ >= 3
138# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
139# define inline inline 192# define inline static inline
140#else 193#else
141# define expect(expr,value) (expr) 194# define expect(expr,value) (expr)
142# define inline static 195# define inline static
143#endif 196#endif
144 197
146#define expect_true(expr) expect ((expr) != 0, 1) 199#define expect_true(expr) expect ((expr) != 0, 1)
147 200
148#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
149#define ABSPRI(w) ((w)->priority - EV_MINPRI) 202#define ABSPRI(w) ((w)->priority - EV_MINPRI)
150 203
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */
206
151typedef struct ev_watcher *W; 207typedef ev_watcher *W;
152typedef struct ev_watcher_list *WL; 208typedef ev_watcher_list *WL;
153typedef struct ev_watcher_time *WT; 209typedef ev_watcher_time *WT;
154 210
155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
156 212
213#ifdef _WIN32
157#include "ev_win32.c" 214# include "ev_win32.c"
215#endif
158 216
159/*****************************************************************************/ 217/*****************************************************************************/
160 218
161static void (*syserr_cb)(const char *msg); 219static void (*syserr_cb)(const char *msg);
162 220
209typedef struct 267typedef struct
210{ 268{
211 WL head; 269 WL head;
212 unsigned char events; 270 unsigned char events;
213 unsigned char reify; 271 unsigned char reify;
272#if EV_SELECT_IS_WINSOCKET
273 SOCKET handle;
274#endif
214} ANFD; 275} ANFD;
215 276
216typedef struct 277typedef struct
217{ 278{
218 W w; 279 W w;
221 282
222#if EV_MULTIPLICITY 283#if EV_MULTIPLICITY
223 284
224 struct ev_loop 285 struct ev_loop
225 { 286 {
287 ev_tstamp ev_rt_now;
288 #define ev_rt_now ((loop)->ev_rt_now)
226 #define VAR(name,decl) decl; 289 #define VAR(name,decl) decl;
227 #include "ev_vars.h" 290 #include "ev_vars.h"
228 #undef VAR 291 #undef VAR
229 }; 292 };
230 #include "ev_wrap.h" 293 #include "ev_wrap.h"
231 294
232 struct ev_loop default_loop_struct; 295 static struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop; 296 struct ev_loop *ev_default_loop_ptr;
234 297
235#else 298#else
236 299
300 ev_tstamp ev_rt_now;
237 #define VAR(name,decl) static decl; 301 #define VAR(name,decl) static decl;
238 #include "ev_vars.h" 302 #include "ev_vars.h"
239 #undef VAR 303 #undef VAR
240 304
241 static int default_loop; 305 static int ev_default_loop_ptr;
242 306
243#endif 307#endif
244 308
245/*****************************************************************************/ 309/*****************************************************************************/
246 310
247inline ev_tstamp 311ev_tstamp
248ev_time (void) 312ev_time (void)
249{ 313{
250#if EV_USE_REALTIME 314#if EV_USE_REALTIME
251 struct timespec ts; 315 struct timespec ts;
252 clock_gettime (CLOCK_REALTIME, &ts); 316 clock_gettime (CLOCK_REALTIME, &ts);
271#endif 335#endif
272 336
273 return ev_time (); 337 return ev_time ();
274} 338}
275 339
340#if EV_MULTIPLICITY
276ev_tstamp 341ev_tstamp
277ev_now (EV_P) 342ev_now (EV_P)
278{ 343{
279 return rt_now; 344 return ev_rt_now;
280} 345}
346#endif
281 347
282#define array_roundsize(type,n) ((n) | 4 & ~3) 348#define array_roundsize(type,n) (((n) | 4) & ~3)
283 349
284#define array_needsize(type,base,cur,cnt,init) \ 350#define array_needsize(type,base,cur,cnt,init) \
285 if (expect_false ((cnt) > cur)) \ 351 if (expect_false ((cnt) > cur)) \
286 { \ 352 { \
287 int newcnt = cur; \ 353 int newcnt = cur; \
302 stem ## max = array_roundsize (stem ## cnt >> 1); \ 368 stem ## max = array_roundsize (stem ## cnt >> 1); \
303 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
304 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
305 } 371 }
306 372
307/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
308/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
309#define array_free_microshit(stem) \
310 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
311
312#define array_free(stem, idx) \ 373#define array_free(stem, idx) \
313 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
314 375
315/*****************************************************************************/ 376/*****************************************************************************/
316 377
330void 391void
331ev_feed_event (EV_P_ void *w, int revents) 392ev_feed_event (EV_P_ void *w, int revents)
332{ 393{
333 W w_ = (W)w; 394 W w_ = (W)w;
334 395
335 if (w_->pending) 396 if (expect_false (w_->pending))
336 { 397 {
337 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
338 return; 399 return;
339 } 400 }
340 401
341 w_->pending = ++pendingcnt [ABSPRI (w_)]; 402 w_->pending = ++pendingcnt [ABSPRI (w_)];
342 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void)); 403 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
343 pendings [ABSPRI (w_)][w_->pending - 1].w = w_; 404 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
344 pendings [ABSPRI (w_)][w_->pending - 1].events = revents; 405 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
345} 406}
346 407
347static void 408static void
355 416
356inline void 417inline void
357fd_event (EV_P_ int fd, int revents) 418fd_event (EV_P_ int fd, int revents)
358{ 419{
359 ANFD *anfd = anfds + fd; 420 ANFD *anfd = anfds + fd;
360 struct ev_io *w; 421 ev_io *w;
361 422
362 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 423 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
363 { 424 {
364 int ev = w->events & revents; 425 int ev = w->events & revents;
365 426
366 if (ev) 427 if (ev)
367 ev_feed_event (EV_A_ (W)w, ev); 428 ev_feed_event (EV_A_ (W)w, ev);
374 fd_event (EV_A_ fd, revents); 435 fd_event (EV_A_ fd, revents);
375} 436}
376 437
377/*****************************************************************************/ 438/*****************************************************************************/
378 439
379static void 440inline void
380fd_reify (EV_P) 441fd_reify (EV_P)
381{ 442{
382 int i; 443 int i;
383 444
384 for (i = 0; i < fdchangecnt; ++i) 445 for (i = 0; i < fdchangecnt; ++i)
385 { 446 {
386 int fd = fdchanges [i]; 447 int fd = fdchanges [i];
387 ANFD *anfd = anfds + fd; 448 ANFD *anfd = anfds + fd;
388 struct ev_io *w; 449 ev_io *w;
389 450
390 int events = 0; 451 int events = 0;
391 452
392 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 453 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
393 events |= w->events; 454 events |= w->events;
394 455
456#if EV_SELECT_IS_WINSOCKET
457 if (events)
458 {
459 unsigned long argp;
460 anfd->handle = _get_osfhandle (fd);
461 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
462 }
463#endif
464
395 anfd->reify = 0; 465 anfd->reify = 0;
396 466
397 method_modify (EV_A_ fd, anfd->events, events); 467 backend_modify (EV_A_ fd, anfd->events, events);
398 anfd->events = events; 468 anfd->events = events;
399 } 469 }
400 470
401 fdchangecnt = 0; 471 fdchangecnt = 0;
402} 472}
403 473
404static void 474static void
405fd_change (EV_P_ int fd) 475fd_change (EV_P_ int fd)
406{ 476{
407 if (anfds [fd].reify) 477 if (expect_false (anfds [fd].reify))
408 return; 478 return;
409 479
410 anfds [fd].reify = 1; 480 anfds [fd].reify = 1;
411 481
412 ++fdchangecnt; 482 ++fdchangecnt;
413 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 483 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
414 fdchanges [fdchangecnt - 1] = fd; 484 fdchanges [fdchangecnt - 1] = fd;
415} 485}
416 486
417static void 487static void
418fd_kill (EV_P_ int fd) 488fd_kill (EV_P_ int fd)
419{ 489{
420 struct ev_io *w; 490 ev_io *w;
421 491
422 while ((w = (struct ev_io *)anfds [fd].head)) 492 while ((w = (ev_io *)anfds [fd].head))
423 { 493 {
424 ev_io_stop (EV_A_ w); 494 ev_io_stop (EV_A_ w);
425 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 495 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
426 } 496 }
427} 497}
428 498
429static int 499inline int
430fd_valid (int fd) 500fd_valid (int fd)
431{ 501{
432#ifdef WIN32 502#ifdef _WIN32
433 return !!win32_get_osfhandle (fd); 503 return _get_osfhandle (fd) != -1;
434#else 504#else
435 return fcntl (fd, F_GETFD) != -1; 505 return fcntl (fd, F_GETFD) != -1;
436#endif 506#endif
437} 507}
438 508
460 fd_kill (EV_A_ fd); 530 fd_kill (EV_A_ fd);
461 return; 531 return;
462 } 532 }
463} 533}
464 534
465/* usually called after fork if method needs to re-arm all fds from scratch */ 535/* usually called after fork if backend needs to re-arm all fds from scratch */
466static void 536static void
467fd_rearm_all (EV_P) 537fd_rearm_all (EV_P)
468{ 538{
469 int fd; 539 int fd;
470 540
519 heap [k] = w; 589 heap [k] = w;
520 ((W)heap [k])->active = k + 1; 590 ((W)heap [k])->active = k + 1;
521} 591}
522 592
523inline void 593inline void
524adjustheap (WT *heap, int N, int k, ev_tstamp at) 594adjustheap (WT *heap, int N, int k)
525{ 595{
526 ev_tstamp old_at = heap [k]->at; 596 upheap (heap, k);
527 heap [k]->at = at;
528
529 if (old_at < at)
530 downheap (heap, N, k); 597 downheap (heap, N, k);
531 else
532 upheap (heap, k);
533} 598}
534 599
535/*****************************************************************************/ 600/*****************************************************************************/
536 601
537typedef struct 602typedef struct
543static ANSIG *signals; 608static ANSIG *signals;
544static int signalmax; 609static int signalmax;
545 610
546static int sigpipe [2]; 611static int sigpipe [2];
547static sig_atomic_t volatile gotsig; 612static sig_atomic_t volatile gotsig;
548static struct ev_io sigev; 613static ev_io sigev;
549 614
550static void 615static void
551signals_init (ANSIG *base, int count) 616signals_init (ANSIG *base, int count)
552{ 617{
553 while (count--) 618 while (count--)
560} 625}
561 626
562static void 627static void
563sighandler (int signum) 628sighandler (int signum)
564{ 629{
565#if WIN32 630#if _WIN32
566 signal (signum, sighandler); 631 signal (signum, sighandler);
567#endif 632#endif
568 633
569 signals [signum - 1].gotsig = 1; 634 signals [signum - 1].gotsig = 1;
570 635
571 if (!gotsig) 636 if (!gotsig)
572 { 637 {
573 int old_errno = errno; 638 int old_errno = errno;
574 gotsig = 1; 639 gotsig = 1;
575#ifdef WIN32
576 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
577#else
578 write (sigpipe [1], &signum, 1); 640 write (sigpipe [1], &signum, 1);
579#endif
580 errno = old_errno; 641 errno = old_errno;
581 } 642 }
582} 643}
583 644
584void 645void
585ev_feed_signal_event (EV_P_ int signum) 646ev_feed_signal_event (EV_P_ int signum)
586{ 647{
587 WL w; 648 WL w;
588 649
589#if EV_MULTIPLICITY 650#if EV_MULTIPLICITY
590 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 651 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
591#endif 652#endif
592 653
593 --signum; 654 --signum;
594 655
595 if (signum < 0 || signum >= signalmax) 656 if (signum < 0 || signum >= signalmax)
600 for (w = signals [signum].head; w; w = w->next) 661 for (w = signals [signum].head; w; w = w->next)
601 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 662 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
602} 663}
603 664
604static void 665static void
605sigcb (EV_P_ struct ev_io *iow, int revents) 666sigcb (EV_P_ ev_io *iow, int revents)
606{ 667{
607 int signum; 668 int signum;
608 669
609#ifdef WIN32
610 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
611#else
612 read (sigpipe [0], &revents, 1); 670 read (sigpipe [0], &revents, 1);
613#endif
614 gotsig = 0; 671 gotsig = 0;
615 672
616 for (signum = signalmax; signum--; ) 673 for (signum = signalmax; signum--; )
617 if (signals [signum].gotsig) 674 if (signals [signum].gotsig)
618 ev_feed_signal_event (EV_A_ signum + 1); 675 ev_feed_signal_event (EV_A_ signum + 1);
619} 676}
620 677
621static void 678static void
679fd_intern (int fd)
680{
681#ifdef _WIN32
682 int arg = 1;
683 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
684#else
685 fcntl (fd, F_SETFD, FD_CLOEXEC);
686 fcntl (fd, F_SETFL, O_NONBLOCK);
687#endif
688}
689
690static void
622siginit (EV_P) 691siginit (EV_P)
623{ 692{
624#ifndef WIN32 693 fd_intern (sigpipe [0]);
625 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 694 fd_intern (sigpipe [1]);
626 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
627
628 /* rather than sort out wether we really need nb, set it */
629 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
630 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
631#endif
632 695
633 ev_io_set (&sigev, sigpipe [0], EV_READ); 696 ev_io_set (&sigev, sigpipe [0], EV_READ);
634 ev_io_start (EV_A_ &sigev); 697 ev_io_start (EV_A_ &sigev);
635 ev_unref (EV_A); /* child watcher should not keep loop alive */ 698 ev_unref (EV_A); /* child watcher should not keep loop alive */
636} 699}
637 700
638/*****************************************************************************/ 701/*****************************************************************************/
639 702
640static struct ev_child *childs [PID_HASHSIZE]; 703static ev_child *childs [PID_HASHSIZE];
641 704
642#ifndef WIN32 705#ifndef _WIN32
643 706
644static struct ev_signal childev; 707static ev_signal childev;
645 708
646#ifndef WCONTINUED 709#ifndef WCONTINUED
647# define WCONTINUED 0 710# define WCONTINUED 0
648#endif 711#endif
649 712
650static void 713static void
651child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 714child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
652{ 715{
653 struct ev_child *w; 716 ev_child *w;
654 717
655 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 718 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
656 if (w->pid == pid || !w->pid) 719 if (w->pid == pid || !w->pid)
657 { 720 {
658 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 721 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
659 w->rpid = pid; 722 w->rpid = pid;
660 w->rstatus = status; 723 w->rstatus = status;
661 ev_feed_event (EV_A_ (W)w, EV_CHILD); 724 ev_feed_event (EV_A_ (W)w, EV_CHILD);
662 } 725 }
663} 726}
664 727
665static void 728static void
666childcb (EV_P_ struct ev_signal *sw, int revents) 729childcb (EV_P_ ev_signal *sw, int revents)
667{ 730{
668 int pid, status; 731 int pid, status;
669 732
670 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 733 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
671 { 734 {
672 /* make sure we are called again until all childs have been reaped */ 735 /* make sure we are called again until all childs have been reaped */
736 /* we need to do it this way so that the callback gets called before we continue */
673 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 737 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
674 738
675 child_reap (EV_A_ sw, pid, pid, status); 739 child_reap (EV_A_ sw, pid, pid, status);
676 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 740 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
677 } 741 }
678} 742}
679 743
680#endif 744#endif
681 745
682/*****************************************************************************/ 746/*****************************************************************************/
683 747
748#if EV_USE_PORT
749# include "ev_port.c"
750#endif
684#if EV_USE_KQUEUE 751#if EV_USE_KQUEUE
685# include "ev_kqueue.c" 752# include "ev_kqueue.c"
686#endif 753#endif
687#if EV_USE_EPOLL 754#if EV_USE_EPOLL
688# include "ev_epoll.c" 755# include "ev_epoll.c"
708 775
709/* return true if we are running with elevated privileges and should ignore env variables */ 776/* return true if we are running with elevated privileges and should ignore env variables */
710static int 777static int
711enable_secure (void) 778enable_secure (void)
712{ 779{
713#ifdef WIN32 780#ifdef _WIN32
714 return 0; 781 return 0;
715#else 782#else
716 return getuid () != geteuid () 783 return getuid () != geteuid ()
717 || getgid () != getegid (); 784 || getgid () != getegid ();
718#endif 785#endif
719} 786}
720 787
721int 788unsigned int
722ev_method (EV_P) 789ev_supported_backends (void)
723{ 790{
724 return method; 791 unsigned int flags = 0;
725}
726 792
727static void 793 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
728loop_init (EV_P_ int methods) 794 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
795 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
796 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
797 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
798
799 return flags;
800}
801
802unsigned int
803ev_recommended_backends (void)
729{ 804{
730 if (!method) 805 unsigned int flags = ev_supported_backends ();
806
807#ifndef __NetBSD__
808 /* kqueue is borked on everything but netbsd apparently */
809 /* it usually doesn't work correctly on anything but sockets and pipes */
810 flags &= ~EVBACKEND_KQUEUE;
811#endif
812#ifdef __APPLE__
813 // flags &= ~EVBACKEND_KQUEUE; for documentation
814 flags &= ~EVBACKEND_POLL;
815#endif
816
817 return flags;
818}
819
820unsigned int
821ev_embeddable_backends (void)
822{
823 return EVBACKEND_EPOLL
824 | EVBACKEND_KQUEUE
825 | EVBACKEND_PORT;
826}
827
828unsigned int
829ev_backend (EV_P)
830{
831 return backend;
832}
833
834static void
835loop_init (EV_P_ unsigned int flags)
836{
837 if (!backend)
731 { 838 {
732#if EV_USE_MONOTONIC 839#if EV_USE_MONOTONIC
733 { 840 {
734 struct timespec ts; 841 struct timespec ts;
735 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 842 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
736 have_monotonic = 1; 843 have_monotonic = 1;
737 } 844 }
738#endif 845#endif
739 846
740 rt_now = ev_time (); 847 ev_rt_now = ev_time ();
741 mn_now = get_clock (); 848 mn_now = get_clock ();
742 now_floor = mn_now; 849 now_floor = mn_now;
743 rtmn_diff = rt_now - mn_now; 850 rtmn_diff = ev_rt_now - mn_now;
744 851
745 if (methods == EVMETHOD_AUTO) 852 if (!(flags & EVFLAG_NOENV)
746 if (!enable_secure () && getenv ("LIBEV_METHODS")) 853 && !enable_secure ()
854 && getenv ("LIBEV_FLAGS"))
747 methods = atoi (getenv ("LIBEV_METHODS")); 855 flags = atoi (getenv ("LIBEV_FLAGS"));
748 else
749 methods = EVMETHOD_ANY;
750 856
751 method = 0; 857 if (!(flags & 0x0000ffffUL))
752#if EV_USE_WIN32 858 flags |= ev_recommended_backends ();
753 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 859
860 backend = 0;
861#if EV_USE_PORT
862 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
754#endif 863#endif
755#if EV_USE_KQUEUE 864#if EV_USE_KQUEUE
756 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 865 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
757#endif 866#endif
758#if EV_USE_EPOLL 867#if EV_USE_EPOLL
759 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 868 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
760#endif 869#endif
761#if EV_USE_POLL 870#if EV_USE_POLL
762 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 871 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
763#endif 872#endif
764#if EV_USE_SELECT 873#if EV_USE_SELECT
765 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 874 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
766#endif 875#endif
767 876
768 ev_init (&sigev, sigcb); 877 ev_init (&sigev, sigcb);
769 ev_set_priority (&sigev, EV_MAXPRI); 878 ev_set_priority (&sigev, EV_MAXPRI);
770 } 879 }
771} 880}
772 881
773void 882static void
774loop_destroy (EV_P) 883loop_destroy (EV_P)
775{ 884{
776 int i; 885 int i;
777 886
778#if EV_USE_WIN32 887#if EV_USE_PORT
779 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 888 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
780#endif 889#endif
781#if EV_USE_KQUEUE 890#if EV_USE_KQUEUE
782 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 891 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
783#endif 892#endif
784#if EV_USE_EPOLL 893#if EV_USE_EPOLL
785 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 894 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
786#endif 895#endif
787#if EV_USE_POLL 896#if EV_USE_POLL
788 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 897 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
789#endif 898#endif
790#if EV_USE_SELECT 899#if EV_USE_SELECT
791 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 900 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
792#endif 901#endif
793 902
794 for (i = NUMPRI; i--; ) 903 for (i = NUMPRI; i--; )
795 array_free (pending, [i]); 904 array_free (pending, [i]);
796 905
797 /* have to use the microsoft-never-gets-it-right macro */ 906 /* have to use the microsoft-never-gets-it-right macro */
798 array_free_microshit (fdchange); 907 array_free (fdchange, EMPTY0);
799 array_free_microshit (timer); 908 array_free (timer, EMPTY0);
800 array_free_microshit (periodic); 909#if EV_PERIODICS
801 array_free_microshit (idle); 910 array_free (periodic, EMPTY0);
802 array_free_microshit (prepare); 911#endif
803 array_free_microshit (check); 912 array_free (idle, EMPTY0);
913 array_free (prepare, EMPTY0);
914 array_free (check, EMPTY0);
804 915
805 method = 0; 916 backend = 0;
806} 917}
807 918
808static void 919static void
809loop_fork (EV_P) 920loop_fork (EV_P)
810{ 921{
922#if EV_USE_PORT
923 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
924#endif
925#if EV_USE_KQUEUE
926 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
927#endif
811#if EV_USE_EPOLL 928#if EV_USE_EPOLL
812 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 929 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
813#endif
814#if EV_USE_KQUEUE
815 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
816#endif 930#endif
817 931
818 if (ev_is_active (&sigev)) 932 if (ev_is_active (&sigev))
819 { 933 {
820 /* default loop */ 934 /* default loop */
833 postfork = 0; 947 postfork = 0;
834} 948}
835 949
836#if EV_MULTIPLICITY 950#if EV_MULTIPLICITY
837struct ev_loop * 951struct ev_loop *
838ev_loop_new (int methods) 952ev_loop_new (unsigned int flags)
839{ 953{
840 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 954 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
841 955
842 memset (loop, 0, sizeof (struct ev_loop)); 956 memset (loop, 0, sizeof (struct ev_loop));
843 957
844 loop_init (EV_A_ methods); 958 loop_init (EV_A_ flags);
845 959
846 if (ev_method (EV_A)) 960 if (ev_backend (EV_A))
847 return loop; 961 return loop;
848 962
849 return 0; 963 return 0;
850} 964}
851 965
864 978
865#endif 979#endif
866 980
867#if EV_MULTIPLICITY 981#if EV_MULTIPLICITY
868struct ev_loop * 982struct ev_loop *
983ev_default_loop_init (unsigned int flags)
869#else 984#else
870int 985int
986ev_default_loop (unsigned int flags)
871#endif 987#endif
872ev_default_loop (int methods)
873{ 988{
874 if (sigpipe [0] == sigpipe [1]) 989 if (sigpipe [0] == sigpipe [1])
875 if (pipe (sigpipe)) 990 if (pipe (sigpipe))
876 return 0; 991 return 0;
877 992
878 if (!default_loop) 993 if (!ev_default_loop_ptr)
879 { 994 {
880#if EV_MULTIPLICITY 995#if EV_MULTIPLICITY
881 struct ev_loop *loop = default_loop = &default_loop_struct; 996 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
882#else 997#else
883 default_loop = 1; 998 ev_default_loop_ptr = 1;
884#endif 999#endif
885 1000
886 loop_init (EV_A_ methods); 1001 loop_init (EV_A_ flags);
887 1002
888 if (ev_method (EV_A)) 1003 if (ev_backend (EV_A))
889 { 1004 {
890 siginit (EV_A); 1005 siginit (EV_A);
891 1006
892#ifndef WIN32 1007#ifndef _WIN32
893 ev_signal_init (&childev, childcb, SIGCHLD); 1008 ev_signal_init (&childev, childcb, SIGCHLD);
894 ev_set_priority (&childev, EV_MAXPRI); 1009 ev_set_priority (&childev, EV_MAXPRI);
895 ev_signal_start (EV_A_ &childev); 1010 ev_signal_start (EV_A_ &childev);
896 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1011 ev_unref (EV_A); /* child watcher should not keep loop alive */
897#endif 1012#endif
898 } 1013 }
899 else 1014 else
900 default_loop = 0; 1015 ev_default_loop_ptr = 0;
901 } 1016 }
902 1017
903 return default_loop; 1018 return ev_default_loop_ptr;
904} 1019}
905 1020
906void 1021void
907ev_default_destroy (void) 1022ev_default_destroy (void)
908{ 1023{
909#if EV_MULTIPLICITY 1024#if EV_MULTIPLICITY
910 struct ev_loop *loop = default_loop; 1025 struct ev_loop *loop = ev_default_loop_ptr;
911#endif 1026#endif
912 1027
913#ifndef WIN32 1028#ifndef _WIN32
914 ev_ref (EV_A); /* child watcher */ 1029 ev_ref (EV_A); /* child watcher */
915 ev_signal_stop (EV_A_ &childev); 1030 ev_signal_stop (EV_A_ &childev);
916#endif 1031#endif
917 1032
918 ev_ref (EV_A); /* signal watcher */ 1033 ev_ref (EV_A); /* signal watcher */
926 1041
927void 1042void
928ev_default_fork (void) 1043ev_default_fork (void)
929{ 1044{
930#if EV_MULTIPLICITY 1045#if EV_MULTIPLICITY
931 struct ev_loop *loop = default_loop; 1046 struct ev_loop *loop = ev_default_loop_ptr;
932#endif 1047#endif
933 1048
934 if (method) 1049 if (backend)
935 postfork = 1; 1050 postfork = 1;
936} 1051}
937 1052
938/*****************************************************************************/ 1053/*****************************************************************************/
939 1054
947 return 1; 1062 return 1;
948 1063
949 return 0; 1064 return 0;
950} 1065}
951 1066
952static void 1067inline void
953call_pending (EV_P) 1068call_pending (EV_P)
954{ 1069{
955 int pri; 1070 int pri;
956 1071
957 for (pri = NUMPRI; pri--; ) 1072 for (pri = NUMPRI; pri--; )
958 while (pendingcnt [pri]) 1073 while (pendingcnt [pri])
959 { 1074 {
960 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1075 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
961 1076
962 if (p->w) 1077 if (expect_true (p->w))
963 { 1078 {
1079 assert (("non-pending watcher on pending list", p->w->pending));
1080
964 p->w->pending = 0; 1081 p->w->pending = 0;
965 EV_CB_INVOKE (p->w, p->events); 1082 EV_CB_INVOKE (p->w, p->events);
966 } 1083 }
967 } 1084 }
968} 1085}
969 1086
970static void 1087inline void
971timers_reify (EV_P) 1088timers_reify (EV_P)
972{ 1089{
973 while (timercnt && ((WT)timers [0])->at <= mn_now) 1090 while (timercnt && ((WT)timers [0])->at <= mn_now)
974 { 1091 {
975 struct ev_timer *w = timers [0]; 1092 ev_timer *w = timers [0];
976 1093
977 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1094 assert (("inactive timer on timer heap detected", ev_is_active (w)));
978 1095
979 /* first reschedule or stop timer */ 1096 /* first reschedule or stop timer */
980 if (w->repeat) 1097 if (w->repeat)
981 { 1098 {
982 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1099 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1100
983 ((WT)w)->at = mn_now + w->repeat; 1101 ((WT)w)->at += w->repeat;
1102 if (((WT)w)->at < mn_now)
1103 ((WT)w)->at = mn_now;
1104
984 downheap ((WT *)timers, timercnt, 0); 1105 downheap ((WT *)timers, timercnt, 0);
985 } 1106 }
986 else 1107 else
987 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1108 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
988 1109
989 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1110 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
990 } 1111 }
991} 1112}
992 1113
993static void 1114#if EV_PERIODICS
1115inline void
994periodics_reify (EV_P) 1116periodics_reify (EV_P)
995{ 1117{
996 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1118 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
997 { 1119 {
998 struct ev_periodic *w = periodics [0]; 1120 ev_periodic *w = periodics [0];
999 1121
1000 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1122 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1001 1123
1002 /* first reschedule or stop timer */ 1124 /* first reschedule or stop timer */
1003 if (w->reschedule_cb) 1125 if (w->reschedule_cb)
1004 { 1126 {
1005 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001); 1127 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1006
1007 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now)); 1128 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1008 downheap ((WT *)periodics, periodiccnt, 0); 1129 downheap ((WT *)periodics, periodiccnt, 0);
1009 } 1130 }
1010 else if (w->interval) 1131 else if (w->interval)
1011 { 1132 {
1012 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1133 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1013 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1134 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1014 downheap ((WT *)periodics, periodiccnt, 0); 1135 downheap ((WT *)periodics, periodiccnt, 0);
1015 } 1136 }
1016 else 1137 else
1017 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1138 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1018 1139
1026 int i; 1147 int i;
1027 1148
1028 /* adjust periodics after time jump */ 1149 /* adjust periodics after time jump */
1029 for (i = 0; i < periodiccnt; ++i) 1150 for (i = 0; i < periodiccnt; ++i)
1030 { 1151 {
1031 struct ev_periodic *w = periodics [i]; 1152 ev_periodic *w = periodics [i];
1032 1153
1033 if (w->reschedule_cb) 1154 if (w->reschedule_cb)
1034 ((WT)w)->at = w->reschedule_cb (w, rt_now); 1155 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1035 else if (w->interval) 1156 else if (w->interval)
1036 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1157 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1037 } 1158 }
1038 1159
1039 /* now rebuild the heap */ 1160 /* now rebuild the heap */
1040 for (i = periodiccnt >> 1; i--; ) 1161 for (i = periodiccnt >> 1; i--; )
1041 downheap ((WT *)periodics, periodiccnt, i); 1162 downheap ((WT *)periodics, periodiccnt, i);
1042} 1163}
1164#endif
1043 1165
1044inline int 1166inline int
1045time_update_monotonic (EV_P) 1167time_update_monotonic (EV_P)
1046{ 1168{
1047 mn_now = get_clock (); 1169 mn_now = get_clock ();
1048 1170
1049 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1171 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1050 { 1172 {
1051 rt_now = rtmn_diff + mn_now; 1173 ev_rt_now = rtmn_diff + mn_now;
1052 return 0; 1174 return 0;
1053 } 1175 }
1054 else 1176 else
1055 { 1177 {
1056 now_floor = mn_now; 1178 now_floor = mn_now;
1057 rt_now = ev_time (); 1179 ev_rt_now = ev_time ();
1058 return 1; 1180 return 1;
1059 } 1181 }
1060} 1182}
1061 1183
1062static void 1184inline void
1063time_update (EV_P) 1185time_update (EV_P)
1064{ 1186{
1065 int i; 1187 int i;
1066 1188
1067#if EV_USE_MONOTONIC 1189#if EV_USE_MONOTONIC
1069 { 1191 {
1070 if (time_update_monotonic (EV_A)) 1192 if (time_update_monotonic (EV_A))
1071 { 1193 {
1072 ev_tstamp odiff = rtmn_diff; 1194 ev_tstamp odiff = rtmn_diff;
1073 1195
1074 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1196 /* loop a few times, before making important decisions.
1197 * on the choice of "4": one iteration isn't enough,
1198 * in case we get preempted during the calls to
1199 * ev_time and get_clock. a second call is almost guarenteed
1200 * to succeed in that case, though. and looping a few more times
1201 * doesn't hurt either as we only do this on time-jumps or
1202 * in the unlikely event of getting preempted here.
1203 */
1204 for (i = 4; --i; )
1075 { 1205 {
1076 rtmn_diff = rt_now - mn_now; 1206 rtmn_diff = ev_rt_now - mn_now;
1077 1207
1078 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1208 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1079 return; /* all is well */ 1209 return; /* all is well */
1080 1210
1081 rt_now = ev_time (); 1211 ev_rt_now = ev_time ();
1082 mn_now = get_clock (); 1212 mn_now = get_clock ();
1083 now_floor = mn_now; 1213 now_floor = mn_now;
1084 } 1214 }
1085 1215
1216# if EV_PERIODICS
1086 periodics_reschedule (EV_A); 1217 periodics_reschedule (EV_A);
1218# endif
1087 /* no timer adjustment, as the monotonic clock doesn't jump */ 1219 /* no timer adjustment, as the monotonic clock doesn't jump */
1088 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1220 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1089 } 1221 }
1090 } 1222 }
1091 else 1223 else
1092#endif 1224#endif
1093 { 1225 {
1094 rt_now = ev_time (); 1226 ev_rt_now = ev_time ();
1095 1227
1096 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1228 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1097 { 1229 {
1230#if EV_PERIODICS
1098 periodics_reschedule (EV_A); 1231 periodics_reschedule (EV_A);
1232#endif
1099 1233
1100 /* adjust timers. this is easy, as the offset is the same for all */ 1234 /* adjust timers. this is easy, as the offset is the same for all */
1101 for (i = 0; i < timercnt; ++i) 1235 for (i = 0; i < timercnt; ++i)
1102 ((WT)timers [i])->at += rt_now - mn_now; 1236 ((WT)timers [i])->at += ev_rt_now - mn_now;
1103 } 1237 }
1104 1238
1105 mn_now = rt_now; 1239 mn_now = ev_rt_now;
1106 } 1240 }
1107} 1241}
1108 1242
1109void 1243void
1110ev_ref (EV_P) 1244ev_ref (EV_P)
1121static int loop_done; 1255static int loop_done;
1122 1256
1123void 1257void
1124ev_loop (EV_P_ int flags) 1258ev_loop (EV_P_ int flags)
1125{ 1259{
1126 double block;
1127 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1260 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1261 ? EVUNLOOP_ONE
1262 : EVUNLOOP_CANCEL;
1128 1263
1129 do 1264 while (activecnt)
1130 { 1265 {
1131 /* queue check watchers (and execute them) */ 1266 /* queue check watchers (and execute them) */
1132 if (expect_false (preparecnt)) 1267 if (expect_false (preparecnt))
1133 { 1268 {
1134 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1269 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1141 1276
1142 /* update fd-related kernel structures */ 1277 /* update fd-related kernel structures */
1143 fd_reify (EV_A); 1278 fd_reify (EV_A);
1144 1279
1145 /* calculate blocking time */ 1280 /* calculate blocking time */
1281 {
1282 double block;
1146 1283
1147 /* we only need this for !monotonic clock or timers, but as we basically 1284 if (flags & EVLOOP_NONBLOCK || idlecnt)
1148 always have timers, we just calculate it always */ 1285 block = 0.; /* do not block at all */
1286 else
1287 {
1288 /* update time to cancel out callback processing overhead */
1149#if EV_USE_MONOTONIC 1289#if EV_USE_MONOTONIC
1150 if (expect_true (have_monotonic)) 1290 if (expect_true (have_monotonic))
1151 time_update_monotonic (EV_A); 1291 time_update_monotonic (EV_A);
1152 else 1292 else
1153#endif 1293#endif
1154 { 1294 {
1155 rt_now = ev_time (); 1295 ev_rt_now = ev_time ();
1156 mn_now = rt_now; 1296 mn_now = ev_rt_now;
1157 } 1297 }
1158 1298
1159 if (flags & EVLOOP_NONBLOCK || idlecnt)
1160 block = 0.;
1161 else
1162 {
1163 block = MAX_BLOCKTIME; 1299 block = MAX_BLOCKTIME;
1164 1300
1165 if (timercnt) 1301 if (timercnt)
1166 { 1302 {
1167 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1303 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1168 if (block > to) block = to; 1304 if (block > to) block = to;
1169 } 1305 }
1170 1306
1307#if EV_PERIODICS
1171 if (periodiccnt) 1308 if (periodiccnt)
1172 { 1309 {
1173 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1310 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1174 if (block > to) block = to; 1311 if (block > to) block = to;
1175 } 1312 }
1313#endif
1176 1314
1177 if (block < 0.) block = 0.; 1315 if (expect_false (block < 0.)) block = 0.;
1178 } 1316 }
1179 1317
1180 method_poll (EV_A_ block); 1318 backend_poll (EV_A_ block);
1319 }
1181 1320
1182 /* update rt_now, do magic */ 1321 /* update ev_rt_now, do magic */
1183 time_update (EV_A); 1322 time_update (EV_A);
1184 1323
1185 /* queue pending timers and reschedule them */ 1324 /* queue pending timers and reschedule them */
1186 timers_reify (EV_A); /* relative timers called last */ 1325 timers_reify (EV_A); /* relative timers called last */
1326#if EV_PERIODICS
1187 periodics_reify (EV_A); /* absolute timers called first */ 1327 periodics_reify (EV_A); /* absolute timers called first */
1328#endif
1188 1329
1189 /* queue idle watchers unless io or timers are pending */ 1330 /* queue idle watchers unless other events are pending */
1190 if (idlecnt && !any_pending (EV_A)) 1331 if (idlecnt && !any_pending (EV_A))
1191 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1332 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1192 1333
1193 /* queue check watchers, to be executed first */ 1334 /* queue check watchers, to be executed first */
1194 if (checkcnt) 1335 if (expect_false (checkcnt))
1195 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1336 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1196 1337
1197 call_pending (EV_A); 1338 call_pending (EV_A);
1198 }
1199 while (activecnt && !loop_done);
1200 1339
1201 if (loop_done != 2) 1340 if (expect_false (loop_done))
1202 loop_done = 0; 1341 break;
1342 }
1343
1344 if (loop_done == EVUNLOOP_ONE)
1345 loop_done = EVUNLOOP_CANCEL;
1203} 1346}
1204 1347
1205void 1348void
1206ev_unloop (EV_P_ int how) 1349ev_unloop (EV_P_ int how)
1207{ 1350{
1260} 1403}
1261 1404
1262/*****************************************************************************/ 1405/*****************************************************************************/
1263 1406
1264void 1407void
1265ev_io_start (EV_P_ struct ev_io *w) 1408ev_io_start (EV_P_ ev_io *w)
1266{ 1409{
1267 int fd = w->fd; 1410 int fd = w->fd;
1268 1411
1269 if (ev_is_active (w)) 1412 if (expect_false (ev_is_active (w)))
1270 return; 1413 return;
1271 1414
1272 assert (("ev_io_start called with negative fd", fd >= 0)); 1415 assert (("ev_io_start called with negative fd", fd >= 0));
1273 1416
1274 ev_start (EV_A_ (W)w, 1); 1417 ev_start (EV_A_ (W)w, 1);
1277 1420
1278 fd_change (EV_A_ fd); 1421 fd_change (EV_A_ fd);
1279} 1422}
1280 1423
1281void 1424void
1282ev_io_stop (EV_P_ struct ev_io *w) 1425ev_io_stop (EV_P_ ev_io *w)
1283{ 1426{
1284 ev_clear_pending (EV_A_ (W)w); 1427 ev_clear_pending (EV_A_ (W)w);
1285 if (!ev_is_active (w)) 1428 if (expect_false (!ev_is_active (w)))
1286 return; 1429 return;
1430
1431 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1287 1432
1288 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1433 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1289 ev_stop (EV_A_ (W)w); 1434 ev_stop (EV_A_ (W)w);
1290 1435
1291 fd_change (EV_A_ w->fd); 1436 fd_change (EV_A_ w->fd);
1292} 1437}
1293 1438
1294void 1439void
1295ev_timer_start (EV_P_ struct ev_timer *w) 1440ev_timer_start (EV_P_ ev_timer *w)
1296{ 1441{
1297 if (ev_is_active (w)) 1442 if (expect_false (ev_is_active (w)))
1298 return; 1443 return;
1299 1444
1300 ((WT)w)->at += mn_now; 1445 ((WT)w)->at += mn_now;
1301 1446
1302 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1447 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1303 1448
1304 ev_start (EV_A_ (W)w, ++timercnt); 1449 ev_start (EV_A_ (W)w, ++timercnt);
1305 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 1450 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1306 timers [timercnt - 1] = w; 1451 timers [timercnt - 1] = w;
1307 upheap ((WT *)timers, timercnt - 1); 1452 upheap ((WT *)timers, timercnt - 1);
1308 1453
1309 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1454 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1310} 1455}
1311 1456
1312void 1457void
1313ev_timer_stop (EV_P_ struct ev_timer *w) 1458ev_timer_stop (EV_P_ ev_timer *w)
1314{ 1459{
1315 ev_clear_pending (EV_A_ (W)w); 1460 ev_clear_pending (EV_A_ (W)w);
1316 if (!ev_is_active (w)) 1461 if (expect_false (!ev_is_active (w)))
1317 return; 1462 return;
1318 1463
1319 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1464 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1320 1465
1321 if (((W)w)->active < timercnt--) 1466 if (expect_true (((W)w)->active < timercnt--))
1322 { 1467 {
1323 timers [((W)w)->active - 1] = timers [timercnt]; 1468 timers [((W)w)->active - 1] = timers [timercnt];
1324 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1469 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1325 } 1470 }
1326 1471
1327 ((WT)w)->at = w->repeat; 1472 ((WT)w)->at -= mn_now;
1328 1473
1329 ev_stop (EV_A_ (W)w); 1474 ev_stop (EV_A_ (W)w);
1330} 1475}
1331 1476
1332void 1477void
1333ev_timer_again (EV_P_ struct ev_timer *w) 1478ev_timer_again (EV_P_ ev_timer *w)
1334{ 1479{
1335 if (ev_is_active (w)) 1480 if (ev_is_active (w))
1336 { 1481 {
1337 if (w->repeat) 1482 if (w->repeat)
1483 {
1484 ((WT)w)->at = mn_now + w->repeat;
1338 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat); 1485 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1486 }
1339 else 1487 else
1340 ev_timer_stop (EV_A_ w); 1488 ev_timer_stop (EV_A_ w);
1341 } 1489 }
1342 else if (w->repeat) 1490 else if (w->repeat)
1491 {
1492 w->at = w->repeat;
1343 ev_timer_start (EV_A_ w); 1493 ev_timer_start (EV_A_ w);
1494 }
1344} 1495}
1345 1496
1497#if EV_PERIODICS
1346void 1498void
1347ev_periodic_start (EV_P_ struct ev_periodic *w) 1499ev_periodic_start (EV_P_ ev_periodic *w)
1348{ 1500{
1349 if (ev_is_active (w)) 1501 if (expect_false (ev_is_active (w)))
1350 return; 1502 return;
1351 1503
1352 if (w->reschedule_cb) 1504 if (w->reschedule_cb)
1353 ((WT)w)->at = w->reschedule_cb (w, rt_now); 1505 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1354 else if (w->interval) 1506 else if (w->interval)
1355 { 1507 {
1356 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1508 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1357 /* this formula differs from the one in periodic_reify because we do not always round up */ 1509 /* this formula differs from the one in periodic_reify because we do not always round up */
1358 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1510 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1359 } 1511 }
1360 1512
1361 ev_start (EV_A_ (W)w, ++periodiccnt); 1513 ev_start (EV_A_ (W)w, ++periodiccnt);
1362 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1514 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1363 periodics [periodiccnt - 1] = w; 1515 periodics [periodiccnt - 1] = w;
1364 upheap ((WT *)periodics, periodiccnt - 1); 1516 upheap ((WT *)periodics, periodiccnt - 1);
1365 1517
1366 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1518 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1367} 1519}
1368 1520
1369void 1521void
1370ev_periodic_stop (EV_P_ struct ev_periodic *w) 1522ev_periodic_stop (EV_P_ ev_periodic *w)
1371{ 1523{
1372 ev_clear_pending (EV_A_ (W)w); 1524 ev_clear_pending (EV_A_ (W)w);
1373 if (!ev_is_active (w)) 1525 if (expect_false (!ev_is_active (w)))
1374 return; 1526 return;
1375 1527
1376 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1528 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1377 1529
1378 if (((W)w)->active < periodiccnt--) 1530 if (expect_true (((W)w)->active < periodiccnt--))
1379 { 1531 {
1380 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1532 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1381 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1533 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1382 } 1534 }
1383 1535
1384 ev_stop (EV_A_ (W)w); 1536 ev_stop (EV_A_ (W)w);
1385} 1537}
1386 1538
1387void 1539void
1388ev_periodic_again (EV_P_ struct ev_periodic *w) 1540ev_periodic_again (EV_P_ ev_periodic *w)
1389{ 1541{
1390 /* TODO: use adjustheap and recalculation */ 1542 /* TODO: use adjustheap and recalculation */
1391 ev_periodic_stop (EV_A_ w); 1543 ev_periodic_stop (EV_A_ w);
1392 ev_periodic_start (EV_A_ w); 1544 ev_periodic_start (EV_A_ w);
1393} 1545}
1546#endif
1394 1547
1395void 1548void
1396ev_idle_start (EV_P_ struct ev_idle *w) 1549ev_idle_start (EV_P_ ev_idle *w)
1397{ 1550{
1398 if (ev_is_active (w)) 1551 if (expect_false (ev_is_active (w)))
1399 return; 1552 return;
1400 1553
1401 ev_start (EV_A_ (W)w, ++idlecnt); 1554 ev_start (EV_A_ (W)w, ++idlecnt);
1402 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void)); 1555 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1403 idles [idlecnt - 1] = w; 1556 idles [idlecnt - 1] = w;
1404} 1557}
1405 1558
1406void 1559void
1407ev_idle_stop (EV_P_ struct ev_idle *w) 1560ev_idle_stop (EV_P_ ev_idle *w)
1408{ 1561{
1409 ev_clear_pending (EV_A_ (W)w); 1562 ev_clear_pending (EV_A_ (W)w);
1410 if (ev_is_active (w)) 1563 if (expect_false (!ev_is_active (w)))
1411 return; 1564 return;
1412 1565
1566 {
1567 int active = ((W)w)->active;
1413 idles [((W)w)->active - 1] = idles [--idlecnt]; 1568 idles [active - 1] = idles [--idlecnt];
1569 ((W)idles [active - 1])->active = active;
1570 }
1571
1414 ev_stop (EV_A_ (W)w); 1572 ev_stop (EV_A_ (W)w);
1415} 1573}
1416 1574
1417void 1575void
1418ev_prepare_start (EV_P_ struct ev_prepare *w) 1576ev_prepare_start (EV_P_ ev_prepare *w)
1419{ 1577{
1420 if (ev_is_active (w)) 1578 if (expect_false (ev_is_active (w)))
1421 return; 1579 return;
1422 1580
1423 ev_start (EV_A_ (W)w, ++preparecnt); 1581 ev_start (EV_A_ (W)w, ++preparecnt);
1424 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void)); 1582 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1425 prepares [preparecnt - 1] = w; 1583 prepares [preparecnt - 1] = w;
1426} 1584}
1427 1585
1428void 1586void
1429ev_prepare_stop (EV_P_ struct ev_prepare *w) 1587ev_prepare_stop (EV_P_ ev_prepare *w)
1430{ 1588{
1431 ev_clear_pending (EV_A_ (W)w); 1589 ev_clear_pending (EV_A_ (W)w);
1432 if (ev_is_active (w)) 1590 if (expect_false (!ev_is_active (w)))
1433 return; 1591 return;
1434 1592
1593 {
1594 int active = ((W)w)->active;
1435 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1595 prepares [active - 1] = prepares [--preparecnt];
1596 ((W)prepares [active - 1])->active = active;
1597 }
1598
1436 ev_stop (EV_A_ (W)w); 1599 ev_stop (EV_A_ (W)w);
1437} 1600}
1438 1601
1439void 1602void
1440ev_check_start (EV_P_ struct ev_check *w) 1603ev_check_start (EV_P_ ev_check *w)
1441{ 1604{
1442 if (ev_is_active (w)) 1605 if (expect_false (ev_is_active (w)))
1443 return; 1606 return;
1444 1607
1445 ev_start (EV_A_ (W)w, ++checkcnt); 1608 ev_start (EV_A_ (W)w, ++checkcnt);
1446 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void)); 1609 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1447 checks [checkcnt - 1] = w; 1610 checks [checkcnt - 1] = w;
1448} 1611}
1449 1612
1450void 1613void
1451ev_check_stop (EV_P_ struct ev_check *w) 1614ev_check_stop (EV_P_ ev_check *w)
1452{ 1615{
1453 ev_clear_pending (EV_A_ (W)w); 1616 ev_clear_pending (EV_A_ (W)w);
1454 if (ev_is_active (w)) 1617 if (expect_false (!ev_is_active (w)))
1455 return; 1618 return;
1456 1619
1620 {
1621 int active = ((W)w)->active;
1457 checks [((W)w)->active - 1] = checks [--checkcnt]; 1622 checks [active - 1] = checks [--checkcnt];
1623 ((W)checks [active - 1])->active = active;
1624 }
1625
1458 ev_stop (EV_A_ (W)w); 1626 ev_stop (EV_A_ (W)w);
1459} 1627}
1460 1628
1461#ifndef SA_RESTART 1629#ifndef SA_RESTART
1462# define SA_RESTART 0 1630# define SA_RESTART 0
1463#endif 1631#endif
1464 1632
1465void 1633void
1466ev_signal_start (EV_P_ struct ev_signal *w) 1634ev_signal_start (EV_P_ ev_signal *w)
1467{ 1635{
1468#if EV_MULTIPLICITY 1636#if EV_MULTIPLICITY
1469 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1637 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1470#endif 1638#endif
1471 if (ev_is_active (w)) 1639 if (expect_false (ev_is_active (w)))
1472 return; 1640 return;
1473 1641
1474 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1642 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1475 1643
1476 ev_start (EV_A_ (W)w, 1); 1644 ev_start (EV_A_ (W)w, 1);
1477 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 1645 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1478 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1646 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1479 1647
1480 if (!((WL)w)->next) 1648 if (!((WL)w)->next)
1481 { 1649 {
1482#if WIN32 1650#if _WIN32
1483 signal (w->signum, sighandler); 1651 signal (w->signum, sighandler);
1484#else 1652#else
1485 struct sigaction sa; 1653 struct sigaction sa;
1486 sa.sa_handler = sighandler; 1654 sa.sa_handler = sighandler;
1487 sigfillset (&sa.sa_mask); 1655 sigfillset (&sa.sa_mask);
1490#endif 1658#endif
1491 } 1659 }
1492} 1660}
1493 1661
1494void 1662void
1495ev_signal_stop (EV_P_ struct ev_signal *w) 1663ev_signal_stop (EV_P_ ev_signal *w)
1496{ 1664{
1497 ev_clear_pending (EV_A_ (W)w); 1665 ev_clear_pending (EV_A_ (W)w);
1498 if (!ev_is_active (w)) 1666 if (expect_false (!ev_is_active (w)))
1499 return; 1667 return;
1500 1668
1501 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1669 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1502 ev_stop (EV_A_ (W)w); 1670 ev_stop (EV_A_ (W)w);
1503 1671
1504 if (!signals [w->signum - 1].head) 1672 if (!signals [w->signum - 1].head)
1505 signal (w->signum, SIG_DFL); 1673 signal (w->signum, SIG_DFL);
1506} 1674}
1507 1675
1508void 1676void
1509ev_child_start (EV_P_ struct ev_child *w) 1677ev_child_start (EV_P_ ev_child *w)
1510{ 1678{
1511#if EV_MULTIPLICITY 1679#if EV_MULTIPLICITY
1512 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1680 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1513#endif 1681#endif
1514 if (ev_is_active (w)) 1682 if (expect_false (ev_is_active (w)))
1515 return; 1683 return;
1516 1684
1517 ev_start (EV_A_ (W)w, 1); 1685 ev_start (EV_A_ (W)w, 1);
1518 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1686 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1519} 1687}
1520 1688
1521void 1689void
1522ev_child_stop (EV_P_ struct ev_child *w) 1690ev_child_stop (EV_P_ ev_child *w)
1523{ 1691{
1524 ev_clear_pending (EV_A_ (W)w); 1692 ev_clear_pending (EV_A_ (W)w);
1525 if (ev_is_active (w)) 1693 if (expect_false (!ev_is_active (w)))
1526 return; 1694 return;
1527 1695
1528 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1696 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1529 ev_stop (EV_A_ (W)w); 1697 ev_stop (EV_A_ (W)w);
1530} 1698}
1531 1699
1700#if EV_MULTIPLICITY
1701void
1702ev_embed_sweep (EV_P_ ev_embed *w)
1703{
1704 ev_loop (w->loop, EVLOOP_NONBLOCK);
1705}
1706
1707static void
1708embed_cb (EV_P_ ev_io *io, int revents)
1709{
1710 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1711
1712 if (ev_cb (w))
1713 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1714 else
1715 ev_embed_sweep (loop, w);
1716}
1717
1718void
1719ev_embed_start (EV_P_ ev_embed *w)
1720{
1721 if (expect_false (ev_is_active (w)))
1722 return;
1723
1724 {
1725 struct ev_loop *loop = w->loop;
1726 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1727 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1728 }
1729
1730 ev_set_priority (&w->io, ev_priority (w));
1731 ev_io_start (EV_A_ &w->io);
1732 ev_start (EV_A_ (W)w, 1);
1733}
1734
1735void
1736ev_embed_stop (EV_P_ ev_embed *w)
1737{
1738 ev_clear_pending (EV_A_ (W)w);
1739 if (expect_false (!ev_is_active (w)))
1740 return;
1741
1742 ev_io_stop (EV_A_ &w->io);
1743 ev_stop (EV_A_ (W)w);
1744}
1745#endif
1746
1532/*****************************************************************************/ 1747/*****************************************************************************/
1533 1748
1534struct ev_once 1749struct ev_once
1535{ 1750{
1536 struct ev_io io; 1751 ev_io io;
1537 struct ev_timer to; 1752 ev_timer to;
1538 void (*cb)(int revents, void *arg); 1753 void (*cb)(int revents, void *arg);
1539 void *arg; 1754 void *arg;
1540}; 1755};
1541 1756
1542static void 1757static void
1551 1766
1552 cb (revents, arg); 1767 cb (revents, arg);
1553} 1768}
1554 1769
1555static void 1770static void
1556once_cb_io (EV_P_ struct ev_io *w, int revents) 1771once_cb_io (EV_P_ ev_io *w, int revents)
1557{ 1772{
1558 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1773 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1559} 1774}
1560 1775
1561static void 1776static void
1562once_cb_to (EV_P_ struct ev_timer *w, int revents) 1777once_cb_to (EV_P_ ev_timer *w, int revents)
1563{ 1778{
1564 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1779 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1565} 1780}
1566 1781
1567void 1782void
1568ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1783ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1569{ 1784{
1570 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 1785 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1571 1786
1572 if (!once) 1787 if (expect_false (!once))
1788 {
1573 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1789 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1574 else 1790 return;
1575 { 1791 }
1792
1576 once->cb = cb; 1793 once->cb = cb;
1577 once->arg = arg; 1794 once->arg = arg;
1578 1795
1579 ev_init (&once->io, once_cb_io); 1796 ev_init (&once->io, once_cb_io);
1580 if (fd >= 0) 1797 if (fd >= 0)
1581 { 1798 {
1582 ev_io_set (&once->io, fd, events); 1799 ev_io_set (&once->io, fd, events);
1583 ev_io_start (EV_A_ &once->io); 1800 ev_io_start (EV_A_ &once->io);
1584 } 1801 }
1585 1802
1586 ev_init (&once->to, once_cb_to); 1803 ev_init (&once->to, once_cb_to);
1587 if (timeout >= 0.) 1804 if (timeout >= 0.)
1588 { 1805 {
1589 ev_timer_set (&once->to, timeout, 0.); 1806 ev_timer_set (&once->to, timeout, 0.);
1590 ev_timer_start (EV_A_ &once->to); 1807 ev_timer_start (EV_A_ &once->to);
1591 }
1592 } 1808 }
1593} 1809}
1594 1810
1811#ifdef __cplusplus
1812}
1813#endif
1814

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines