ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.24 by root, Wed Oct 31 20:46:44 2007 UTC vs.
Revision 1.84 by root, Fri Nov 9 23:04:35 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
29 56
30#include <math.h> 57#include <math.h>
31#include <stdlib.h> 58#include <stdlib.h>
32#include <unistd.h>
33#include <fcntl.h> 59#include <fcntl.h>
34#include <signal.h>
35#include <stddef.h> 60#include <stddef.h>
36 61
37#include <stdio.h> 62#include <stdio.h>
38 63
39#include <assert.h> 64#include <assert.h>
40#include <errno.h> 65#include <errno.h>
41#include <sys/types.h> 66#include <sys/types.h>
42#include <sys/wait.h>
43#include <sys/time.h>
44#include <time.h> 67#include <time.h>
45 68
69#include <signal.h>
70
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
76/**/
77
46#ifndef HAVE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
47# ifdef CLOCK_MONOTONIC
48# define HAVE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
80#endif
81
82#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1
84#endif
85
86#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88#endif
89
90#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0
92#endif
93
94#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
49# endif 105# endif
50#endif 106#endif
51 107
52#ifndef HAVE_SELECT
53# define HAVE_SELECT 1
54#endif
55
56#ifndef HAVE_EPOLL
57# define HAVE_EPOLL 0
58#endif
59
60#ifndef HAVE_REALTIME 108#ifndef EV_USE_REALTIME
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 109# define EV_USE_REALTIME 1
62#endif 110#endif
111
112/**/
113
114#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0
117#endif
118
119#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0
122#endif
123
124/**/
63 125
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
66#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
67 130
131#ifdef EV_H
132# include EV_H
133#else
68#include "ev.h" 134# include "ev.h"
135#endif
136
137#if __GNUC__ >= 3
138# define expect(expr,value) __builtin_expect ((expr),(value))
139# define inline inline
140#else
141# define expect(expr,value) (expr)
142# define inline static
143#endif
144
145#define expect_false(expr) expect ((expr) != 0, 0)
146#define expect_true(expr) expect ((expr) != 0, 1)
147
148#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
149#define ABSPRI(w) ((w)->priority - EV_MINPRI)
69 150
70typedef struct ev_watcher *W; 151typedef struct ev_watcher *W;
71typedef struct ev_watcher_list *WL; 152typedef struct ev_watcher_list *WL;
72typedef struct ev_watcher_time *WT; 153typedef struct ev_watcher_time *WT;
73 154
74static ev_tstamp now, diff; /* monotonic clock */ 155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
75ev_tstamp ev_now;
76int ev_method;
77 156
78static int have_monotonic; /* runtime */ 157#include "ev_win32.c"
79
80static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
81static void (*method_modify)(int fd, int oev, int nev);
82static void (*method_poll)(ev_tstamp timeout);
83 158
84/*****************************************************************************/ 159/*****************************************************************************/
85 160
86ev_tstamp 161static void (*syserr_cb)(const char *msg);
162
163void ev_set_syserr_cb (void (*cb)(const char *msg))
164{
165 syserr_cb = cb;
166}
167
168static void
169syserr (const char *msg)
170{
171 if (!msg)
172 msg = "(libev) system error";
173
174 if (syserr_cb)
175 syserr_cb (msg);
176 else
177 {
178 perror (msg);
179 abort ();
180 }
181}
182
183static void *(*alloc)(void *ptr, long size);
184
185void ev_set_allocator (void *(*cb)(void *ptr, long size))
186{
187 alloc = cb;
188}
189
190static void *
191ev_realloc (void *ptr, long size)
192{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194
195 if (!ptr && size)
196 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort ();
199 }
200
201 return ptr;
202}
203
204#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0)
206
207/*****************************************************************************/
208
209typedef struct
210{
211 WL head;
212 unsigned char events;
213 unsigned char reify;
214} ANFD;
215
216typedef struct
217{
218 W w;
219 int events;
220} ANPENDING;
221
222#if EV_MULTIPLICITY
223
224 struct ev_loop
225 {
226 #define VAR(name,decl) decl;
227 #include "ev_vars.h"
228 #undef VAR
229 };
230 #include "ev_wrap.h"
231
232 struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop;
234
235#else
236
237 #define VAR(name,decl) static decl;
238 #include "ev_vars.h"
239 #undef VAR
240
241 static int default_loop;
242
243#endif
244
245/*****************************************************************************/
246
247inline ev_tstamp
87ev_time (void) 248ev_time (void)
88{ 249{
89#if HAVE_REALTIME 250#if EV_USE_REALTIME
90 struct timespec ts; 251 struct timespec ts;
91 clock_gettime (CLOCK_REALTIME, &ts); 252 clock_gettime (CLOCK_REALTIME, &ts);
92 return ts.tv_sec + ts.tv_nsec * 1e-9; 253 return ts.tv_sec + ts.tv_nsec * 1e-9;
93#else 254#else
94 struct timeval tv; 255 struct timeval tv;
95 gettimeofday (&tv, 0); 256 gettimeofday (&tv, 0);
96 return tv.tv_sec + tv.tv_usec * 1e-6; 257 return tv.tv_sec + tv.tv_usec * 1e-6;
97#endif 258#endif
98} 259}
99 260
100static ev_tstamp 261inline ev_tstamp
101get_clock (void) 262get_clock (void)
102{ 263{
103#if HAVE_MONOTONIC 264#if EV_USE_MONOTONIC
104 if (have_monotonic) 265 if (expect_true (have_monotonic))
105 { 266 {
106 struct timespec ts; 267 struct timespec ts;
107 clock_gettime (CLOCK_MONOTONIC, &ts); 268 clock_gettime (CLOCK_MONOTONIC, &ts);
108 return ts.tv_sec + ts.tv_nsec * 1e-9; 269 return ts.tv_sec + ts.tv_nsec * 1e-9;
109 } 270 }
110#endif 271#endif
111 272
112 return ev_time (); 273 return ev_time ();
113} 274}
114 275
276ev_tstamp
277ev_now (EV_P)
278{
279 return rt_now;
280}
281
282#define array_roundsize(type,n) ((n) | 4 & ~3)
283
115#define array_needsize(base,cur,cnt,init) \ 284#define array_needsize(type,base,cur,cnt,init) \
116 if ((cnt) > cur) \ 285 if (expect_false ((cnt) > cur)) \
117 { \ 286 { \
118 int newcnt = cur; \ 287 int newcnt = cur; \
119 do \ 288 do \
120 { \ 289 { \
121 newcnt = (newcnt << 1) | 4 & ~3; \ 290 newcnt = array_roundsize (type, newcnt << 1); \
122 } \ 291 } \
123 while ((cnt) > newcnt); \ 292 while ((cnt) > newcnt); \
124 \ 293 \
125 base = realloc (base, sizeof (*base) * (newcnt)); \ 294 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
126 init (base + cur, newcnt - cur); \ 295 init (base + cur, newcnt - cur); \
127 cur = newcnt; \ 296 cur = newcnt; \
128 } 297 }
298
299#define array_slim(type,stem) \
300 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
301 { \
302 stem ## max = array_roundsize (stem ## cnt >> 1); \
303 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
304 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
305 }
306
307/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
308/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
309#define array_free_microshit(stem) \
310 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
311
312#define array_free(stem, idx) \
313 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
129 314
130/*****************************************************************************/ 315/*****************************************************************************/
131 316
132typedef struct
133{
134 struct ev_io *head;
135 unsigned char wev, rev; /* want, received event set */
136} ANFD;
137
138static ANFD *anfds;
139static int anfdmax;
140
141static int *fdchanges;
142static int fdchangemax, fdchangecnt;
143
144static void 317static void
145anfds_init (ANFD *base, int count) 318anfds_init (ANFD *base, int count)
146{ 319{
147 while (count--) 320 while (count--)
148 { 321 {
149 base->head = 0; 322 base->head = 0;
150 base->wev = base->rev = EV_NONE; 323 base->events = EV_NONE;
324 base->reify = 0;
325
151 ++base; 326 ++base;
152 } 327 }
153} 328}
154 329
155typedef struct 330void
331ev_feed_event (EV_P_ void *w, int revents)
156{ 332{
157 W w; 333 W w_ = (W)w;
158 int events;
159} ANPENDING;
160 334
161static ANPENDING *pendings; 335 if (w_->pending)
162static int pendingmax, pendingcnt;
163
164static void
165event (W w, int events)
166{
167 if (w->active)
168 { 336 {
169 w->pending = ++pendingcnt;
170 array_needsize (pendings, pendingmax, pendingcnt, );
171 pendings [pendingcnt - 1].w = w;
172 pendings [pendingcnt - 1].events = events; 337 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
338 return;
173 } 339 }
174}
175 340
341 w_->pending = ++pendingcnt [ABSPRI (w_)];
342 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
343 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
344 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
345}
346
176static void 347static void
348queue_events (EV_P_ W *events, int eventcnt, int type)
349{
350 int i;
351
352 for (i = 0; i < eventcnt; ++i)
353 ev_feed_event (EV_A_ events [i], type);
354}
355
356inline void
177fd_event (int fd, int events) 357fd_event (EV_P_ int fd, int revents)
178{ 358{
179 ANFD *anfd = anfds + fd; 359 ANFD *anfd = anfds + fd;
180 struct ev_io *w; 360 struct ev_io *w;
181 361
182 for (w = anfd->head; w; w = w->next) 362 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
183 { 363 {
184 int ev = w->events & events; 364 int ev = w->events & revents;
185 365
186 if (ev) 366 if (ev)
187 event ((W)w, ev); 367 ev_feed_event (EV_A_ (W)w, ev);
188 } 368 }
189} 369}
190 370
371void
372ev_feed_fd_event (EV_P_ int fd, int revents)
373{
374 fd_event (EV_A_ fd, revents);
375}
376
377/*****************************************************************************/
378
191static void 379static void
192queue_events (W *events, int eventcnt, int type) 380fd_reify (EV_P)
193{ 381{
194 int i; 382 int i;
195 383
196 for (i = 0; i < eventcnt; ++i) 384 for (i = 0; i < fdchangecnt; ++i)
197 event (events [i], type); 385 {
386 int fd = fdchanges [i];
387 ANFD *anfd = anfds + fd;
388 struct ev_io *w;
389
390 int events = 0;
391
392 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
393 events |= w->events;
394
395 anfd->reify = 0;
396
397 method_modify (EV_A_ fd, anfd->events, events);
398 anfd->events = events;
399 }
400
401 fdchangecnt = 0;
402}
403
404static void
405fd_change (EV_P_ int fd)
406{
407 if (anfds [fd].reify)
408 return;
409
410 anfds [fd].reify = 1;
411
412 ++fdchangecnt;
413 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
414 fdchanges [fdchangecnt - 1] = fd;
415}
416
417static void
418fd_kill (EV_P_ int fd)
419{
420 struct ev_io *w;
421
422 while ((w = (struct ev_io *)anfds [fd].head))
423 {
424 ev_io_stop (EV_A_ w);
425 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
426 }
427}
428
429static int
430fd_valid (int fd)
431{
432#ifdef WIN32
433 return !!win32_get_osfhandle (fd);
434#else
435 return fcntl (fd, F_GETFD) != -1;
436#endif
198} 437}
199 438
200/* called on EBADF to verify fds */ 439/* called on EBADF to verify fds */
201static void 440static void
202fd_recheck (void) 441fd_ebadf (EV_P)
203{ 442{
204 int fd; 443 int fd;
205 444
206 for (fd = 0; fd < anfdmax; ++fd) 445 for (fd = 0; fd < anfdmax; ++fd)
207 if (anfds [fd].wev) 446 if (anfds [fd].events)
208 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 447 if (!fd_valid (fd) == -1 && errno == EBADF)
209 while (anfds [fd].head) 448 fd_kill (EV_A_ fd);
449}
450
451/* called on ENOMEM in select/poll to kill some fds and retry */
452static void
453fd_enomem (EV_P)
454{
455 int fd;
456
457 for (fd = anfdmax; fd--; )
458 if (anfds [fd].events)
210 { 459 {
211 event ((W)anfds [fd].head, EV_ERROR); 460 fd_kill (EV_A_ fd);
212 evio_stop (anfds [fd].head); 461 return;
213 } 462 }
463}
464
465/* usually called after fork if method needs to re-arm all fds from scratch */
466static void
467fd_rearm_all (EV_P)
468{
469 int fd;
470
471 /* this should be highly optimised to not do anything but set a flag */
472 for (fd = 0; fd < anfdmax; ++fd)
473 if (anfds [fd].events)
474 {
475 anfds [fd].events = 0;
476 fd_change (EV_A_ fd);
477 }
214} 478}
215 479
216/*****************************************************************************/ 480/*****************************************************************************/
217 481
218static struct ev_timer **timers;
219static int timermax, timercnt;
220
221static struct ev_periodic **periodics;
222static int periodicmax, periodiccnt;
223
224static void 482static void
225upheap (WT *timers, int k) 483upheap (WT *heap, int k)
226{ 484{
227 WT w = timers [k]; 485 WT w = heap [k];
228 486
229 while (k && timers [k >> 1]->at > w->at) 487 while (k && heap [k >> 1]->at > w->at)
230 { 488 {
231 timers [k] = timers [k >> 1]; 489 heap [k] = heap [k >> 1];
232 timers [k]->active = k + 1; 490 ((W)heap [k])->active = k + 1;
233 k >>= 1; 491 k >>= 1;
234 } 492 }
235 493
236 timers [k] = w; 494 heap [k] = w;
237 timers [k]->active = k + 1; 495 ((W)heap [k])->active = k + 1;
238 496
239} 497}
240 498
241static void 499static void
242downheap (WT *timers, int N, int k) 500downheap (WT *heap, int N, int k)
243{ 501{
244 WT w = timers [k]; 502 WT w = heap [k];
245 503
246 while (k < (N >> 1)) 504 while (k < (N >> 1))
247 { 505 {
248 int j = k << 1; 506 int j = k << 1;
249 507
250 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 508 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
251 ++j; 509 ++j;
252 510
253 if (w->at <= timers [j]->at) 511 if (w->at <= heap [j]->at)
254 break; 512 break;
255 513
256 timers [k] = timers [j]; 514 heap [k] = heap [j];
257 timers [k]->active = k + 1; 515 ((W)heap [k])->active = k + 1;
258 k = j; 516 k = j;
259 } 517 }
260 518
261 timers [k] = w; 519 heap [k] = w;
262 timers [k]->active = k + 1; 520 ((W)heap [k])->active = k + 1;
521}
522
523inline void
524adjustheap (WT *heap, int N, int k, ev_tstamp at)
525{
526 ev_tstamp old_at = heap [k]->at;
527 heap [k]->at = at;
528
529 if (old_at < at)
530 downheap (heap, N, k);
531 else
532 upheap (heap, k);
263} 533}
264 534
265/*****************************************************************************/ 535/*****************************************************************************/
266 536
267typedef struct 537typedef struct
268{ 538{
269 struct ev_signal *head; 539 WL head;
270 sig_atomic_t gotsig; 540 sig_atomic_t volatile gotsig;
271} ANSIG; 541} ANSIG;
272 542
273static ANSIG *signals; 543static ANSIG *signals;
274static int signalmax; 544static int signalmax;
275 545
276static int sigpipe [2]; 546static int sigpipe [2];
277static sig_atomic_t gotsig; 547static sig_atomic_t volatile gotsig;
278static struct ev_io sigev; 548static struct ev_io sigev;
279 549
280static void 550static void
281signals_init (ANSIG *base, int count) 551signals_init (ANSIG *base, int count)
282{ 552{
283 while (count--) 553 while (count--)
284 { 554 {
285 base->head = 0; 555 base->head = 0;
286 base->gotsig = 0; 556 base->gotsig = 0;
557
287 ++base; 558 ++base;
288 } 559 }
289} 560}
290 561
291static void 562static void
292sighandler (int signum) 563sighandler (int signum)
293{ 564{
565#if WIN32
566 signal (signum, sighandler);
567#endif
568
294 signals [signum - 1].gotsig = 1; 569 signals [signum - 1].gotsig = 1;
295 570
296 if (!gotsig) 571 if (!gotsig)
297 { 572 {
573 int old_errno = errno;
298 gotsig = 1; 574 gotsig = 1;
575#ifdef WIN32
576 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
577#else
299 write (sigpipe [1], &gotsig, 1); 578 write (sigpipe [1], &signum, 1);
579#endif
580 errno = old_errno;
300 } 581 }
301} 582}
302 583
584void
585ev_feed_signal_event (EV_P_ int signum)
586{
587 WL w;
588
589#if EV_MULTIPLICITY
590 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
591#endif
592
593 --signum;
594
595 if (signum < 0 || signum >= signalmax)
596 return;
597
598 signals [signum].gotsig = 0;
599
600 for (w = signals [signum].head; w; w = w->next)
601 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
602}
603
303static void 604static void
304sigcb (struct ev_io *iow, int revents) 605sigcb (EV_P_ struct ev_io *iow, int revents)
305{ 606{
306 struct ev_signal *w;
307 int sig; 607 int signum;
308 608
609#ifdef WIN32
610 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
611#else
612 read (sigpipe [0], &revents, 1);
613#endif
309 gotsig = 0; 614 gotsig = 0;
310 read (sigpipe [0], &revents, 1);
311 615
312 for (sig = signalmax; sig--; ) 616 for (signum = signalmax; signum--; )
313 if (signals [sig].gotsig) 617 if (signals [signum].gotsig)
314 { 618 ev_feed_signal_event (EV_A_ signum + 1);
315 signals [sig].gotsig = 0;
316
317 for (w = signals [sig].head; w; w = w->next)
318 event ((W)w, EV_SIGNAL);
319 }
320} 619}
321 620
322static void 621static void
323siginit (void) 622siginit (EV_P)
324{ 623{
624#ifndef WIN32
325 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 625 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
326 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 626 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
327 627
328 /* rather than sort out wether we really need nb, set it */ 628 /* rather than sort out wether we really need nb, set it */
329 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 629 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
330 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 630 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
631#endif
331 632
332 evio_set (&sigev, sigpipe [0], EV_READ); 633 ev_io_set (&sigev, sigpipe [0], EV_READ);
333 evio_start (&sigev); 634 ev_io_start (EV_A_ &sigev);
635 ev_unref (EV_A); /* child watcher should not keep loop alive */
334} 636}
335 637
336/*****************************************************************************/ 638/*****************************************************************************/
337 639
338static struct ev_idle **idles;
339static int idlemax, idlecnt;
340
341static struct ev_prepare **prepares;
342static int preparemax, preparecnt;
343
344static struct ev_check **checks;
345static int checkmax, checkcnt;
346
347/*****************************************************************************/
348
349static struct ev_child *childs [PID_HASHSIZE]; 640static struct ev_child *childs [PID_HASHSIZE];
641
642#ifndef WIN32
643
350static struct ev_signal childev; 644static struct ev_signal childev;
351 645
352#ifndef WCONTINUED 646#ifndef WCONTINUED
353# define WCONTINUED 0 647# define WCONTINUED 0
354#endif 648#endif
355 649
356static void 650static void
357childcb (struct ev_signal *sw, int revents) 651child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
358{ 652{
359 struct ev_child *w; 653 struct ev_child *w;
654
655 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
656 if (w->pid == pid || !w->pid)
657 {
658 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
659 w->rpid = pid;
660 w->rstatus = status;
661 ev_feed_event (EV_A_ (W)w, EV_CHILD);
662 }
663}
664
665static void
666childcb (EV_P_ struct ev_signal *sw, int revents)
667{
360 int pid, status; 668 int pid, status;
361 669
362 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 670 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
363 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 671 {
364 if (w->pid == pid || w->pid == -1) 672 /* make sure we are called again until all childs have been reaped */
365 { 673 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
366 w->status = status; 674
367 event ((W)w, EV_CHILD); 675 child_reap (EV_A_ sw, pid, pid, status);
368 } 676 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
677 }
369} 678}
679
680#endif
370 681
371/*****************************************************************************/ 682/*****************************************************************************/
372 683
684#if EV_USE_KQUEUE
685# include "ev_kqueue.c"
686#endif
373#if HAVE_EPOLL 687#if EV_USE_EPOLL
374# include "ev_epoll.c" 688# include "ev_epoll.c"
375#endif 689#endif
690#if EV_USE_POLL
691# include "ev_poll.c"
692#endif
376#if HAVE_SELECT 693#if EV_USE_SELECT
377# include "ev_select.c" 694# include "ev_select.c"
378#endif 695#endif
379 696
380int 697int
381ev_version_major (void) 698ev_version_major (void)
387ev_version_minor (void) 704ev_version_minor (void)
388{ 705{
389 return EV_VERSION_MINOR; 706 return EV_VERSION_MINOR;
390} 707}
391 708
392int ev_init (int flags) 709/* return true if we are running with elevated privileges and should ignore env variables */
710static int
711enable_secure (void)
393{ 712{
713#ifdef WIN32
714 return 0;
715#else
716 return getuid () != geteuid ()
717 || getgid () != getegid ();
718#endif
719}
720
721int
722ev_method (EV_P)
723{
724 return method;
725}
726
727static void
728loop_init (EV_P_ int methods)
729{
394 if (!ev_method) 730 if (!method)
395 { 731 {
396#if HAVE_MONOTONIC 732#if EV_USE_MONOTONIC
397 { 733 {
398 struct timespec ts; 734 struct timespec ts;
399 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 735 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
400 have_monotonic = 1; 736 have_monotonic = 1;
401 } 737 }
402#endif 738#endif
403 739
404 ev_now = ev_time (); 740 rt_now = ev_time ();
405 now = get_clock (); 741 mn_now = get_clock ();
742 now_floor = mn_now;
406 diff = ev_now - now; 743 rtmn_diff = rt_now - mn_now;
407 744
745 if (methods == EVMETHOD_AUTO)
746 if (!enable_secure () && getenv ("LIBEV_METHODS"))
747 methods = atoi (getenv ("LIBEV_METHODS"));
748 else
749 methods = EVMETHOD_ANY;
750
751 method = 0;
752#if EV_USE_WIN32
753 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
754#endif
755#if EV_USE_KQUEUE
756 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
757#endif
758#if EV_USE_EPOLL
759 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
760#endif
761#if EV_USE_POLL
762 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
763#endif
764#if EV_USE_SELECT
765 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
766#endif
767
768 ev_init (&sigev, sigcb);
769 ev_set_priority (&sigev, EV_MAXPRI);
770 }
771}
772
773void
774loop_destroy (EV_P)
775{
776 int i;
777
778#if EV_USE_WIN32
779 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
780#endif
781#if EV_USE_KQUEUE
782 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
783#endif
784#if EV_USE_EPOLL
785 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
786#endif
787#if EV_USE_POLL
788 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
789#endif
790#if EV_USE_SELECT
791 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
792#endif
793
794 for (i = NUMPRI; i--; )
795 array_free (pending, [i]);
796
797 /* have to use the microsoft-never-gets-it-right macro */
798 array_free_microshit (fdchange);
799 array_free_microshit (timer);
800 array_free_microshit (periodic);
801 array_free_microshit (idle);
802 array_free_microshit (prepare);
803 array_free_microshit (check);
804
805 method = 0;
806}
807
808static void
809loop_fork (EV_P)
810{
811#if EV_USE_EPOLL
812 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
813#endif
814#if EV_USE_KQUEUE
815 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
816#endif
817
818 if (ev_is_active (&sigev))
819 {
820 /* default loop */
821
822 ev_ref (EV_A);
823 ev_io_stop (EV_A_ &sigev);
824 close (sigpipe [0]);
825 close (sigpipe [1]);
826
827 while (pipe (sigpipe))
828 syserr ("(libev) error creating pipe");
829
830 siginit (EV_A);
831 }
832
833 postfork = 0;
834}
835
836#if EV_MULTIPLICITY
837struct ev_loop *
838ev_loop_new (int methods)
839{
840 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
841
842 memset (loop, 0, sizeof (struct ev_loop));
843
844 loop_init (EV_A_ methods);
845
846 if (ev_method (EV_A))
847 return loop;
848
849 return 0;
850}
851
852void
853ev_loop_destroy (EV_P)
854{
855 loop_destroy (EV_A);
856 ev_free (loop);
857}
858
859void
860ev_loop_fork (EV_P)
861{
862 postfork = 1;
863}
864
865#endif
866
867#if EV_MULTIPLICITY
868struct ev_loop *
869#else
870int
871#endif
872ev_default_loop (int methods)
873{
874 if (sigpipe [0] == sigpipe [1])
408 if (pipe (sigpipe)) 875 if (pipe (sigpipe))
409 return 0; 876 return 0;
410 877
411 ev_method = EVMETHOD_NONE; 878 if (!default_loop)
412#if HAVE_EPOLL 879 {
413 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 880#if EV_MULTIPLICITY
881 struct ev_loop *loop = default_loop = &default_loop_struct;
882#else
883 default_loop = 1;
414#endif 884#endif
415#if HAVE_SELECT
416 if (ev_method == EVMETHOD_NONE) select_init (flags);
417#endif
418 885
886 loop_init (EV_A_ methods);
887
419 if (ev_method) 888 if (ev_method (EV_A))
420 { 889 {
421 evw_init (&sigev, sigcb);
422 siginit (); 890 siginit (EV_A);
423 891
892#ifndef WIN32
424 evsignal_init (&childev, childcb, SIGCHLD); 893 ev_signal_init (&childev, childcb, SIGCHLD);
894 ev_set_priority (&childev, EV_MAXPRI);
425 evsignal_start (&childev); 895 ev_signal_start (EV_A_ &childev);
896 ev_unref (EV_A); /* child watcher should not keep loop alive */
897#endif
426 } 898 }
899 else
900 default_loop = 0;
427 } 901 }
428 902
429 return ev_method; 903 return default_loop;
904}
905
906void
907ev_default_destroy (void)
908{
909#if EV_MULTIPLICITY
910 struct ev_loop *loop = default_loop;
911#endif
912
913#ifndef WIN32
914 ev_ref (EV_A); /* child watcher */
915 ev_signal_stop (EV_A_ &childev);
916#endif
917
918 ev_ref (EV_A); /* signal watcher */
919 ev_io_stop (EV_A_ &sigev);
920
921 close (sigpipe [0]); sigpipe [0] = 0;
922 close (sigpipe [1]); sigpipe [1] = 0;
923
924 loop_destroy (EV_A);
925}
926
927void
928ev_default_fork (void)
929{
930#if EV_MULTIPLICITY
931 struct ev_loop *loop = default_loop;
932#endif
933
934 if (method)
935 postfork = 1;
430} 936}
431 937
432/*****************************************************************************/ 938/*****************************************************************************/
433 939
434void
435ev_prefork (void)
436{
437 /* nop */
438}
439
440void
441ev_postfork_parent (void)
442{
443 /* nop */
444}
445
446void
447ev_postfork_child (void)
448{
449#if HAVE_EPOLL
450 if (ev_method == EVMETHOD_EPOLL)
451 epoll_postfork_child ();
452#endif
453
454 evio_stop (&sigev);
455 close (sigpipe [0]);
456 close (sigpipe [1]);
457 pipe (sigpipe);
458 siginit ();
459}
460
461/*****************************************************************************/
462
463static void 940static int
464fd_reify (void) 941any_pending (EV_P)
465{ 942{
466 int i; 943 int pri;
467 944
468 for (i = 0; i < fdchangecnt; ++i) 945 for (pri = NUMPRI; pri--; )
469 { 946 if (pendingcnt [pri])
470 int fd = fdchanges [i]; 947 return 1;
471 ANFD *anfd = anfds + fd;
472 struct ev_io *w;
473 948
474 int wev = 0; 949 return 0;
950}
475 951
476 for (w = anfd->head; w; w = w->next) 952static void
477 wev |= w->events; 953call_pending (EV_P)
954{
955 int pri;
478 956
479 if (anfd->wev != wev) 957 for (pri = NUMPRI; pri--; )
958 while (pendingcnt [pri])
480 { 959 {
481 method_modify (fd, anfd->wev, wev);
482 anfd->wev = wev;
483 }
484 }
485
486 fdchangecnt = 0;
487}
488
489static void
490call_pending (void)
491{
492 while (pendingcnt)
493 {
494 ANPENDING *p = pendings + --pendingcnt; 960 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
495 961
496 if (p->w) 962 if (p->w)
497 { 963 {
498 p->w->pending = 0; 964 p->w->pending = 0;
499 p->w->cb (p->w, p->events); 965 EV_CB_INVOKE (p->w, p->events);
500 } 966 }
501 } 967 }
502} 968}
503 969
504static void 970static void
505timers_reify (void) 971timers_reify (EV_P)
506{ 972{
507 while (timercnt && timers [0]->at <= now) 973 while (timercnt && ((WT)timers [0])->at <= mn_now)
508 { 974 {
509 struct ev_timer *w = timers [0]; 975 struct ev_timer *w = timers [0];
510 976
511 event ((W)w, EV_TIMEOUT); 977 assert (("inactive timer on timer heap detected", ev_is_active (w)));
512 978
513 /* first reschedule or stop timer */ 979 /* first reschedule or stop timer */
514 if (w->repeat) 980 if (w->repeat)
515 { 981 {
982 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
516 w->at = now + w->repeat; 983 ((WT)w)->at = mn_now + w->repeat;
517 assert (("timer timeout in the past, negative repeat?", w->at > now));
518 downheap ((WT *)timers, timercnt, 0); 984 downheap ((WT *)timers, timercnt, 0);
519 } 985 }
520 else 986 else
521 evtimer_stop (w); /* nonrepeating: stop timer */ 987 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
522 }
523}
524 988
989 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
990 }
991}
992
525static void 993static void
526periodics_reify (void) 994periodics_reify (EV_P)
527{ 995{
528 while (periodiccnt && periodics [0]->at <= ev_now) 996 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
529 { 997 {
530 struct ev_periodic *w = periodics [0]; 998 struct ev_periodic *w = periodics [0];
531 999
1000 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1001
532 /* first reschedule or stop timer */ 1002 /* first reschedule or stop timer */
533 if (w->interval) 1003 if (w->reschedule_cb)
534 { 1004 {
1005 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
1006
1007 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
1008 downheap ((WT *)periodics, periodiccnt, 0);
1009 }
1010 else if (w->interval)
1011 {
535 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1012 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
536 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 1013 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
537 downheap ((WT *)periodics, periodiccnt, 0); 1014 downheap ((WT *)periodics, periodiccnt, 0);
538 } 1015 }
539 else 1016 else
540 evperiodic_stop (w); /* nonrepeating: stop timer */ 1017 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
541 1018
542 event ((W)w, EV_TIMEOUT); 1019 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
543 } 1020 }
544} 1021}
545 1022
546static void 1023static void
547periodics_reschedule (ev_tstamp diff) 1024periodics_reschedule (EV_P)
548{ 1025{
549 int i; 1026 int i;
550 1027
551 /* adjust periodics after time jump */ 1028 /* adjust periodics after time jump */
552 for (i = 0; i < periodiccnt; ++i) 1029 for (i = 0; i < periodiccnt; ++i)
553 { 1030 {
554 struct ev_periodic *w = periodics [i]; 1031 struct ev_periodic *w = periodics [i];
555 1032
1033 if (w->reschedule_cb)
1034 ((WT)w)->at = w->reschedule_cb (w, rt_now);
556 if (w->interval) 1035 else if (w->interval)
1036 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1037 }
1038
1039 /* now rebuild the heap */
1040 for (i = periodiccnt >> 1; i--; )
1041 downheap ((WT *)periodics, periodiccnt, i);
1042}
1043
1044inline int
1045time_update_monotonic (EV_P)
1046{
1047 mn_now = get_clock ();
1048
1049 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1050 {
1051 rt_now = rtmn_diff + mn_now;
1052 return 0;
1053 }
1054 else
1055 {
1056 now_floor = mn_now;
1057 rt_now = ev_time ();
1058 return 1;
1059 }
1060}
1061
1062static void
1063time_update (EV_P)
1064{
1065 int i;
1066
1067#if EV_USE_MONOTONIC
1068 if (expect_true (have_monotonic))
1069 {
1070 if (time_update_monotonic (EV_A))
557 { 1071 {
558 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1072 ev_tstamp odiff = rtmn_diff;
559 1073
560 if (fabs (diff) >= 1e-4) 1074 for (i = 4; --i; ) /* loop a few times, before making important decisions */
561 { 1075 {
562 evperiodic_stop (w); 1076 rtmn_diff = rt_now - mn_now;
563 evperiodic_start (w);
564 1077
565 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 1078 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1079 return; /* all is well */
1080
1081 rt_now = ev_time ();
1082 mn_now = get_clock ();
1083 now_floor = mn_now;
566 } 1084 }
1085
1086 periodics_reschedule (EV_A);
1087 /* no timer adjustment, as the monotonic clock doesn't jump */
1088 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
567 } 1089 }
568 } 1090 }
569} 1091 else
570 1092#endif
571static void 1093 {
572time_update (void)
573{
574 int i;
575
576 ev_now = ev_time (); 1094 rt_now = ev_time ();
577 1095
578 if (have_monotonic) 1096 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
579 {
580 ev_tstamp odiff = diff;
581
582 for (i = 4; --i; ) /* loop a few times, before making important decisions */
583 { 1097 {
584 now = get_clock ();
585 diff = ev_now - now;
586
587 if (fabs (odiff - diff) < MIN_TIMEJUMP)
588 return; /* all is well */
589
590 ev_now = ev_time ();
591 }
592
593 periodics_reschedule (diff - odiff);
594 /* no timer adjustment, as the monotonic clock doesn't jump */
595 }
596 else
597 {
598 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)
599 {
600 periodics_reschedule (ev_now - now); 1098 periodics_reschedule (EV_A);
601 1099
602 /* adjust timers. this is easy, as the offset is the same for all */ 1100 /* adjust timers. this is easy, as the offset is the same for all */
603 for (i = 0; i < timercnt; ++i) 1101 for (i = 0; i < timercnt; ++i)
604 timers [i]->at += diff; 1102 ((WT)timers [i])->at += rt_now - mn_now;
605 } 1103 }
606 1104
607 now = ev_now; 1105 mn_now = rt_now;
608 } 1106 }
609} 1107}
610 1108
611int ev_loop_done; 1109void
1110ev_ref (EV_P)
1111{
1112 ++activecnt;
1113}
612 1114
1115void
1116ev_unref (EV_P)
1117{
1118 --activecnt;
1119}
1120
1121static int loop_done;
1122
1123void
613void ev_loop (int flags) 1124ev_loop (EV_P_ int flags)
614{ 1125{
615 double block; 1126 double block;
616 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0; 1127 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
617 1128
618 do 1129 do
619 { 1130 {
620 /* queue check watchers (and execute them) */ 1131 /* queue check watchers (and execute them) */
621 if (preparecnt) 1132 if (expect_false (preparecnt))
622 { 1133 {
623 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1134 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
624 call_pending (); 1135 call_pending (EV_A);
625 } 1136 }
626 1137
1138 /* we might have forked, so reify kernel state if necessary */
1139 if (expect_false (postfork))
1140 loop_fork (EV_A);
1141
627 /* update fd-related kernel structures */ 1142 /* update fd-related kernel structures */
628 fd_reify (); 1143 fd_reify (EV_A);
629 1144
630 /* calculate blocking time */ 1145 /* calculate blocking time */
631 1146
632 /* we only need this for !monotonic clockor timers, but as we basically 1147 /* we only need this for !monotonic clock or timers, but as we basically
633 always have timers, we just calculate it always */ 1148 always have timers, we just calculate it always */
1149#if EV_USE_MONOTONIC
1150 if (expect_true (have_monotonic))
1151 time_update_monotonic (EV_A);
1152 else
1153#endif
1154 {
634 ev_now = ev_time (); 1155 rt_now = ev_time ();
1156 mn_now = rt_now;
1157 }
635 1158
636 if (flags & EVLOOP_NONBLOCK || idlecnt) 1159 if (flags & EVLOOP_NONBLOCK || idlecnt)
637 block = 0.; 1160 block = 0.;
638 else 1161 else
639 { 1162 {
640 block = MAX_BLOCKTIME; 1163 block = MAX_BLOCKTIME;
641 1164
642 if (timercnt) 1165 if (timercnt)
643 { 1166 {
644 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1167 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
645 if (block > to) block = to; 1168 if (block > to) block = to;
646 } 1169 }
647 1170
648 if (periodiccnt) 1171 if (periodiccnt)
649 { 1172 {
650 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1173 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
651 if (block > to) block = to; 1174 if (block > to) block = to;
652 } 1175 }
653 1176
654 if (block < 0.) block = 0.; 1177 if (block < 0.) block = 0.;
655 } 1178 }
656 1179
657 method_poll (block); 1180 method_poll (EV_A_ block);
658 1181
659 /* update ev_now, do magic */ 1182 /* update rt_now, do magic */
660 time_update (); 1183 time_update (EV_A);
661 1184
662 /* queue pending timers and reschedule them */ 1185 /* queue pending timers and reschedule them */
663 timers_reify (); /* relative timers called last */ 1186 timers_reify (EV_A); /* relative timers called last */
664 periodics_reify (); /* absolute timers called first */ 1187 periodics_reify (EV_A); /* absolute timers called first */
665 1188
666 /* queue idle watchers unless io or timers are pending */ 1189 /* queue idle watchers unless io or timers are pending */
667 if (!pendingcnt) 1190 if (idlecnt && !any_pending (EV_A))
668 queue_events ((W *)idles, idlecnt, EV_IDLE); 1191 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
669 1192
670 /* queue check watchers, to be executed first */ 1193 /* queue check watchers, to be executed first */
671 if (checkcnt) 1194 if (checkcnt)
672 queue_events ((W *)checks, checkcnt, EV_CHECK); 1195 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
673 1196
674 call_pending (); 1197 call_pending (EV_A);
675 } 1198 }
676 while (!ev_loop_done); 1199 while (activecnt && !loop_done);
677 1200
678 if (ev_loop_done != 2) 1201 if (loop_done != 2)
679 ev_loop_done = 0; 1202 loop_done = 0;
1203}
1204
1205void
1206ev_unloop (EV_P_ int how)
1207{
1208 loop_done = how;
680} 1209}
681 1210
682/*****************************************************************************/ 1211/*****************************************************************************/
683 1212
684static void 1213inline void
685wlist_add (WL *head, WL elem) 1214wlist_add (WL *head, WL elem)
686{ 1215{
687 elem->next = *head; 1216 elem->next = *head;
688 *head = elem; 1217 *head = elem;
689} 1218}
690 1219
691static void 1220inline void
692wlist_del (WL *head, WL elem) 1221wlist_del (WL *head, WL elem)
693{ 1222{
694 while (*head) 1223 while (*head)
695 { 1224 {
696 if (*head == elem) 1225 if (*head == elem)
701 1230
702 head = &(*head)->next; 1231 head = &(*head)->next;
703 } 1232 }
704} 1233}
705 1234
706static void 1235inline void
707ev_clear (W w) 1236ev_clear_pending (EV_P_ W w)
708{ 1237{
709 if (w->pending) 1238 if (w->pending)
710 { 1239 {
711 pendings [w->pending - 1].w = 0; 1240 pendings [ABSPRI (w)][w->pending - 1].w = 0;
712 w->pending = 0; 1241 w->pending = 0;
713 } 1242 }
714} 1243}
715 1244
716static void 1245inline void
717ev_start (W w, int active) 1246ev_start (EV_P_ W w, int active)
718{ 1247{
1248 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1249 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1250
719 w->active = active; 1251 w->active = active;
1252 ev_ref (EV_A);
720} 1253}
721 1254
722static void 1255inline void
723ev_stop (W w) 1256ev_stop (EV_P_ W w)
724{ 1257{
1258 ev_unref (EV_A);
725 w->active = 0; 1259 w->active = 0;
726} 1260}
727 1261
728/*****************************************************************************/ 1262/*****************************************************************************/
729 1263
730void 1264void
731evio_start (struct ev_io *w) 1265ev_io_start (EV_P_ struct ev_io *w)
732{ 1266{
1267 int fd = w->fd;
1268
733 if (ev_is_active (w)) 1269 if (ev_is_active (w))
734 return; 1270 return;
735 1271
736 int fd = w->fd; 1272 assert (("ev_io_start called with negative fd", fd >= 0));
737 1273
738 ev_start ((W)w, 1); 1274 ev_start (EV_A_ (W)w, 1);
739 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1275 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
740 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1276 wlist_add ((WL *)&anfds[fd].head, (WL)w);
741 1277
742 ++fdchangecnt; 1278 fd_change (EV_A_ fd);
743 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
744 fdchanges [fdchangecnt - 1] = fd;
745} 1279}
746 1280
747void 1281void
748evio_stop (struct ev_io *w) 1282ev_io_stop (EV_P_ struct ev_io *w)
749{ 1283{
750 ev_clear ((W)w); 1284 ev_clear_pending (EV_A_ (W)w);
751 if (!ev_is_active (w)) 1285 if (!ev_is_active (w))
752 return; 1286 return;
753 1287
754 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1288 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
755 ev_stop ((W)w); 1289 ev_stop (EV_A_ (W)w);
756 1290
757 ++fdchangecnt; 1291 fd_change (EV_A_ w->fd);
758 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
759 fdchanges [fdchangecnt - 1] = w->fd;
760} 1292}
761 1293
762void 1294void
763evtimer_start (struct ev_timer *w) 1295ev_timer_start (EV_P_ struct ev_timer *w)
764{ 1296{
765 if (ev_is_active (w)) 1297 if (ev_is_active (w))
766 return; 1298 return;
767 1299
768 w->at += now; 1300 ((WT)w)->at += mn_now;
769 1301
770 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1302 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
771 1303
772 ev_start ((W)w, ++timercnt); 1304 ev_start (EV_A_ (W)w, ++timercnt);
773 array_needsize (timers, timermax, timercnt, ); 1305 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
774 timers [timercnt - 1] = w; 1306 timers [timercnt - 1] = w;
775 upheap ((WT *)timers, timercnt - 1); 1307 upheap ((WT *)timers, timercnt - 1);
776}
777 1308
1309 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1310}
1311
778void 1312void
779evtimer_stop (struct ev_timer *w) 1313ev_timer_stop (EV_P_ struct ev_timer *w)
780{ 1314{
781 ev_clear ((W)w); 1315 ev_clear_pending (EV_A_ (W)w);
782 if (!ev_is_active (w)) 1316 if (!ev_is_active (w))
783 return; 1317 return;
784 1318
1319 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1320
785 if (w->active < timercnt--) 1321 if (((W)w)->active < timercnt--)
786 { 1322 {
787 timers [w->active - 1] = timers [timercnt]; 1323 timers [((W)w)->active - 1] = timers [timercnt];
788 downheap ((WT *)timers, timercnt, w->active - 1); 1324 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
789 } 1325 }
790 1326
791 w->at = w->repeat; 1327 ((WT)w)->at = w->repeat;
792 1328
793 ev_stop ((W)w); 1329 ev_stop (EV_A_ (W)w);
794} 1330}
795 1331
796void 1332void
797evtimer_again (struct ev_timer *w) 1333ev_timer_again (EV_P_ struct ev_timer *w)
798{ 1334{
799 if (ev_is_active (w)) 1335 if (ev_is_active (w))
800 { 1336 {
801 if (w->repeat) 1337 if (w->repeat)
802 {
803 w->at = now + w->repeat;
804 downheap ((WT *)timers, timercnt, w->active - 1); 1338 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
805 }
806 else 1339 else
807 evtimer_stop (w); 1340 ev_timer_stop (EV_A_ w);
808 } 1341 }
809 else if (w->repeat) 1342 else if (w->repeat)
810 evtimer_start (w); 1343 ev_timer_start (EV_A_ w);
811} 1344}
812 1345
813void 1346void
814evperiodic_start (struct ev_periodic *w) 1347ev_periodic_start (EV_P_ struct ev_periodic *w)
815{ 1348{
816 if (ev_is_active (w)) 1349 if (ev_is_active (w))
817 return; 1350 return;
818 1351
819 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1352 if (w->reschedule_cb)
820 1353 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1354 else if (w->interval)
1355 {
1356 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
821 /* this formula differs from the one in periodic_reify because we do not always round up */ 1357 /* this formula differs from the one in periodic_reify because we do not always round up */
822 if (w->interval)
823 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1358 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1359 }
824 1360
825 ev_start ((W)w, ++periodiccnt); 1361 ev_start (EV_A_ (W)w, ++periodiccnt);
826 array_needsize (periodics, periodicmax, periodiccnt, ); 1362 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
827 periodics [periodiccnt - 1] = w; 1363 periodics [periodiccnt - 1] = w;
828 upheap ((WT *)periodics, periodiccnt - 1); 1364 upheap ((WT *)periodics, periodiccnt - 1);
829}
830 1365
1366 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1367}
1368
831void 1369void
832evperiodic_stop (struct ev_periodic *w) 1370ev_periodic_stop (EV_P_ struct ev_periodic *w)
833{ 1371{
834 ev_clear ((W)w); 1372 ev_clear_pending (EV_A_ (W)w);
835 if (!ev_is_active (w)) 1373 if (!ev_is_active (w))
836 return; 1374 return;
837 1375
1376 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1377
838 if (w->active < periodiccnt--) 1378 if (((W)w)->active < periodiccnt--)
839 { 1379 {
840 periodics [w->active - 1] = periodics [periodiccnt]; 1380 periodics [((W)w)->active - 1] = periodics [periodiccnt];
841 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1381 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
842 } 1382 }
843 1383
844 ev_stop ((W)w); 1384 ev_stop (EV_A_ (W)w);
845} 1385}
846 1386
847void 1387void
848evsignal_start (struct ev_signal *w) 1388ev_periodic_again (EV_P_ struct ev_periodic *w)
1389{
1390 /* TODO: use adjustheap and recalculation */
1391 ev_periodic_stop (EV_A_ w);
1392 ev_periodic_start (EV_A_ w);
1393}
1394
1395void
1396ev_idle_start (EV_P_ struct ev_idle *w)
849{ 1397{
850 if (ev_is_active (w)) 1398 if (ev_is_active (w))
851 return; 1399 return;
852 1400
1401 ev_start (EV_A_ (W)w, ++idlecnt);
1402 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1403 idles [idlecnt - 1] = w;
1404}
1405
1406void
1407ev_idle_stop (EV_P_ struct ev_idle *w)
1408{
1409 ev_clear_pending (EV_A_ (W)w);
1410 if (ev_is_active (w))
1411 return;
1412
1413 idles [((W)w)->active - 1] = idles [--idlecnt];
1414 ev_stop (EV_A_ (W)w);
1415}
1416
1417void
1418ev_prepare_start (EV_P_ struct ev_prepare *w)
1419{
1420 if (ev_is_active (w))
1421 return;
1422
1423 ev_start (EV_A_ (W)w, ++preparecnt);
1424 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1425 prepares [preparecnt - 1] = w;
1426}
1427
1428void
1429ev_prepare_stop (EV_P_ struct ev_prepare *w)
1430{
1431 ev_clear_pending (EV_A_ (W)w);
1432 if (ev_is_active (w))
1433 return;
1434
1435 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1436 ev_stop (EV_A_ (W)w);
1437}
1438
1439void
1440ev_check_start (EV_P_ struct ev_check *w)
1441{
1442 if (ev_is_active (w))
1443 return;
1444
1445 ev_start (EV_A_ (W)w, ++checkcnt);
1446 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1447 checks [checkcnt - 1] = w;
1448}
1449
1450void
1451ev_check_stop (EV_P_ struct ev_check *w)
1452{
1453 ev_clear_pending (EV_A_ (W)w);
1454 if (ev_is_active (w))
1455 return;
1456
1457 checks [((W)w)->active - 1] = checks [--checkcnt];
1458 ev_stop (EV_A_ (W)w);
1459}
1460
1461#ifndef SA_RESTART
1462# define SA_RESTART 0
1463#endif
1464
1465void
1466ev_signal_start (EV_P_ struct ev_signal *w)
1467{
1468#if EV_MULTIPLICITY
1469 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1470#endif
1471 if (ev_is_active (w))
1472 return;
1473
1474 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1475
853 ev_start ((W)w, 1); 1476 ev_start (EV_A_ (W)w, 1);
854 array_needsize (signals, signalmax, w->signum, signals_init); 1477 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
855 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1478 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
856 1479
857 if (!w->next) 1480 if (!((WL)w)->next)
858 { 1481 {
1482#if WIN32
1483 signal (w->signum, sighandler);
1484#else
859 struct sigaction sa; 1485 struct sigaction sa;
860 sa.sa_handler = sighandler; 1486 sa.sa_handler = sighandler;
861 sigfillset (&sa.sa_mask); 1487 sigfillset (&sa.sa_mask);
862 sa.sa_flags = 0; 1488 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
863 sigaction (w->signum, &sa, 0); 1489 sigaction (w->signum, &sa, 0);
1490#endif
864 } 1491 }
865} 1492}
866 1493
867void 1494void
868evsignal_stop (struct ev_signal *w) 1495ev_signal_stop (EV_P_ struct ev_signal *w)
869{ 1496{
870 ev_clear ((W)w); 1497 ev_clear_pending (EV_A_ (W)w);
871 if (!ev_is_active (w)) 1498 if (!ev_is_active (w))
872 return; 1499 return;
873 1500
874 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1501 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
875 ev_stop ((W)w); 1502 ev_stop (EV_A_ (W)w);
876 1503
877 if (!signals [w->signum - 1].head) 1504 if (!signals [w->signum - 1].head)
878 signal (w->signum, SIG_DFL); 1505 signal (w->signum, SIG_DFL);
879} 1506}
880 1507
881void evidle_start (struct ev_idle *w) 1508void
1509ev_child_start (EV_P_ struct ev_child *w)
882{ 1510{
1511#if EV_MULTIPLICITY
1512 assert (("child watchers are only supported in the default loop", loop == default_loop));
1513#endif
883 if (ev_is_active (w)) 1514 if (ev_is_active (w))
884 return; 1515 return;
885 1516
886 ev_start ((W)w, ++idlecnt); 1517 ev_start (EV_A_ (W)w, 1);
887 array_needsize (idles, idlemax, idlecnt, ); 1518 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
888 idles [idlecnt - 1] = w;
889} 1519}
890 1520
891void evidle_stop (struct ev_idle *w) 1521void
1522ev_child_stop (EV_P_ struct ev_child *w)
892{ 1523{
893 ev_clear ((W)w); 1524 ev_clear_pending (EV_A_ (W)w);
894 if (ev_is_active (w)) 1525 if (ev_is_active (w))
895 return; 1526 return;
896 1527
897 idles [w->active - 1] = idles [--idlecnt];
898 ev_stop ((W)w);
899}
900
901void evprepare_start (struct ev_prepare *w)
902{
903 if (ev_is_active (w))
904 return;
905
906 ev_start ((W)w, ++preparecnt);
907 array_needsize (prepares, preparemax, preparecnt, );
908 prepares [preparecnt - 1] = w;
909}
910
911void evprepare_stop (struct ev_prepare *w)
912{
913 ev_clear ((W)w);
914 if (ev_is_active (w))
915 return;
916
917 prepares [w->active - 1] = prepares [--preparecnt];
918 ev_stop ((W)w);
919}
920
921void evcheck_start (struct ev_check *w)
922{
923 if (ev_is_active (w))
924 return;
925
926 ev_start ((W)w, ++checkcnt);
927 array_needsize (checks, checkmax, checkcnt, );
928 checks [checkcnt - 1] = w;
929}
930
931void evcheck_stop (struct ev_check *w)
932{
933 ev_clear ((W)w);
934 if (ev_is_active (w))
935 return;
936
937 checks [w->active - 1] = checks [--checkcnt];
938 ev_stop ((W)w);
939}
940
941void evchild_start (struct ev_child *w)
942{
943 if (ev_is_active (w))
944 return;
945
946 ev_start ((W)w, 1);
947 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
948}
949
950void evchild_stop (struct ev_child *w)
951{
952 ev_clear ((W)w);
953 if (ev_is_active (w))
954 return;
955
956 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1528 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
957 ev_stop ((W)w); 1529 ev_stop (EV_A_ (W)w);
958} 1530}
959 1531
960/*****************************************************************************/ 1532/*****************************************************************************/
961 1533
962struct ev_once 1534struct ev_once
966 void (*cb)(int revents, void *arg); 1538 void (*cb)(int revents, void *arg);
967 void *arg; 1539 void *arg;
968}; 1540};
969 1541
970static void 1542static void
971once_cb (struct ev_once *once, int revents) 1543once_cb (EV_P_ struct ev_once *once, int revents)
972{ 1544{
973 void (*cb)(int revents, void *arg) = once->cb; 1545 void (*cb)(int revents, void *arg) = once->cb;
974 void *arg = once->arg; 1546 void *arg = once->arg;
975 1547
976 evio_stop (&once->io); 1548 ev_io_stop (EV_A_ &once->io);
977 evtimer_stop (&once->to); 1549 ev_timer_stop (EV_A_ &once->to);
978 free (once); 1550 ev_free (once);
979 1551
980 cb (revents, arg); 1552 cb (revents, arg);
981} 1553}
982 1554
983static void 1555static void
984once_cb_io (struct ev_io *w, int revents) 1556once_cb_io (EV_P_ struct ev_io *w, int revents)
985{ 1557{
986 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1558 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
987} 1559}
988 1560
989static void 1561static void
990once_cb_to (struct ev_timer *w, int revents) 1562once_cb_to (EV_P_ struct ev_timer *w, int revents)
991{ 1563{
992 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1564 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
993} 1565}
994 1566
995void 1567void
996ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1568ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
997{ 1569{
998 struct ev_once *once = malloc (sizeof (struct ev_once)); 1570 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
999 1571
1000 if (!once) 1572 if (!once)
1001 cb (EV_ERROR, arg); 1573 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1002 else 1574 else
1003 { 1575 {
1004 once->cb = cb; 1576 once->cb = cb;
1005 once->arg = arg; 1577 once->arg = arg;
1006 1578
1007 evw_init (&once->io, once_cb_io); 1579 ev_init (&once->io, once_cb_io);
1008
1009 if (fd >= 0) 1580 if (fd >= 0)
1010 { 1581 {
1011 evio_set (&once->io, fd, events); 1582 ev_io_set (&once->io, fd, events);
1012 evio_start (&once->io); 1583 ev_io_start (EV_A_ &once->io);
1013 } 1584 }
1014 1585
1015 evw_init (&once->to, once_cb_to); 1586 ev_init (&once->to, once_cb_to);
1016
1017 if (timeout >= 0.) 1587 if (timeout >= 0.)
1018 { 1588 {
1019 evtimer_set (&once->to, timeout, 0.); 1589 ev_timer_set (&once->to, timeout, 0.);
1020 evtimer_start (&once->to); 1590 ev_timer_start (EV_A_ &once->to);
1021 } 1591 }
1022 } 1592 }
1023} 1593}
1024 1594
1025/*****************************************************************************/
1026
1027#if 0
1028
1029struct ev_io wio;
1030
1031static void
1032sin_cb (struct ev_io *w, int revents)
1033{
1034 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1035}
1036
1037static void
1038ocb (struct ev_timer *w, int revents)
1039{
1040 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1041 evtimer_stop (w);
1042 evtimer_start (w);
1043}
1044
1045static void
1046scb (struct ev_signal *w, int revents)
1047{
1048 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1049 evio_stop (&wio);
1050 evio_start (&wio);
1051}
1052
1053static void
1054gcb (struct ev_signal *w, int revents)
1055{
1056 fprintf (stderr, "generic %x\n", revents);
1057
1058}
1059
1060int main (void)
1061{
1062 ev_init (0);
1063
1064 evio_init (&wio, sin_cb, 0, EV_READ);
1065 evio_start (&wio);
1066
1067 struct ev_timer t[10000];
1068
1069#if 0
1070 int i;
1071 for (i = 0; i < 10000; ++i)
1072 {
1073 struct ev_timer *w = t + i;
1074 evw_init (w, ocb, i);
1075 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
1076 evtimer_start (w);
1077 if (drand48 () < 0.5)
1078 evtimer_stop (w);
1079 }
1080#endif
1081
1082 struct ev_timer t1;
1083 evtimer_init (&t1, ocb, 5, 10);
1084 evtimer_start (&t1);
1085
1086 struct ev_signal sig;
1087 evsignal_init (&sig, scb, SIGQUIT);
1088 evsignal_start (&sig);
1089
1090 struct ev_check cw;
1091 evcheck_init (&cw, gcb);
1092 evcheck_start (&cw);
1093
1094 struct ev_idle iw;
1095 evidle_init (&iw, gcb);
1096 evidle_start (&iw);
1097
1098 ev_loop (0);
1099
1100 return 0;
1101}
1102
1103#endif
1104
1105
1106
1107

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines