ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.84 by root, Fri Nov 9 23:04:35 2007 UTC vs.
Revision 1.397 by root, Wed Aug 24 16:13:41 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
33 67
34# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
37# endif 82# endif
38 83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
40# define EV_USE_SELECT 1 99# define EV_USE_SELECT 0
41# endif 100# endif
42 101
43# if HAVE_POLL && HAVE_POLL_H 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
44# define EV_USE_POLL 1 108# define EV_USE_POLL 0
45# endif 109# endif
46 110
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
48# define EV_USE_EPOLL 1 117# define EV_USE_EPOLL 0
49# endif 118# endif
50 119
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
52# define EV_USE_KQUEUE 1 126# define EV_USE_KQUEUE 0
53# endif 127# endif
54 128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
55#endif 136# endif
56 137
57#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
58#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
59#include <fcntl.h> 169#include <fcntl.h>
60#include <stddef.h> 170#include <stddef.h>
61 171
62#include <stdio.h> 172#include <stdio.h>
63 173
64#include <assert.h> 174#include <assert.h>
65#include <errno.h> 175#include <errno.h>
66#include <sys/types.h> 176#include <sys/types.h>
67#include <time.h> 177#include <time.h>
178#include <limits.h>
68 179
69#include <signal.h> 180#include <signal.h>
70
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
76/**/
77
78#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1
80#endif
81
82#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1
84#endif
85
86#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88#endif
89
90#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0
92#endif
93
94#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME
109# define EV_USE_REALTIME 1
110#endif
111
112/**/
113
114#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0
117#endif
118
119#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0
122#endif
123
124/**/
125
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 181
131#ifdef EV_H 182#ifdef EV_H
132# include EV_H 183# include EV_H
133#else 184#else
134# include "ev.h" 185# include "ev.h"
135#endif 186#endif
136 187
137#if __GNUC__ >= 3 188EV_CPP(extern "C" {)
138# define expect(expr,value) __builtin_expect ((expr),(value)) 189
139# define inline inline 190#ifndef _WIN32
191# include <sys/time.h>
192# include <sys/wait.h>
193# include <unistd.h>
140#else 194#else
141# define expect(expr,value) (expr) 195# include <io.h>
142# define inline static 196# define WIN32_LEAN_AND_MEAN
197# include <windows.h>
198# ifndef EV_SELECT_IS_WINSOCKET
199# define EV_SELECT_IS_WINSOCKET 1
143#endif 200# endif
201# undef EV_AVOID_STDIO
202#endif
144 203
145#define expect_false(expr) expect ((expr) != 0, 0) 204/* OS X, in its infinite idiocy, actually HARDCODES
146#define expect_true(expr) expect ((expr) != 0, 1) 205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
147 211
148#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 212/* this block tries to deduce configuration from header-defined symbols and defaults */
149#define ABSPRI(w) ((w)->priority - EV_MINPRI)
150 213
151typedef struct ev_watcher *W; 214/* try to deduce the maximum number of signals on this platform */
152typedef struct ev_watcher_list *WL; 215#if defined (EV_NSIG)
153typedef struct ev_watcher_time *WT; 216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
154 241
155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
156 245
157#include "ev_win32.c" 246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
251# endif
252#endif
253
254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
258# define EV_USE_MONOTONIC 0
259# endif
260#endif
261
262#ifndef EV_USE_REALTIME
263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264#endif
265
266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
270# define EV_USE_NANOSLEEP 0
271# endif
272#endif
273
274#ifndef EV_USE_SELECT
275# define EV_USE_SELECT EV_FEATURE_BACKENDS
276#endif
277
278#ifndef EV_USE_POLL
279# ifdef _WIN32
280# define EV_USE_POLL 0
281# else
282# define EV_USE_POLL EV_FEATURE_BACKENDS
283# endif
284#endif
285
286#ifndef EV_USE_EPOLL
287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
289# else
290# define EV_USE_EPOLL 0
291# endif
292#endif
293
294#ifndef EV_USE_KQUEUE
295# define EV_USE_KQUEUE 0
296#endif
297
298#ifndef EV_USE_PORT
299# define EV_USE_PORT 0
300#endif
301
302#ifndef EV_USE_INOTIFY
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_INOTIFY EV_FEATURE_OS
305# else
306# define EV_USE_INOTIFY 0
307# endif
308#endif
309
310#ifndef EV_PID_HASHSIZE
311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
312#endif
313
314#ifndef EV_INOTIFY_HASHSIZE
315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316#endif
317
318#ifndef EV_USE_EVENTFD
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320# define EV_USE_EVENTFD EV_FEATURE_OS
321# else
322# define EV_USE_EVENTFD 0
323# endif
324#endif
325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
373
374#ifndef CLOCK_MONOTONIC
375# undef EV_USE_MONOTONIC
376# define EV_USE_MONOTONIC 0
377#endif
378
379#ifndef CLOCK_REALTIME
380# undef EV_USE_REALTIME
381# define EV_USE_REALTIME 0
382#endif
383
384#if !EV_STAT_ENABLE
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387#endif
388
389#if !EV_USE_NANOSLEEP
390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
392# include <sys/select.h>
393# endif
394#endif
395
396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
404#endif
405
406#if EV_SELECT_IS_WINSOCKET
407# include <winsock.h>
408#endif
409
410#if EV_USE_EVENTFD
411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
446#endif
447
448/**/
449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
456/*
457 * This is used to work around floating point rounding problems.
458 * This value is good at least till the year 4000.
459 */
460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
462
463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
465
466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468
469/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
470/* ECB.H BEGIN */
471/*
472 * libecb - http://software.schmorp.de/pkg/libecb
473 *
474 * Copyright (©) 2009-2011 Marc Alexander Lehmann <libecb@schmorp.de>
475 * Copyright (©) 2011 Emanuele Giaquinta
476 * All rights reserved.
477 *
478 * Redistribution and use in source and binary forms, with or without modifica-
479 * tion, are permitted provided that the following conditions are met:
480 *
481 * 1. Redistributions of source code must retain the above copyright notice,
482 * this list of conditions and the following disclaimer.
483 *
484 * 2. Redistributions in binary form must reproduce the above copyright
485 * notice, this list of conditions and the following disclaimer in the
486 * documentation and/or other materials provided with the distribution.
487 *
488 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
489 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
490 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
491 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
492 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
493 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
494 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
495 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
496 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
497 * OF THE POSSIBILITY OF SUCH DAMAGE.
498 */
499
500#ifndef ECB_H
501#define ECB_H
502
503#ifdef _WIN32
504 typedef signed char int8_t;
505 typedef unsigned char uint8_t;
506 typedef signed short int16_t;
507 typedef unsigned short uint16_t;
508 typedef signed int int32_t;
509 typedef unsigned int uint32_t;
510 #if __GNUC__
511 typedef signed long long int64_t;
512 typedef unsigned long long uint64_t;
513 #else /* _MSC_VER || __BORLANDC__ */
514 typedef signed __int64 int64_t;
515 typedef unsigned __int64 uint64_t;
516 #endif
517#else
518 #include <inttypes.h>
519#endif
520
521/* many compilers define _GNUC_ to some versions but then only implement
522 * what their idiot authors think are the "more important" extensions,
523 * causing enormous grief in return for some better fake benchmark numbers.
524 * or so.
525 * we try to detect these and simply assume they are not gcc - if they have
526 * an issue with that they should have done it right in the first place.
527 */
528#ifndef ECB_GCC_VERSION
529 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
530 #define ECB_GCC_VERSION(major,minor) 0
531 #else
532 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
533 #endif
534#endif
158 535
159/*****************************************************************************/ 536/*****************************************************************************/
160 537
538/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
539/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
540
541#if ECB_NO_THREADS || ECB_NO_SMP
542 #define ECB_MEMORY_FENCE do { } while (0)
543#endif
544
545#ifndef ECB_MEMORY_FENCE
546 #if ECB_GCC_VERSION(2,5)
547 #if __i386__
548 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
549 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
550 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
551 #elif __amd64
552 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
553 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
554 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
555 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
556 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
557 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
558 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
559 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
560 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
561 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
563 #endif
564 #endif
565#endif
566
567#ifndef ECB_MEMORY_FENCE
568 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER)
569 #define ECB_MEMORY_FENCE __sync_synchronize ()
570 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
571 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
572 #elif _MSC_VER >= 1400 /* VC++ 2005 */
573 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
574 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
575 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
576 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
577 #elif defined(_WIN32)
578 #include <WinNT.h>
579 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
580 #endif
581#endif
582
583#ifndef ECB_MEMORY_FENCE
584 #if !ECB_AVOID_PTHREADS
585 /*
586 * if you get undefined symbol references to pthread_mutex_lock,
587 * or failure to find pthread.h, then you should implement
588 * the ECB_MEMORY_FENCE operations for your cpu/compiler
589 * OR provide pthread.h and link against the posix thread library
590 * of your system.
591 */
592 #include <pthread.h>
593 #define ECB_NEEDS_PTHREADS 1
594 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
595
596 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
597 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
598 #endif
599#endif
600
601#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
602 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
603#endif
604
605#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
606 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
607#endif
608
609/*****************************************************************************/
610
611#define ECB_C99 (__STDC_VERSION__ >= 199901L)
612
613#if __cplusplus
614 #define ecb_inline static inline
615#elif ECB_GCC_VERSION(2,5)
616 #define ecb_inline static __inline__
617#elif ECB_C99
618 #define ecb_inline static inline
619#else
620 #define ecb_inline static
621#endif
622
623#if ECB_GCC_VERSION(3,3)
624 #define ecb_restrict __restrict__
625#elif ECB_C99
626 #define ecb_restrict restrict
627#else
628 #define ecb_restrict
629#endif
630
631typedef int ecb_bool;
632
633#define ECB_CONCAT_(a, b) a ## b
634#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
635#define ECB_STRINGIFY_(a) # a
636#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
637
638#define ecb_function_ ecb_inline
639
640#if ECB_GCC_VERSION(3,1)
641 #define ecb_attribute(attrlist) __attribute__(attrlist)
642 #define ecb_is_constant(expr) __builtin_constant_p (expr)
643 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
644 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
645#else
646 #define ecb_attribute(attrlist)
647 #define ecb_is_constant(expr) 0
648 #define ecb_expect(expr,value) (expr)
649 #define ecb_prefetch(addr,rw,locality)
650#endif
651
652/* no emulation for ecb_decltype */
653#if ECB_GCC_VERSION(4,5)
654 #define ecb_decltype(x) __decltype(x)
655#elif ECB_GCC_VERSION(3,0)
656 #define ecb_decltype(x) __typeof(x)
657#endif
658
659#define ecb_noinline ecb_attribute ((__noinline__))
660#define ecb_noreturn ecb_attribute ((__noreturn__))
661#define ecb_unused ecb_attribute ((__unused__))
662#define ecb_const ecb_attribute ((__const__))
663#define ecb_pure ecb_attribute ((__pure__))
664
665#if ECB_GCC_VERSION(4,3)
666 #define ecb_artificial ecb_attribute ((__artificial__))
667 #define ecb_hot ecb_attribute ((__hot__))
668 #define ecb_cold ecb_attribute ((__cold__))
669#else
670 #define ecb_artificial
671 #define ecb_hot
672 #define ecb_cold
673#endif
674
675/* put around conditional expressions if you are very sure that the */
676/* expression is mostly true or mostly false. note that these return */
677/* booleans, not the expression. */
678#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
679#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
680/* for compatibility to the rest of the world */
681#define ecb_likely(expr) ecb_expect_true (expr)
682#define ecb_unlikely(expr) ecb_expect_false (expr)
683
684/* count trailing zero bits and count # of one bits */
685#if ECB_GCC_VERSION(3,4)
686 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
687 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
688 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
689 #define ecb_ctz32(x) __builtin_ctz (x)
690 #define ecb_ctz64(x) __builtin_ctzll (x)
691 #define ecb_popcount32(x) __builtin_popcount (x)
692 /* no popcountll */
693#else
694 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
695 ecb_function_ int
696 ecb_ctz32 (uint32_t x)
697 {
698 int r = 0;
699
700 x &= ~x + 1; /* this isolates the lowest bit */
701
702#if ECB_branchless_on_i386
703 r += !!(x & 0xaaaaaaaa) << 0;
704 r += !!(x & 0xcccccccc) << 1;
705 r += !!(x & 0xf0f0f0f0) << 2;
706 r += !!(x & 0xff00ff00) << 3;
707 r += !!(x & 0xffff0000) << 4;
708#else
709 if (x & 0xaaaaaaaa) r += 1;
710 if (x & 0xcccccccc) r += 2;
711 if (x & 0xf0f0f0f0) r += 4;
712 if (x & 0xff00ff00) r += 8;
713 if (x & 0xffff0000) r += 16;
714#endif
715
716 return r;
717 }
718
719 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
720 ecb_function_ int
721 ecb_ctz64 (uint64_t x)
722 {
723 int shift = x & 0xffffffffU ? 0 : 32;
724 return ecb_ctz32 (x >> shift) + shift;
725 }
726
727 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
728 ecb_function_ int
729 ecb_popcount32 (uint32_t x)
730 {
731 x -= (x >> 1) & 0x55555555;
732 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
733 x = ((x >> 4) + x) & 0x0f0f0f0f;
734 x *= 0x01010101;
735
736 return x >> 24;
737 }
738
739 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
740 ecb_function_ int ecb_ld32 (uint32_t x)
741 {
742 int r = 0;
743
744 if (x >> 16) { x >>= 16; r += 16; }
745 if (x >> 8) { x >>= 8; r += 8; }
746 if (x >> 4) { x >>= 4; r += 4; }
747 if (x >> 2) { x >>= 2; r += 2; }
748 if (x >> 1) { r += 1; }
749
750 return r;
751 }
752
753 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
754 ecb_function_ int ecb_ld64 (uint64_t x)
755 {
756 int r = 0;
757
758 if (x >> 32) { x >>= 32; r += 32; }
759
760 return r + ecb_ld32 (x);
761 }
762#endif
763
764/* popcount64 is only available on 64 bit cpus as gcc builtin */
765/* so for this version we are lazy */
766ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
767ecb_function_ int
768ecb_popcount64 (uint64_t x)
769{
770 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
771}
772
773ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
774ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
775ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
776ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
777ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
778ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
779ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
780ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
781
782ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
783ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
784ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
785ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
786ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
787ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
788ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
789ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
790
791#if ECB_GCC_VERSION(4,3)
792 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
793 #define ecb_bswap32(x) __builtin_bswap32 (x)
794 #define ecb_bswap64(x) __builtin_bswap64 (x)
795#else
796 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
797 ecb_function_ uint16_t
798 ecb_bswap16 (uint16_t x)
799 {
800 return ecb_rotl16 (x, 8);
801 }
802
803 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
804 ecb_function_ uint32_t
805 ecb_bswap32 (uint32_t x)
806 {
807 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
808 }
809
810 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
811 ecb_function_ uint64_t
812 ecb_bswap64 (uint64_t x)
813 {
814 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
815 }
816#endif
817
818#if ECB_GCC_VERSION(4,5)
819 #define ecb_unreachable() __builtin_unreachable ()
820#else
821 /* this seems to work fine, but gcc always emits a warning for it :/ */
822 ecb_function_ void ecb_unreachable (void) ecb_noreturn;
823 ecb_function_ void ecb_unreachable (void) { }
824#endif
825
826/* try to tell the compiler that some condition is definitely true */
827#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
828
829ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
830ecb_function_ unsigned char
831ecb_byteorder_helper (void)
832{
833 const uint32_t u = 0x11223344;
834 return *(unsigned char *)&u;
835}
836
837ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
838ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
839ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
840ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
841
842#if ECB_GCC_VERSION(3,0) || ECB_C99
843 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
844#else
845 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
846#endif
847
848#if ecb_cplusplus_does_not_suck
849 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
850 template<typename T, int N>
851 static inline int ecb_array_length (const T (&arr)[N])
852 {
853 return N;
854 }
855#else
856 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
857#endif
858
859#endif
860
861/* ECB.H END */
862
863#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
864/* if your architecture doesn't need memory fences, e.g. because it is
865 * single-cpu/core, or if you use libev in a project that doesn't use libev
866 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
867 * libev, in which casess the memory fences become nops.
868 * alternatively, you can remove this #error and link against libpthread,
869 * which will then provide the memory fences.
870 */
871# error "memory fences not defined for your architecture, please report"
872#endif
873
874#ifndef ECB_MEMORY_FENCE
875# define ECB_MEMORY_FENCE do { } while (0)
876# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
877# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
878#endif
879
880#define expect_false(cond) ecb_expect_false (cond)
881#define expect_true(cond) ecb_expect_true (cond)
882#define noinline ecb_noinline
883
884#define inline_size ecb_inline
885
886#if EV_FEATURE_CODE
887# define inline_speed ecb_inline
888#else
889# define inline_speed static noinline
890#endif
891
892#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
893
894#if EV_MINPRI == EV_MAXPRI
895# define ABSPRI(w) (((W)w), 0)
896#else
897# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
898#endif
899
900#define EMPTY /* required for microsofts broken pseudo-c compiler */
901#define EMPTY2(a,b) /* used to suppress some warnings */
902
903typedef ev_watcher *W;
904typedef ev_watcher_list *WL;
905typedef ev_watcher_time *WT;
906
907#define ev_active(w) ((W)(w))->active
908#define ev_at(w) ((WT)(w))->at
909
910#if EV_USE_REALTIME
911/* sig_atomic_t is used to avoid per-thread variables or locking but still */
912/* giving it a reasonably high chance of working on typical architectures */
913static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
914#endif
915
916#if EV_USE_MONOTONIC
917static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
918#endif
919
920#ifndef EV_FD_TO_WIN32_HANDLE
921# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
922#endif
923#ifndef EV_WIN32_HANDLE_TO_FD
924# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
925#endif
926#ifndef EV_WIN32_CLOSE_FD
927# define EV_WIN32_CLOSE_FD(fd) close (fd)
928#endif
929
930#ifdef _WIN32
931# include "ev_win32.c"
932#endif
933
934/*****************************************************************************/
935
936/* define a suitable floor function (only used by periodics atm) */
937
938#if EV_USE_FLOOR
939# include <math.h>
940# define ev_floor(v) floor (v)
941#else
942
943#include <float.h>
944
945/* a floor() replacement function, should be independent of ev_tstamp type */
946static ev_tstamp noinline
947ev_floor (ev_tstamp v)
948{
949 /* the choice of shift factor is not terribly important */
950#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
951 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
952#else
953 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
954#endif
955
956 /* argument too large for an unsigned long? */
957 if (expect_false (v >= shift))
958 {
959 ev_tstamp f;
960
961 if (v == v - 1.)
962 return v; /* very large number */
963
964 f = shift * ev_floor (v * (1. / shift));
965 return f + ev_floor (v - f);
966 }
967
968 /* special treatment for negative args? */
969 if (expect_false (v < 0.))
970 {
971 ev_tstamp f = -ev_floor (-v);
972
973 return f - (f == v ? 0 : 1);
974 }
975
976 /* fits into an unsigned long */
977 return (unsigned long)v;
978}
979
980#endif
981
982/*****************************************************************************/
983
984#ifdef __linux
985# include <sys/utsname.h>
986#endif
987
988static unsigned int noinline ecb_cold
989ev_linux_version (void)
990{
991#ifdef __linux
992 unsigned int v = 0;
993 struct utsname buf;
994 int i;
995 char *p = buf.release;
996
997 if (uname (&buf))
998 return 0;
999
1000 for (i = 3+1; --i; )
1001 {
1002 unsigned int c = 0;
1003
1004 for (;;)
1005 {
1006 if (*p >= '0' && *p <= '9')
1007 c = c * 10 + *p++ - '0';
1008 else
1009 {
1010 p += *p == '.';
1011 break;
1012 }
1013 }
1014
1015 v = (v << 8) | c;
1016 }
1017
1018 return v;
1019#else
1020 return 0;
1021#endif
1022}
1023
1024/*****************************************************************************/
1025
1026#if EV_AVOID_STDIO
1027static void noinline ecb_cold
1028ev_printerr (const char *msg)
1029{
1030 write (STDERR_FILENO, msg, strlen (msg));
1031}
1032#endif
1033
161static void (*syserr_cb)(const char *msg); 1034static void (*syserr_cb)(const char *msg);
162 1035
1036void ecb_cold
163void ev_set_syserr_cb (void (*cb)(const char *msg)) 1037ev_set_syserr_cb (void (*cb)(const char *msg))
164{ 1038{
165 syserr_cb = cb; 1039 syserr_cb = cb;
166} 1040}
167 1041
168static void 1042static void noinline ecb_cold
169syserr (const char *msg) 1043ev_syserr (const char *msg)
170{ 1044{
171 if (!msg) 1045 if (!msg)
172 msg = "(libev) system error"; 1046 msg = "(libev) system error";
173 1047
174 if (syserr_cb) 1048 if (syserr_cb)
175 syserr_cb (msg); 1049 syserr_cb (msg);
176 else 1050 else
177 { 1051 {
1052#if EV_AVOID_STDIO
1053 ev_printerr (msg);
1054 ev_printerr (": ");
1055 ev_printerr (strerror (errno));
1056 ev_printerr ("\n");
1057#else
178 perror (msg); 1058 perror (msg);
1059#endif
179 abort (); 1060 abort ();
180 } 1061 }
181} 1062}
182 1063
1064static void *
1065ev_realloc_emul (void *ptr, long size)
1066{
1067#if __GLIBC__
1068 return realloc (ptr, size);
1069#else
1070 /* some systems, notably openbsd and darwin, fail to properly
1071 * implement realloc (x, 0) (as required by both ansi c-89 and
1072 * the single unix specification, so work around them here.
1073 */
1074
1075 if (size)
1076 return realloc (ptr, size);
1077
1078 free (ptr);
1079 return 0;
1080#endif
1081}
1082
183static void *(*alloc)(void *ptr, long size); 1083static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
184 1084
1085void ecb_cold
185void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1086ev_set_allocator (void *(*cb)(void *ptr, long size))
186{ 1087{
187 alloc = cb; 1088 alloc = cb;
188} 1089}
189 1090
190static void * 1091inline_speed void *
191ev_realloc (void *ptr, long size) 1092ev_realloc (void *ptr, long size)
192{ 1093{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1094 ptr = alloc (ptr, size);
194 1095
195 if (!ptr && size) 1096 if (!ptr && size)
196 { 1097 {
1098#if EV_AVOID_STDIO
1099 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1100#else
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1101 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1102#endif
198 abort (); 1103 abort ();
199 } 1104 }
200 1105
201 return ptr; 1106 return ptr;
202} 1107}
204#define ev_malloc(size) ev_realloc (0, (size)) 1109#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0) 1110#define ev_free(ptr) ev_realloc ((ptr), 0)
206 1111
207/*****************************************************************************/ 1112/*****************************************************************************/
208 1113
1114/* set in reify when reification needed */
1115#define EV_ANFD_REIFY 1
1116
1117/* file descriptor info structure */
209typedef struct 1118typedef struct
210{ 1119{
211 WL head; 1120 WL head;
212 unsigned char events; 1121 unsigned char events; /* the events watched for */
1122 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1123 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
213 unsigned char reify; 1124 unsigned char unused;
1125#if EV_USE_EPOLL
1126 unsigned int egen; /* generation counter to counter epoll bugs */
1127#endif
1128#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1129 SOCKET handle;
1130#endif
1131#if EV_USE_IOCP
1132 OVERLAPPED or, ow;
1133#endif
214} ANFD; 1134} ANFD;
215 1135
1136/* stores the pending event set for a given watcher */
216typedef struct 1137typedef struct
217{ 1138{
218 W w; 1139 W w;
219 int events; 1140 int events; /* the pending event set for the given watcher */
220} ANPENDING; 1141} ANPENDING;
1142
1143#if EV_USE_INOTIFY
1144/* hash table entry per inotify-id */
1145typedef struct
1146{
1147 WL head;
1148} ANFS;
1149#endif
1150
1151/* Heap Entry */
1152#if EV_HEAP_CACHE_AT
1153 /* a heap element */
1154 typedef struct {
1155 ev_tstamp at;
1156 WT w;
1157 } ANHE;
1158
1159 #define ANHE_w(he) (he).w /* access watcher, read-write */
1160 #define ANHE_at(he) (he).at /* access cached at, read-only */
1161 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1162#else
1163 /* a heap element */
1164 typedef WT ANHE;
1165
1166 #define ANHE_w(he) (he)
1167 #define ANHE_at(he) (he)->at
1168 #define ANHE_at_cache(he)
1169#endif
221 1170
222#if EV_MULTIPLICITY 1171#if EV_MULTIPLICITY
223 1172
224 struct ev_loop 1173 struct ev_loop
225 { 1174 {
1175 ev_tstamp ev_rt_now;
1176 #define ev_rt_now ((loop)->ev_rt_now)
226 #define VAR(name,decl) decl; 1177 #define VAR(name,decl) decl;
227 #include "ev_vars.h" 1178 #include "ev_vars.h"
228 #undef VAR 1179 #undef VAR
229 }; 1180 };
230 #include "ev_wrap.h" 1181 #include "ev_wrap.h"
231 1182
232 struct ev_loop default_loop_struct; 1183 static struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop; 1184 struct ev_loop *ev_default_loop_ptr;
234 1185
235#else 1186#else
236 1187
1188 ev_tstamp ev_rt_now;
237 #define VAR(name,decl) static decl; 1189 #define VAR(name,decl) static decl;
238 #include "ev_vars.h" 1190 #include "ev_vars.h"
239 #undef VAR 1191 #undef VAR
240 1192
241 static int default_loop; 1193 static int ev_default_loop_ptr;
242 1194
243#endif 1195#endif
1196
1197#if EV_FEATURE_API
1198# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1199# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1200# define EV_INVOKE_PENDING invoke_cb (EV_A)
1201#else
1202# define EV_RELEASE_CB (void)0
1203# define EV_ACQUIRE_CB (void)0
1204# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1205#endif
1206
1207#define EVBREAK_RECURSE 0x80
244 1208
245/*****************************************************************************/ 1209/*****************************************************************************/
246 1210
247inline ev_tstamp 1211#ifndef EV_HAVE_EV_TIME
1212ev_tstamp
248ev_time (void) 1213ev_time (void)
249{ 1214{
250#if EV_USE_REALTIME 1215#if EV_USE_REALTIME
1216 if (expect_true (have_realtime))
1217 {
251 struct timespec ts; 1218 struct timespec ts;
252 clock_gettime (CLOCK_REALTIME, &ts); 1219 clock_gettime (CLOCK_REALTIME, &ts);
253 return ts.tv_sec + ts.tv_nsec * 1e-9; 1220 return ts.tv_sec + ts.tv_nsec * 1e-9;
254#else 1221 }
1222#endif
1223
255 struct timeval tv; 1224 struct timeval tv;
256 gettimeofday (&tv, 0); 1225 gettimeofday (&tv, 0);
257 return tv.tv_sec + tv.tv_usec * 1e-6; 1226 return tv.tv_sec + tv.tv_usec * 1e-6;
258#endif
259} 1227}
1228#endif
260 1229
261inline ev_tstamp 1230inline_size ev_tstamp
262get_clock (void) 1231get_clock (void)
263{ 1232{
264#if EV_USE_MONOTONIC 1233#if EV_USE_MONOTONIC
265 if (expect_true (have_monotonic)) 1234 if (expect_true (have_monotonic))
266 { 1235 {
271#endif 1240#endif
272 1241
273 return ev_time (); 1242 return ev_time ();
274} 1243}
275 1244
1245#if EV_MULTIPLICITY
276ev_tstamp 1246ev_tstamp
277ev_now (EV_P) 1247ev_now (EV_P)
278{ 1248{
279 return rt_now; 1249 return ev_rt_now;
280} 1250}
1251#endif
281 1252
282#define array_roundsize(type,n) ((n) | 4 & ~3) 1253void
1254ev_sleep (ev_tstamp delay)
1255{
1256 if (delay > 0.)
1257 {
1258#if EV_USE_NANOSLEEP
1259 struct timespec ts;
1260
1261 EV_TS_SET (ts, delay);
1262 nanosleep (&ts, 0);
1263#elif defined(_WIN32)
1264 Sleep ((unsigned long)(delay * 1e3));
1265#else
1266 struct timeval tv;
1267
1268 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1269 /* something not guaranteed by newer posix versions, but guaranteed */
1270 /* by older ones */
1271 EV_TV_SET (tv, delay);
1272 select (0, 0, 0, 0, &tv);
1273#endif
1274 }
1275}
1276
1277/*****************************************************************************/
1278
1279#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1280
1281/* find a suitable new size for the given array, */
1282/* hopefully by rounding to a nice-to-malloc size */
1283inline_size int
1284array_nextsize (int elem, int cur, int cnt)
1285{
1286 int ncur = cur + 1;
1287
1288 do
1289 ncur <<= 1;
1290 while (cnt > ncur);
1291
1292 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
1293 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1294 {
1295 ncur *= elem;
1296 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1297 ncur = ncur - sizeof (void *) * 4;
1298 ncur /= elem;
1299 }
1300
1301 return ncur;
1302}
1303
1304static void * noinline ecb_cold
1305array_realloc (int elem, void *base, int *cur, int cnt)
1306{
1307 *cur = array_nextsize (elem, *cur, cnt);
1308 return ev_realloc (base, elem * *cur);
1309}
1310
1311#define array_init_zero(base,count) \
1312 memset ((void *)(base), 0, sizeof (*(base)) * (count))
283 1313
284#define array_needsize(type,base,cur,cnt,init) \ 1314#define array_needsize(type,base,cur,cnt,init) \
285 if (expect_false ((cnt) > cur)) \ 1315 if (expect_false ((cnt) > (cur))) \
286 { \ 1316 { \
287 int newcnt = cur; \ 1317 int ecb_unused ocur_ = (cur); \
288 do \ 1318 (base) = (type *)array_realloc \
289 { \ 1319 (sizeof (type), (base), &(cur), (cnt)); \
290 newcnt = array_roundsize (type, newcnt << 1); \ 1320 init ((base) + (ocur_), (cur) - ocur_); \
291 } \
292 while ((cnt) > newcnt); \
293 \
294 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
295 init (base + cur, newcnt - cur); \
296 cur = newcnt; \
297 } 1321 }
298 1322
1323#if 0
299#define array_slim(type,stem) \ 1324#define array_slim(type,stem) \
300 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1325 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
301 { \ 1326 { \
302 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1327 stem ## max = array_roundsize (stem ## cnt >> 1); \
303 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1328 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
304 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1329 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
305 } 1330 }
306 1331#endif
307/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
308/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
309#define array_free_microshit(stem) \
310 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
311 1332
312#define array_free(stem, idx) \ 1333#define array_free(stem, idx) \
313 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1334 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
314 1335
315/*****************************************************************************/ 1336/*****************************************************************************/
316 1337
317static void 1338/* dummy callback for pending events */
318anfds_init (ANFD *base, int count) 1339static void noinline
1340pendingcb (EV_P_ ev_prepare *w, int revents)
319{ 1341{
320 while (count--)
321 {
322 base->head = 0;
323 base->events = EV_NONE;
324 base->reify = 0;
325
326 ++base;
327 }
328} 1342}
329 1343
330void 1344void noinline
331ev_feed_event (EV_P_ void *w, int revents) 1345ev_feed_event (EV_P_ void *w, int revents)
332{ 1346{
333 W w_ = (W)w; 1347 W w_ = (W)w;
1348 int pri = ABSPRI (w_);
334 1349
335 if (w_->pending) 1350 if (expect_false (w_->pending))
1351 pendings [pri][w_->pending - 1].events |= revents;
1352 else
336 { 1353 {
1354 w_->pending = ++pendingcnt [pri];
1355 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1356 pendings [pri][w_->pending - 1].w = w_;
337 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1357 pendings [pri][w_->pending - 1].events = revents;
338 return;
339 } 1358 }
340
341 w_->pending = ++pendingcnt [ABSPRI (w_)];
342 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
343 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
344 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
345} 1359}
346 1360
347static void 1361inline_speed void
1362feed_reverse (EV_P_ W w)
1363{
1364 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1365 rfeeds [rfeedcnt++] = w;
1366}
1367
1368inline_size void
1369feed_reverse_done (EV_P_ int revents)
1370{
1371 do
1372 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1373 while (rfeedcnt);
1374}
1375
1376inline_speed void
348queue_events (EV_P_ W *events, int eventcnt, int type) 1377queue_events (EV_P_ W *events, int eventcnt, int type)
349{ 1378{
350 int i; 1379 int i;
351 1380
352 for (i = 0; i < eventcnt; ++i) 1381 for (i = 0; i < eventcnt; ++i)
353 ev_feed_event (EV_A_ events [i], type); 1382 ev_feed_event (EV_A_ events [i], type);
354} 1383}
355 1384
1385/*****************************************************************************/
1386
356inline void 1387inline_speed void
357fd_event (EV_P_ int fd, int revents) 1388fd_event_nocheck (EV_P_ int fd, int revents)
358{ 1389{
359 ANFD *anfd = anfds + fd; 1390 ANFD *anfd = anfds + fd;
360 struct ev_io *w; 1391 ev_io *w;
361 1392
362 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1393 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
363 { 1394 {
364 int ev = w->events & revents; 1395 int ev = w->events & revents;
365 1396
366 if (ev) 1397 if (ev)
367 ev_feed_event (EV_A_ (W)w, ev); 1398 ev_feed_event (EV_A_ (W)w, ev);
368 } 1399 }
369} 1400}
370 1401
1402/* do not submit kernel events for fds that have reify set */
1403/* because that means they changed while we were polling for new events */
1404inline_speed void
1405fd_event (EV_P_ int fd, int revents)
1406{
1407 ANFD *anfd = anfds + fd;
1408
1409 if (expect_true (!anfd->reify))
1410 fd_event_nocheck (EV_A_ fd, revents);
1411}
1412
371void 1413void
372ev_feed_fd_event (EV_P_ int fd, int revents) 1414ev_feed_fd_event (EV_P_ int fd, int revents)
373{ 1415{
1416 if (fd >= 0 && fd < anfdmax)
374 fd_event (EV_A_ fd, revents); 1417 fd_event_nocheck (EV_A_ fd, revents);
375} 1418}
376 1419
377/*****************************************************************************/ 1420/* make sure the external fd watch events are in-sync */
378 1421/* with the kernel/libev internal state */
379static void 1422inline_size void
380fd_reify (EV_P) 1423fd_reify (EV_P)
381{ 1424{
382 int i; 1425 int i;
383 1426
1427#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
384 for (i = 0; i < fdchangecnt; ++i) 1428 for (i = 0; i < fdchangecnt; ++i)
385 { 1429 {
386 int fd = fdchanges [i]; 1430 int fd = fdchanges [i];
387 ANFD *anfd = anfds + fd; 1431 ANFD *anfd = anfds + fd;
1432
1433 if (anfd->reify & EV__IOFDSET && anfd->head)
1434 {
1435 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1436
1437 if (handle != anfd->handle)
1438 {
1439 unsigned long arg;
1440
1441 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1442
1443 /* handle changed, but fd didn't - we need to do it in two steps */
1444 backend_modify (EV_A_ fd, anfd->events, 0);
1445 anfd->events = 0;
1446 anfd->handle = handle;
1447 }
1448 }
1449 }
1450#endif
1451
1452 for (i = 0; i < fdchangecnt; ++i)
1453 {
1454 int fd = fdchanges [i];
1455 ANFD *anfd = anfds + fd;
388 struct ev_io *w; 1456 ev_io *w;
389 1457
390 int events = 0; 1458 unsigned char o_events = anfd->events;
1459 unsigned char o_reify = anfd->reify;
391 1460
392 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
393 events |= w->events;
394
395 anfd->reify = 0; 1461 anfd->reify = 0;
396 1462
397 method_modify (EV_A_ fd, anfd->events, events); 1463 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1464 {
398 anfd->events = events; 1465 anfd->events = 0;
1466
1467 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1468 anfd->events |= (unsigned char)w->events;
1469
1470 if (o_events != anfd->events)
1471 o_reify = EV__IOFDSET; /* actually |= */
1472 }
1473
1474 if (o_reify & EV__IOFDSET)
1475 backend_modify (EV_A_ fd, o_events, anfd->events);
399 } 1476 }
400 1477
401 fdchangecnt = 0; 1478 fdchangecnt = 0;
402} 1479}
403 1480
404static void 1481/* something about the given fd changed */
1482inline_size void
405fd_change (EV_P_ int fd) 1483fd_change (EV_P_ int fd, int flags)
406{ 1484{
407 if (anfds [fd].reify) 1485 unsigned char reify = anfds [fd].reify;
408 return;
409
410 anfds [fd].reify = 1; 1486 anfds [fd].reify |= flags;
411 1487
1488 if (expect_true (!reify))
1489 {
412 ++fdchangecnt; 1490 ++fdchangecnt;
413 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 1491 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
414 fdchanges [fdchangecnt - 1] = fd; 1492 fdchanges [fdchangecnt - 1] = fd;
1493 }
415} 1494}
416 1495
417static void 1496/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1497inline_speed void ecb_cold
418fd_kill (EV_P_ int fd) 1498fd_kill (EV_P_ int fd)
419{ 1499{
420 struct ev_io *w; 1500 ev_io *w;
421 1501
422 while ((w = (struct ev_io *)anfds [fd].head)) 1502 while ((w = (ev_io *)anfds [fd].head))
423 { 1503 {
424 ev_io_stop (EV_A_ w); 1504 ev_io_stop (EV_A_ w);
425 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1505 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
426 } 1506 }
427} 1507}
428 1508
429static int 1509/* check whether the given fd is actually valid, for error recovery */
1510inline_size int ecb_cold
430fd_valid (int fd) 1511fd_valid (int fd)
431{ 1512{
432#ifdef WIN32 1513#ifdef _WIN32
433 return !!win32_get_osfhandle (fd); 1514 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
434#else 1515#else
435 return fcntl (fd, F_GETFD) != -1; 1516 return fcntl (fd, F_GETFD) != -1;
436#endif 1517#endif
437} 1518}
438 1519
439/* called on EBADF to verify fds */ 1520/* called on EBADF to verify fds */
440static void 1521static void noinline ecb_cold
441fd_ebadf (EV_P) 1522fd_ebadf (EV_P)
442{ 1523{
443 int fd; 1524 int fd;
444 1525
445 for (fd = 0; fd < anfdmax; ++fd) 1526 for (fd = 0; fd < anfdmax; ++fd)
446 if (anfds [fd].events) 1527 if (anfds [fd].events)
447 if (!fd_valid (fd) == -1 && errno == EBADF) 1528 if (!fd_valid (fd) && errno == EBADF)
448 fd_kill (EV_A_ fd); 1529 fd_kill (EV_A_ fd);
449} 1530}
450 1531
451/* called on ENOMEM in select/poll to kill some fds and retry */ 1532/* called on ENOMEM in select/poll to kill some fds and retry */
452static void 1533static void noinline ecb_cold
453fd_enomem (EV_P) 1534fd_enomem (EV_P)
454{ 1535{
455 int fd; 1536 int fd;
456 1537
457 for (fd = anfdmax; fd--; ) 1538 for (fd = anfdmax; fd--; )
458 if (anfds [fd].events) 1539 if (anfds [fd].events)
459 { 1540 {
460 fd_kill (EV_A_ fd); 1541 fd_kill (EV_A_ fd);
461 return; 1542 break;
462 } 1543 }
463} 1544}
464 1545
465/* usually called after fork if method needs to re-arm all fds from scratch */ 1546/* usually called after fork if backend needs to re-arm all fds from scratch */
466static void 1547static void noinline
467fd_rearm_all (EV_P) 1548fd_rearm_all (EV_P)
468{ 1549{
469 int fd; 1550 int fd;
470 1551
471 /* this should be highly optimised to not do anything but set a flag */
472 for (fd = 0; fd < anfdmax; ++fd) 1552 for (fd = 0; fd < anfdmax; ++fd)
473 if (anfds [fd].events) 1553 if (anfds [fd].events)
474 { 1554 {
475 anfds [fd].events = 0; 1555 anfds [fd].events = 0;
476 fd_change (EV_A_ fd); 1556 anfds [fd].emask = 0;
1557 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
477 } 1558 }
478} 1559}
479 1560
1561/* used to prepare libev internal fd's */
1562/* this is not fork-safe */
1563inline_speed void
1564fd_intern (int fd)
1565{
1566#ifdef _WIN32
1567 unsigned long arg = 1;
1568 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1569#else
1570 fcntl (fd, F_SETFD, FD_CLOEXEC);
1571 fcntl (fd, F_SETFL, O_NONBLOCK);
1572#endif
1573}
1574
480/*****************************************************************************/ 1575/*****************************************************************************/
481 1576
1577/*
1578 * the heap functions want a real array index. array index 0 is guaranteed to not
1579 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1580 * the branching factor of the d-tree.
1581 */
1582
1583/*
1584 * at the moment we allow libev the luxury of two heaps,
1585 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1586 * which is more cache-efficient.
1587 * the difference is about 5% with 50000+ watchers.
1588 */
1589#if EV_USE_4HEAP
1590
1591#define DHEAP 4
1592#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1593#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1594#define UPHEAP_DONE(p,k) ((p) == (k))
1595
1596/* away from the root */
1597inline_speed void
1598downheap (ANHE *heap, int N, int k)
1599{
1600 ANHE he = heap [k];
1601 ANHE *E = heap + N + HEAP0;
1602
1603 for (;;)
1604 {
1605 ev_tstamp minat;
1606 ANHE *minpos;
1607 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1608
1609 /* find minimum child */
1610 if (expect_true (pos + DHEAP - 1 < E))
1611 {
1612 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1613 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1614 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1615 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1616 }
1617 else if (pos < E)
1618 {
1619 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1620 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1621 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1622 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1623 }
1624 else
1625 break;
1626
1627 if (ANHE_at (he) <= minat)
1628 break;
1629
1630 heap [k] = *minpos;
1631 ev_active (ANHE_w (*minpos)) = k;
1632
1633 k = minpos - heap;
1634 }
1635
1636 heap [k] = he;
1637 ev_active (ANHE_w (he)) = k;
1638}
1639
1640#else /* 4HEAP */
1641
1642#define HEAP0 1
1643#define HPARENT(k) ((k) >> 1)
1644#define UPHEAP_DONE(p,k) (!(p))
1645
1646/* away from the root */
1647inline_speed void
1648downheap (ANHE *heap, int N, int k)
1649{
1650 ANHE he = heap [k];
1651
1652 for (;;)
1653 {
1654 int c = k << 1;
1655
1656 if (c >= N + HEAP0)
1657 break;
1658
1659 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1660 ? 1 : 0;
1661
1662 if (ANHE_at (he) <= ANHE_at (heap [c]))
1663 break;
1664
1665 heap [k] = heap [c];
1666 ev_active (ANHE_w (heap [k])) = k;
1667
1668 k = c;
1669 }
1670
1671 heap [k] = he;
1672 ev_active (ANHE_w (he)) = k;
1673}
1674#endif
1675
1676/* towards the root */
1677inline_speed void
1678upheap (ANHE *heap, int k)
1679{
1680 ANHE he = heap [k];
1681
1682 for (;;)
1683 {
1684 int p = HPARENT (k);
1685
1686 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1687 break;
1688
1689 heap [k] = heap [p];
1690 ev_active (ANHE_w (heap [k])) = k;
1691 k = p;
1692 }
1693
1694 heap [k] = he;
1695 ev_active (ANHE_w (he)) = k;
1696}
1697
1698/* move an element suitably so it is in a correct place */
1699inline_size void
1700adjustheap (ANHE *heap, int N, int k)
1701{
1702 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1703 upheap (heap, k);
1704 else
1705 downheap (heap, N, k);
1706}
1707
1708/* rebuild the heap: this function is used only once and executed rarely */
1709inline_size void
1710reheap (ANHE *heap, int N)
1711{
1712 int i;
1713
1714 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1715 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1716 for (i = 0; i < N; ++i)
1717 upheap (heap, i + HEAP0);
1718}
1719
1720/*****************************************************************************/
1721
1722/* associate signal watchers to a signal signal */
1723typedef struct
1724{
1725 EV_ATOMIC_T pending;
1726#if EV_MULTIPLICITY
1727 EV_P;
1728#endif
1729 WL head;
1730} ANSIG;
1731
1732static ANSIG signals [EV_NSIG - 1];
1733
1734/*****************************************************************************/
1735
1736#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1737
1738static void noinline ecb_cold
1739evpipe_init (EV_P)
1740{
1741 if (!ev_is_active (&pipe_w))
1742 {
1743# if EV_USE_EVENTFD
1744 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1745 if (evfd < 0 && errno == EINVAL)
1746 evfd = eventfd (0, 0);
1747
1748 if (evfd >= 0)
1749 {
1750 evpipe [0] = -1;
1751 fd_intern (evfd); /* doing it twice doesn't hurt */
1752 ev_io_set (&pipe_w, evfd, EV_READ);
1753 }
1754 else
1755# endif
1756 {
1757 while (pipe (evpipe))
1758 ev_syserr ("(libev) error creating signal/async pipe");
1759
1760 fd_intern (evpipe [0]);
1761 fd_intern (evpipe [1]);
1762 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1763 }
1764
1765 ev_io_start (EV_A_ &pipe_w);
1766 ev_unref (EV_A); /* watcher should not keep loop alive */
1767 }
1768}
1769
1770inline_speed void
1771evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1772{
1773 if (expect_true (*flag))
1774 return;
1775
1776 *flag = 1;
1777
1778 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1779
1780 pipe_write_skipped = 1;
1781
1782 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1783
1784 if (pipe_write_wanted)
1785 {
1786 int old_errno;
1787
1788 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1789
1790 old_errno = errno; /* save errno because write will clobber it */
1791
1792#if EV_USE_EVENTFD
1793 if (evfd >= 0)
1794 {
1795 uint64_t counter = 1;
1796 write (evfd, &counter, sizeof (uint64_t));
1797 }
1798 else
1799#endif
1800 {
1801 /* win32 people keep sending patches that change this write() to send() */
1802 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1803 /* so when you think this write should be a send instead, please find out */
1804 /* where your send() is from - it's definitely not the microsoft send, and */
1805 /* tell me. thank you. */
1806 write (evpipe [1], &(evpipe [1]), 1);
1807 }
1808
1809 errno = old_errno;
1810 }
1811}
1812
1813/* called whenever the libev signal pipe */
1814/* got some events (signal, async) */
482static void 1815static void
483upheap (WT *heap, int k) 1816pipecb (EV_P_ ev_io *iow, int revents)
484{ 1817{
485 WT w = heap [k]; 1818 int i;
486 1819
487 while (k && heap [k >> 1]->at > w->at) 1820 if (revents & EV_READ)
488 {
489 heap [k] = heap [k >> 1];
490 ((W)heap [k])->active = k + 1;
491 k >>= 1;
492 } 1821 {
1822#if EV_USE_EVENTFD
1823 if (evfd >= 0)
1824 {
1825 uint64_t counter;
1826 read (evfd, &counter, sizeof (uint64_t));
1827 }
1828 else
1829#endif
1830 {
1831 char dummy;
1832 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1833 read (evpipe [0], &dummy, 1);
1834 }
1835 }
493 1836
494 heap [k] = w; 1837 pipe_write_skipped = 0;
495 ((W)heap [k])->active = k + 1;
496 1838
1839#if EV_SIGNAL_ENABLE
1840 if (sig_pending)
1841 {
1842 sig_pending = 0;
1843
1844 for (i = EV_NSIG - 1; i--; )
1845 if (expect_false (signals [i].pending))
1846 ev_feed_signal_event (EV_A_ i + 1);
1847 }
1848#endif
1849
1850#if EV_ASYNC_ENABLE
1851 if (async_pending)
1852 {
1853 async_pending = 0;
1854
1855 for (i = asynccnt; i--; )
1856 if (asyncs [i]->sent)
1857 {
1858 asyncs [i]->sent = 0;
1859 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1860 }
1861 }
1862#endif
1863}
1864
1865/*****************************************************************************/
1866
1867void
1868ev_feed_signal (int signum)
1869{
1870#if EV_MULTIPLICITY
1871 EV_P = signals [signum - 1].loop;
1872
1873 if (!EV_A)
1874 return;
1875#endif
1876
1877 if (!ev_active (&pipe_w))
1878 return;
1879
1880 signals [signum - 1].pending = 1;
1881 evpipe_write (EV_A_ &sig_pending);
497} 1882}
498 1883
499static void 1884static void
500downheap (WT *heap, int N, int k)
501{
502 WT w = heap [k];
503
504 while (k < (N >> 1))
505 {
506 int j = k << 1;
507
508 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
509 ++j;
510
511 if (w->at <= heap [j]->at)
512 break;
513
514 heap [k] = heap [j];
515 ((W)heap [k])->active = k + 1;
516 k = j;
517 }
518
519 heap [k] = w;
520 ((W)heap [k])->active = k + 1;
521}
522
523inline void
524adjustheap (WT *heap, int N, int k, ev_tstamp at)
525{
526 ev_tstamp old_at = heap [k]->at;
527 heap [k]->at = at;
528
529 if (old_at < at)
530 downheap (heap, N, k);
531 else
532 upheap (heap, k);
533}
534
535/*****************************************************************************/
536
537typedef struct
538{
539 WL head;
540 sig_atomic_t volatile gotsig;
541} ANSIG;
542
543static ANSIG *signals;
544static int signalmax;
545
546static int sigpipe [2];
547static sig_atomic_t volatile gotsig;
548static struct ev_io sigev;
549
550static void
551signals_init (ANSIG *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->gotsig = 0;
557
558 ++base;
559 }
560}
561
562static void
563sighandler (int signum) 1885ev_sighandler (int signum)
564{ 1886{
565#if WIN32
566 signal (signum, sighandler);
567#endif
568
569 signals [signum - 1].gotsig = 1;
570
571 if (!gotsig)
572 {
573 int old_errno = errno;
574 gotsig = 1;
575#ifdef WIN32 1887#ifdef _WIN32
576 send (sigpipe [1], &signum, 1, MSG_DONTWAIT); 1888 signal (signum, ev_sighandler);
577#else
578 write (sigpipe [1], &signum, 1);
579#endif 1889#endif
580 errno = old_errno;
581 }
582}
583 1890
584void 1891 ev_feed_signal (signum);
1892}
1893
1894void noinline
585ev_feed_signal_event (EV_P_ int signum) 1895ev_feed_signal_event (EV_P_ int signum)
586{ 1896{
587 WL w; 1897 WL w;
588 1898
1899 if (expect_false (signum <= 0 || signum > EV_NSIG))
1900 return;
1901
1902 --signum;
1903
589#if EV_MULTIPLICITY 1904#if EV_MULTIPLICITY
590 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 1905 /* it is permissible to try to feed a signal to the wrong loop */
591#endif 1906 /* or, likely more useful, feeding a signal nobody is waiting for */
592 1907
593 --signum; 1908 if (expect_false (signals [signum].loop != EV_A))
594
595 if (signum < 0 || signum >= signalmax)
596 return; 1909 return;
1910#endif
597 1911
598 signals [signum].gotsig = 0; 1912 signals [signum].pending = 0;
599 1913
600 for (w = signals [signum].head; w; w = w->next) 1914 for (w = signals [signum].head; w; w = w->next)
601 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1915 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
602} 1916}
603 1917
1918#if EV_USE_SIGNALFD
604static void 1919static void
605sigcb (EV_P_ struct ev_io *iow, int revents) 1920sigfdcb (EV_P_ ev_io *iow, int revents)
606{ 1921{
607 int signum; 1922 struct signalfd_siginfo si[2], *sip; /* these structs are big */
608 1923
609#ifdef WIN32 1924 for (;;)
610 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 1925 {
611#else 1926 ssize_t res = read (sigfd, si, sizeof (si));
612 read (sigpipe [0], &revents, 1);
613#endif
614 gotsig = 0;
615 1927
616 for (signum = signalmax; signum--; ) 1928 /* not ISO-C, as res might be -1, but works with SuS */
617 if (signals [signum].gotsig) 1929 for (sip = si; (char *)sip < (char *)si + res; ++sip)
618 ev_feed_signal_event (EV_A_ signum + 1); 1930 ev_feed_signal_event (EV_A_ sip->ssi_signo);
619}
620 1931
621static void 1932 if (res < (ssize_t)sizeof (si))
622siginit (EV_P) 1933 break;
623{ 1934 }
624#ifndef WIN32
625 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
626 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
627
628 /* rather than sort out wether we really need nb, set it */
629 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
630 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
631#endif
632
633 ev_io_set (&sigev, sigpipe [0], EV_READ);
634 ev_io_start (EV_A_ &sigev);
635 ev_unref (EV_A); /* child watcher should not keep loop alive */
636} 1935}
1936#endif
1937
1938#endif
637 1939
638/*****************************************************************************/ 1940/*****************************************************************************/
639 1941
640static struct ev_child *childs [PID_HASHSIZE]; 1942#if EV_CHILD_ENABLE
1943static WL childs [EV_PID_HASHSIZE];
641 1944
642#ifndef WIN32
643
644static struct ev_signal childev; 1945static ev_signal childev;
1946
1947#ifndef WIFCONTINUED
1948# define WIFCONTINUED(status) 0
1949#endif
1950
1951/* handle a single child status event */
1952inline_speed void
1953child_reap (EV_P_ int chain, int pid, int status)
1954{
1955 ev_child *w;
1956 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1957
1958 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1959 {
1960 if ((w->pid == pid || !w->pid)
1961 && (!traced || (w->flags & 1)))
1962 {
1963 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1964 w->rpid = pid;
1965 w->rstatus = status;
1966 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1967 }
1968 }
1969}
645 1970
646#ifndef WCONTINUED 1971#ifndef WCONTINUED
647# define WCONTINUED 0 1972# define WCONTINUED 0
648#endif 1973#endif
649 1974
1975/* called on sigchld etc., calls waitpid */
650static void 1976static void
651child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
652{
653 struct ev_child *w;
654
655 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
656 if (w->pid == pid || !w->pid)
657 {
658 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
659 w->rpid = pid;
660 w->rstatus = status;
661 ev_feed_event (EV_A_ (W)w, EV_CHILD);
662 }
663}
664
665static void
666childcb (EV_P_ struct ev_signal *sw, int revents) 1977childcb (EV_P_ ev_signal *sw, int revents)
667{ 1978{
668 int pid, status; 1979 int pid, status;
669 1980
1981 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
670 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1982 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
671 { 1983 if (!WCONTINUED
1984 || errno != EINVAL
1985 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1986 return;
1987
672 /* make sure we are called again until all childs have been reaped */ 1988 /* make sure we are called again until all children have been reaped */
1989 /* we need to do it this way so that the callback gets called before we continue */
673 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1990 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
674 1991
675 child_reap (EV_A_ sw, pid, pid, status); 1992 child_reap (EV_A_ pid, pid, status);
1993 if ((EV_PID_HASHSIZE) > 1)
676 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1994 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
677 }
678} 1995}
679 1996
680#endif 1997#endif
681 1998
682/*****************************************************************************/ 1999/*****************************************************************************/
683 2000
2001#if EV_USE_IOCP
2002# include "ev_iocp.c"
2003#endif
2004#if EV_USE_PORT
2005# include "ev_port.c"
2006#endif
684#if EV_USE_KQUEUE 2007#if EV_USE_KQUEUE
685# include "ev_kqueue.c" 2008# include "ev_kqueue.c"
686#endif 2009#endif
687#if EV_USE_EPOLL 2010#if EV_USE_EPOLL
688# include "ev_epoll.c" 2011# include "ev_epoll.c"
692#endif 2015#endif
693#if EV_USE_SELECT 2016#if EV_USE_SELECT
694# include "ev_select.c" 2017# include "ev_select.c"
695#endif 2018#endif
696 2019
697int 2020int ecb_cold
698ev_version_major (void) 2021ev_version_major (void)
699{ 2022{
700 return EV_VERSION_MAJOR; 2023 return EV_VERSION_MAJOR;
701} 2024}
702 2025
703int 2026int ecb_cold
704ev_version_minor (void) 2027ev_version_minor (void)
705{ 2028{
706 return EV_VERSION_MINOR; 2029 return EV_VERSION_MINOR;
707} 2030}
708 2031
709/* return true if we are running with elevated privileges and should ignore env variables */ 2032/* return true if we are running with elevated privileges and should ignore env variables */
710static int 2033int inline_size ecb_cold
711enable_secure (void) 2034enable_secure (void)
712{ 2035{
713#ifdef WIN32 2036#ifdef _WIN32
714 return 0; 2037 return 0;
715#else 2038#else
716 return getuid () != geteuid () 2039 return getuid () != geteuid ()
717 || getgid () != getegid (); 2040 || getgid () != getegid ();
718#endif 2041#endif
719} 2042}
720 2043
721int 2044unsigned int ecb_cold
2045ev_supported_backends (void)
2046{
2047 unsigned int flags = 0;
2048
2049 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2050 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2051 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2052 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2053 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2054
2055 return flags;
2056}
2057
2058unsigned int ecb_cold
2059ev_recommended_backends (void)
2060{
2061 unsigned int flags = ev_supported_backends ();
2062
2063#ifndef __NetBSD__
2064 /* kqueue is borked on everything but netbsd apparently */
2065 /* it usually doesn't work correctly on anything but sockets and pipes */
2066 flags &= ~EVBACKEND_KQUEUE;
2067#endif
2068#ifdef __APPLE__
2069 /* only select works correctly on that "unix-certified" platform */
2070 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2071 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2072#endif
2073#ifdef __FreeBSD__
2074 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2075#endif
2076
2077 return flags;
2078}
2079
2080unsigned int ecb_cold
2081ev_embeddable_backends (void)
2082{
2083 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2084
2085 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2086 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2087 flags &= ~EVBACKEND_EPOLL;
2088
2089 return flags;
2090}
2091
2092unsigned int
2093ev_backend (EV_P)
2094{
2095 return backend;
2096}
2097
2098#if EV_FEATURE_API
2099unsigned int
2100ev_iteration (EV_P)
2101{
2102 return loop_count;
2103}
2104
2105unsigned int
722ev_method (EV_P) 2106ev_depth (EV_P)
723{ 2107{
724 return method; 2108 return loop_depth;
725} 2109}
726 2110
727static void 2111void
728loop_init (EV_P_ int methods) 2112ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
729{ 2113{
730 if (!method) 2114 io_blocktime = interval;
2115}
2116
2117void
2118ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2119{
2120 timeout_blocktime = interval;
2121}
2122
2123void
2124ev_set_userdata (EV_P_ void *data)
2125{
2126 userdata = data;
2127}
2128
2129void *
2130ev_userdata (EV_P)
2131{
2132 return userdata;
2133}
2134
2135void
2136ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2137{
2138 invoke_cb = invoke_pending_cb;
2139}
2140
2141void
2142ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2143{
2144 release_cb = release;
2145 acquire_cb = acquire;
2146}
2147#endif
2148
2149/* initialise a loop structure, must be zero-initialised */
2150static void noinline ecb_cold
2151loop_init (EV_P_ unsigned int flags)
2152{
2153 if (!backend)
731 { 2154 {
2155 origflags = flags;
2156
2157#if EV_USE_REALTIME
2158 if (!have_realtime)
2159 {
2160 struct timespec ts;
2161
2162 if (!clock_gettime (CLOCK_REALTIME, &ts))
2163 have_realtime = 1;
2164 }
2165#endif
2166
732#if EV_USE_MONOTONIC 2167#if EV_USE_MONOTONIC
2168 if (!have_monotonic)
2169 {
2170 struct timespec ts;
2171
2172 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2173 have_monotonic = 1;
2174 }
2175#endif
2176
2177 /* pid check not overridable via env */
2178#ifndef _WIN32
2179 if (flags & EVFLAG_FORKCHECK)
2180 curpid = getpid ();
2181#endif
2182
2183 if (!(flags & EVFLAG_NOENV)
2184 && !enable_secure ()
2185 && getenv ("LIBEV_FLAGS"))
2186 flags = atoi (getenv ("LIBEV_FLAGS"));
2187
2188 ev_rt_now = ev_time ();
2189 mn_now = get_clock ();
2190 now_floor = mn_now;
2191 rtmn_diff = ev_rt_now - mn_now;
2192#if EV_FEATURE_API
2193 invoke_cb = ev_invoke_pending;
2194#endif
2195
2196 io_blocktime = 0.;
2197 timeout_blocktime = 0.;
2198 backend = 0;
2199 backend_fd = -1;
2200 sig_pending = 0;
2201#if EV_ASYNC_ENABLE
2202 async_pending = 0;
2203#endif
2204 pipe_write_skipped = 0;
2205 pipe_write_wanted = 0;
2206#if EV_USE_INOTIFY
2207 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2208#endif
2209#if EV_USE_SIGNALFD
2210 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2211#endif
2212
2213 if (!(flags & EVBACKEND_MASK))
2214 flags |= ev_recommended_backends ();
2215
2216#if EV_USE_IOCP
2217 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2218#endif
2219#if EV_USE_PORT
2220 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2221#endif
2222#if EV_USE_KQUEUE
2223 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2224#endif
2225#if EV_USE_EPOLL
2226 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2227#endif
2228#if EV_USE_POLL
2229 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2230#endif
2231#if EV_USE_SELECT
2232 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2233#endif
2234
2235 ev_prepare_init (&pending_w, pendingcb);
2236
2237#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2238 ev_init (&pipe_w, pipecb);
2239 ev_set_priority (&pipe_w, EV_MAXPRI);
2240#endif
2241 }
2242}
2243
2244/* free up a loop structure */
2245void ecb_cold
2246ev_loop_destroy (EV_P)
2247{
2248 int i;
2249
2250#if EV_MULTIPLICITY
2251 /* mimic free (0) */
2252 if (!EV_A)
2253 return;
2254#endif
2255
2256#if EV_CLEANUP_ENABLE
2257 /* queue cleanup watchers (and execute them) */
2258 if (expect_false (cleanupcnt))
2259 {
2260 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2261 EV_INVOKE_PENDING;
2262 }
2263#endif
2264
2265#if EV_CHILD_ENABLE
2266 if (ev_is_active (&childev))
2267 {
2268 ev_ref (EV_A); /* child watcher */
2269 ev_signal_stop (EV_A_ &childev);
2270 }
2271#endif
2272
2273 if (ev_is_active (&pipe_w))
2274 {
2275 /*ev_ref (EV_A);*/
2276 /*ev_io_stop (EV_A_ &pipe_w);*/
2277
2278#if EV_USE_EVENTFD
2279 if (evfd >= 0)
2280 close (evfd);
2281#endif
2282
2283 if (evpipe [0] >= 0)
2284 {
2285 EV_WIN32_CLOSE_FD (evpipe [0]);
2286 EV_WIN32_CLOSE_FD (evpipe [1]);
2287 }
2288 }
2289
2290#if EV_USE_SIGNALFD
2291 if (ev_is_active (&sigfd_w))
2292 close (sigfd);
2293#endif
2294
2295#if EV_USE_INOTIFY
2296 if (fs_fd >= 0)
2297 close (fs_fd);
2298#endif
2299
2300 if (backend_fd >= 0)
2301 close (backend_fd);
2302
2303#if EV_USE_IOCP
2304 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2305#endif
2306#if EV_USE_PORT
2307 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2308#endif
2309#if EV_USE_KQUEUE
2310 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2311#endif
2312#if EV_USE_EPOLL
2313 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2314#endif
2315#if EV_USE_POLL
2316 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2317#endif
2318#if EV_USE_SELECT
2319 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2320#endif
2321
2322 for (i = NUMPRI; i--; )
2323 {
2324 array_free (pending, [i]);
2325#if EV_IDLE_ENABLE
2326 array_free (idle, [i]);
2327#endif
2328 }
2329
2330 ev_free (anfds); anfds = 0; anfdmax = 0;
2331
2332 /* have to use the microsoft-never-gets-it-right macro */
2333 array_free (rfeed, EMPTY);
2334 array_free (fdchange, EMPTY);
2335 array_free (timer, EMPTY);
2336#if EV_PERIODIC_ENABLE
2337 array_free (periodic, EMPTY);
2338#endif
2339#if EV_FORK_ENABLE
2340 array_free (fork, EMPTY);
2341#endif
2342#if EV_CLEANUP_ENABLE
2343 array_free (cleanup, EMPTY);
2344#endif
2345 array_free (prepare, EMPTY);
2346 array_free (check, EMPTY);
2347#if EV_ASYNC_ENABLE
2348 array_free (async, EMPTY);
2349#endif
2350
2351 backend = 0;
2352
2353#if EV_MULTIPLICITY
2354 if (ev_is_default_loop (EV_A))
2355#endif
2356 ev_default_loop_ptr = 0;
2357#if EV_MULTIPLICITY
2358 else
2359 ev_free (EV_A);
2360#endif
2361}
2362
2363#if EV_USE_INOTIFY
2364inline_size void infy_fork (EV_P);
2365#endif
2366
2367inline_size void
2368loop_fork (EV_P)
2369{
2370#if EV_USE_PORT
2371 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2372#endif
2373#if EV_USE_KQUEUE
2374 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2375#endif
2376#if EV_USE_EPOLL
2377 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2378#endif
2379#if EV_USE_INOTIFY
2380 infy_fork (EV_A);
2381#endif
2382
2383 if (ev_is_active (&pipe_w))
2384 {
2385 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2386
2387 ev_ref (EV_A);
2388 ev_io_stop (EV_A_ &pipe_w);
2389
2390#if EV_USE_EVENTFD
2391 if (evfd >= 0)
2392 close (evfd);
2393#endif
2394
2395 if (evpipe [0] >= 0)
2396 {
2397 EV_WIN32_CLOSE_FD (evpipe [0]);
2398 EV_WIN32_CLOSE_FD (evpipe [1]);
2399 }
2400
2401#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2402 evpipe_init (EV_A);
2403 /* now iterate over everything, in case we missed something */
2404 pipecb (EV_A_ &pipe_w, EV_READ);
2405#endif
2406 }
2407
2408 postfork = 0;
2409}
2410
2411#if EV_MULTIPLICITY
2412
2413struct ev_loop * ecb_cold
2414ev_loop_new (unsigned int flags)
2415{
2416 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2417
2418 memset (EV_A, 0, sizeof (struct ev_loop));
2419 loop_init (EV_A_ flags);
2420
2421 if (ev_backend (EV_A))
2422 return EV_A;
2423
2424 ev_free (EV_A);
2425 return 0;
2426}
2427
2428#endif /* multiplicity */
2429
2430#if EV_VERIFY
2431static void noinline ecb_cold
2432verify_watcher (EV_P_ W w)
2433{
2434 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2435
2436 if (w->pending)
2437 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2438}
2439
2440static void noinline ecb_cold
2441verify_heap (EV_P_ ANHE *heap, int N)
2442{
2443 int i;
2444
2445 for (i = HEAP0; i < N + HEAP0; ++i)
2446 {
2447 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2448 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2449 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2450
2451 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2452 }
2453}
2454
2455static void noinline ecb_cold
2456array_verify (EV_P_ W *ws, int cnt)
2457{
2458 while (cnt--)
2459 {
2460 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2461 verify_watcher (EV_A_ ws [cnt]);
2462 }
2463}
2464#endif
2465
2466#if EV_FEATURE_API
2467void ecb_cold
2468ev_verify (EV_P)
2469{
2470#if EV_VERIFY
2471 int i;
2472 WL w;
2473
2474 assert (activecnt >= -1);
2475
2476 assert (fdchangemax >= fdchangecnt);
2477 for (i = 0; i < fdchangecnt; ++i)
2478 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2479
2480 assert (anfdmax >= 0);
2481 for (i = 0; i < anfdmax; ++i)
2482 for (w = anfds [i].head; w; w = w->next)
733 { 2483 {
734 struct timespec ts; 2484 verify_watcher (EV_A_ (W)w);
735 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2485 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
736 have_monotonic = 1; 2486 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
737 } 2487 }
738#endif
739 2488
740 rt_now = ev_time (); 2489 assert (timermax >= timercnt);
741 mn_now = get_clock (); 2490 verify_heap (EV_A_ timers, timercnt);
742 now_floor = mn_now;
743 rtmn_diff = rt_now - mn_now;
744 2491
745 if (methods == EVMETHOD_AUTO) 2492#if EV_PERIODIC_ENABLE
746 if (!enable_secure () && getenv ("LIBEV_METHODS")) 2493 assert (periodicmax >= periodiccnt);
747 methods = atoi (getenv ("LIBEV_METHODS")); 2494 verify_heap (EV_A_ periodics, periodiccnt);
748 else
749 methods = EVMETHOD_ANY;
750
751 method = 0;
752#if EV_USE_WIN32
753 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
754#endif
755#if EV_USE_KQUEUE
756 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
757#endif
758#if EV_USE_EPOLL
759 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
760#endif
761#if EV_USE_POLL
762 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
763#endif
764#if EV_USE_SELECT
765 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
766#endif
767
768 ev_init (&sigev, sigcb);
769 ev_set_priority (&sigev, EV_MAXPRI);
770 }
771}
772
773void
774loop_destroy (EV_P)
775{
776 int i;
777
778#if EV_USE_WIN32
779 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
780#endif
781#if EV_USE_KQUEUE
782 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
783#endif
784#if EV_USE_EPOLL
785 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
786#endif
787#if EV_USE_POLL
788 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
789#endif
790#if EV_USE_SELECT
791 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
792#endif 2495#endif
793 2496
794 for (i = NUMPRI; i--; ) 2497 for (i = NUMPRI; i--; )
795 array_free (pending, [i]); 2498 {
2499 assert (pendingmax [i] >= pendingcnt [i]);
2500#if EV_IDLE_ENABLE
2501 assert (idleall >= 0);
2502 assert (idlemax [i] >= idlecnt [i]);
2503 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2504#endif
2505 }
796 2506
797 /* have to use the microsoft-never-gets-it-right macro */ 2507#if EV_FORK_ENABLE
798 array_free_microshit (fdchange); 2508 assert (forkmax >= forkcnt);
799 array_free_microshit (timer); 2509 array_verify (EV_A_ (W *)forks, forkcnt);
800 array_free_microshit (periodic); 2510#endif
801 array_free_microshit (idle);
802 array_free_microshit (prepare);
803 array_free_microshit (check);
804 2511
805 method = 0; 2512#if EV_CLEANUP_ENABLE
806} 2513 assert (cleanupmax >= cleanupcnt);
2514 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2515#endif
807 2516
808static void 2517#if EV_ASYNC_ENABLE
809loop_fork (EV_P) 2518 assert (asyncmax >= asynccnt);
810{ 2519 array_verify (EV_A_ (W *)asyncs, asynccnt);
811#if EV_USE_EPOLL 2520#endif
812 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 2521
2522#if EV_PREPARE_ENABLE
2523 assert (preparemax >= preparecnt);
2524 array_verify (EV_A_ (W *)prepares, preparecnt);
2525#endif
2526
2527#if EV_CHECK_ENABLE
2528 assert (checkmax >= checkcnt);
2529 array_verify (EV_A_ (W *)checks, checkcnt);
2530#endif
2531
2532# if 0
2533#if EV_CHILD_ENABLE
2534 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2535 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2536#endif
813#endif 2537# endif
814#if EV_USE_KQUEUE
815 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
816#endif 2538#endif
817
818 if (ev_is_active (&sigev))
819 {
820 /* default loop */
821
822 ev_ref (EV_A);
823 ev_io_stop (EV_A_ &sigev);
824 close (sigpipe [0]);
825 close (sigpipe [1]);
826
827 while (pipe (sigpipe))
828 syserr ("(libev) error creating pipe");
829
830 siginit (EV_A);
831 }
832
833 postfork = 0;
834} 2539}
2540#endif
835 2541
836#if EV_MULTIPLICITY 2542#if EV_MULTIPLICITY
837struct ev_loop * 2543struct ev_loop * ecb_cold
838ev_loop_new (int methods)
839{
840 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
841
842 memset (loop, 0, sizeof (struct ev_loop));
843
844 loop_init (EV_A_ methods);
845
846 if (ev_method (EV_A))
847 return loop;
848
849 return 0;
850}
851
852void
853ev_loop_destroy (EV_P)
854{
855 loop_destroy (EV_A);
856 ev_free (loop);
857}
858
859void
860ev_loop_fork (EV_P)
861{
862 postfork = 1;
863}
864
865#endif
866
867#if EV_MULTIPLICITY
868struct ev_loop *
869#else 2544#else
870int 2545int
871#endif 2546#endif
872ev_default_loop (int methods) 2547ev_default_loop (unsigned int flags)
873{ 2548{
874 if (sigpipe [0] == sigpipe [1])
875 if (pipe (sigpipe))
876 return 0;
877
878 if (!default_loop) 2549 if (!ev_default_loop_ptr)
879 { 2550 {
880#if EV_MULTIPLICITY 2551#if EV_MULTIPLICITY
881 struct ev_loop *loop = default_loop = &default_loop_struct; 2552 EV_P = ev_default_loop_ptr = &default_loop_struct;
882#else 2553#else
883 default_loop = 1; 2554 ev_default_loop_ptr = 1;
884#endif 2555#endif
885 2556
886 loop_init (EV_A_ methods); 2557 loop_init (EV_A_ flags);
887 2558
888 if (ev_method (EV_A)) 2559 if (ev_backend (EV_A))
889 { 2560 {
890 siginit (EV_A); 2561#if EV_CHILD_ENABLE
891
892#ifndef WIN32
893 ev_signal_init (&childev, childcb, SIGCHLD); 2562 ev_signal_init (&childev, childcb, SIGCHLD);
894 ev_set_priority (&childev, EV_MAXPRI); 2563 ev_set_priority (&childev, EV_MAXPRI);
895 ev_signal_start (EV_A_ &childev); 2564 ev_signal_start (EV_A_ &childev);
896 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2565 ev_unref (EV_A); /* child watcher should not keep loop alive */
897#endif 2566#endif
898 } 2567 }
899 else 2568 else
900 default_loop = 0; 2569 ev_default_loop_ptr = 0;
901 } 2570 }
902 2571
903 return default_loop; 2572 return ev_default_loop_ptr;
904} 2573}
905 2574
906void 2575void
907ev_default_destroy (void) 2576ev_loop_fork (EV_P)
908{ 2577{
909#if EV_MULTIPLICITY 2578 postfork = 1; /* must be in line with ev_default_fork */
910 struct ev_loop *loop = default_loop;
911#endif
912
913#ifndef WIN32
914 ev_ref (EV_A); /* child watcher */
915 ev_signal_stop (EV_A_ &childev);
916#endif
917
918 ev_ref (EV_A); /* signal watcher */
919 ev_io_stop (EV_A_ &sigev);
920
921 close (sigpipe [0]); sigpipe [0] = 0;
922 close (sigpipe [1]); sigpipe [1] = 0;
923
924 loop_destroy (EV_A);
925} 2579}
2580
2581/*****************************************************************************/
926 2582
927void 2583void
928ev_default_fork (void) 2584ev_invoke (EV_P_ void *w, int revents)
929{ 2585{
930#if EV_MULTIPLICITY 2586 EV_CB_INVOKE ((W)w, revents);
931 struct ev_loop *loop = default_loop;
932#endif
933
934 if (method)
935 postfork = 1;
936} 2587}
937 2588
938/*****************************************************************************/ 2589unsigned int
939 2590ev_pending_count (EV_P)
940static int
941any_pending (EV_P)
942{ 2591{
943 int pri; 2592 int pri;
2593 unsigned int count = 0;
944 2594
945 for (pri = NUMPRI; pri--; ) 2595 for (pri = NUMPRI; pri--; )
946 if (pendingcnt [pri]) 2596 count += pendingcnt [pri];
947 return 1;
948 2597
949 return 0; 2598 return count;
950} 2599}
951 2600
952static void 2601void noinline
953call_pending (EV_P) 2602ev_invoke_pending (EV_P)
954{ 2603{
955 int pri; 2604 int pri;
956 2605
957 for (pri = NUMPRI; pri--; ) 2606 for (pri = NUMPRI; pri--; )
958 while (pendingcnt [pri]) 2607 while (pendingcnt [pri])
959 { 2608 {
960 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2609 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
961 2610
962 if (p->w)
963 {
964 p->w->pending = 0; 2611 p->w->pending = 0;
965 EV_CB_INVOKE (p->w, p->events); 2612 EV_CB_INVOKE (p->w, p->events);
966 } 2613 EV_FREQUENT_CHECK;
967 } 2614 }
968} 2615}
969 2616
970static void 2617#if EV_IDLE_ENABLE
2618/* make idle watchers pending. this handles the "call-idle */
2619/* only when higher priorities are idle" logic */
2620inline_size void
2621idle_reify (EV_P)
2622{
2623 if (expect_false (idleall))
2624 {
2625 int pri;
2626
2627 for (pri = NUMPRI; pri--; )
2628 {
2629 if (pendingcnt [pri])
2630 break;
2631
2632 if (idlecnt [pri])
2633 {
2634 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2635 break;
2636 }
2637 }
2638 }
2639}
2640#endif
2641
2642/* make timers pending */
2643inline_size void
971timers_reify (EV_P) 2644timers_reify (EV_P)
972{ 2645{
2646 EV_FREQUENT_CHECK;
2647
973 while (timercnt && ((WT)timers [0])->at <= mn_now) 2648 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
974 { 2649 {
975 struct ev_timer *w = timers [0]; 2650 do
976
977 assert (("inactive timer on timer heap detected", ev_is_active (w)));
978
979 /* first reschedule or stop timer */
980 if (w->repeat)
981 { 2651 {
2652 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2653
2654 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2655
2656 /* first reschedule or stop timer */
2657 if (w->repeat)
2658 {
2659 ev_at (w) += w->repeat;
2660 if (ev_at (w) < mn_now)
2661 ev_at (w) = mn_now;
2662
982 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2663 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
983 ((WT)w)->at = mn_now + w->repeat; 2664
2665 ANHE_at_cache (timers [HEAP0]);
984 downheap ((WT *)timers, timercnt, 0); 2666 downheap (timers, timercnt, HEAP0);
2667 }
2668 else
2669 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2670
2671 EV_FREQUENT_CHECK;
2672 feed_reverse (EV_A_ (W)w);
985 } 2673 }
986 else 2674 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
987 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
988 2675
989 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2676 feed_reverse_done (EV_A_ EV_TIMER);
2677 }
2678}
2679
2680#if EV_PERIODIC_ENABLE
2681
2682static void noinline
2683periodic_recalc (EV_P_ ev_periodic *w)
2684{
2685 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2686 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2687
2688 /* the above almost always errs on the low side */
2689 while (at <= ev_rt_now)
990 } 2690 {
991} 2691 ev_tstamp nat = at + w->interval;
992 2692
993static void 2693 /* when resolution fails us, we use ev_rt_now */
2694 if (expect_false (nat == at))
2695 {
2696 at = ev_rt_now;
2697 break;
2698 }
2699
2700 at = nat;
2701 }
2702
2703 ev_at (w) = at;
2704}
2705
2706/* make periodics pending */
2707inline_size void
994periodics_reify (EV_P) 2708periodics_reify (EV_P)
995{ 2709{
2710 EV_FREQUENT_CHECK;
2711
996 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 2712 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
997 { 2713 {
998 struct ev_periodic *w = periodics [0]; 2714 int feed_count = 0;
999 2715
2716 do
2717 {
2718 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2719
1000 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2720 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1001 2721
1002 /* first reschedule or stop timer */ 2722 /* first reschedule or stop timer */
2723 if (w->reschedule_cb)
2724 {
2725 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2726
2727 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2728
2729 ANHE_at_cache (periodics [HEAP0]);
2730 downheap (periodics, periodiccnt, HEAP0);
2731 }
2732 else if (w->interval)
2733 {
2734 periodic_recalc (EV_A_ w);
2735 ANHE_at_cache (periodics [HEAP0]);
2736 downheap (periodics, periodiccnt, HEAP0);
2737 }
2738 else
2739 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2740
2741 EV_FREQUENT_CHECK;
2742 feed_reverse (EV_A_ (W)w);
2743 }
2744 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2745
2746 feed_reverse_done (EV_A_ EV_PERIODIC);
2747 }
2748}
2749
2750/* simply recalculate all periodics */
2751/* TODO: maybe ensure that at least one event happens when jumping forward? */
2752static void noinline ecb_cold
2753periodics_reschedule (EV_P)
2754{
2755 int i;
2756
2757 /* adjust periodics after time jump */
2758 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2759 {
2760 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2761
1003 if (w->reschedule_cb) 2762 if (w->reschedule_cb)
1004 {
1005 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001); 2763 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1006
1007 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
1008 downheap ((WT *)periodics, periodiccnt, 0);
1009 }
1010 else if (w->interval) 2764 else if (w->interval)
1011 { 2765 periodic_recalc (EV_A_ w);
1012 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1013 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
1014 downheap ((WT *)periodics, periodiccnt, 0);
1015 }
1016 else
1017 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1018 2766
1019 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2767 ANHE_at_cache (periodics [i]);
1020 } 2768 }
1021}
1022 2769
1023static void 2770 reheap (periodics, periodiccnt);
1024periodics_reschedule (EV_P) 2771}
2772#endif
2773
2774/* adjust all timers by a given offset */
2775static void noinline ecb_cold
2776timers_reschedule (EV_P_ ev_tstamp adjust)
1025{ 2777{
1026 int i; 2778 int i;
1027 2779
1028 /* adjust periodics after time jump */
1029 for (i = 0; i < periodiccnt; ++i) 2780 for (i = 0; i < timercnt; ++i)
1030 {
1031 struct ev_periodic *w = periodics [i];
1032
1033 if (w->reschedule_cb)
1034 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1035 else if (w->interval)
1036 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1037 } 2781 {
1038 2782 ANHE *he = timers + i + HEAP0;
1039 /* now rebuild the heap */ 2783 ANHE_w (*he)->at += adjust;
1040 for (i = periodiccnt >> 1; i--; ) 2784 ANHE_at_cache (*he);
1041 downheap ((WT *)periodics, periodiccnt, i);
1042}
1043
1044inline int
1045time_update_monotonic (EV_P)
1046{
1047 mn_now = get_clock ();
1048
1049 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1050 { 2785 }
1051 rt_now = rtmn_diff + mn_now;
1052 return 0;
1053 }
1054 else
1055 {
1056 now_floor = mn_now;
1057 rt_now = ev_time ();
1058 return 1;
1059 }
1060} 2786}
1061 2787
1062static void 2788/* fetch new monotonic and realtime times from the kernel */
1063time_update (EV_P) 2789/* also detect if there was a timejump, and act accordingly */
2790inline_speed void
2791time_update (EV_P_ ev_tstamp max_block)
1064{ 2792{
1065 int i;
1066
1067#if EV_USE_MONOTONIC 2793#if EV_USE_MONOTONIC
1068 if (expect_true (have_monotonic)) 2794 if (expect_true (have_monotonic))
1069 { 2795 {
1070 if (time_update_monotonic (EV_A)) 2796 int i;
2797 ev_tstamp odiff = rtmn_diff;
2798
2799 mn_now = get_clock ();
2800
2801 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2802 /* interpolate in the meantime */
2803 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1071 { 2804 {
1072 ev_tstamp odiff = rtmn_diff; 2805 ev_rt_now = rtmn_diff + mn_now;
2806 return;
2807 }
1073 2808
2809 now_floor = mn_now;
2810 ev_rt_now = ev_time ();
2811
1074 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2812 /* loop a few times, before making important decisions.
2813 * on the choice of "4": one iteration isn't enough,
2814 * in case we get preempted during the calls to
2815 * ev_time and get_clock. a second call is almost guaranteed
2816 * to succeed in that case, though. and looping a few more times
2817 * doesn't hurt either as we only do this on time-jumps or
2818 * in the unlikely event of having been preempted here.
2819 */
2820 for (i = 4; --i; )
1075 { 2821 {
2822 ev_tstamp diff;
1076 rtmn_diff = rt_now - mn_now; 2823 rtmn_diff = ev_rt_now - mn_now;
1077 2824
1078 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2825 diff = odiff - rtmn_diff;
2826
2827 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1079 return; /* all is well */ 2828 return; /* all is well */
1080 2829
1081 rt_now = ev_time (); 2830 ev_rt_now = ev_time ();
1082 mn_now = get_clock (); 2831 mn_now = get_clock ();
1083 now_floor = mn_now; 2832 now_floor = mn_now;
1084 } 2833 }
1085 2834
2835 /* no timer adjustment, as the monotonic clock doesn't jump */
2836 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2837# if EV_PERIODIC_ENABLE
2838 periodics_reschedule (EV_A);
2839# endif
2840 }
2841 else
2842#endif
2843 {
2844 ev_rt_now = ev_time ();
2845
2846 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2847 {
2848 /* adjust timers. this is easy, as the offset is the same for all of them */
2849 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2850#if EV_PERIODIC_ENABLE
1086 periodics_reschedule (EV_A); 2851 periodics_reschedule (EV_A);
1087 /* no timer adjustment, as the monotonic clock doesn't jump */ 2852#endif
1088 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1089 } 2853 }
1090 }
1091 else
1092#endif
1093 {
1094 rt_now = ev_time ();
1095 2854
1096 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1097 {
1098 periodics_reschedule (EV_A);
1099
1100 /* adjust timers. this is easy, as the offset is the same for all */
1101 for (i = 0; i < timercnt; ++i)
1102 ((WT)timers [i])->at += rt_now - mn_now;
1103 }
1104
1105 mn_now = rt_now; 2855 mn_now = ev_rt_now;
1106 } 2856 }
1107} 2857}
1108 2858
1109void 2859void
1110ev_ref (EV_P)
1111{
1112 ++activecnt;
1113}
1114
1115void
1116ev_unref (EV_P)
1117{
1118 --activecnt;
1119}
1120
1121static int loop_done;
1122
1123void
1124ev_loop (EV_P_ int flags) 2860ev_run (EV_P_ int flags)
1125{ 2861{
1126 double block; 2862#if EV_FEATURE_API
1127 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2863 ++loop_depth;
2864#endif
2865
2866 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2867
2868 loop_done = EVBREAK_CANCEL;
2869
2870 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1128 2871
1129 do 2872 do
1130 { 2873 {
2874#if EV_VERIFY >= 2
2875 ev_verify (EV_A);
2876#endif
2877
2878#ifndef _WIN32
2879 if (expect_false (curpid)) /* penalise the forking check even more */
2880 if (expect_false (getpid () != curpid))
2881 {
2882 curpid = getpid ();
2883 postfork = 1;
2884 }
2885#endif
2886
2887#if EV_FORK_ENABLE
2888 /* we might have forked, so queue fork handlers */
2889 if (expect_false (postfork))
2890 if (forkcnt)
2891 {
2892 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2893 EV_INVOKE_PENDING;
2894 }
2895#endif
2896
2897#if EV_PREPARE_ENABLE
1131 /* queue check watchers (and execute them) */ 2898 /* queue prepare watchers (and execute them) */
1132 if (expect_false (preparecnt)) 2899 if (expect_false (preparecnt))
1133 { 2900 {
1134 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2901 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1135 call_pending (EV_A); 2902 EV_INVOKE_PENDING;
1136 } 2903 }
2904#endif
2905
2906 if (expect_false (loop_done))
2907 break;
1137 2908
1138 /* we might have forked, so reify kernel state if necessary */ 2909 /* we might have forked, so reify kernel state if necessary */
1139 if (expect_false (postfork)) 2910 if (expect_false (postfork))
1140 loop_fork (EV_A); 2911 loop_fork (EV_A);
1141 2912
1142 /* update fd-related kernel structures */ 2913 /* update fd-related kernel structures */
1143 fd_reify (EV_A); 2914 fd_reify (EV_A);
1144 2915
1145 /* calculate blocking time */ 2916 /* calculate blocking time */
2917 {
2918 ev_tstamp waittime = 0.;
2919 ev_tstamp sleeptime = 0.;
1146 2920
1147 /* we only need this for !monotonic clock or timers, but as we basically 2921 /* remember old timestamp for io_blocktime calculation */
1148 always have timers, we just calculate it always */ 2922 ev_tstamp prev_mn_now = mn_now;
1149#if EV_USE_MONOTONIC 2923
1150 if (expect_true (have_monotonic)) 2924 /* update time to cancel out callback processing overhead */
1151 time_update_monotonic (EV_A); 2925 time_update (EV_A_ 1e100);
1152 else 2926
1153#endif 2927 /* from now on, we want a pipe-wake-up */
2928 pipe_write_wanted = 1;
2929
2930 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2931
2932 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1154 { 2933 {
1155 rt_now = ev_time ();
1156 mn_now = rt_now;
1157 }
1158
1159 if (flags & EVLOOP_NONBLOCK || idlecnt)
1160 block = 0.;
1161 else
1162 {
1163 block = MAX_BLOCKTIME; 2934 waittime = MAX_BLOCKTIME;
1164 2935
1165 if (timercnt) 2936 if (timercnt)
1166 { 2937 {
1167 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2938 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1168 if (block > to) block = to; 2939 if (waittime > to) waittime = to;
1169 } 2940 }
1170 2941
2942#if EV_PERIODIC_ENABLE
1171 if (periodiccnt) 2943 if (periodiccnt)
1172 { 2944 {
1173 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 2945 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1174 if (block > to) block = to; 2946 if (waittime > to) waittime = to;
1175 } 2947 }
2948#endif
1176 2949
1177 if (block < 0.) block = 0.; 2950 /* don't let timeouts decrease the waittime below timeout_blocktime */
2951 if (expect_false (waittime < timeout_blocktime))
2952 waittime = timeout_blocktime;
2953
2954 /* at this point, we NEED to wait, so we have to ensure */
2955 /* to pass a minimum nonzero value to the backend */
2956 if (expect_false (waittime < backend_mintime))
2957 waittime = backend_mintime;
2958
2959 /* extra check because io_blocktime is commonly 0 */
2960 if (expect_false (io_blocktime))
2961 {
2962 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2963
2964 if (sleeptime > waittime - backend_mintime)
2965 sleeptime = waittime - backend_mintime;
2966
2967 if (expect_true (sleeptime > 0.))
2968 {
2969 ev_sleep (sleeptime);
2970 waittime -= sleeptime;
2971 }
2972 }
1178 } 2973 }
1179 2974
1180 method_poll (EV_A_ block); 2975#if EV_FEATURE_API
2976 ++loop_count;
2977#endif
2978 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2979 backend_poll (EV_A_ waittime);
2980 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1181 2981
2982 pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2983
2984 if (pipe_write_skipped)
2985 {
2986 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2987 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2988 }
2989
2990
1182 /* update rt_now, do magic */ 2991 /* update ev_rt_now, do magic */
1183 time_update (EV_A); 2992 time_update (EV_A_ waittime + sleeptime);
2993 }
1184 2994
1185 /* queue pending timers and reschedule them */ 2995 /* queue pending timers and reschedule them */
1186 timers_reify (EV_A); /* relative timers called last */ 2996 timers_reify (EV_A); /* relative timers called last */
2997#if EV_PERIODIC_ENABLE
1187 periodics_reify (EV_A); /* absolute timers called first */ 2998 periodics_reify (EV_A); /* absolute timers called first */
2999#endif
1188 3000
3001#if EV_IDLE_ENABLE
1189 /* queue idle watchers unless io or timers are pending */ 3002 /* queue idle watchers unless other events are pending */
1190 if (idlecnt && !any_pending (EV_A)) 3003 idle_reify (EV_A);
1191 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3004#endif
1192 3005
3006#if EV_CHECK_ENABLE
1193 /* queue check watchers, to be executed first */ 3007 /* queue check watchers, to be executed first */
1194 if (checkcnt) 3008 if (expect_false (checkcnt))
1195 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3009 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3010#endif
1196 3011
1197 call_pending (EV_A); 3012 EV_INVOKE_PENDING;
1198 } 3013 }
1199 while (activecnt && !loop_done); 3014 while (expect_true (
3015 activecnt
3016 && !loop_done
3017 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3018 ));
1200 3019
1201 if (loop_done != 2) 3020 if (loop_done == EVBREAK_ONE)
1202 loop_done = 0; 3021 loop_done = EVBREAK_CANCEL;
3022
3023#if EV_FEATURE_API
3024 --loop_depth;
3025#endif
1203} 3026}
1204 3027
1205void 3028void
1206ev_unloop (EV_P_ int how) 3029ev_break (EV_P_ int how)
1207{ 3030{
1208 loop_done = how; 3031 loop_done = how;
1209} 3032}
1210 3033
3034void
3035ev_ref (EV_P)
3036{
3037 ++activecnt;
3038}
3039
3040void
3041ev_unref (EV_P)
3042{
3043 --activecnt;
3044}
3045
3046void
3047ev_now_update (EV_P)
3048{
3049 time_update (EV_A_ 1e100);
3050}
3051
3052void
3053ev_suspend (EV_P)
3054{
3055 ev_now_update (EV_A);
3056}
3057
3058void
3059ev_resume (EV_P)
3060{
3061 ev_tstamp mn_prev = mn_now;
3062
3063 ev_now_update (EV_A);
3064 timers_reschedule (EV_A_ mn_now - mn_prev);
3065#if EV_PERIODIC_ENABLE
3066 /* TODO: really do this? */
3067 periodics_reschedule (EV_A);
3068#endif
3069}
3070
1211/*****************************************************************************/ 3071/*****************************************************************************/
3072/* singly-linked list management, used when the expected list length is short */
1212 3073
1213inline void 3074inline_size void
1214wlist_add (WL *head, WL elem) 3075wlist_add (WL *head, WL elem)
1215{ 3076{
1216 elem->next = *head; 3077 elem->next = *head;
1217 *head = elem; 3078 *head = elem;
1218} 3079}
1219 3080
1220inline void 3081inline_size void
1221wlist_del (WL *head, WL elem) 3082wlist_del (WL *head, WL elem)
1222{ 3083{
1223 while (*head) 3084 while (*head)
1224 { 3085 {
1225 if (*head == elem) 3086 if (expect_true (*head == elem))
1226 { 3087 {
1227 *head = elem->next; 3088 *head = elem->next;
1228 return; 3089 break;
1229 } 3090 }
1230 3091
1231 head = &(*head)->next; 3092 head = &(*head)->next;
1232 } 3093 }
1233} 3094}
1234 3095
3096/* internal, faster, version of ev_clear_pending */
1235inline void 3097inline_speed void
1236ev_clear_pending (EV_P_ W w) 3098clear_pending (EV_P_ W w)
1237{ 3099{
1238 if (w->pending) 3100 if (w->pending)
1239 { 3101 {
1240 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3102 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1241 w->pending = 0; 3103 w->pending = 0;
1242 } 3104 }
1243} 3105}
1244 3106
3107int
3108ev_clear_pending (EV_P_ void *w)
3109{
3110 W w_ = (W)w;
3111 int pending = w_->pending;
3112
3113 if (expect_true (pending))
3114 {
3115 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3116 p->w = (W)&pending_w;
3117 w_->pending = 0;
3118 return p->events;
3119 }
3120 else
3121 return 0;
3122}
3123
1245inline void 3124inline_size void
3125pri_adjust (EV_P_ W w)
3126{
3127 int pri = ev_priority (w);
3128 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3129 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3130 ev_set_priority (w, pri);
3131}
3132
3133inline_speed void
1246ev_start (EV_P_ W w, int active) 3134ev_start (EV_P_ W w, int active)
1247{ 3135{
1248 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3136 pri_adjust (EV_A_ w);
1249 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1250
1251 w->active = active; 3137 w->active = active;
1252 ev_ref (EV_A); 3138 ev_ref (EV_A);
1253} 3139}
1254 3140
1255inline void 3141inline_size void
1256ev_stop (EV_P_ W w) 3142ev_stop (EV_P_ W w)
1257{ 3143{
1258 ev_unref (EV_A); 3144 ev_unref (EV_A);
1259 w->active = 0; 3145 w->active = 0;
1260} 3146}
1261 3147
1262/*****************************************************************************/ 3148/*****************************************************************************/
1263 3149
1264void 3150void noinline
1265ev_io_start (EV_P_ struct ev_io *w) 3151ev_io_start (EV_P_ ev_io *w)
1266{ 3152{
1267 int fd = w->fd; 3153 int fd = w->fd;
1268 3154
3155 if (expect_false (ev_is_active (w)))
3156 return;
3157
3158 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3159 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3160
3161 EV_FREQUENT_CHECK;
3162
3163 ev_start (EV_A_ (W)w, 1);
3164 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3165 wlist_add (&anfds[fd].head, (WL)w);
3166
3167 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3168 w->events &= ~EV__IOFDSET;
3169
3170 EV_FREQUENT_CHECK;
3171}
3172
3173void noinline
3174ev_io_stop (EV_P_ ev_io *w)
3175{
3176 clear_pending (EV_A_ (W)w);
3177 if (expect_false (!ev_is_active (w)))
3178 return;
3179
3180 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3181
3182 EV_FREQUENT_CHECK;
3183
3184 wlist_del (&anfds[w->fd].head, (WL)w);
3185 ev_stop (EV_A_ (W)w);
3186
3187 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3188
3189 EV_FREQUENT_CHECK;
3190}
3191
3192void noinline
3193ev_timer_start (EV_P_ ev_timer *w)
3194{
3195 if (expect_false (ev_is_active (w)))
3196 return;
3197
3198 ev_at (w) += mn_now;
3199
3200 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3201
3202 EV_FREQUENT_CHECK;
3203
3204 ++timercnt;
3205 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3206 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3207 ANHE_w (timers [ev_active (w)]) = (WT)w;
3208 ANHE_at_cache (timers [ev_active (w)]);
3209 upheap (timers, ev_active (w));
3210
3211 EV_FREQUENT_CHECK;
3212
3213 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3214}
3215
3216void noinline
3217ev_timer_stop (EV_P_ ev_timer *w)
3218{
3219 clear_pending (EV_A_ (W)w);
3220 if (expect_false (!ev_is_active (w)))
3221 return;
3222
3223 EV_FREQUENT_CHECK;
3224
3225 {
3226 int active = ev_active (w);
3227
3228 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3229
3230 --timercnt;
3231
3232 if (expect_true (active < timercnt + HEAP0))
3233 {
3234 timers [active] = timers [timercnt + HEAP0];
3235 adjustheap (timers, timercnt, active);
3236 }
3237 }
3238
3239 ev_at (w) -= mn_now;
3240
3241 ev_stop (EV_A_ (W)w);
3242
3243 EV_FREQUENT_CHECK;
3244}
3245
3246void noinline
3247ev_timer_again (EV_P_ ev_timer *w)
3248{
3249 EV_FREQUENT_CHECK;
3250
1269 if (ev_is_active (w)) 3251 if (ev_is_active (w))
1270 return;
1271
1272 assert (("ev_io_start called with negative fd", fd >= 0));
1273
1274 ev_start (EV_A_ (W)w, 1);
1275 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1276 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1277
1278 fd_change (EV_A_ fd);
1279}
1280
1281void
1282ev_io_stop (EV_P_ struct ev_io *w)
1283{
1284 ev_clear_pending (EV_A_ (W)w);
1285 if (!ev_is_active (w))
1286 return;
1287
1288 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1289 ev_stop (EV_A_ (W)w);
1290
1291 fd_change (EV_A_ w->fd);
1292}
1293
1294void
1295ev_timer_start (EV_P_ struct ev_timer *w)
1296{
1297 if (ev_is_active (w))
1298 return;
1299
1300 ((WT)w)->at += mn_now;
1301
1302 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1303
1304 ev_start (EV_A_ (W)w, ++timercnt);
1305 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1306 timers [timercnt - 1] = w;
1307 upheap ((WT *)timers, timercnt - 1);
1308
1309 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1310}
1311
1312void
1313ev_timer_stop (EV_P_ struct ev_timer *w)
1314{
1315 ev_clear_pending (EV_A_ (W)w);
1316 if (!ev_is_active (w))
1317 return;
1318
1319 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1320
1321 if (((W)w)->active < timercnt--)
1322 {
1323 timers [((W)w)->active - 1] = timers [timercnt];
1324 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1325 }
1326
1327 ((WT)w)->at = w->repeat;
1328
1329 ev_stop (EV_A_ (W)w);
1330}
1331
1332void
1333ev_timer_again (EV_P_ struct ev_timer *w)
1334{
1335 if (ev_is_active (w))
1336 { 3252 {
1337 if (w->repeat) 3253 if (w->repeat)
1338 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat); 3254 {
3255 ev_at (w) = mn_now + w->repeat;
3256 ANHE_at_cache (timers [ev_active (w)]);
3257 adjustheap (timers, timercnt, ev_active (w));
3258 }
1339 else 3259 else
1340 ev_timer_stop (EV_A_ w); 3260 ev_timer_stop (EV_A_ w);
1341 } 3261 }
1342 else if (w->repeat) 3262 else if (w->repeat)
3263 {
3264 ev_at (w) = w->repeat;
1343 ev_timer_start (EV_A_ w); 3265 ev_timer_start (EV_A_ w);
1344} 3266 }
1345 3267
1346void 3268 EV_FREQUENT_CHECK;
3269}
3270
3271ev_tstamp
3272ev_timer_remaining (EV_P_ ev_timer *w)
3273{
3274 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3275}
3276
3277#if EV_PERIODIC_ENABLE
3278void noinline
1347ev_periodic_start (EV_P_ struct ev_periodic *w) 3279ev_periodic_start (EV_P_ ev_periodic *w)
1348{ 3280{
1349 if (ev_is_active (w)) 3281 if (expect_false (ev_is_active (w)))
1350 return; 3282 return;
1351 3283
1352 if (w->reschedule_cb) 3284 if (w->reschedule_cb)
1353 ((WT)w)->at = w->reschedule_cb (w, rt_now); 3285 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1354 else if (w->interval) 3286 else if (w->interval)
1355 { 3287 {
1356 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3288 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1357 /* this formula differs from the one in periodic_reify because we do not always round up */ 3289 periodic_recalc (EV_A_ w);
1358 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1359 } 3290 }
3291 else
3292 ev_at (w) = w->offset;
1360 3293
3294 EV_FREQUENT_CHECK;
3295
3296 ++periodiccnt;
1361 ev_start (EV_A_ (W)w, ++periodiccnt); 3297 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1362 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 3298 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1363 periodics [periodiccnt - 1] = w; 3299 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1364 upheap ((WT *)periodics, periodiccnt - 1); 3300 ANHE_at_cache (periodics [ev_active (w)]);
3301 upheap (periodics, ev_active (w));
1365 3302
3303 EV_FREQUENT_CHECK;
3304
1366 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3305 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1367} 3306}
1368 3307
1369void 3308void noinline
1370ev_periodic_stop (EV_P_ struct ev_periodic *w) 3309ev_periodic_stop (EV_P_ ev_periodic *w)
1371{ 3310{
1372 ev_clear_pending (EV_A_ (W)w); 3311 clear_pending (EV_A_ (W)w);
1373 if (!ev_is_active (w)) 3312 if (expect_false (!ev_is_active (w)))
1374 return; 3313 return;
1375 3314
3315 EV_FREQUENT_CHECK;
3316
3317 {
3318 int active = ev_active (w);
3319
1376 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3320 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1377 3321
1378 if (((W)w)->active < periodiccnt--) 3322 --periodiccnt;
3323
3324 if (expect_true (active < periodiccnt + HEAP0))
1379 { 3325 {
1380 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3326 periodics [active] = periodics [periodiccnt + HEAP0];
1381 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3327 adjustheap (periodics, periodiccnt, active);
1382 } 3328 }
3329 }
1383 3330
1384 ev_stop (EV_A_ (W)w); 3331 ev_stop (EV_A_ (W)w);
1385}
1386 3332
1387void 3333 EV_FREQUENT_CHECK;
3334}
3335
3336void noinline
1388ev_periodic_again (EV_P_ struct ev_periodic *w) 3337ev_periodic_again (EV_P_ ev_periodic *w)
1389{ 3338{
1390 /* TODO: use adjustheap and recalculation */ 3339 /* TODO: use adjustheap and recalculation */
1391 ev_periodic_stop (EV_A_ w); 3340 ev_periodic_stop (EV_A_ w);
1392 ev_periodic_start (EV_A_ w); 3341 ev_periodic_start (EV_A_ w);
1393} 3342}
1394 3343#endif
1395void
1396ev_idle_start (EV_P_ struct ev_idle *w)
1397{
1398 if (ev_is_active (w))
1399 return;
1400
1401 ev_start (EV_A_ (W)w, ++idlecnt);
1402 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1403 idles [idlecnt - 1] = w;
1404}
1405
1406void
1407ev_idle_stop (EV_P_ struct ev_idle *w)
1408{
1409 ev_clear_pending (EV_A_ (W)w);
1410 if (ev_is_active (w))
1411 return;
1412
1413 idles [((W)w)->active - 1] = idles [--idlecnt];
1414 ev_stop (EV_A_ (W)w);
1415}
1416
1417void
1418ev_prepare_start (EV_P_ struct ev_prepare *w)
1419{
1420 if (ev_is_active (w))
1421 return;
1422
1423 ev_start (EV_A_ (W)w, ++preparecnt);
1424 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1425 prepares [preparecnt - 1] = w;
1426}
1427
1428void
1429ev_prepare_stop (EV_P_ struct ev_prepare *w)
1430{
1431 ev_clear_pending (EV_A_ (W)w);
1432 if (ev_is_active (w))
1433 return;
1434
1435 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1436 ev_stop (EV_A_ (W)w);
1437}
1438
1439void
1440ev_check_start (EV_P_ struct ev_check *w)
1441{
1442 if (ev_is_active (w))
1443 return;
1444
1445 ev_start (EV_A_ (W)w, ++checkcnt);
1446 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1447 checks [checkcnt - 1] = w;
1448}
1449
1450void
1451ev_check_stop (EV_P_ struct ev_check *w)
1452{
1453 ev_clear_pending (EV_A_ (W)w);
1454 if (ev_is_active (w))
1455 return;
1456
1457 checks [((W)w)->active - 1] = checks [--checkcnt];
1458 ev_stop (EV_A_ (W)w);
1459}
1460 3344
1461#ifndef SA_RESTART 3345#ifndef SA_RESTART
1462# define SA_RESTART 0 3346# define SA_RESTART 0
1463#endif 3347#endif
1464 3348
3349#if EV_SIGNAL_ENABLE
3350
3351void noinline
3352ev_signal_start (EV_P_ ev_signal *w)
3353{
3354 if (expect_false (ev_is_active (w)))
3355 return;
3356
3357 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3358
3359#if EV_MULTIPLICITY
3360 assert (("libev: a signal must not be attached to two different loops",
3361 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3362
3363 signals [w->signum - 1].loop = EV_A;
3364#endif
3365
3366 EV_FREQUENT_CHECK;
3367
3368#if EV_USE_SIGNALFD
3369 if (sigfd == -2)
3370 {
3371 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3372 if (sigfd < 0 && errno == EINVAL)
3373 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3374
3375 if (sigfd >= 0)
3376 {
3377 fd_intern (sigfd); /* doing it twice will not hurt */
3378
3379 sigemptyset (&sigfd_set);
3380
3381 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3382 ev_set_priority (&sigfd_w, EV_MAXPRI);
3383 ev_io_start (EV_A_ &sigfd_w);
3384 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3385 }
3386 }
3387
3388 if (sigfd >= 0)
3389 {
3390 /* TODO: check .head */
3391 sigaddset (&sigfd_set, w->signum);
3392 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3393
3394 signalfd (sigfd, &sigfd_set, 0);
3395 }
3396#endif
3397
3398 ev_start (EV_A_ (W)w, 1);
3399 wlist_add (&signals [w->signum - 1].head, (WL)w);
3400
3401 if (!((WL)w)->next)
3402# if EV_USE_SIGNALFD
3403 if (sigfd < 0) /*TODO*/
3404# endif
3405 {
3406# ifdef _WIN32
3407 evpipe_init (EV_A);
3408
3409 signal (w->signum, ev_sighandler);
3410# else
3411 struct sigaction sa;
3412
3413 evpipe_init (EV_A);
3414
3415 sa.sa_handler = ev_sighandler;
3416 sigfillset (&sa.sa_mask);
3417 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3418 sigaction (w->signum, &sa, 0);
3419
3420 if (origflags & EVFLAG_NOSIGMASK)
3421 {
3422 sigemptyset (&sa.sa_mask);
3423 sigaddset (&sa.sa_mask, w->signum);
3424 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3425 }
3426#endif
3427 }
3428
3429 EV_FREQUENT_CHECK;
3430}
3431
3432void noinline
3433ev_signal_stop (EV_P_ ev_signal *w)
3434{
3435 clear_pending (EV_A_ (W)w);
3436 if (expect_false (!ev_is_active (w)))
3437 return;
3438
3439 EV_FREQUENT_CHECK;
3440
3441 wlist_del (&signals [w->signum - 1].head, (WL)w);
3442 ev_stop (EV_A_ (W)w);
3443
3444 if (!signals [w->signum - 1].head)
3445 {
3446#if EV_MULTIPLICITY
3447 signals [w->signum - 1].loop = 0; /* unattach from signal */
3448#endif
3449#if EV_USE_SIGNALFD
3450 if (sigfd >= 0)
3451 {
3452 sigset_t ss;
3453
3454 sigemptyset (&ss);
3455 sigaddset (&ss, w->signum);
3456 sigdelset (&sigfd_set, w->signum);
3457
3458 signalfd (sigfd, &sigfd_set, 0);
3459 sigprocmask (SIG_UNBLOCK, &ss, 0);
3460 }
3461 else
3462#endif
3463 signal (w->signum, SIG_DFL);
3464 }
3465
3466 EV_FREQUENT_CHECK;
3467}
3468
3469#endif
3470
3471#if EV_CHILD_ENABLE
3472
1465void 3473void
1466ev_signal_start (EV_P_ struct ev_signal *w) 3474ev_child_start (EV_P_ ev_child *w)
1467{ 3475{
1468#if EV_MULTIPLICITY 3476#if EV_MULTIPLICITY
1469 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 3477 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1470#endif 3478#endif
1471 if (ev_is_active (w)) 3479 if (expect_false (ev_is_active (w)))
1472 return; 3480 return;
1473 3481
1474 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3482 EV_FREQUENT_CHECK;
1475 3483
1476 ev_start (EV_A_ (W)w, 1); 3484 ev_start (EV_A_ (W)w, 1);
1477 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3485 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1478 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1479 3486
1480 if (!((WL)w)->next) 3487 EV_FREQUENT_CHECK;
3488}
3489
3490void
3491ev_child_stop (EV_P_ ev_child *w)
3492{
3493 clear_pending (EV_A_ (W)w);
3494 if (expect_false (!ev_is_active (w)))
3495 return;
3496
3497 EV_FREQUENT_CHECK;
3498
3499 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3500 ev_stop (EV_A_ (W)w);
3501
3502 EV_FREQUENT_CHECK;
3503}
3504
3505#endif
3506
3507#if EV_STAT_ENABLE
3508
3509# ifdef _WIN32
3510# undef lstat
3511# define lstat(a,b) _stati64 (a,b)
3512# endif
3513
3514#define DEF_STAT_INTERVAL 5.0074891
3515#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3516#define MIN_STAT_INTERVAL 0.1074891
3517
3518static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3519
3520#if EV_USE_INOTIFY
3521
3522/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3523# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3524
3525static void noinline
3526infy_add (EV_P_ ev_stat *w)
3527{
3528 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3529
3530 if (w->wd >= 0)
3531 {
3532 struct statfs sfs;
3533
3534 /* now local changes will be tracked by inotify, but remote changes won't */
3535 /* unless the filesystem is known to be local, we therefore still poll */
3536 /* also do poll on <2.6.25, but with normal frequency */
3537
3538 if (!fs_2625)
3539 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3540 else if (!statfs (w->path, &sfs)
3541 && (sfs.f_type == 0x1373 /* devfs */
3542 || sfs.f_type == 0xEF53 /* ext2/3 */
3543 || sfs.f_type == 0x3153464a /* jfs */
3544 || sfs.f_type == 0x52654973 /* reiser3 */
3545 || sfs.f_type == 0x01021994 /* tempfs */
3546 || sfs.f_type == 0x58465342 /* xfs */))
3547 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3548 else
3549 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1481 { 3550 }
1482#if WIN32 3551 else
1483 signal (w->signum, sighandler); 3552 {
3553 /* can't use inotify, continue to stat */
3554 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3555
3556 /* if path is not there, monitor some parent directory for speedup hints */
3557 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3558 /* but an efficiency issue only */
3559 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3560 {
3561 char path [4096];
3562 strcpy (path, w->path);
3563
3564 do
3565 {
3566 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3567 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3568
3569 char *pend = strrchr (path, '/');
3570
3571 if (!pend || pend == path)
3572 break;
3573
3574 *pend = 0;
3575 w->wd = inotify_add_watch (fs_fd, path, mask);
3576 }
3577 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3578 }
3579 }
3580
3581 if (w->wd >= 0)
3582 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3583
3584 /* now re-arm timer, if required */
3585 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3586 ev_timer_again (EV_A_ &w->timer);
3587 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3588}
3589
3590static void noinline
3591infy_del (EV_P_ ev_stat *w)
3592{
3593 int slot;
3594 int wd = w->wd;
3595
3596 if (wd < 0)
3597 return;
3598
3599 w->wd = -2;
3600 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3601 wlist_del (&fs_hash [slot].head, (WL)w);
3602
3603 /* remove this watcher, if others are watching it, they will rearm */
3604 inotify_rm_watch (fs_fd, wd);
3605}
3606
3607static void noinline
3608infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3609{
3610 if (slot < 0)
3611 /* overflow, need to check for all hash slots */
3612 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3613 infy_wd (EV_A_ slot, wd, ev);
3614 else
3615 {
3616 WL w_;
3617
3618 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3619 {
3620 ev_stat *w = (ev_stat *)w_;
3621 w_ = w_->next; /* lets us remove this watcher and all before it */
3622
3623 if (w->wd == wd || wd == -1)
3624 {
3625 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3626 {
3627 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3628 w->wd = -1;
3629 infy_add (EV_A_ w); /* re-add, no matter what */
3630 }
3631
3632 stat_timer_cb (EV_A_ &w->timer, 0);
3633 }
3634 }
3635 }
3636}
3637
3638static void
3639infy_cb (EV_P_ ev_io *w, int revents)
3640{
3641 char buf [EV_INOTIFY_BUFSIZE];
3642 int ofs;
3643 int len = read (fs_fd, buf, sizeof (buf));
3644
3645 for (ofs = 0; ofs < len; )
3646 {
3647 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3648 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3649 ofs += sizeof (struct inotify_event) + ev->len;
3650 }
3651}
3652
3653inline_size void ecb_cold
3654ev_check_2625 (EV_P)
3655{
3656 /* kernels < 2.6.25 are borked
3657 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3658 */
3659 if (ev_linux_version () < 0x020619)
3660 return;
3661
3662 fs_2625 = 1;
3663}
3664
3665inline_size int
3666infy_newfd (void)
3667{
3668#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3669 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3670 if (fd >= 0)
3671 return fd;
3672#endif
3673 return inotify_init ();
3674}
3675
3676inline_size void
3677infy_init (EV_P)
3678{
3679 if (fs_fd != -2)
3680 return;
3681
3682 fs_fd = -1;
3683
3684 ev_check_2625 (EV_A);
3685
3686 fs_fd = infy_newfd ();
3687
3688 if (fs_fd >= 0)
3689 {
3690 fd_intern (fs_fd);
3691 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3692 ev_set_priority (&fs_w, EV_MAXPRI);
3693 ev_io_start (EV_A_ &fs_w);
3694 ev_unref (EV_A);
3695 }
3696}
3697
3698inline_size void
3699infy_fork (EV_P)
3700{
3701 int slot;
3702
3703 if (fs_fd < 0)
3704 return;
3705
3706 ev_ref (EV_A);
3707 ev_io_stop (EV_A_ &fs_w);
3708 close (fs_fd);
3709 fs_fd = infy_newfd ();
3710
3711 if (fs_fd >= 0)
3712 {
3713 fd_intern (fs_fd);
3714 ev_io_set (&fs_w, fs_fd, EV_READ);
3715 ev_io_start (EV_A_ &fs_w);
3716 ev_unref (EV_A);
3717 }
3718
3719 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3720 {
3721 WL w_ = fs_hash [slot].head;
3722 fs_hash [slot].head = 0;
3723
3724 while (w_)
3725 {
3726 ev_stat *w = (ev_stat *)w_;
3727 w_ = w_->next; /* lets us add this watcher */
3728
3729 w->wd = -1;
3730
3731 if (fs_fd >= 0)
3732 infy_add (EV_A_ w); /* re-add, no matter what */
3733 else
3734 {
3735 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3736 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3737 ev_timer_again (EV_A_ &w->timer);
3738 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3739 }
3740 }
3741 }
3742}
3743
3744#endif
3745
3746#ifdef _WIN32
3747# define EV_LSTAT(p,b) _stati64 (p, b)
1484#else 3748#else
1485 struct sigaction sa; 3749# define EV_LSTAT(p,b) lstat (p, b)
1486 sa.sa_handler = sighandler;
1487 sigfillset (&sa.sa_mask);
1488 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1489 sigaction (w->signum, &sa, 0);
1490#endif 3750#endif
1491 }
1492}
1493 3751
1494void 3752void
1495ev_signal_stop (EV_P_ struct ev_signal *w) 3753ev_stat_stat (EV_P_ ev_stat *w)
1496{ 3754{
1497 ev_clear_pending (EV_A_ (W)w); 3755 if (lstat (w->path, &w->attr) < 0)
1498 if (!ev_is_active (w)) 3756 w->attr.st_nlink = 0;
3757 else if (!w->attr.st_nlink)
3758 w->attr.st_nlink = 1;
3759}
3760
3761static void noinline
3762stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3763{
3764 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3765
3766 ev_statdata prev = w->attr;
3767 ev_stat_stat (EV_A_ w);
3768
3769 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3770 if (
3771 prev.st_dev != w->attr.st_dev
3772 || prev.st_ino != w->attr.st_ino
3773 || prev.st_mode != w->attr.st_mode
3774 || prev.st_nlink != w->attr.st_nlink
3775 || prev.st_uid != w->attr.st_uid
3776 || prev.st_gid != w->attr.st_gid
3777 || prev.st_rdev != w->attr.st_rdev
3778 || prev.st_size != w->attr.st_size
3779 || prev.st_atime != w->attr.st_atime
3780 || prev.st_mtime != w->attr.st_mtime
3781 || prev.st_ctime != w->attr.st_ctime
3782 ) {
3783 /* we only update w->prev on actual differences */
3784 /* in case we test more often than invoke the callback, */
3785 /* to ensure that prev is always different to attr */
3786 w->prev = prev;
3787
3788 #if EV_USE_INOTIFY
3789 if (fs_fd >= 0)
3790 {
3791 infy_del (EV_A_ w);
3792 infy_add (EV_A_ w);
3793 ev_stat_stat (EV_A_ w); /* avoid race... */
3794 }
3795 #endif
3796
3797 ev_feed_event (EV_A_ w, EV_STAT);
3798 }
3799}
3800
3801void
3802ev_stat_start (EV_P_ ev_stat *w)
3803{
3804 if (expect_false (ev_is_active (w)))
1499 return; 3805 return;
1500 3806
1501 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3807 ev_stat_stat (EV_A_ w);
3808
3809 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3810 w->interval = MIN_STAT_INTERVAL;
3811
3812 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3813 ev_set_priority (&w->timer, ev_priority (w));
3814
3815#if EV_USE_INOTIFY
3816 infy_init (EV_A);
3817
3818 if (fs_fd >= 0)
3819 infy_add (EV_A_ w);
3820 else
3821#endif
3822 {
3823 ev_timer_again (EV_A_ &w->timer);
3824 ev_unref (EV_A);
3825 }
3826
3827 ev_start (EV_A_ (W)w, 1);
3828
3829 EV_FREQUENT_CHECK;
3830}
3831
3832void
3833ev_stat_stop (EV_P_ ev_stat *w)
3834{
3835 clear_pending (EV_A_ (W)w);
3836 if (expect_false (!ev_is_active (w)))
3837 return;
3838
3839 EV_FREQUENT_CHECK;
3840
3841#if EV_USE_INOTIFY
3842 infy_del (EV_A_ w);
3843#endif
3844
3845 if (ev_is_active (&w->timer))
3846 {
3847 ev_ref (EV_A);
3848 ev_timer_stop (EV_A_ &w->timer);
3849 }
3850
1502 ev_stop (EV_A_ (W)w); 3851 ev_stop (EV_A_ (W)w);
1503 3852
1504 if (!signals [w->signum - 1].head) 3853 EV_FREQUENT_CHECK;
1505 signal (w->signum, SIG_DFL);
1506} 3854}
3855#endif
1507 3856
3857#if EV_IDLE_ENABLE
1508void 3858void
1509ev_child_start (EV_P_ struct ev_child *w) 3859ev_idle_start (EV_P_ ev_idle *w)
1510{ 3860{
1511#if EV_MULTIPLICITY
1512 assert (("child watchers are only supported in the default loop", loop == default_loop));
1513#endif
1514 if (ev_is_active (w)) 3861 if (expect_false (ev_is_active (w)))
1515 return; 3862 return;
1516 3863
3864 pri_adjust (EV_A_ (W)w);
3865
3866 EV_FREQUENT_CHECK;
3867
3868 {
3869 int active = ++idlecnt [ABSPRI (w)];
3870
3871 ++idleall;
3872 ev_start (EV_A_ (W)w, active);
3873
3874 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3875 idles [ABSPRI (w)][active - 1] = w;
3876 }
3877
3878 EV_FREQUENT_CHECK;
3879}
3880
3881void
3882ev_idle_stop (EV_P_ ev_idle *w)
3883{
3884 clear_pending (EV_A_ (W)w);
3885 if (expect_false (!ev_is_active (w)))
3886 return;
3887
3888 EV_FREQUENT_CHECK;
3889
3890 {
3891 int active = ev_active (w);
3892
3893 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3894 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3895
3896 ev_stop (EV_A_ (W)w);
3897 --idleall;
3898 }
3899
3900 EV_FREQUENT_CHECK;
3901}
3902#endif
3903
3904#if EV_PREPARE_ENABLE
3905void
3906ev_prepare_start (EV_P_ ev_prepare *w)
3907{
3908 if (expect_false (ev_is_active (w)))
3909 return;
3910
3911 EV_FREQUENT_CHECK;
3912
3913 ev_start (EV_A_ (W)w, ++preparecnt);
3914 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3915 prepares [preparecnt - 1] = w;
3916
3917 EV_FREQUENT_CHECK;
3918}
3919
3920void
3921ev_prepare_stop (EV_P_ ev_prepare *w)
3922{
3923 clear_pending (EV_A_ (W)w);
3924 if (expect_false (!ev_is_active (w)))
3925 return;
3926
3927 EV_FREQUENT_CHECK;
3928
3929 {
3930 int active = ev_active (w);
3931
3932 prepares [active - 1] = prepares [--preparecnt];
3933 ev_active (prepares [active - 1]) = active;
3934 }
3935
3936 ev_stop (EV_A_ (W)w);
3937
3938 EV_FREQUENT_CHECK;
3939}
3940#endif
3941
3942#if EV_CHECK_ENABLE
3943void
3944ev_check_start (EV_P_ ev_check *w)
3945{
3946 if (expect_false (ev_is_active (w)))
3947 return;
3948
3949 EV_FREQUENT_CHECK;
3950
3951 ev_start (EV_A_ (W)w, ++checkcnt);
3952 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3953 checks [checkcnt - 1] = w;
3954
3955 EV_FREQUENT_CHECK;
3956}
3957
3958void
3959ev_check_stop (EV_P_ ev_check *w)
3960{
3961 clear_pending (EV_A_ (W)w);
3962 if (expect_false (!ev_is_active (w)))
3963 return;
3964
3965 EV_FREQUENT_CHECK;
3966
3967 {
3968 int active = ev_active (w);
3969
3970 checks [active - 1] = checks [--checkcnt];
3971 ev_active (checks [active - 1]) = active;
3972 }
3973
3974 ev_stop (EV_A_ (W)w);
3975
3976 EV_FREQUENT_CHECK;
3977}
3978#endif
3979
3980#if EV_EMBED_ENABLE
3981void noinline
3982ev_embed_sweep (EV_P_ ev_embed *w)
3983{
3984 ev_run (w->other, EVRUN_NOWAIT);
3985}
3986
3987static void
3988embed_io_cb (EV_P_ ev_io *io, int revents)
3989{
3990 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3991
3992 if (ev_cb (w))
3993 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3994 else
3995 ev_run (w->other, EVRUN_NOWAIT);
3996}
3997
3998static void
3999embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4000{
4001 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4002
4003 {
4004 EV_P = w->other;
4005
4006 while (fdchangecnt)
4007 {
4008 fd_reify (EV_A);
4009 ev_run (EV_A_ EVRUN_NOWAIT);
4010 }
4011 }
4012}
4013
4014static void
4015embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4016{
4017 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4018
4019 ev_embed_stop (EV_A_ w);
4020
4021 {
4022 EV_P = w->other;
4023
4024 ev_loop_fork (EV_A);
4025 ev_run (EV_A_ EVRUN_NOWAIT);
4026 }
4027
4028 ev_embed_start (EV_A_ w);
4029}
4030
4031#if 0
4032static void
4033embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4034{
4035 ev_idle_stop (EV_A_ idle);
4036}
4037#endif
4038
4039void
4040ev_embed_start (EV_P_ ev_embed *w)
4041{
4042 if (expect_false (ev_is_active (w)))
4043 return;
4044
4045 {
4046 EV_P = w->other;
4047 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4048 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4049 }
4050
4051 EV_FREQUENT_CHECK;
4052
4053 ev_set_priority (&w->io, ev_priority (w));
4054 ev_io_start (EV_A_ &w->io);
4055
4056 ev_prepare_init (&w->prepare, embed_prepare_cb);
4057 ev_set_priority (&w->prepare, EV_MINPRI);
4058 ev_prepare_start (EV_A_ &w->prepare);
4059
4060 ev_fork_init (&w->fork, embed_fork_cb);
4061 ev_fork_start (EV_A_ &w->fork);
4062
4063 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4064
1517 ev_start (EV_A_ (W)w, 1); 4065 ev_start (EV_A_ (W)w, 1);
1518 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4066
4067 EV_FREQUENT_CHECK;
1519} 4068}
1520 4069
1521void 4070void
1522ev_child_stop (EV_P_ struct ev_child *w) 4071ev_embed_stop (EV_P_ ev_embed *w)
1523{ 4072{
1524 ev_clear_pending (EV_A_ (W)w); 4073 clear_pending (EV_A_ (W)w);
1525 if (ev_is_active (w)) 4074 if (expect_false (!ev_is_active (w)))
1526 return; 4075 return;
1527 4076
1528 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4077 EV_FREQUENT_CHECK;
4078
4079 ev_io_stop (EV_A_ &w->io);
4080 ev_prepare_stop (EV_A_ &w->prepare);
4081 ev_fork_stop (EV_A_ &w->fork);
4082
1529 ev_stop (EV_A_ (W)w); 4083 ev_stop (EV_A_ (W)w);
4084
4085 EV_FREQUENT_CHECK;
1530} 4086}
4087#endif
4088
4089#if EV_FORK_ENABLE
4090void
4091ev_fork_start (EV_P_ ev_fork *w)
4092{
4093 if (expect_false (ev_is_active (w)))
4094 return;
4095
4096 EV_FREQUENT_CHECK;
4097
4098 ev_start (EV_A_ (W)w, ++forkcnt);
4099 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4100 forks [forkcnt - 1] = w;
4101
4102 EV_FREQUENT_CHECK;
4103}
4104
4105void
4106ev_fork_stop (EV_P_ ev_fork *w)
4107{
4108 clear_pending (EV_A_ (W)w);
4109 if (expect_false (!ev_is_active (w)))
4110 return;
4111
4112 EV_FREQUENT_CHECK;
4113
4114 {
4115 int active = ev_active (w);
4116
4117 forks [active - 1] = forks [--forkcnt];
4118 ev_active (forks [active - 1]) = active;
4119 }
4120
4121 ev_stop (EV_A_ (W)w);
4122
4123 EV_FREQUENT_CHECK;
4124}
4125#endif
4126
4127#if EV_CLEANUP_ENABLE
4128void
4129ev_cleanup_start (EV_P_ ev_cleanup *w)
4130{
4131 if (expect_false (ev_is_active (w)))
4132 return;
4133
4134 EV_FREQUENT_CHECK;
4135
4136 ev_start (EV_A_ (W)w, ++cleanupcnt);
4137 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4138 cleanups [cleanupcnt - 1] = w;
4139
4140 /* cleanup watchers should never keep a refcount on the loop */
4141 ev_unref (EV_A);
4142 EV_FREQUENT_CHECK;
4143}
4144
4145void
4146ev_cleanup_stop (EV_P_ ev_cleanup *w)
4147{
4148 clear_pending (EV_A_ (W)w);
4149 if (expect_false (!ev_is_active (w)))
4150 return;
4151
4152 EV_FREQUENT_CHECK;
4153 ev_ref (EV_A);
4154
4155 {
4156 int active = ev_active (w);
4157
4158 cleanups [active - 1] = cleanups [--cleanupcnt];
4159 ev_active (cleanups [active - 1]) = active;
4160 }
4161
4162 ev_stop (EV_A_ (W)w);
4163
4164 EV_FREQUENT_CHECK;
4165}
4166#endif
4167
4168#if EV_ASYNC_ENABLE
4169void
4170ev_async_start (EV_P_ ev_async *w)
4171{
4172 if (expect_false (ev_is_active (w)))
4173 return;
4174
4175 w->sent = 0;
4176
4177 evpipe_init (EV_A);
4178
4179 EV_FREQUENT_CHECK;
4180
4181 ev_start (EV_A_ (W)w, ++asynccnt);
4182 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4183 asyncs [asynccnt - 1] = w;
4184
4185 EV_FREQUENT_CHECK;
4186}
4187
4188void
4189ev_async_stop (EV_P_ ev_async *w)
4190{
4191 clear_pending (EV_A_ (W)w);
4192 if (expect_false (!ev_is_active (w)))
4193 return;
4194
4195 EV_FREQUENT_CHECK;
4196
4197 {
4198 int active = ev_active (w);
4199
4200 asyncs [active - 1] = asyncs [--asynccnt];
4201 ev_active (asyncs [active - 1]) = active;
4202 }
4203
4204 ev_stop (EV_A_ (W)w);
4205
4206 EV_FREQUENT_CHECK;
4207}
4208
4209void
4210ev_async_send (EV_P_ ev_async *w)
4211{
4212 w->sent = 1;
4213 evpipe_write (EV_A_ &async_pending);
4214}
4215#endif
1531 4216
1532/*****************************************************************************/ 4217/*****************************************************************************/
1533 4218
1534struct ev_once 4219struct ev_once
1535{ 4220{
1536 struct ev_io io; 4221 ev_io io;
1537 struct ev_timer to; 4222 ev_timer to;
1538 void (*cb)(int revents, void *arg); 4223 void (*cb)(int revents, void *arg);
1539 void *arg; 4224 void *arg;
1540}; 4225};
1541 4226
1542static void 4227static void
1543once_cb (EV_P_ struct ev_once *once, int revents) 4228once_cb (EV_P_ struct ev_once *once, int revents)
1544{ 4229{
1545 void (*cb)(int revents, void *arg) = once->cb; 4230 void (*cb)(int revents, void *arg) = once->cb;
1546 void *arg = once->arg; 4231 void *arg = once->arg;
1547 4232
1548 ev_io_stop (EV_A_ &once->io); 4233 ev_io_stop (EV_A_ &once->io);
1549 ev_timer_stop (EV_A_ &once->to); 4234 ev_timer_stop (EV_A_ &once->to);
1550 ev_free (once); 4235 ev_free (once);
1551 4236
1552 cb (revents, arg); 4237 cb (revents, arg);
1553} 4238}
1554 4239
1555static void 4240static void
1556once_cb_io (EV_P_ struct ev_io *w, int revents) 4241once_cb_io (EV_P_ ev_io *w, int revents)
1557{ 4242{
1558 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4243 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4244
4245 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1559} 4246}
1560 4247
1561static void 4248static void
1562once_cb_to (EV_P_ struct ev_timer *w, int revents) 4249once_cb_to (EV_P_ ev_timer *w, int revents)
1563{ 4250{
1564 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4251 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4252
4253 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1565} 4254}
1566 4255
1567void 4256void
1568ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4257ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1569{ 4258{
1570 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4259 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1571 4260
1572 if (!once) 4261 if (expect_false (!once))
4262 {
1573 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4263 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1574 else 4264 return;
1575 { 4265 }
4266
1576 once->cb = cb; 4267 once->cb = cb;
1577 once->arg = arg; 4268 once->arg = arg;
1578 4269
1579 ev_init (&once->io, once_cb_io); 4270 ev_init (&once->io, once_cb_io);
1580 if (fd >= 0) 4271 if (fd >= 0)
4272 {
4273 ev_io_set (&once->io, fd, events);
4274 ev_io_start (EV_A_ &once->io);
4275 }
4276
4277 ev_init (&once->to, once_cb_to);
4278 if (timeout >= 0.)
4279 {
4280 ev_timer_set (&once->to, timeout, 0.);
4281 ev_timer_start (EV_A_ &once->to);
4282 }
4283}
4284
4285/*****************************************************************************/
4286
4287#if EV_WALK_ENABLE
4288void ecb_cold
4289ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4290{
4291 int i, j;
4292 ev_watcher_list *wl, *wn;
4293
4294 if (types & (EV_IO | EV_EMBED))
4295 for (i = 0; i < anfdmax; ++i)
4296 for (wl = anfds [i].head; wl; )
1581 { 4297 {
1582 ev_io_set (&once->io, fd, events); 4298 wn = wl->next;
1583 ev_io_start (EV_A_ &once->io); 4299
4300#if EV_EMBED_ENABLE
4301 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4302 {
4303 if (types & EV_EMBED)
4304 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4305 }
4306 else
4307#endif
4308#if EV_USE_INOTIFY
4309 if (ev_cb ((ev_io *)wl) == infy_cb)
4310 ;
4311 else
4312#endif
4313 if ((ev_io *)wl != &pipe_w)
4314 if (types & EV_IO)
4315 cb (EV_A_ EV_IO, wl);
4316
4317 wl = wn;
1584 } 4318 }
1585 4319
1586 ev_init (&once->to, once_cb_to); 4320 if (types & (EV_TIMER | EV_STAT))
1587 if (timeout >= 0.) 4321 for (i = timercnt + HEAP0; i-- > HEAP0; )
4322#if EV_STAT_ENABLE
4323 /*TODO: timer is not always active*/
4324 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1588 { 4325 {
1589 ev_timer_set (&once->to, timeout, 0.); 4326 if (types & EV_STAT)
1590 ev_timer_start (EV_A_ &once->to); 4327 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1591 } 4328 }
1592 } 4329 else
1593} 4330#endif
4331 if (types & EV_TIMER)
4332 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1594 4333
4334#if EV_PERIODIC_ENABLE
4335 if (types & EV_PERIODIC)
4336 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4337 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4338#endif
4339
4340#if EV_IDLE_ENABLE
4341 if (types & EV_IDLE)
4342 for (j = NUMPRI; j--; )
4343 for (i = idlecnt [j]; i--; )
4344 cb (EV_A_ EV_IDLE, idles [j][i]);
4345#endif
4346
4347#if EV_FORK_ENABLE
4348 if (types & EV_FORK)
4349 for (i = forkcnt; i--; )
4350 if (ev_cb (forks [i]) != embed_fork_cb)
4351 cb (EV_A_ EV_FORK, forks [i]);
4352#endif
4353
4354#if EV_ASYNC_ENABLE
4355 if (types & EV_ASYNC)
4356 for (i = asynccnt; i--; )
4357 cb (EV_A_ EV_ASYNC, asyncs [i]);
4358#endif
4359
4360#if EV_PREPARE_ENABLE
4361 if (types & EV_PREPARE)
4362 for (i = preparecnt; i--; )
4363# if EV_EMBED_ENABLE
4364 if (ev_cb (prepares [i]) != embed_prepare_cb)
4365# endif
4366 cb (EV_A_ EV_PREPARE, prepares [i]);
4367#endif
4368
4369#if EV_CHECK_ENABLE
4370 if (types & EV_CHECK)
4371 for (i = checkcnt; i--; )
4372 cb (EV_A_ EV_CHECK, checks [i]);
4373#endif
4374
4375#if EV_SIGNAL_ENABLE
4376 if (types & EV_SIGNAL)
4377 for (i = 0; i < EV_NSIG - 1; ++i)
4378 for (wl = signals [i].head; wl; )
4379 {
4380 wn = wl->next;
4381 cb (EV_A_ EV_SIGNAL, wl);
4382 wl = wn;
4383 }
4384#endif
4385
4386#if EV_CHILD_ENABLE
4387 if (types & EV_CHILD)
4388 for (i = (EV_PID_HASHSIZE); i--; )
4389 for (wl = childs [i]; wl; )
4390 {
4391 wn = wl->next;
4392 cb (EV_A_ EV_CHILD, wl);
4393 wl = wn;
4394 }
4395#endif
4396/* EV_STAT 0x00001000 /* stat data changed */
4397/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4398}
4399#endif
4400
4401#if EV_MULTIPLICITY
4402 #include "ev_wrap.h"
4403#endif
4404
4405EV_CPP(})
4406

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines