ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.84 by root, Fri Nov 9 23:04:35 2007 UTC vs.
Revision 1.412 by root, Wed Feb 22 01:53:00 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
39
40/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
32# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
33 67
34# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
37# endif 82# endif
38 83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
40# define EV_USE_SELECT 1 99# define EV_USE_SELECT 0
41# endif 100# endif
42 101
43# if HAVE_POLL && HAVE_POLL_H 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
44# define EV_USE_POLL 1 108# define EV_USE_POLL 0
45# endif 109# endif
46 110
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
48# define EV_USE_EPOLL 1 117# define EV_USE_EPOLL 0
49# endif 118# endif
50 119
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
52# define EV_USE_KQUEUE 1 126# define EV_USE_KQUEUE 0
53# endif 127# endif
54 128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
55#endif 136# endif
56 137
57#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
58#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
59#include <fcntl.h> 169#include <fcntl.h>
60#include <stddef.h> 170#include <stddef.h>
61 171
62#include <stdio.h> 172#include <stdio.h>
63 173
64#include <assert.h> 174#include <assert.h>
65#include <errno.h> 175#include <errno.h>
66#include <sys/types.h> 176#include <sys/types.h>
67#include <time.h> 177#include <time.h>
178#include <limits.h>
68 179
69#include <signal.h> 180#include <signal.h>
70
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
76/**/
77
78#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1
80#endif
81
82#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1
84#endif
85
86#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88#endif
89
90#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0
92#endif
93
94#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME
109# define EV_USE_REALTIME 1
110#endif
111
112/**/
113
114#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0
117#endif
118
119#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0
122#endif
123
124/**/
125
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 181
131#ifdef EV_H 182#ifdef EV_H
132# include EV_H 183# include EV_H
133#else 184#else
134# include "ev.h" 185# include "ev.h"
135#endif 186#endif
136 187
137#if __GNUC__ >= 3 188#if EV_NO_THREADS
138# define expect(expr,value) __builtin_expect ((expr),(value)) 189# undef EV_NO_SMP
139# define inline inline 190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
199#ifndef _WIN32
200# include <sys/time.h>
201# include <sys/wait.h>
202# include <unistd.h>
140#else 203#else
141# define expect(expr,value) (expr) 204# include <io.h>
142# define inline static 205# define WIN32_LEAN_AND_MEAN
206# include <windows.h>
207# ifndef EV_SELECT_IS_WINSOCKET
208# define EV_SELECT_IS_WINSOCKET 1
143#endif 209# endif
210# undef EV_AVOID_STDIO
211#endif
144 212
145#define expect_false(expr) expect ((expr) != 0, 0) 213/* OS X, in its infinite idiocy, actually HARDCODES
146#define expect_true(expr) expect ((expr) != 0, 1) 214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219#define _DARWIN_UNLIMITED_SELECT 1
147 220
148#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 221/* this block tries to deduce configuration from header-defined symbols and defaults */
149#define ABSPRI(w) ((w)->priority - EV_MINPRI)
150 222
151typedef struct ev_watcher *W; 223/* try to deduce the maximum number of signals on this platform */
152typedef struct ev_watcher_list *WL; 224#if defined (EV_NSIG)
153typedef struct ev_watcher_time *WT; 225/* use what's provided */
226#elif defined (NSIG)
227# define EV_NSIG (NSIG)
228#elif defined(_NSIG)
229# define EV_NSIG (_NSIG)
230#elif defined (SIGMAX)
231# define EV_NSIG (SIGMAX+1)
232#elif defined (SIG_MAX)
233# define EV_NSIG (SIG_MAX+1)
234#elif defined (_SIG_MAX)
235# define EV_NSIG (_SIG_MAX+1)
236#elif defined (MAXSIG)
237# define EV_NSIG (MAXSIG+1)
238#elif defined (MAX_SIG)
239# define EV_NSIG (MAX_SIG+1)
240#elif defined (SIGARRAYSIZE)
241# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242#elif defined (_sys_nsig)
243# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244#else
245# error "unable to find value for NSIG, please report"
246/* to make it compile regardless, just remove the above line, */
247/* but consider reporting it, too! :) */
248# define EV_NSIG 65
249#endif
154 250
155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
156 254
157#include "ev_win32.c" 255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ >= 2
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
260# endif
261#endif
262
263#ifndef EV_USE_MONOTONIC
264# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
265# define EV_USE_MONOTONIC EV_FEATURE_OS
266# else
267# define EV_USE_MONOTONIC 0
268# endif
269#endif
270
271#ifndef EV_USE_REALTIME
272# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
273#endif
274
275#ifndef EV_USE_NANOSLEEP
276# if _POSIX_C_SOURCE >= 199309L
277# define EV_USE_NANOSLEEP EV_FEATURE_OS
278# else
279# define EV_USE_NANOSLEEP 0
280# endif
281#endif
282
283#ifndef EV_USE_SELECT
284# define EV_USE_SELECT EV_FEATURE_BACKENDS
285#endif
286
287#ifndef EV_USE_POLL
288# ifdef _WIN32
289# define EV_USE_POLL 0
290# else
291# define EV_USE_POLL EV_FEATURE_BACKENDS
292# endif
293#endif
294
295#ifndef EV_USE_EPOLL
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_EPOLL EV_FEATURE_BACKENDS
298# else
299# define EV_USE_EPOLL 0
300# endif
301#endif
302
303#ifndef EV_USE_KQUEUE
304# define EV_USE_KQUEUE 0
305#endif
306
307#ifndef EV_USE_PORT
308# define EV_USE_PORT 0
309#endif
310
311#ifndef EV_USE_INOTIFY
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
313# define EV_USE_INOTIFY EV_FEATURE_OS
314# else
315# define EV_USE_INOTIFY 0
316# endif
317#endif
318
319#ifndef EV_PID_HASHSIZE
320# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
321#endif
322
323#ifndef EV_INOTIFY_HASHSIZE
324# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
325#endif
326
327#ifndef EV_USE_EVENTFD
328# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
329# define EV_USE_EVENTFD EV_FEATURE_OS
330# else
331# define EV_USE_EVENTFD 0
332# endif
333#endif
334
335#ifndef EV_USE_SIGNALFD
336# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
337# define EV_USE_SIGNALFD EV_FEATURE_OS
338# else
339# define EV_USE_SIGNALFD 0
340# endif
341#endif
342
343#if 0 /* debugging */
344# define EV_VERIFY 3
345# define EV_USE_4HEAP 1
346# define EV_HEAP_CACHE_AT 1
347#endif
348
349#ifndef EV_VERIFY
350# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
351#endif
352
353#ifndef EV_USE_4HEAP
354# define EV_USE_4HEAP EV_FEATURE_DATA
355#endif
356
357#ifndef EV_HEAP_CACHE_AT
358# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359#endif
360
361/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362/* which makes programs even slower. might work on other unices, too. */
363#if EV_USE_CLOCK_SYSCALL
364# include <syscall.h>
365# ifdef SYS_clock_gettime
366# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367# undef EV_USE_MONOTONIC
368# define EV_USE_MONOTONIC 1
369# else
370# undef EV_USE_CLOCK_SYSCALL
371# define EV_USE_CLOCK_SYSCALL 0
372# endif
373#endif
374
375/* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377#ifdef _AIX
378/* AIX has a completely broken poll.h header */
379# undef EV_USE_POLL
380# define EV_USE_POLL 0
381#endif
382
383#ifndef CLOCK_MONOTONIC
384# undef EV_USE_MONOTONIC
385# define EV_USE_MONOTONIC 0
386#endif
387
388#ifndef CLOCK_REALTIME
389# undef EV_USE_REALTIME
390# define EV_USE_REALTIME 0
391#endif
392
393#if !EV_STAT_ENABLE
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396#endif
397
398#if !EV_USE_NANOSLEEP
399/* hp-ux has it in sys/time.h, which we unconditionally include above */
400# if !defined(_WIN32) && !defined(__hpux)
401# include <sys/select.h>
402# endif
403#endif
404
405#if EV_USE_INOTIFY
406# include <sys/statfs.h>
407# include <sys/inotify.h>
408/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409# ifndef IN_DONT_FOLLOW
410# undef EV_USE_INOTIFY
411# define EV_USE_INOTIFY 0
412# endif
413#endif
414
415#if EV_SELECT_IS_WINSOCKET
416# include <winsock.h>
417#endif
418
419#if EV_USE_EVENTFD
420/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
421# include <stdint.h>
422# ifndef EFD_NONBLOCK
423# define EFD_NONBLOCK O_NONBLOCK
424# endif
425# ifndef EFD_CLOEXEC
426# ifdef O_CLOEXEC
427# define EFD_CLOEXEC O_CLOEXEC
428# else
429# define EFD_CLOEXEC 02000000
430# endif
431# endif
432EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433#endif
434
435#if EV_USE_SIGNALFD
436/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437# include <stdint.h>
438# ifndef SFD_NONBLOCK
439# define SFD_NONBLOCK O_NONBLOCK
440# endif
441# ifndef SFD_CLOEXEC
442# ifdef O_CLOEXEC
443# define SFD_CLOEXEC O_CLOEXEC
444# else
445# define SFD_CLOEXEC 02000000
446# endif
447# endif
448EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450struct signalfd_siginfo
451{
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454};
455#endif
456
457/**/
458
459#if EV_VERIFY >= 3
460# define EV_FREQUENT_CHECK ev_verify (EV_A)
461#else
462# define EV_FREQUENT_CHECK do { } while (0)
463#endif
464
465/*
466 * This is used to work around floating point rounding problems.
467 * This value is good at least till the year 4000.
468 */
469#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
471
472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
474
475#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479/* ECB.H BEGIN */
480/*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
509#ifndef ECB_H
510#define ECB_H
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
519 #if __GNUC__
520 typedef signed long long int64_t;
521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526#else
527 #include <inttypes.h>
528#endif
529
530/* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537#ifndef ECB_GCC_VERSION
538 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
542 #endif
543#endif
158 544
159/*****************************************************************************/ 545/*****************************************************************************/
160 546
547/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550#if ECB_NO_THREADS
551# define ECB_NO_SMP 1
552#endif
553
554#if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556#endif
557
558#ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
571 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
574 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined(__s390__) || defined(__s390x__)
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #elif defined(__mips__)
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
584 #endif
585 #endif
586#endif
587
588#ifndef ECB_MEMORY_FENCE
589 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
590 #define ECB_MEMORY_FENCE __sync_synchronize ()
591 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
592 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
593 #elif _MSC_VER >= 1400 /* VC++ 2005 */
594 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
595 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
596 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
597 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
598 #elif defined(_WIN32)
599 #include <WinNT.h>
600 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
601 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
602 #include <mbarrier.h>
603 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
604 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
605 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
606 #endif
607#endif
608
609#ifndef ECB_MEMORY_FENCE
610 #if !ECB_AVOID_PTHREADS
611 /*
612 * if you get undefined symbol references to pthread_mutex_lock,
613 * or failure to find pthread.h, then you should implement
614 * the ECB_MEMORY_FENCE operations for your cpu/compiler
615 * OR provide pthread.h and link against the posix thread library
616 * of your system.
617 */
618 #include <pthread.h>
619 #define ECB_NEEDS_PTHREADS 1
620 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
621
622 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
623 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
624 #endif
625#endif
626
627#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
628 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
629#endif
630
631#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
632 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
633#endif
634
635/*****************************************************************************/
636
637#define ECB_C99 (__STDC_VERSION__ >= 199901L)
638
639#if __cplusplus
640 #define ecb_inline static inline
641#elif ECB_GCC_VERSION(2,5)
642 #define ecb_inline static __inline__
643#elif ECB_C99
644 #define ecb_inline static inline
645#else
646 #define ecb_inline static
647#endif
648
649#if ECB_GCC_VERSION(3,3)
650 #define ecb_restrict __restrict__
651#elif ECB_C99
652 #define ecb_restrict restrict
653#else
654 #define ecb_restrict
655#endif
656
657typedef int ecb_bool;
658
659#define ECB_CONCAT_(a, b) a ## b
660#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
661#define ECB_STRINGIFY_(a) # a
662#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
663
664#define ecb_function_ ecb_inline
665
666#if ECB_GCC_VERSION(3,1)
667 #define ecb_attribute(attrlist) __attribute__(attrlist)
668 #define ecb_is_constant(expr) __builtin_constant_p (expr)
669 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
670 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
671#else
672 #define ecb_attribute(attrlist)
673 #define ecb_is_constant(expr) 0
674 #define ecb_expect(expr,value) (expr)
675 #define ecb_prefetch(addr,rw,locality)
676#endif
677
678/* no emulation for ecb_decltype */
679#if ECB_GCC_VERSION(4,5)
680 #define ecb_decltype(x) __decltype(x)
681#elif ECB_GCC_VERSION(3,0)
682 #define ecb_decltype(x) __typeof(x)
683#endif
684
685#define ecb_noinline ecb_attribute ((__noinline__))
686#define ecb_noreturn ecb_attribute ((__noreturn__))
687#define ecb_unused ecb_attribute ((__unused__))
688#define ecb_const ecb_attribute ((__const__))
689#define ecb_pure ecb_attribute ((__pure__))
690
691#if ECB_GCC_VERSION(4,3)
692 #define ecb_artificial ecb_attribute ((__artificial__))
693 #define ecb_hot ecb_attribute ((__hot__))
694 #define ecb_cold ecb_attribute ((__cold__))
695#else
696 #define ecb_artificial
697 #define ecb_hot
698 #define ecb_cold
699#endif
700
701/* put around conditional expressions if you are very sure that the */
702/* expression is mostly true or mostly false. note that these return */
703/* booleans, not the expression. */
704#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
705#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
706/* for compatibility to the rest of the world */
707#define ecb_likely(expr) ecb_expect_true (expr)
708#define ecb_unlikely(expr) ecb_expect_false (expr)
709
710/* count trailing zero bits and count # of one bits */
711#if ECB_GCC_VERSION(3,4)
712 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
713 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
714 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
715 #define ecb_ctz32(x) __builtin_ctz (x)
716 #define ecb_ctz64(x) __builtin_ctzll (x)
717 #define ecb_popcount32(x) __builtin_popcount (x)
718 /* no popcountll */
719#else
720 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
721 ecb_function_ int
722 ecb_ctz32 (uint32_t x)
723 {
724 int r = 0;
725
726 x &= ~x + 1; /* this isolates the lowest bit */
727
728#if ECB_branchless_on_i386
729 r += !!(x & 0xaaaaaaaa) << 0;
730 r += !!(x & 0xcccccccc) << 1;
731 r += !!(x & 0xf0f0f0f0) << 2;
732 r += !!(x & 0xff00ff00) << 3;
733 r += !!(x & 0xffff0000) << 4;
734#else
735 if (x & 0xaaaaaaaa) r += 1;
736 if (x & 0xcccccccc) r += 2;
737 if (x & 0xf0f0f0f0) r += 4;
738 if (x & 0xff00ff00) r += 8;
739 if (x & 0xffff0000) r += 16;
740#endif
741
742 return r;
743 }
744
745 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
746 ecb_function_ int
747 ecb_ctz64 (uint64_t x)
748 {
749 int shift = x & 0xffffffffU ? 0 : 32;
750 return ecb_ctz32 (x >> shift) + shift;
751 }
752
753 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
754 ecb_function_ int
755 ecb_popcount32 (uint32_t x)
756 {
757 x -= (x >> 1) & 0x55555555;
758 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
759 x = ((x >> 4) + x) & 0x0f0f0f0f;
760 x *= 0x01010101;
761
762 return x >> 24;
763 }
764
765 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
766 ecb_function_ int ecb_ld32 (uint32_t x)
767 {
768 int r = 0;
769
770 if (x >> 16) { x >>= 16; r += 16; }
771 if (x >> 8) { x >>= 8; r += 8; }
772 if (x >> 4) { x >>= 4; r += 4; }
773 if (x >> 2) { x >>= 2; r += 2; }
774 if (x >> 1) { r += 1; }
775
776 return r;
777 }
778
779 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
780 ecb_function_ int ecb_ld64 (uint64_t x)
781 {
782 int r = 0;
783
784 if (x >> 32) { x >>= 32; r += 32; }
785
786 return r + ecb_ld32 (x);
787 }
788#endif
789
790ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
791ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
792{
793 return ( (x * 0x0802U & 0x22110U)
794 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
795}
796
797ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
798ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
799{
800 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
801 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
802 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
803 x = ( x >> 8 ) | ( x << 8);
804
805 return x;
806}
807
808ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
809ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
810{
811 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
812 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
813 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
814 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
815 x = ( x >> 16 ) | ( x << 16);
816
817 return x;
818}
819
820/* popcount64 is only available on 64 bit cpus as gcc builtin */
821/* so for this version we are lazy */
822ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
823ecb_function_ int
824ecb_popcount64 (uint64_t x)
825{
826 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
827}
828
829ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
830ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
831ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
832ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
833ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
834ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
835ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
836ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
837
838ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
839ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
840ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
841ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
842ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
843ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
844ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
845ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
846
847#if ECB_GCC_VERSION(4,3)
848 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
849 #define ecb_bswap32(x) __builtin_bswap32 (x)
850 #define ecb_bswap64(x) __builtin_bswap64 (x)
851#else
852 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
853 ecb_function_ uint16_t
854 ecb_bswap16 (uint16_t x)
855 {
856 return ecb_rotl16 (x, 8);
857 }
858
859 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
860 ecb_function_ uint32_t
861 ecb_bswap32 (uint32_t x)
862 {
863 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
864 }
865
866 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
867 ecb_function_ uint64_t
868 ecb_bswap64 (uint64_t x)
869 {
870 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
871 }
872#endif
873
874#if ECB_GCC_VERSION(4,5)
875 #define ecb_unreachable() __builtin_unreachable ()
876#else
877 /* this seems to work fine, but gcc always emits a warning for it :/ */
878 ecb_inline void ecb_unreachable (void) ecb_noreturn;
879 ecb_inline void ecb_unreachable (void) { }
880#endif
881
882/* try to tell the compiler that some condition is definitely true */
883#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
884
885ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
886ecb_inline unsigned char
887ecb_byteorder_helper (void)
888{
889 const uint32_t u = 0x11223344;
890 return *(unsigned char *)&u;
891}
892
893ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
894ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
895ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
896ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
897
898#if ECB_GCC_VERSION(3,0) || ECB_C99
899 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
900#else
901 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
902#endif
903
904#if __cplusplus
905 template<typename T>
906 static inline T ecb_div_rd (T val, T div)
907 {
908 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
909 }
910 template<typename T>
911 static inline T ecb_div_ru (T val, T div)
912 {
913 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
914 }
915#else
916 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
917 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
918#endif
919
920#if ecb_cplusplus_does_not_suck
921 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
922 template<typename T, int N>
923 static inline int ecb_array_length (const T (&arr)[N])
924 {
925 return N;
926 }
927#else
928 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
929#endif
930
931#endif
932
933/* ECB.H END */
934
935#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
936/* if your architecture doesn't need memory fences, e.g. because it is
937 * single-cpu/core, or if you use libev in a project that doesn't use libev
938 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
939 * libev, in which cases the memory fences become nops.
940 * alternatively, you can remove this #error and link against libpthread,
941 * which will then provide the memory fences.
942 */
943# error "memory fences not defined for your architecture, please report"
944#endif
945
946#ifndef ECB_MEMORY_FENCE
947# define ECB_MEMORY_FENCE do { } while (0)
948# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
949# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
950#endif
951
952#define expect_false(cond) ecb_expect_false (cond)
953#define expect_true(cond) ecb_expect_true (cond)
954#define noinline ecb_noinline
955
956#define inline_size ecb_inline
957
958#if EV_FEATURE_CODE
959# define inline_speed ecb_inline
960#else
961# define inline_speed static noinline
962#endif
963
964#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
965
966#if EV_MINPRI == EV_MAXPRI
967# define ABSPRI(w) (((W)w), 0)
968#else
969# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
970#endif
971
972#define EMPTY /* required for microsofts broken pseudo-c compiler */
973#define EMPTY2(a,b) /* used to suppress some warnings */
974
975typedef ev_watcher *W;
976typedef ev_watcher_list *WL;
977typedef ev_watcher_time *WT;
978
979#define ev_active(w) ((W)(w))->active
980#define ev_at(w) ((WT)(w))->at
981
982#if EV_USE_REALTIME
983/* sig_atomic_t is used to avoid per-thread variables or locking but still */
984/* giving it a reasonably high chance of working on typical architectures */
985static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
986#endif
987
988#if EV_USE_MONOTONIC
989static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
990#endif
991
992#ifndef EV_FD_TO_WIN32_HANDLE
993# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
994#endif
995#ifndef EV_WIN32_HANDLE_TO_FD
996# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
997#endif
998#ifndef EV_WIN32_CLOSE_FD
999# define EV_WIN32_CLOSE_FD(fd) close (fd)
1000#endif
1001
1002#ifdef _WIN32
1003# include "ev_win32.c"
1004#endif
1005
1006/*****************************************************************************/
1007
1008/* define a suitable floor function (only used by periodics atm) */
1009
1010#if EV_USE_FLOOR
1011# include <math.h>
1012# define ev_floor(v) floor (v)
1013#else
1014
1015#include <float.h>
1016
1017/* a floor() replacement function, should be independent of ev_tstamp type */
1018static ev_tstamp noinline
1019ev_floor (ev_tstamp v)
1020{
1021 /* the choice of shift factor is not terribly important */
1022#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1023 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1024#else
1025 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1026#endif
1027
1028 /* argument too large for an unsigned long? */
1029 if (expect_false (v >= shift))
1030 {
1031 ev_tstamp f;
1032
1033 if (v == v - 1.)
1034 return v; /* very large number */
1035
1036 f = shift * ev_floor (v * (1. / shift));
1037 return f + ev_floor (v - f);
1038 }
1039
1040 /* special treatment for negative args? */
1041 if (expect_false (v < 0.))
1042 {
1043 ev_tstamp f = -ev_floor (-v);
1044
1045 return f - (f == v ? 0 : 1);
1046 }
1047
1048 /* fits into an unsigned long */
1049 return (unsigned long)v;
1050}
1051
1052#endif
1053
1054/*****************************************************************************/
1055
1056#ifdef __linux
1057# include <sys/utsname.h>
1058#endif
1059
1060static unsigned int noinline ecb_cold
1061ev_linux_version (void)
1062{
1063#ifdef __linux
1064 unsigned int v = 0;
1065 struct utsname buf;
1066 int i;
1067 char *p = buf.release;
1068
1069 if (uname (&buf))
1070 return 0;
1071
1072 for (i = 3+1; --i; )
1073 {
1074 unsigned int c = 0;
1075
1076 for (;;)
1077 {
1078 if (*p >= '0' && *p <= '9')
1079 c = c * 10 + *p++ - '0';
1080 else
1081 {
1082 p += *p == '.';
1083 break;
1084 }
1085 }
1086
1087 v = (v << 8) | c;
1088 }
1089
1090 return v;
1091#else
1092 return 0;
1093#endif
1094}
1095
1096/*****************************************************************************/
1097
1098#if EV_AVOID_STDIO
1099static void noinline ecb_cold
1100ev_printerr (const char *msg)
1101{
1102 write (STDERR_FILENO, msg, strlen (msg));
1103}
1104#endif
1105
161static void (*syserr_cb)(const char *msg); 1106static void (*syserr_cb)(const char *msg);
162 1107
1108void ecb_cold
163void ev_set_syserr_cb (void (*cb)(const char *msg)) 1109ev_set_syserr_cb (void (*cb)(const char *msg))
164{ 1110{
165 syserr_cb = cb; 1111 syserr_cb = cb;
166} 1112}
167 1113
168static void 1114static void noinline ecb_cold
169syserr (const char *msg) 1115ev_syserr (const char *msg)
170{ 1116{
171 if (!msg) 1117 if (!msg)
172 msg = "(libev) system error"; 1118 msg = "(libev) system error";
173 1119
174 if (syserr_cb) 1120 if (syserr_cb)
175 syserr_cb (msg); 1121 syserr_cb (msg);
176 else 1122 else
177 { 1123 {
1124#if EV_AVOID_STDIO
1125 ev_printerr (msg);
1126 ev_printerr (": ");
1127 ev_printerr (strerror (errno));
1128 ev_printerr ("\n");
1129#else
178 perror (msg); 1130 perror (msg);
1131#endif
179 abort (); 1132 abort ();
180 } 1133 }
181} 1134}
182 1135
1136static void *
1137ev_realloc_emul (void *ptr, long size)
1138{
1139#if __GLIBC__
1140 return realloc (ptr, size);
1141#else
1142 /* some systems, notably openbsd and darwin, fail to properly
1143 * implement realloc (x, 0) (as required by both ansi c-89 and
1144 * the single unix specification, so work around them here.
1145 */
1146
1147 if (size)
1148 return realloc (ptr, size);
1149
1150 free (ptr);
1151 return 0;
1152#endif
1153}
1154
183static void *(*alloc)(void *ptr, long size); 1155static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
184 1156
1157void ecb_cold
185void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1158ev_set_allocator (void *(*cb)(void *ptr, long size))
186{ 1159{
187 alloc = cb; 1160 alloc = cb;
188} 1161}
189 1162
190static void * 1163inline_speed void *
191ev_realloc (void *ptr, long size) 1164ev_realloc (void *ptr, long size)
192{ 1165{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1166 ptr = alloc (ptr, size);
194 1167
195 if (!ptr && size) 1168 if (!ptr && size)
196 { 1169 {
1170#if EV_AVOID_STDIO
1171 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1172#else
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1173 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1174#endif
198 abort (); 1175 abort ();
199 } 1176 }
200 1177
201 return ptr; 1178 return ptr;
202} 1179}
204#define ev_malloc(size) ev_realloc (0, (size)) 1181#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0) 1182#define ev_free(ptr) ev_realloc ((ptr), 0)
206 1183
207/*****************************************************************************/ 1184/*****************************************************************************/
208 1185
1186/* set in reify when reification needed */
1187#define EV_ANFD_REIFY 1
1188
1189/* file descriptor info structure */
209typedef struct 1190typedef struct
210{ 1191{
211 WL head; 1192 WL head;
212 unsigned char events; 1193 unsigned char events; /* the events watched for */
1194 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1195 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
213 unsigned char reify; 1196 unsigned char unused;
1197#if EV_USE_EPOLL
1198 unsigned int egen; /* generation counter to counter epoll bugs */
1199#endif
1200#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1201 SOCKET handle;
1202#endif
1203#if EV_USE_IOCP
1204 OVERLAPPED or, ow;
1205#endif
214} ANFD; 1206} ANFD;
215 1207
1208/* stores the pending event set for a given watcher */
216typedef struct 1209typedef struct
217{ 1210{
218 W w; 1211 W w;
219 int events; 1212 int events; /* the pending event set for the given watcher */
220} ANPENDING; 1213} ANPENDING;
1214
1215#if EV_USE_INOTIFY
1216/* hash table entry per inotify-id */
1217typedef struct
1218{
1219 WL head;
1220} ANFS;
1221#endif
1222
1223/* Heap Entry */
1224#if EV_HEAP_CACHE_AT
1225 /* a heap element */
1226 typedef struct {
1227 ev_tstamp at;
1228 WT w;
1229 } ANHE;
1230
1231 #define ANHE_w(he) (he).w /* access watcher, read-write */
1232 #define ANHE_at(he) (he).at /* access cached at, read-only */
1233 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1234#else
1235 /* a heap element */
1236 typedef WT ANHE;
1237
1238 #define ANHE_w(he) (he)
1239 #define ANHE_at(he) (he)->at
1240 #define ANHE_at_cache(he)
1241#endif
221 1242
222#if EV_MULTIPLICITY 1243#if EV_MULTIPLICITY
223 1244
224 struct ev_loop 1245 struct ev_loop
225 { 1246 {
1247 ev_tstamp ev_rt_now;
1248 #define ev_rt_now ((loop)->ev_rt_now)
226 #define VAR(name,decl) decl; 1249 #define VAR(name,decl) decl;
227 #include "ev_vars.h" 1250 #include "ev_vars.h"
228 #undef VAR 1251 #undef VAR
229 }; 1252 };
230 #include "ev_wrap.h" 1253 #include "ev_wrap.h"
231 1254
232 struct ev_loop default_loop_struct; 1255 static struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop; 1256 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
234 1257
235#else 1258#else
236 1259
1260 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
237 #define VAR(name,decl) static decl; 1261 #define VAR(name,decl) static decl;
238 #include "ev_vars.h" 1262 #include "ev_vars.h"
239 #undef VAR 1263 #undef VAR
240 1264
241 static int default_loop; 1265 static int ev_default_loop_ptr;
242 1266
243#endif 1267#endif
1268
1269#if EV_FEATURE_API
1270# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1271# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1272# define EV_INVOKE_PENDING invoke_cb (EV_A)
1273#else
1274# define EV_RELEASE_CB (void)0
1275# define EV_ACQUIRE_CB (void)0
1276# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1277#endif
1278
1279#define EVBREAK_RECURSE 0x80
244 1280
245/*****************************************************************************/ 1281/*****************************************************************************/
246 1282
247inline ev_tstamp 1283#ifndef EV_HAVE_EV_TIME
1284ev_tstamp
248ev_time (void) 1285ev_time (void)
249{ 1286{
250#if EV_USE_REALTIME 1287#if EV_USE_REALTIME
1288 if (expect_true (have_realtime))
1289 {
251 struct timespec ts; 1290 struct timespec ts;
252 clock_gettime (CLOCK_REALTIME, &ts); 1291 clock_gettime (CLOCK_REALTIME, &ts);
253 return ts.tv_sec + ts.tv_nsec * 1e-9; 1292 return ts.tv_sec + ts.tv_nsec * 1e-9;
254#else 1293 }
1294#endif
1295
255 struct timeval tv; 1296 struct timeval tv;
256 gettimeofday (&tv, 0); 1297 gettimeofday (&tv, 0);
257 return tv.tv_sec + tv.tv_usec * 1e-6; 1298 return tv.tv_sec + tv.tv_usec * 1e-6;
258#endif
259} 1299}
1300#endif
260 1301
261inline ev_tstamp 1302inline_size ev_tstamp
262get_clock (void) 1303get_clock (void)
263{ 1304{
264#if EV_USE_MONOTONIC 1305#if EV_USE_MONOTONIC
265 if (expect_true (have_monotonic)) 1306 if (expect_true (have_monotonic))
266 { 1307 {
271#endif 1312#endif
272 1313
273 return ev_time (); 1314 return ev_time ();
274} 1315}
275 1316
1317#if EV_MULTIPLICITY
276ev_tstamp 1318ev_tstamp
277ev_now (EV_P) 1319ev_now (EV_P)
278{ 1320{
279 return rt_now; 1321 return ev_rt_now;
280} 1322}
1323#endif
281 1324
282#define array_roundsize(type,n) ((n) | 4 & ~3) 1325void
1326ev_sleep (ev_tstamp delay)
1327{
1328 if (delay > 0.)
1329 {
1330#if EV_USE_NANOSLEEP
1331 struct timespec ts;
1332
1333 EV_TS_SET (ts, delay);
1334 nanosleep (&ts, 0);
1335#elif defined(_WIN32)
1336 Sleep ((unsigned long)(delay * 1e3));
1337#else
1338 struct timeval tv;
1339
1340 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1341 /* something not guaranteed by newer posix versions, but guaranteed */
1342 /* by older ones */
1343 EV_TV_SET (tv, delay);
1344 select (0, 0, 0, 0, &tv);
1345#endif
1346 }
1347}
1348
1349/*****************************************************************************/
1350
1351#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1352
1353/* find a suitable new size for the given array, */
1354/* hopefully by rounding to a nice-to-malloc size */
1355inline_size int
1356array_nextsize (int elem, int cur, int cnt)
1357{
1358 int ncur = cur + 1;
1359
1360 do
1361 ncur <<= 1;
1362 while (cnt > ncur);
1363
1364 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1365 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1366 {
1367 ncur *= elem;
1368 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1369 ncur = ncur - sizeof (void *) * 4;
1370 ncur /= elem;
1371 }
1372
1373 return ncur;
1374}
1375
1376static void * noinline ecb_cold
1377array_realloc (int elem, void *base, int *cur, int cnt)
1378{
1379 *cur = array_nextsize (elem, *cur, cnt);
1380 return ev_realloc (base, elem * *cur);
1381}
1382
1383#define array_init_zero(base,count) \
1384 memset ((void *)(base), 0, sizeof (*(base)) * (count))
283 1385
284#define array_needsize(type,base,cur,cnt,init) \ 1386#define array_needsize(type,base,cur,cnt,init) \
285 if (expect_false ((cnt) > cur)) \ 1387 if (expect_false ((cnt) > (cur))) \
286 { \ 1388 { \
287 int newcnt = cur; \ 1389 int ecb_unused ocur_ = (cur); \
288 do \ 1390 (base) = (type *)array_realloc \
289 { \ 1391 (sizeof (type), (base), &(cur), (cnt)); \
290 newcnt = array_roundsize (type, newcnt << 1); \ 1392 init ((base) + (ocur_), (cur) - ocur_); \
291 } \
292 while ((cnt) > newcnt); \
293 \
294 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
295 init (base + cur, newcnt - cur); \
296 cur = newcnt; \
297 } 1393 }
298 1394
1395#if 0
299#define array_slim(type,stem) \ 1396#define array_slim(type,stem) \
300 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1397 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
301 { \ 1398 { \
302 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1399 stem ## max = array_roundsize (stem ## cnt >> 1); \
303 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1400 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
304 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1401 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
305 } 1402 }
306 1403#endif
307/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
308/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
309#define array_free_microshit(stem) \
310 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
311 1404
312#define array_free(stem, idx) \ 1405#define array_free(stem, idx) \
313 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1406 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
314 1407
315/*****************************************************************************/ 1408/*****************************************************************************/
316 1409
317static void 1410/* dummy callback for pending events */
318anfds_init (ANFD *base, int count) 1411static void noinline
1412pendingcb (EV_P_ ev_prepare *w, int revents)
319{ 1413{
320 while (count--)
321 {
322 base->head = 0;
323 base->events = EV_NONE;
324 base->reify = 0;
325
326 ++base;
327 }
328} 1414}
329 1415
330void 1416void noinline
331ev_feed_event (EV_P_ void *w, int revents) 1417ev_feed_event (EV_P_ void *w, int revents)
332{ 1418{
333 W w_ = (W)w; 1419 W w_ = (W)w;
1420 int pri = ABSPRI (w_);
334 1421
335 if (w_->pending) 1422 if (expect_false (w_->pending))
1423 pendings [pri][w_->pending - 1].events |= revents;
1424 else
336 { 1425 {
1426 w_->pending = ++pendingcnt [pri];
1427 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1428 pendings [pri][w_->pending - 1].w = w_;
337 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1429 pendings [pri][w_->pending - 1].events = revents;
338 return;
339 } 1430 }
340
341 w_->pending = ++pendingcnt [ABSPRI (w_)];
342 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
343 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
344 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
345} 1431}
346 1432
347static void 1433inline_speed void
1434feed_reverse (EV_P_ W w)
1435{
1436 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1437 rfeeds [rfeedcnt++] = w;
1438}
1439
1440inline_size void
1441feed_reverse_done (EV_P_ int revents)
1442{
1443 do
1444 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1445 while (rfeedcnt);
1446}
1447
1448inline_speed void
348queue_events (EV_P_ W *events, int eventcnt, int type) 1449queue_events (EV_P_ W *events, int eventcnt, int type)
349{ 1450{
350 int i; 1451 int i;
351 1452
352 for (i = 0; i < eventcnt; ++i) 1453 for (i = 0; i < eventcnt; ++i)
353 ev_feed_event (EV_A_ events [i], type); 1454 ev_feed_event (EV_A_ events [i], type);
354} 1455}
355 1456
1457/*****************************************************************************/
1458
356inline void 1459inline_speed void
357fd_event (EV_P_ int fd, int revents) 1460fd_event_nocheck (EV_P_ int fd, int revents)
358{ 1461{
359 ANFD *anfd = anfds + fd; 1462 ANFD *anfd = anfds + fd;
360 struct ev_io *w; 1463 ev_io *w;
361 1464
362 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1465 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
363 { 1466 {
364 int ev = w->events & revents; 1467 int ev = w->events & revents;
365 1468
366 if (ev) 1469 if (ev)
367 ev_feed_event (EV_A_ (W)w, ev); 1470 ev_feed_event (EV_A_ (W)w, ev);
368 } 1471 }
369} 1472}
370 1473
1474/* do not submit kernel events for fds that have reify set */
1475/* because that means they changed while we were polling for new events */
1476inline_speed void
1477fd_event (EV_P_ int fd, int revents)
1478{
1479 ANFD *anfd = anfds + fd;
1480
1481 if (expect_true (!anfd->reify))
1482 fd_event_nocheck (EV_A_ fd, revents);
1483}
1484
371void 1485void
372ev_feed_fd_event (EV_P_ int fd, int revents) 1486ev_feed_fd_event (EV_P_ int fd, int revents)
373{ 1487{
1488 if (fd >= 0 && fd < anfdmax)
374 fd_event (EV_A_ fd, revents); 1489 fd_event_nocheck (EV_A_ fd, revents);
375} 1490}
376 1491
377/*****************************************************************************/ 1492/* make sure the external fd watch events are in-sync */
378 1493/* with the kernel/libev internal state */
379static void 1494inline_size void
380fd_reify (EV_P) 1495fd_reify (EV_P)
381{ 1496{
382 int i; 1497 int i;
383 1498
1499#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
384 for (i = 0; i < fdchangecnt; ++i) 1500 for (i = 0; i < fdchangecnt; ++i)
385 { 1501 {
386 int fd = fdchanges [i]; 1502 int fd = fdchanges [i];
387 ANFD *anfd = anfds + fd; 1503 ANFD *anfd = anfds + fd;
1504
1505 if (anfd->reify & EV__IOFDSET && anfd->head)
1506 {
1507 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1508
1509 if (handle != anfd->handle)
1510 {
1511 unsigned long arg;
1512
1513 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1514
1515 /* handle changed, but fd didn't - we need to do it in two steps */
1516 backend_modify (EV_A_ fd, anfd->events, 0);
1517 anfd->events = 0;
1518 anfd->handle = handle;
1519 }
1520 }
1521 }
1522#endif
1523
1524 for (i = 0; i < fdchangecnt; ++i)
1525 {
1526 int fd = fdchanges [i];
1527 ANFD *anfd = anfds + fd;
388 struct ev_io *w; 1528 ev_io *w;
389 1529
390 int events = 0; 1530 unsigned char o_events = anfd->events;
1531 unsigned char o_reify = anfd->reify;
391 1532
392 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
393 events |= w->events;
394
395 anfd->reify = 0; 1533 anfd->reify = 0;
396 1534
397 method_modify (EV_A_ fd, anfd->events, events); 1535 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1536 {
398 anfd->events = events; 1537 anfd->events = 0;
1538
1539 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1540 anfd->events |= (unsigned char)w->events;
1541
1542 if (o_events != anfd->events)
1543 o_reify = EV__IOFDSET; /* actually |= */
1544 }
1545
1546 if (o_reify & EV__IOFDSET)
1547 backend_modify (EV_A_ fd, o_events, anfd->events);
399 } 1548 }
400 1549
401 fdchangecnt = 0; 1550 fdchangecnt = 0;
402} 1551}
403 1552
404static void 1553/* something about the given fd changed */
1554inline_size void
405fd_change (EV_P_ int fd) 1555fd_change (EV_P_ int fd, int flags)
406{ 1556{
407 if (anfds [fd].reify) 1557 unsigned char reify = anfds [fd].reify;
408 return;
409
410 anfds [fd].reify = 1; 1558 anfds [fd].reify |= flags;
411 1559
1560 if (expect_true (!reify))
1561 {
412 ++fdchangecnt; 1562 ++fdchangecnt;
413 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 1563 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
414 fdchanges [fdchangecnt - 1] = fd; 1564 fdchanges [fdchangecnt - 1] = fd;
1565 }
415} 1566}
416 1567
417static void 1568/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1569inline_speed void ecb_cold
418fd_kill (EV_P_ int fd) 1570fd_kill (EV_P_ int fd)
419{ 1571{
420 struct ev_io *w; 1572 ev_io *w;
421 1573
422 while ((w = (struct ev_io *)anfds [fd].head)) 1574 while ((w = (ev_io *)anfds [fd].head))
423 { 1575 {
424 ev_io_stop (EV_A_ w); 1576 ev_io_stop (EV_A_ w);
425 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1577 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
426 } 1578 }
427} 1579}
428 1580
429static int 1581/* check whether the given fd is actually valid, for error recovery */
1582inline_size int ecb_cold
430fd_valid (int fd) 1583fd_valid (int fd)
431{ 1584{
432#ifdef WIN32 1585#ifdef _WIN32
433 return !!win32_get_osfhandle (fd); 1586 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
434#else 1587#else
435 return fcntl (fd, F_GETFD) != -1; 1588 return fcntl (fd, F_GETFD) != -1;
436#endif 1589#endif
437} 1590}
438 1591
439/* called on EBADF to verify fds */ 1592/* called on EBADF to verify fds */
440static void 1593static void noinline ecb_cold
441fd_ebadf (EV_P) 1594fd_ebadf (EV_P)
442{ 1595{
443 int fd; 1596 int fd;
444 1597
445 for (fd = 0; fd < anfdmax; ++fd) 1598 for (fd = 0; fd < anfdmax; ++fd)
446 if (anfds [fd].events) 1599 if (anfds [fd].events)
447 if (!fd_valid (fd) == -1 && errno == EBADF) 1600 if (!fd_valid (fd) && errno == EBADF)
448 fd_kill (EV_A_ fd); 1601 fd_kill (EV_A_ fd);
449} 1602}
450 1603
451/* called on ENOMEM in select/poll to kill some fds and retry */ 1604/* called on ENOMEM in select/poll to kill some fds and retry */
452static void 1605static void noinline ecb_cold
453fd_enomem (EV_P) 1606fd_enomem (EV_P)
454{ 1607{
455 int fd; 1608 int fd;
456 1609
457 for (fd = anfdmax; fd--; ) 1610 for (fd = anfdmax; fd--; )
458 if (anfds [fd].events) 1611 if (anfds [fd].events)
459 { 1612 {
460 fd_kill (EV_A_ fd); 1613 fd_kill (EV_A_ fd);
461 return; 1614 break;
462 } 1615 }
463} 1616}
464 1617
465/* usually called after fork if method needs to re-arm all fds from scratch */ 1618/* usually called after fork if backend needs to re-arm all fds from scratch */
466static void 1619static void noinline
467fd_rearm_all (EV_P) 1620fd_rearm_all (EV_P)
468{ 1621{
469 int fd; 1622 int fd;
470 1623
471 /* this should be highly optimised to not do anything but set a flag */
472 for (fd = 0; fd < anfdmax; ++fd) 1624 for (fd = 0; fd < anfdmax; ++fd)
473 if (anfds [fd].events) 1625 if (anfds [fd].events)
474 { 1626 {
475 anfds [fd].events = 0; 1627 anfds [fd].events = 0;
476 fd_change (EV_A_ fd); 1628 anfds [fd].emask = 0;
1629 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
477 } 1630 }
478} 1631}
479 1632
1633/* used to prepare libev internal fd's */
1634/* this is not fork-safe */
1635inline_speed void
1636fd_intern (int fd)
1637{
1638#ifdef _WIN32
1639 unsigned long arg = 1;
1640 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1641#else
1642 fcntl (fd, F_SETFD, FD_CLOEXEC);
1643 fcntl (fd, F_SETFL, O_NONBLOCK);
1644#endif
1645}
1646
480/*****************************************************************************/ 1647/*****************************************************************************/
481 1648
1649/*
1650 * the heap functions want a real array index. array index 0 is guaranteed to not
1651 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1652 * the branching factor of the d-tree.
1653 */
1654
1655/*
1656 * at the moment we allow libev the luxury of two heaps,
1657 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1658 * which is more cache-efficient.
1659 * the difference is about 5% with 50000+ watchers.
1660 */
1661#if EV_USE_4HEAP
1662
1663#define DHEAP 4
1664#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1665#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1666#define UPHEAP_DONE(p,k) ((p) == (k))
1667
1668/* away from the root */
1669inline_speed void
1670downheap (ANHE *heap, int N, int k)
1671{
1672 ANHE he = heap [k];
1673 ANHE *E = heap + N + HEAP0;
1674
1675 for (;;)
1676 {
1677 ev_tstamp minat;
1678 ANHE *minpos;
1679 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1680
1681 /* find minimum child */
1682 if (expect_true (pos + DHEAP - 1 < E))
1683 {
1684 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1685 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1686 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1687 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1688 }
1689 else if (pos < E)
1690 {
1691 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1692 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1693 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1694 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1695 }
1696 else
1697 break;
1698
1699 if (ANHE_at (he) <= minat)
1700 break;
1701
1702 heap [k] = *minpos;
1703 ev_active (ANHE_w (*minpos)) = k;
1704
1705 k = minpos - heap;
1706 }
1707
1708 heap [k] = he;
1709 ev_active (ANHE_w (he)) = k;
1710}
1711
1712#else /* 4HEAP */
1713
1714#define HEAP0 1
1715#define HPARENT(k) ((k) >> 1)
1716#define UPHEAP_DONE(p,k) (!(p))
1717
1718/* away from the root */
1719inline_speed void
1720downheap (ANHE *heap, int N, int k)
1721{
1722 ANHE he = heap [k];
1723
1724 for (;;)
1725 {
1726 int c = k << 1;
1727
1728 if (c >= N + HEAP0)
1729 break;
1730
1731 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1732 ? 1 : 0;
1733
1734 if (ANHE_at (he) <= ANHE_at (heap [c]))
1735 break;
1736
1737 heap [k] = heap [c];
1738 ev_active (ANHE_w (heap [k])) = k;
1739
1740 k = c;
1741 }
1742
1743 heap [k] = he;
1744 ev_active (ANHE_w (he)) = k;
1745}
1746#endif
1747
1748/* towards the root */
1749inline_speed void
1750upheap (ANHE *heap, int k)
1751{
1752 ANHE he = heap [k];
1753
1754 for (;;)
1755 {
1756 int p = HPARENT (k);
1757
1758 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1759 break;
1760
1761 heap [k] = heap [p];
1762 ev_active (ANHE_w (heap [k])) = k;
1763 k = p;
1764 }
1765
1766 heap [k] = he;
1767 ev_active (ANHE_w (he)) = k;
1768}
1769
1770/* move an element suitably so it is in a correct place */
1771inline_size void
1772adjustheap (ANHE *heap, int N, int k)
1773{
1774 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1775 upheap (heap, k);
1776 else
1777 downheap (heap, N, k);
1778}
1779
1780/* rebuild the heap: this function is used only once and executed rarely */
1781inline_size void
1782reheap (ANHE *heap, int N)
1783{
1784 int i;
1785
1786 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1787 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1788 for (i = 0; i < N; ++i)
1789 upheap (heap, i + HEAP0);
1790}
1791
1792/*****************************************************************************/
1793
1794/* associate signal watchers to a signal signal */
1795typedef struct
1796{
1797 EV_ATOMIC_T pending;
1798#if EV_MULTIPLICITY
1799 EV_P;
1800#endif
1801 WL head;
1802} ANSIG;
1803
1804static ANSIG signals [EV_NSIG - 1];
1805
1806/*****************************************************************************/
1807
1808#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1809
1810static void noinline ecb_cold
1811evpipe_init (EV_P)
1812{
1813 if (!ev_is_active (&pipe_w))
1814 {
1815# if EV_USE_EVENTFD
1816 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1817 if (evfd < 0 && errno == EINVAL)
1818 evfd = eventfd (0, 0);
1819
1820 if (evfd >= 0)
1821 {
1822 evpipe [0] = -1;
1823 fd_intern (evfd); /* doing it twice doesn't hurt */
1824 ev_io_set (&pipe_w, evfd, EV_READ);
1825 }
1826 else
1827# endif
1828 {
1829 while (pipe (evpipe))
1830 ev_syserr ("(libev) error creating signal/async pipe");
1831
1832 fd_intern (evpipe [0]);
1833 fd_intern (evpipe [1]);
1834 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1835 }
1836
1837 ev_io_start (EV_A_ &pipe_w);
1838 ev_unref (EV_A); /* watcher should not keep loop alive */
1839 }
1840}
1841
1842inline_speed void
1843evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1844{
1845 if (expect_true (*flag))
1846 return;
1847
1848 *flag = 1;
1849
1850 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1851
1852 pipe_write_skipped = 1;
1853
1854 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1855
1856 if (pipe_write_wanted)
1857 {
1858 int old_errno;
1859
1860 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1861
1862 old_errno = errno; /* save errno because write will clobber it */
1863
1864#if EV_USE_EVENTFD
1865 if (evfd >= 0)
1866 {
1867 uint64_t counter = 1;
1868 write (evfd, &counter, sizeof (uint64_t));
1869 }
1870 else
1871#endif
1872 {
1873 /* win32 people keep sending patches that change this write() to send() */
1874 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1875 /* so when you think this write should be a send instead, please find out */
1876 /* where your send() is from - it's definitely not the microsoft send, and */
1877 /* tell me. thank you. */
1878 /* it might be that your problem is that your environment needs EV_USE_WSASOCKET */
1879 /* check the ev documentation on how to use this flag */
1880 write (evpipe [1], &(evpipe [1]), 1);
1881 }
1882
1883 errno = old_errno;
1884 }
1885}
1886
1887/* called whenever the libev signal pipe */
1888/* got some events (signal, async) */
482static void 1889static void
483upheap (WT *heap, int k) 1890pipecb (EV_P_ ev_io *iow, int revents)
484{ 1891{
485 WT w = heap [k]; 1892 int i;
486 1893
487 while (k && heap [k >> 1]->at > w->at) 1894 if (revents & EV_READ)
488 {
489 heap [k] = heap [k >> 1];
490 ((W)heap [k])->active = k + 1;
491 k >>= 1;
492 } 1895 {
1896#if EV_USE_EVENTFD
1897 if (evfd >= 0)
1898 {
1899 uint64_t counter;
1900 read (evfd, &counter, sizeof (uint64_t));
1901 }
1902 else
1903#endif
1904 {
1905 char dummy;
1906 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1907 read (evpipe [0], &dummy, 1);
1908 }
1909 }
493 1910
494 heap [k] = w; 1911 pipe_write_skipped = 0;
495 ((W)heap [k])->active = k + 1;
496 1912
1913#if EV_SIGNAL_ENABLE
1914 if (sig_pending)
1915 {
1916 sig_pending = 0;
1917
1918 for (i = EV_NSIG - 1; i--; )
1919 if (expect_false (signals [i].pending))
1920 ev_feed_signal_event (EV_A_ i + 1);
1921 }
1922#endif
1923
1924#if EV_ASYNC_ENABLE
1925 if (async_pending)
1926 {
1927 async_pending = 0;
1928
1929 for (i = asynccnt; i--; )
1930 if (asyncs [i]->sent)
1931 {
1932 asyncs [i]->sent = 0;
1933 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1934 }
1935 }
1936#endif
1937}
1938
1939/*****************************************************************************/
1940
1941void
1942ev_feed_signal (int signum)
1943{
1944#if EV_MULTIPLICITY
1945 EV_P = signals [signum - 1].loop;
1946
1947 if (!EV_A)
1948 return;
1949#endif
1950
1951 if (!ev_active (&pipe_w))
1952 return;
1953
1954 signals [signum - 1].pending = 1;
1955 evpipe_write (EV_A_ &sig_pending);
497} 1956}
498 1957
499static void 1958static void
500downheap (WT *heap, int N, int k)
501{
502 WT w = heap [k];
503
504 while (k < (N >> 1))
505 {
506 int j = k << 1;
507
508 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
509 ++j;
510
511 if (w->at <= heap [j]->at)
512 break;
513
514 heap [k] = heap [j];
515 ((W)heap [k])->active = k + 1;
516 k = j;
517 }
518
519 heap [k] = w;
520 ((W)heap [k])->active = k + 1;
521}
522
523inline void
524adjustheap (WT *heap, int N, int k, ev_tstamp at)
525{
526 ev_tstamp old_at = heap [k]->at;
527 heap [k]->at = at;
528
529 if (old_at < at)
530 downheap (heap, N, k);
531 else
532 upheap (heap, k);
533}
534
535/*****************************************************************************/
536
537typedef struct
538{
539 WL head;
540 sig_atomic_t volatile gotsig;
541} ANSIG;
542
543static ANSIG *signals;
544static int signalmax;
545
546static int sigpipe [2];
547static sig_atomic_t volatile gotsig;
548static struct ev_io sigev;
549
550static void
551signals_init (ANSIG *base, int count)
552{
553 while (count--)
554 {
555 base->head = 0;
556 base->gotsig = 0;
557
558 ++base;
559 }
560}
561
562static void
563sighandler (int signum) 1959ev_sighandler (int signum)
564{ 1960{
565#if WIN32
566 signal (signum, sighandler);
567#endif
568
569 signals [signum - 1].gotsig = 1;
570
571 if (!gotsig)
572 {
573 int old_errno = errno;
574 gotsig = 1;
575#ifdef WIN32 1961#ifdef _WIN32
576 send (sigpipe [1], &signum, 1, MSG_DONTWAIT); 1962 signal (signum, ev_sighandler);
577#else
578 write (sigpipe [1], &signum, 1);
579#endif 1963#endif
580 errno = old_errno;
581 }
582}
583 1964
584void 1965 ev_feed_signal (signum);
1966}
1967
1968void noinline
585ev_feed_signal_event (EV_P_ int signum) 1969ev_feed_signal_event (EV_P_ int signum)
586{ 1970{
587 WL w; 1971 WL w;
588 1972
1973 if (expect_false (signum <= 0 || signum > EV_NSIG))
1974 return;
1975
1976 --signum;
1977
589#if EV_MULTIPLICITY 1978#if EV_MULTIPLICITY
590 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 1979 /* it is permissible to try to feed a signal to the wrong loop */
591#endif 1980 /* or, likely more useful, feeding a signal nobody is waiting for */
592 1981
593 --signum; 1982 if (expect_false (signals [signum].loop != EV_A))
594
595 if (signum < 0 || signum >= signalmax)
596 return; 1983 return;
1984#endif
597 1985
598 signals [signum].gotsig = 0; 1986 signals [signum].pending = 0;
599 1987
600 for (w = signals [signum].head; w; w = w->next) 1988 for (w = signals [signum].head; w; w = w->next)
601 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1989 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
602} 1990}
603 1991
1992#if EV_USE_SIGNALFD
604static void 1993static void
605sigcb (EV_P_ struct ev_io *iow, int revents) 1994sigfdcb (EV_P_ ev_io *iow, int revents)
606{ 1995{
607 int signum; 1996 struct signalfd_siginfo si[2], *sip; /* these structs are big */
608 1997
609#ifdef WIN32 1998 for (;;)
610 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 1999 {
611#else 2000 ssize_t res = read (sigfd, si, sizeof (si));
612 read (sigpipe [0], &revents, 1);
613#endif
614 gotsig = 0;
615 2001
616 for (signum = signalmax; signum--; ) 2002 /* not ISO-C, as res might be -1, but works with SuS */
617 if (signals [signum].gotsig) 2003 for (sip = si; (char *)sip < (char *)si + res; ++sip)
618 ev_feed_signal_event (EV_A_ signum + 1); 2004 ev_feed_signal_event (EV_A_ sip->ssi_signo);
619}
620 2005
621static void 2006 if (res < (ssize_t)sizeof (si))
622siginit (EV_P) 2007 break;
623{ 2008 }
624#ifndef WIN32
625 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
626 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
627
628 /* rather than sort out wether we really need nb, set it */
629 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
630 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
631#endif
632
633 ev_io_set (&sigev, sigpipe [0], EV_READ);
634 ev_io_start (EV_A_ &sigev);
635 ev_unref (EV_A); /* child watcher should not keep loop alive */
636} 2009}
2010#endif
2011
2012#endif
637 2013
638/*****************************************************************************/ 2014/*****************************************************************************/
639 2015
640static struct ev_child *childs [PID_HASHSIZE]; 2016#if EV_CHILD_ENABLE
2017static WL childs [EV_PID_HASHSIZE];
641 2018
642#ifndef WIN32
643
644static struct ev_signal childev; 2019static ev_signal childev;
2020
2021#ifndef WIFCONTINUED
2022# define WIFCONTINUED(status) 0
2023#endif
2024
2025/* handle a single child status event */
2026inline_speed void
2027child_reap (EV_P_ int chain, int pid, int status)
2028{
2029 ev_child *w;
2030 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2031
2032 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2033 {
2034 if ((w->pid == pid || !w->pid)
2035 && (!traced || (w->flags & 1)))
2036 {
2037 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2038 w->rpid = pid;
2039 w->rstatus = status;
2040 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2041 }
2042 }
2043}
645 2044
646#ifndef WCONTINUED 2045#ifndef WCONTINUED
647# define WCONTINUED 0 2046# define WCONTINUED 0
648#endif 2047#endif
649 2048
2049/* called on sigchld etc., calls waitpid */
650static void 2050static void
651child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
652{
653 struct ev_child *w;
654
655 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
656 if (w->pid == pid || !w->pid)
657 {
658 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
659 w->rpid = pid;
660 w->rstatus = status;
661 ev_feed_event (EV_A_ (W)w, EV_CHILD);
662 }
663}
664
665static void
666childcb (EV_P_ struct ev_signal *sw, int revents) 2051childcb (EV_P_ ev_signal *sw, int revents)
667{ 2052{
668 int pid, status; 2053 int pid, status;
669 2054
2055 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
670 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2056 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
671 { 2057 if (!WCONTINUED
2058 || errno != EINVAL
2059 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2060 return;
2061
672 /* make sure we are called again until all childs have been reaped */ 2062 /* make sure we are called again until all children have been reaped */
2063 /* we need to do it this way so that the callback gets called before we continue */
673 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2064 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
674 2065
675 child_reap (EV_A_ sw, pid, pid, status); 2066 child_reap (EV_A_ pid, pid, status);
2067 if ((EV_PID_HASHSIZE) > 1)
676 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2068 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
677 }
678} 2069}
679 2070
680#endif 2071#endif
681 2072
682/*****************************************************************************/ 2073/*****************************************************************************/
683 2074
2075#if EV_USE_IOCP
2076# include "ev_iocp.c"
2077#endif
2078#if EV_USE_PORT
2079# include "ev_port.c"
2080#endif
684#if EV_USE_KQUEUE 2081#if EV_USE_KQUEUE
685# include "ev_kqueue.c" 2082# include "ev_kqueue.c"
686#endif 2083#endif
687#if EV_USE_EPOLL 2084#if EV_USE_EPOLL
688# include "ev_epoll.c" 2085# include "ev_epoll.c"
692#endif 2089#endif
693#if EV_USE_SELECT 2090#if EV_USE_SELECT
694# include "ev_select.c" 2091# include "ev_select.c"
695#endif 2092#endif
696 2093
697int 2094int ecb_cold
698ev_version_major (void) 2095ev_version_major (void)
699{ 2096{
700 return EV_VERSION_MAJOR; 2097 return EV_VERSION_MAJOR;
701} 2098}
702 2099
703int 2100int ecb_cold
704ev_version_minor (void) 2101ev_version_minor (void)
705{ 2102{
706 return EV_VERSION_MINOR; 2103 return EV_VERSION_MINOR;
707} 2104}
708 2105
709/* return true if we are running with elevated privileges and should ignore env variables */ 2106/* return true if we are running with elevated privileges and should ignore env variables */
710static int 2107int inline_size ecb_cold
711enable_secure (void) 2108enable_secure (void)
712{ 2109{
713#ifdef WIN32 2110#ifdef _WIN32
714 return 0; 2111 return 0;
715#else 2112#else
716 return getuid () != geteuid () 2113 return getuid () != geteuid ()
717 || getgid () != getegid (); 2114 || getgid () != getegid ();
718#endif 2115#endif
719} 2116}
720 2117
721int 2118unsigned int ecb_cold
2119ev_supported_backends (void)
2120{
2121 unsigned int flags = 0;
2122
2123 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
2124 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2125 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2126 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2127 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2128
2129 return flags;
2130}
2131
2132unsigned int ecb_cold
2133ev_recommended_backends (void)
2134{
2135 unsigned int flags = ev_supported_backends ();
2136
2137#ifndef __NetBSD__
2138 /* kqueue is borked on everything but netbsd apparently */
2139 /* it usually doesn't work correctly on anything but sockets and pipes */
2140 flags &= ~EVBACKEND_KQUEUE;
2141#endif
2142#ifdef __APPLE__
2143 /* only select works correctly on that "unix-certified" platform */
2144 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2145 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2146#endif
2147#ifdef __FreeBSD__
2148 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2149#endif
2150
2151 return flags;
2152}
2153
2154unsigned int ecb_cold
2155ev_embeddable_backends (void)
2156{
2157 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2158
2159 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2160 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2161 flags &= ~EVBACKEND_EPOLL;
2162
2163 return flags;
2164}
2165
2166unsigned int
2167ev_backend (EV_P)
2168{
2169 return backend;
2170}
2171
2172#if EV_FEATURE_API
2173unsigned int
2174ev_iteration (EV_P)
2175{
2176 return loop_count;
2177}
2178
2179unsigned int
722ev_method (EV_P) 2180ev_depth (EV_P)
723{ 2181{
724 return method; 2182 return loop_depth;
725} 2183}
726 2184
727static void 2185void
728loop_init (EV_P_ int methods) 2186ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
729{ 2187{
730 if (!method) 2188 io_blocktime = interval;
2189}
2190
2191void
2192ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2193{
2194 timeout_blocktime = interval;
2195}
2196
2197void
2198ev_set_userdata (EV_P_ void *data)
2199{
2200 userdata = data;
2201}
2202
2203void *
2204ev_userdata (EV_P)
2205{
2206 return userdata;
2207}
2208
2209void
2210ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2211{
2212 invoke_cb = invoke_pending_cb;
2213}
2214
2215void
2216ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2217{
2218 release_cb = release;
2219 acquire_cb = acquire;
2220}
2221#endif
2222
2223/* initialise a loop structure, must be zero-initialised */
2224static void noinline ecb_cold
2225loop_init (EV_P_ unsigned int flags)
2226{
2227 if (!backend)
731 { 2228 {
2229 origflags = flags;
2230
2231#if EV_USE_REALTIME
2232 if (!have_realtime)
2233 {
2234 struct timespec ts;
2235
2236 if (!clock_gettime (CLOCK_REALTIME, &ts))
2237 have_realtime = 1;
2238 }
2239#endif
2240
732#if EV_USE_MONOTONIC 2241#if EV_USE_MONOTONIC
2242 if (!have_monotonic)
2243 {
2244 struct timespec ts;
2245
2246 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
2247 have_monotonic = 1;
2248 }
2249#endif
2250
2251 /* pid check not overridable via env */
2252#ifndef _WIN32
2253 if (flags & EVFLAG_FORKCHECK)
2254 curpid = getpid ();
2255#endif
2256
2257 if (!(flags & EVFLAG_NOENV)
2258 && !enable_secure ()
2259 && getenv ("LIBEV_FLAGS"))
2260 flags = atoi (getenv ("LIBEV_FLAGS"));
2261
2262 ev_rt_now = ev_time ();
2263 mn_now = get_clock ();
2264 now_floor = mn_now;
2265 rtmn_diff = ev_rt_now - mn_now;
2266#if EV_FEATURE_API
2267 invoke_cb = ev_invoke_pending;
2268#endif
2269
2270 io_blocktime = 0.;
2271 timeout_blocktime = 0.;
2272 backend = 0;
2273 backend_fd = -1;
2274 sig_pending = 0;
2275#if EV_ASYNC_ENABLE
2276 async_pending = 0;
2277#endif
2278 pipe_write_skipped = 0;
2279 pipe_write_wanted = 0;
2280#if EV_USE_INOTIFY
2281 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2282#endif
2283#if EV_USE_SIGNALFD
2284 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2285#endif
2286
2287 if (!(flags & EVBACKEND_MASK))
2288 flags |= ev_recommended_backends ();
2289
2290#if EV_USE_IOCP
2291 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2292#endif
2293#if EV_USE_PORT
2294 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
2295#endif
2296#if EV_USE_KQUEUE
2297 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
2298#endif
2299#if EV_USE_EPOLL
2300 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
2301#endif
2302#if EV_USE_POLL
2303 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
2304#endif
2305#if EV_USE_SELECT
2306 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
2307#endif
2308
2309 ev_prepare_init (&pending_w, pendingcb);
2310
2311#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2312 ev_init (&pipe_w, pipecb);
2313 ev_set_priority (&pipe_w, EV_MAXPRI);
2314#endif
2315 }
2316}
2317
2318/* free up a loop structure */
2319void ecb_cold
2320ev_loop_destroy (EV_P)
2321{
2322 int i;
2323
2324#if EV_MULTIPLICITY
2325 /* mimic free (0) */
2326 if (!EV_A)
2327 return;
2328#endif
2329
2330#if EV_CLEANUP_ENABLE
2331 /* queue cleanup watchers (and execute them) */
2332 if (expect_false (cleanupcnt))
2333 {
2334 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2335 EV_INVOKE_PENDING;
2336 }
2337#endif
2338
2339#if EV_CHILD_ENABLE
2340 if (ev_is_active (&childev))
2341 {
2342 ev_ref (EV_A); /* child watcher */
2343 ev_signal_stop (EV_A_ &childev);
2344 }
2345#endif
2346
2347 if (ev_is_active (&pipe_w))
2348 {
2349 /*ev_ref (EV_A);*/
2350 /*ev_io_stop (EV_A_ &pipe_w);*/
2351
2352#if EV_USE_EVENTFD
2353 if (evfd >= 0)
2354 close (evfd);
2355#endif
2356
2357 if (evpipe [0] >= 0)
2358 {
2359 EV_WIN32_CLOSE_FD (evpipe [0]);
2360 EV_WIN32_CLOSE_FD (evpipe [1]);
2361 }
2362 }
2363
2364#if EV_USE_SIGNALFD
2365 if (ev_is_active (&sigfd_w))
2366 close (sigfd);
2367#endif
2368
2369#if EV_USE_INOTIFY
2370 if (fs_fd >= 0)
2371 close (fs_fd);
2372#endif
2373
2374 if (backend_fd >= 0)
2375 close (backend_fd);
2376
2377#if EV_USE_IOCP
2378 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2379#endif
2380#if EV_USE_PORT
2381 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
2382#endif
2383#if EV_USE_KQUEUE
2384 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
2385#endif
2386#if EV_USE_EPOLL
2387 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
2388#endif
2389#if EV_USE_POLL
2390 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
2391#endif
2392#if EV_USE_SELECT
2393 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
2394#endif
2395
2396 for (i = NUMPRI; i--; )
2397 {
2398 array_free (pending, [i]);
2399#if EV_IDLE_ENABLE
2400 array_free (idle, [i]);
2401#endif
2402 }
2403
2404 ev_free (anfds); anfds = 0; anfdmax = 0;
2405
2406 /* have to use the microsoft-never-gets-it-right macro */
2407 array_free (rfeed, EMPTY);
2408 array_free (fdchange, EMPTY);
2409 array_free (timer, EMPTY);
2410#if EV_PERIODIC_ENABLE
2411 array_free (periodic, EMPTY);
2412#endif
2413#if EV_FORK_ENABLE
2414 array_free (fork, EMPTY);
2415#endif
2416#if EV_CLEANUP_ENABLE
2417 array_free (cleanup, EMPTY);
2418#endif
2419 array_free (prepare, EMPTY);
2420 array_free (check, EMPTY);
2421#if EV_ASYNC_ENABLE
2422 array_free (async, EMPTY);
2423#endif
2424
2425 backend = 0;
2426
2427#if EV_MULTIPLICITY
2428 if (ev_is_default_loop (EV_A))
2429#endif
2430 ev_default_loop_ptr = 0;
2431#if EV_MULTIPLICITY
2432 else
2433 ev_free (EV_A);
2434#endif
2435}
2436
2437#if EV_USE_INOTIFY
2438inline_size void infy_fork (EV_P);
2439#endif
2440
2441inline_size void
2442loop_fork (EV_P)
2443{
2444#if EV_USE_PORT
2445 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2446#endif
2447#if EV_USE_KQUEUE
2448 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2449#endif
2450#if EV_USE_EPOLL
2451 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
2452#endif
2453#if EV_USE_INOTIFY
2454 infy_fork (EV_A);
2455#endif
2456
2457 if (ev_is_active (&pipe_w))
2458 {
2459 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2460
2461 ev_ref (EV_A);
2462 ev_io_stop (EV_A_ &pipe_w);
2463
2464#if EV_USE_EVENTFD
2465 if (evfd >= 0)
2466 close (evfd);
2467#endif
2468
2469 if (evpipe [0] >= 0)
2470 {
2471 EV_WIN32_CLOSE_FD (evpipe [0]);
2472 EV_WIN32_CLOSE_FD (evpipe [1]);
2473 }
2474
2475#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2476 evpipe_init (EV_A);
2477 /* now iterate over everything, in case we missed something */
2478 pipecb (EV_A_ &pipe_w, EV_READ);
2479#endif
2480 }
2481
2482 postfork = 0;
2483}
2484
2485#if EV_MULTIPLICITY
2486
2487struct ev_loop * ecb_cold
2488ev_loop_new (unsigned int flags)
2489{
2490 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2491
2492 memset (EV_A, 0, sizeof (struct ev_loop));
2493 loop_init (EV_A_ flags);
2494
2495 if (ev_backend (EV_A))
2496 return EV_A;
2497
2498 ev_free (EV_A);
2499 return 0;
2500}
2501
2502#endif /* multiplicity */
2503
2504#if EV_VERIFY
2505static void noinline ecb_cold
2506verify_watcher (EV_P_ W w)
2507{
2508 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2509
2510 if (w->pending)
2511 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2512}
2513
2514static void noinline ecb_cold
2515verify_heap (EV_P_ ANHE *heap, int N)
2516{
2517 int i;
2518
2519 for (i = HEAP0; i < N + HEAP0; ++i)
2520 {
2521 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2522 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2523 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2524
2525 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2526 }
2527}
2528
2529static void noinline ecb_cold
2530array_verify (EV_P_ W *ws, int cnt)
2531{
2532 while (cnt--)
2533 {
2534 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2535 verify_watcher (EV_A_ ws [cnt]);
2536 }
2537}
2538#endif
2539
2540#if EV_FEATURE_API
2541void ecb_cold
2542ev_verify (EV_P)
2543{
2544#if EV_VERIFY
2545 int i;
2546 WL w;
2547
2548 assert (activecnt >= -1);
2549
2550 assert (fdchangemax >= fdchangecnt);
2551 for (i = 0; i < fdchangecnt; ++i)
2552 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2553
2554 assert (anfdmax >= 0);
2555 for (i = 0; i < anfdmax; ++i)
2556 for (w = anfds [i].head; w; w = w->next)
733 { 2557 {
734 struct timespec ts; 2558 verify_watcher (EV_A_ (W)w);
735 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2559 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
736 have_monotonic = 1; 2560 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
737 } 2561 }
738#endif
739 2562
740 rt_now = ev_time (); 2563 assert (timermax >= timercnt);
741 mn_now = get_clock (); 2564 verify_heap (EV_A_ timers, timercnt);
742 now_floor = mn_now;
743 rtmn_diff = rt_now - mn_now;
744 2565
745 if (methods == EVMETHOD_AUTO) 2566#if EV_PERIODIC_ENABLE
746 if (!enable_secure () && getenv ("LIBEV_METHODS")) 2567 assert (periodicmax >= periodiccnt);
747 methods = atoi (getenv ("LIBEV_METHODS")); 2568 verify_heap (EV_A_ periodics, periodiccnt);
748 else
749 methods = EVMETHOD_ANY;
750
751 method = 0;
752#if EV_USE_WIN32
753 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
754#endif
755#if EV_USE_KQUEUE
756 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
757#endif
758#if EV_USE_EPOLL
759 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
760#endif
761#if EV_USE_POLL
762 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
763#endif
764#if EV_USE_SELECT
765 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
766#endif
767
768 ev_init (&sigev, sigcb);
769 ev_set_priority (&sigev, EV_MAXPRI);
770 }
771}
772
773void
774loop_destroy (EV_P)
775{
776 int i;
777
778#if EV_USE_WIN32
779 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
780#endif
781#if EV_USE_KQUEUE
782 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
783#endif
784#if EV_USE_EPOLL
785 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
786#endif
787#if EV_USE_POLL
788 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
789#endif
790#if EV_USE_SELECT
791 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
792#endif 2569#endif
793 2570
794 for (i = NUMPRI; i--; ) 2571 for (i = NUMPRI; i--; )
795 array_free (pending, [i]); 2572 {
2573 assert (pendingmax [i] >= pendingcnt [i]);
2574#if EV_IDLE_ENABLE
2575 assert (idleall >= 0);
2576 assert (idlemax [i] >= idlecnt [i]);
2577 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2578#endif
2579 }
796 2580
797 /* have to use the microsoft-never-gets-it-right macro */ 2581#if EV_FORK_ENABLE
798 array_free_microshit (fdchange); 2582 assert (forkmax >= forkcnt);
799 array_free_microshit (timer); 2583 array_verify (EV_A_ (W *)forks, forkcnt);
800 array_free_microshit (periodic); 2584#endif
801 array_free_microshit (idle);
802 array_free_microshit (prepare);
803 array_free_microshit (check);
804 2585
805 method = 0; 2586#if EV_CLEANUP_ENABLE
806} 2587 assert (cleanupmax >= cleanupcnt);
2588 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2589#endif
807 2590
808static void 2591#if EV_ASYNC_ENABLE
809loop_fork (EV_P) 2592 assert (asyncmax >= asynccnt);
810{ 2593 array_verify (EV_A_ (W *)asyncs, asynccnt);
811#if EV_USE_EPOLL 2594#endif
812 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 2595
2596#if EV_PREPARE_ENABLE
2597 assert (preparemax >= preparecnt);
2598 array_verify (EV_A_ (W *)prepares, preparecnt);
2599#endif
2600
2601#if EV_CHECK_ENABLE
2602 assert (checkmax >= checkcnt);
2603 array_verify (EV_A_ (W *)checks, checkcnt);
2604#endif
2605
2606# if 0
2607#if EV_CHILD_ENABLE
2608 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2609 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2610#endif
813#endif 2611# endif
814#if EV_USE_KQUEUE
815 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
816#endif 2612#endif
817
818 if (ev_is_active (&sigev))
819 {
820 /* default loop */
821
822 ev_ref (EV_A);
823 ev_io_stop (EV_A_ &sigev);
824 close (sigpipe [0]);
825 close (sigpipe [1]);
826
827 while (pipe (sigpipe))
828 syserr ("(libev) error creating pipe");
829
830 siginit (EV_A);
831 }
832
833 postfork = 0;
834} 2613}
2614#endif
835 2615
836#if EV_MULTIPLICITY 2616#if EV_MULTIPLICITY
837struct ev_loop * 2617struct ev_loop * ecb_cold
838ev_loop_new (int methods)
839{
840 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
841
842 memset (loop, 0, sizeof (struct ev_loop));
843
844 loop_init (EV_A_ methods);
845
846 if (ev_method (EV_A))
847 return loop;
848
849 return 0;
850}
851
852void
853ev_loop_destroy (EV_P)
854{
855 loop_destroy (EV_A);
856 ev_free (loop);
857}
858
859void
860ev_loop_fork (EV_P)
861{
862 postfork = 1;
863}
864
865#endif
866
867#if EV_MULTIPLICITY
868struct ev_loop *
869#else 2618#else
870int 2619int
871#endif 2620#endif
872ev_default_loop (int methods) 2621ev_default_loop (unsigned int flags)
873{ 2622{
874 if (sigpipe [0] == sigpipe [1])
875 if (pipe (sigpipe))
876 return 0;
877
878 if (!default_loop) 2623 if (!ev_default_loop_ptr)
879 { 2624 {
880#if EV_MULTIPLICITY 2625#if EV_MULTIPLICITY
881 struct ev_loop *loop = default_loop = &default_loop_struct; 2626 EV_P = ev_default_loop_ptr = &default_loop_struct;
882#else 2627#else
883 default_loop = 1; 2628 ev_default_loop_ptr = 1;
884#endif 2629#endif
885 2630
886 loop_init (EV_A_ methods); 2631 loop_init (EV_A_ flags);
887 2632
888 if (ev_method (EV_A)) 2633 if (ev_backend (EV_A))
889 { 2634 {
890 siginit (EV_A); 2635#if EV_CHILD_ENABLE
891
892#ifndef WIN32
893 ev_signal_init (&childev, childcb, SIGCHLD); 2636 ev_signal_init (&childev, childcb, SIGCHLD);
894 ev_set_priority (&childev, EV_MAXPRI); 2637 ev_set_priority (&childev, EV_MAXPRI);
895 ev_signal_start (EV_A_ &childev); 2638 ev_signal_start (EV_A_ &childev);
896 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2639 ev_unref (EV_A); /* child watcher should not keep loop alive */
897#endif 2640#endif
898 } 2641 }
899 else 2642 else
900 default_loop = 0; 2643 ev_default_loop_ptr = 0;
901 } 2644 }
902 2645
903 return default_loop; 2646 return ev_default_loop_ptr;
904} 2647}
905 2648
906void 2649void
907ev_default_destroy (void) 2650ev_loop_fork (EV_P)
908{ 2651{
909#if EV_MULTIPLICITY 2652 postfork = 1; /* must be in line with ev_default_fork */
910 struct ev_loop *loop = default_loop;
911#endif
912
913#ifndef WIN32
914 ev_ref (EV_A); /* child watcher */
915 ev_signal_stop (EV_A_ &childev);
916#endif
917
918 ev_ref (EV_A); /* signal watcher */
919 ev_io_stop (EV_A_ &sigev);
920
921 close (sigpipe [0]); sigpipe [0] = 0;
922 close (sigpipe [1]); sigpipe [1] = 0;
923
924 loop_destroy (EV_A);
925} 2653}
2654
2655/*****************************************************************************/
926 2656
927void 2657void
928ev_default_fork (void) 2658ev_invoke (EV_P_ void *w, int revents)
929{ 2659{
930#if EV_MULTIPLICITY 2660 EV_CB_INVOKE ((W)w, revents);
931 struct ev_loop *loop = default_loop;
932#endif
933
934 if (method)
935 postfork = 1;
936} 2661}
937 2662
938/*****************************************************************************/ 2663unsigned int
939 2664ev_pending_count (EV_P)
940static int
941any_pending (EV_P)
942{ 2665{
943 int pri; 2666 int pri;
2667 unsigned int count = 0;
944 2668
945 for (pri = NUMPRI; pri--; ) 2669 for (pri = NUMPRI; pri--; )
946 if (pendingcnt [pri]) 2670 count += pendingcnt [pri];
947 return 1;
948 2671
949 return 0; 2672 return count;
950} 2673}
951 2674
952static void 2675void noinline
953call_pending (EV_P) 2676ev_invoke_pending (EV_P)
954{ 2677{
955 int pri; 2678 int pri;
956 2679
957 for (pri = NUMPRI; pri--; ) 2680 for (pri = NUMPRI; pri--; )
958 while (pendingcnt [pri]) 2681 while (pendingcnt [pri])
959 { 2682 {
960 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2683 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
961 2684
962 if (p->w)
963 {
964 p->w->pending = 0; 2685 p->w->pending = 0;
965 EV_CB_INVOKE (p->w, p->events); 2686 EV_CB_INVOKE (p->w, p->events);
966 } 2687 EV_FREQUENT_CHECK;
967 } 2688 }
968} 2689}
969 2690
970static void 2691#if EV_IDLE_ENABLE
2692/* make idle watchers pending. this handles the "call-idle */
2693/* only when higher priorities are idle" logic */
2694inline_size void
2695idle_reify (EV_P)
2696{
2697 if (expect_false (idleall))
2698 {
2699 int pri;
2700
2701 for (pri = NUMPRI; pri--; )
2702 {
2703 if (pendingcnt [pri])
2704 break;
2705
2706 if (idlecnt [pri])
2707 {
2708 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2709 break;
2710 }
2711 }
2712 }
2713}
2714#endif
2715
2716/* make timers pending */
2717inline_size void
971timers_reify (EV_P) 2718timers_reify (EV_P)
972{ 2719{
2720 EV_FREQUENT_CHECK;
2721
973 while (timercnt && ((WT)timers [0])->at <= mn_now) 2722 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
974 { 2723 {
975 struct ev_timer *w = timers [0]; 2724 do
976
977 assert (("inactive timer on timer heap detected", ev_is_active (w)));
978
979 /* first reschedule or stop timer */
980 if (w->repeat)
981 { 2725 {
2726 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2727
2728 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2729
2730 /* first reschedule or stop timer */
2731 if (w->repeat)
2732 {
2733 ev_at (w) += w->repeat;
2734 if (ev_at (w) < mn_now)
2735 ev_at (w) = mn_now;
2736
982 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2737 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
983 ((WT)w)->at = mn_now + w->repeat; 2738
2739 ANHE_at_cache (timers [HEAP0]);
984 downheap ((WT *)timers, timercnt, 0); 2740 downheap (timers, timercnt, HEAP0);
2741 }
2742 else
2743 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2744
2745 EV_FREQUENT_CHECK;
2746 feed_reverse (EV_A_ (W)w);
985 } 2747 }
986 else 2748 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
987 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
988 2749
989 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2750 feed_reverse_done (EV_A_ EV_TIMER);
2751 }
2752}
2753
2754#if EV_PERIODIC_ENABLE
2755
2756static void noinline
2757periodic_recalc (EV_P_ ev_periodic *w)
2758{
2759 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2760 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2761
2762 /* the above almost always errs on the low side */
2763 while (at <= ev_rt_now)
990 } 2764 {
991} 2765 ev_tstamp nat = at + w->interval;
992 2766
993static void 2767 /* when resolution fails us, we use ev_rt_now */
2768 if (expect_false (nat == at))
2769 {
2770 at = ev_rt_now;
2771 break;
2772 }
2773
2774 at = nat;
2775 }
2776
2777 ev_at (w) = at;
2778}
2779
2780/* make periodics pending */
2781inline_size void
994periodics_reify (EV_P) 2782periodics_reify (EV_P)
995{ 2783{
2784 EV_FREQUENT_CHECK;
2785
996 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 2786 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
997 { 2787 {
998 struct ev_periodic *w = periodics [0]; 2788 int feed_count = 0;
999 2789
2790 do
2791 {
2792 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2793
1000 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2794 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1001 2795
1002 /* first reschedule or stop timer */ 2796 /* first reschedule or stop timer */
2797 if (w->reschedule_cb)
2798 {
2799 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2800
2801 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2802
2803 ANHE_at_cache (periodics [HEAP0]);
2804 downheap (periodics, periodiccnt, HEAP0);
2805 }
2806 else if (w->interval)
2807 {
2808 periodic_recalc (EV_A_ w);
2809 ANHE_at_cache (periodics [HEAP0]);
2810 downheap (periodics, periodiccnt, HEAP0);
2811 }
2812 else
2813 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2814
2815 EV_FREQUENT_CHECK;
2816 feed_reverse (EV_A_ (W)w);
2817 }
2818 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2819
2820 feed_reverse_done (EV_A_ EV_PERIODIC);
2821 }
2822}
2823
2824/* simply recalculate all periodics */
2825/* TODO: maybe ensure that at least one event happens when jumping forward? */
2826static void noinline ecb_cold
2827periodics_reschedule (EV_P)
2828{
2829 int i;
2830
2831 /* adjust periodics after time jump */
2832 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2833 {
2834 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2835
1003 if (w->reschedule_cb) 2836 if (w->reschedule_cb)
1004 {
1005 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001); 2837 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1006
1007 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
1008 downheap ((WT *)periodics, periodiccnt, 0);
1009 }
1010 else if (w->interval) 2838 else if (w->interval)
1011 { 2839 periodic_recalc (EV_A_ w);
1012 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1013 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
1014 downheap ((WT *)periodics, periodiccnt, 0);
1015 }
1016 else
1017 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1018 2840
1019 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 2841 ANHE_at_cache (periodics [i]);
1020 } 2842 }
1021}
1022 2843
1023static void 2844 reheap (periodics, periodiccnt);
1024periodics_reschedule (EV_P) 2845}
2846#endif
2847
2848/* adjust all timers by a given offset */
2849static void noinline ecb_cold
2850timers_reschedule (EV_P_ ev_tstamp adjust)
1025{ 2851{
1026 int i; 2852 int i;
1027 2853
1028 /* adjust periodics after time jump */
1029 for (i = 0; i < periodiccnt; ++i) 2854 for (i = 0; i < timercnt; ++i)
1030 {
1031 struct ev_periodic *w = periodics [i];
1032
1033 if (w->reschedule_cb)
1034 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1035 else if (w->interval)
1036 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1037 } 2855 {
1038 2856 ANHE *he = timers + i + HEAP0;
1039 /* now rebuild the heap */ 2857 ANHE_w (*he)->at += adjust;
1040 for (i = periodiccnt >> 1; i--; ) 2858 ANHE_at_cache (*he);
1041 downheap ((WT *)periodics, periodiccnt, i);
1042}
1043
1044inline int
1045time_update_monotonic (EV_P)
1046{
1047 mn_now = get_clock ();
1048
1049 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1050 { 2859 }
1051 rt_now = rtmn_diff + mn_now;
1052 return 0;
1053 }
1054 else
1055 {
1056 now_floor = mn_now;
1057 rt_now = ev_time ();
1058 return 1;
1059 }
1060} 2860}
1061 2861
1062static void 2862/* fetch new monotonic and realtime times from the kernel */
1063time_update (EV_P) 2863/* also detect if there was a timejump, and act accordingly */
2864inline_speed void
2865time_update (EV_P_ ev_tstamp max_block)
1064{ 2866{
1065 int i;
1066
1067#if EV_USE_MONOTONIC 2867#if EV_USE_MONOTONIC
1068 if (expect_true (have_monotonic)) 2868 if (expect_true (have_monotonic))
1069 { 2869 {
1070 if (time_update_monotonic (EV_A)) 2870 int i;
2871 ev_tstamp odiff = rtmn_diff;
2872
2873 mn_now = get_clock ();
2874
2875 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2876 /* interpolate in the meantime */
2877 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1071 { 2878 {
1072 ev_tstamp odiff = rtmn_diff; 2879 ev_rt_now = rtmn_diff + mn_now;
2880 return;
2881 }
1073 2882
2883 now_floor = mn_now;
2884 ev_rt_now = ev_time ();
2885
1074 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 2886 /* loop a few times, before making important decisions.
2887 * on the choice of "4": one iteration isn't enough,
2888 * in case we get preempted during the calls to
2889 * ev_time and get_clock. a second call is almost guaranteed
2890 * to succeed in that case, though. and looping a few more times
2891 * doesn't hurt either as we only do this on time-jumps or
2892 * in the unlikely event of having been preempted here.
2893 */
2894 for (i = 4; --i; )
1075 { 2895 {
2896 ev_tstamp diff;
1076 rtmn_diff = rt_now - mn_now; 2897 rtmn_diff = ev_rt_now - mn_now;
1077 2898
1078 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2899 diff = odiff - rtmn_diff;
2900
2901 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1079 return; /* all is well */ 2902 return; /* all is well */
1080 2903
1081 rt_now = ev_time (); 2904 ev_rt_now = ev_time ();
1082 mn_now = get_clock (); 2905 mn_now = get_clock ();
1083 now_floor = mn_now; 2906 now_floor = mn_now;
1084 } 2907 }
1085 2908
2909 /* no timer adjustment, as the monotonic clock doesn't jump */
2910 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2911# if EV_PERIODIC_ENABLE
2912 periodics_reschedule (EV_A);
2913# endif
2914 }
2915 else
2916#endif
2917 {
2918 ev_rt_now = ev_time ();
2919
2920 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2921 {
2922 /* adjust timers. this is easy, as the offset is the same for all of them */
2923 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2924#if EV_PERIODIC_ENABLE
1086 periodics_reschedule (EV_A); 2925 periodics_reschedule (EV_A);
1087 /* no timer adjustment, as the monotonic clock doesn't jump */ 2926#endif
1088 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1089 } 2927 }
1090 }
1091 else
1092#endif
1093 {
1094 rt_now = ev_time ();
1095 2928
1096 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1097 {
1098 periodics_reschedule (EV_A);
1099
1100 /* adjust timers. this is easy, as the offset is the same for all */
1101 for (i = 0; i < timercnt; ++i)
1102 ((WT)timers [i])->at += rt_now - mn_now;
1103 }
1104
1105 mn_now = rt_now; 2929 mn_now = ev_rt_now;
1106 } 2930 }
1107} 2931}
1108 2932
1109void 2933void
1110ev_ref (EV_P)
1111{
1112 ++activecnt;
1113}
1114
1115void
1116ev_unref (EV_P)
1117{
1118 --activecnt;
1119}
1120
1121static int loop_done;
1122
1123void
1124ev_loop (EV_P_ int flags) 2934ev_run (EV_P_ int flags)
1125{ 2935{
1126 double block; 2936#if EV_FEATURE_API
1127 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2937 ++loop_depth;
2938#endif
2939
2940 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2941
2942 loop_done = EVBREAK_CANCEL;
2943
2944 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1128 2945
1129 do 2946 do
1130 { 2947 {
2948#if EV_VERIFY >= 2
2949 ev_verify (EV_A);
2950#endif
2951
2952#ifndef _WIN32
2953 if (expect_false (curpid)) /* penalise the forking check even more */
2954 if (expect_false (getpid () != curpid))
2955 {
2956 curpid = getpid ();
2957 postfork = 1;
2958 }
2959#endif
2960
2961#if EV_FORK_ENABLE
2962 /* we might have forked, so queue fork handlers */
2963 if (expect_false (postfork))
2964 if (forkcnt)
2965 {
2966 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2967 EV_INVOKE_PENDING;
2968 }
2969#endif
2970
2971#if EV_PREPARE_ENABLE
1131 /* queue check watchers (and execute them) */ 2972 /* queue prepare watchers (and execute them) */
1132 if (expect_false (preparecnt)) 2973 if (expect_false (preparecnt))
1133 { 2974 {
1134 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2975 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1135 call_pending (EV_A); 2976 EV_INVOKE_PENDING;
1136 } 2977 }
2978#endif
2979
2980 if (expect_false (loop_done))
2981 break;
1137 2982
1138 /* we might have forked, so reify kernel state if necessary */ 2983 /* we might have forked, so reify kernel state if necessary */
1139 if (expect_false (postfork)) 2984 if (expect_false (postfork))
1140 loop_fork (EV_A); 2985 loop_fork (EV_A);
1141 2986
1142 /* update fd-related kernel structures */ 2987 /* update fd-related kernel structures */
1143 fd_reify (EV_A); 2988 fd_reify (EV_A);
1144 2989
1145 /* calculate blocking time */ 2990 /* calculate blocking time */
2991 {
2992 ev_tstamp waittime = 0.;
2993 ev_tstamp sleeptime = 0.;
1146 2994
1147 /* we only need this for !monotonic clock or timers, but as we basically 2995 /* remember old timestamp for io_blocktime calculation */
1148 always have timers, we just calculate it always */ 2996 ev_tstamp prev_mn_now = mn_now;
1149#if EV_USE_MONOTONIC 2997
1150 if (expect_true (have_monotonic)) 2998 /* update time to cancel out callback processing overhead */
1151 time_update_monotonic (EV_A); 2999 time_update (EV_A_ 1e100);
1152 else 3000
1153#endif 3001 /* from now on, we want a pipe-wake-up */
3002 pipe_write_wanted = 1;
3003
3004 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3005
3006 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1154 { 3007 {
1155 rt_now = ev_time ();
1156 mn_now = rt_now;
1157 }
1158
1159 if (flags & EVLOOP_NONBLOCK || idlecnt)
1160 block = 0.;
1161 else
1162 {
1163 block = MAX_BLOCKTIME; 3008 waittime = MAX_BLOCKTIME;
1164 3009
1165 if (timercnt) 3010 if (timercnt)
1166 { 3011 {
1167 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 3012 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1168 if (block > to) block = to; 3013 if (waittime > to) waittime = to;
1169 } 3014 }
1170 3015
3016#if EV_PERIODIC_ENABLE
1171 if (periodiccnt) 3017 if (periodiccnt)
1172 { 3018 {
1173 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 3019 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1174 if (block > to) block = to; 3020 if (waittime > to) waittime = to;
1175 } 3021 }
3022#endif
1176 3023
1177 if (block < 0.) block = 0.; 3024 /* don't let timeouts decrease the waittime below timeout_blocktime */
3025 if (expect_false (waittime < timeout_blocktime))
3026 waittime = timeout_blocktime;
3027
3028 /* at this point, we NEED to wait, so we have to ensure */
3029 /* to pass a minimum nonzero value to the backend */
3030 if (expect_false (waittime < backend_mintime))
3031 waittime = backend_mintime;
3032
3033 /* extra check because io_blocktime is commonly 0 */
3034 if (expect_false (io_blocktime))
3035 {
3036 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3037
3038 if (sleeptime > waittime - backend_mintime)
3039 sleeptime = waittime - backend_mintime;
3040
3041 if (expect_true (sleeptime > 0.))
3042 {
3043 ev_sleep (sleeptime);
3044 waittime -= sleeptime;
3045 }
3046 }
1178 } 3047 }
1179 3048
1180 method_poll (EV_A_ block); 3049#if EV_FEATURE_API
3050 ++loop_count;
3051#endif
3052 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3053 backend_poll (EV_A_ waittime);
3054 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1181 3055
3056 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3057
3058 if (pipe_write_skipped)
3059 {
3060 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3061 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3062 }
3063
3064
1182 /* update rt_now, do magic */ 3065 /* update ev_rt_now, do magic */
1183 time_update (EV_A); 3066 time_update (EV_A_ waittime + sleeptime);
3067 }
1184 3068
1185 /* queue pending timers and reschedule them */ 3069 /* queue pending timers and reschedule them */
1186 timers_reify (EV_A); /* relative timers called last */ 3070 timers_reify (EV_A); /* relative timers called last */
3071#if EV_PERIODIC_ENABLE
1187 periodics_reify (EV_A); /* absolute timers called first */ 3072 periodics_reify (EV_A); /* absolute timers called first */
3073#endif
1188 3074
3075#if EV_IDLE_ENABLE
1189 /* queue idle watchers unless io or timers are pending */ 3076 /* queue idle watchers unless other events are pending */
1190 if (idlecnt && !any_pending (EV_A)) 3077 idle_reify (EV_A);
1191 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3078#endif
1192 3079
3080#if EV_CHECK_ENABLE
1193 /* queue check watchers, to be executed first */ 3081 /* queue check watchers, to be executed first */
1194 if (checkcnt) 3082 if (expect_false (checkcnt))
1195 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3083 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3084#endif
1196 3085
1197 call_pending (EV_A); 3086 EV_INVOKE_PENDING;
1198 } 3087 }
1199 while (activecnt && !loop_done); 3088 while (expect_true (
3089 activecnt
3090 && !loop_done
3091 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3092 ));
1200 3093
1201 if (loop_done != 2) 3094 if (loop_done == EVBREAK_ONE)
1202 loop_done = 0; 3095 loop_done = EVBREAK_CANCEL;
3096
3097#if EV_FEATURE_API
3098 --loop_depth;
3099#endif
1203} 3100}
1204 3101
1205void 3102void
1206ev_unloop (EV_P_ int how) 3103ev_break (EV_P_ int how)
1207{ 3104{
1208 loop_done = how; 3105 loop_done = how;
1209} 3106}
1210 3107
3108void
3109ev_ref (EV_P)
3110{
3111 ++activecnt;
3112}
3113
3114void
3115ev_unref (EV_P)
3116{
3117 --activecnt;
3118}
3119
3120void
3121ev_now_update (EV_P)
3122{
3123 time_update (EV_A_ 1e100);
3124}
3125
3126void
3127ev_suspend (EV_P)
3128{
3129 ev_now_update (EV_A);
3130}
3131
3132void
3133ev_resume (EV_P)
3134{
3135 ev_tstamp mn_prev = mn_now;
3136
3137 ev_now_update (EV_A);
3138 timers_reschedule (EV_A_ mn_now - mn_prev);
3139#if EV_PERIODIC_ENABLE
3140 /* TODO: really do this? */
3141 periodics_reschedule (EV_A);
3142#endif
3143}
3144
1211/*****************************************************************************/ 3145/*****************************************************************************/
3146/* singly-linked list management, used when the expected list length is short */
1212 3147
1213inline void 3148inline_size void
1214wlist_add (WL *head, WL elem) 3149wlist_add (WL *head, WL elem)
1215{ 3150{
1216 elem->next = *head; 3151 elem->next = *head;
1217 *head = elem; 3152 *head = elem;
1218} 3153}
1219 3154
1220inline void 3155inline_size void
1221wlist_del (WL *head, WL elem) 3156wlist_del (WL *head, WL elem)
1222{ 3157{
1223 while (*head) 3158 while (*head)
1224 { 3159 {
1225 if (*head == elem) 3160 if (expect_true (*head == elem))
1226 { 3161 {
1227 *head = elem->next; 3162 *head = elem->next;
1228 return; 3163 break;
1229 } 3164 }
1230 3165
1231 head = &(*head)->next; 3166 head = &(*head)->next;
1232 } 3167 }
1233} 3168}
1234 3169
3170/* internal, faster, version of ev_clear_pending */
1235inline void 3171inline_speed void
1236ev_clear_pending (EV_P_ W w) 3172clear_pending (EV_P_ W w)
1237{ 3173{
1238 if (w->pending) 3174 if (w->pending)
1239 { 3175 {
1240 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3176 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1241 w->pending = 0; 3177 w->pending = 0;
1242 } 3178 }
1243} 3179}
1244 3180
3181int
3182ev_clear_pending (EV_P_ void *w)
3183{
3184 W w_ = (W)w;
3185 int pending = w_->pending;
3186
3187 if (expect_true (pending))
3188 {
3189 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3190 p->w = (W)&pending_w;
3191 w_->pending = 0;
3192 return p->events;
3193 }
3194 else
3195 return 0;
3196}
3197
1245inline void 3198inline_size void
3199pri_adjust (EV_P_ W w)
3200{
3201 int pri = ev_priority (w);
3202 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3203 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3204 ev_set_priority (w, pri);
3205}
3206
3207inline_speed void
1246ev_start (EV_P_ W w, int active) 3208ev_start (EV_P_ W w, int active)
1247{ 3209{
1248 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3210 pri_adjust (EV_A_ w);
1249 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1250
1251 w->active = active; 3211 w->active = active;
1252 ev_ref (EV_A); 3212 ev_ref (EV_A);
1253} 3213}
1254 3214
1255inline void 3215inline_size void
1256ev_stop (EV_P_ W w) 3216ev_stop (EV_P_ W w)
1257{ 3217{
1258 ev_unref (EV_A); 3218 ev_unref (EV_A);
1259 w->active = 0; 3219 w->active = 0;
1260} 3220}
1261 3221
1262/*****************************************************************************/ 3222/*****************************************************************************/
1263 3223
1264void 3224void noinline
1265ev_io_start (EV_P_ struct ev_io *w) 3225ev_io_start (EV_P_ ev_io *w)
1266{ 3226{
1267 int fd = w->fd; 3227 int fd = w->fd;
1268 3228
3229 if (expect_false (ev_is_active (w)))
3230 return;
3231
3232 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3233 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3234
3235 EV_FREQUENT_CHECK;
3236
3237 ev_start (EV_A_ (W)w, 1);
3238 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3239 wlist_add (&anfds[fd].head, (WL)w);
3240
3241 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3242 w->events &= ~EV__IOFDSET;
3243
3244 EV_FREQUENT_CHECK;
3245}
3246
3247void noinline
3248ev_io_stop (EV_P_ ev_io *w)
3249{
3250 clear_pending (EV_A_ (W)w);
3251 if (expect_false (!ev_is_active (w)))
3252 return;
3253
3254 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3255
3256 EV_FREQUENT_CHECK;
3257
3258 wlist_del (&anfds[w->fd].head, (WL)w);
3259 ev_stop (EV_A_ (W)w);
3260
3261 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3262
3263 EV_FREQUENT_CHECK;
3264}
3265
3266void noinline
3267ev_timer_start (EV_P_ ev_timer *w)
3268{
3269 if (expect_false (ev_is_active (w)))
3270 return;
3271
3272 ev_at (w) += mn_now;
3273
3274 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3275
3276 EV_FREQUENT_CHECK;
3277
3278 ++timercnt;
3279 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3280 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3281 ANHE_w (timers [ev_active (w)]) = (WT)w;
3282 ANHE_at_cache (timers [ev_active (w)]);
3283 upheap (timers, ev_active (w));
3284
3285 EV_FREQUENT_CHECK;
3286
3287 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3288}
3289
3290void noinline
3291ev_timer_stop (EV_P_ ev_timer *w)
3292{
3293 clear_pending (EV_A_ (W)w);
3294 if (expect_false (!ev_is_active (w)))
3295 return;
3296
3297 EV_FREQUENT_CHECK;
3298
3299 {
3300 int active = ev_active (w);
3301
3302 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3303
3304 --timercnt;
3305
3306 if (expect_true (active < timercnt + HEAP0))
3307 {
3308 timers [active] = timers [timercnt + HEAP0];
3309 adjustheap (timers, timercnt, active);
3310 }
3311 }
3312
3313 ev_at (w) -= mn_now;
3314
3315 ev_stop (EV_A_ (W)w);
3316
3317 EV_FREQUENT_CHECK;
3318}
3319
3320void noinline
3321ev_timer_again (EV_P_ ev_timer *w)
3322{
3323 EV_FREQUENT_CHECK;
3324
3325 clear_pending (EV_A_ (W)w);
3326
1269 if (ev_is_active (w)) 3327 if (ev_is_active (w))
1270 return;
1271
1272 assert (("ev_io_start called with negative fd", fd >= 0));
1273
1274 ev_start (EV_A_ (W)w, 1);
1275 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1276 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1277
1278 fd_change (EV_A_ fd);
1279}
1280
1281void
1282ev_io_stop (EV_P_ struct ev_io *w)
1283{
1284 ev_clear_pending (EV_A_ (W)w);
1285 if (!ev_is_active (w))
1286 return;
1287
1288 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1289 ev_stop (EV_A_ (W)w);
1290
1291 fd_change (EV_A_ w->fd);
1292}
1293
1294void
1295ev_timer_start (EV_P_ struct ev_timer *w)
1296{
1297 if (ev_is_active (w))
1298 return;
1299
1300 ((WT)w)->at += mn_now;
1301
1302 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1303
1304 ev_start (EV_A_ (W)w, ++timercnt);
1305 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1306 timers [timercnt - 1] = w;
1307 upheap ((WT *)timers, timercnt - 1);
1308
1309 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1310}
1311
1312void
1313ev_timer_stop (EV_P_ struct ev_timer *w)
1314{
1315 ev_clear_pending (EV_A_ (W)w);
1316 if (!ev_is_active (w))
1317 return;
1318
1319 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1320
1321 if (((W)w)->active < timercnt--)
1322 {
1323 timers [((W)w)->active - 1] = timers [timercnt];
1324 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1325 }
1326
1327 ((WT)w)->at = w->repeat;
1328
1329 ev_stop (EV_A_ (W)w);
1330}
1331
1332void
1333ev_timer_again (EV_P_ struct ev_timer *w)
1334{
1335 if (ev_is_active (w))
1336 { 3328 {
1337 if (w->repeat) 3329 if (w->repeat)
1338 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat); 3330 {
3331 ev_at (w) = mn_now + w->repeat;
3332 ANHE_at_cache (timers [ev_active (w)]);
3333 adjustheap (timers, timercnt, ev_active (w));
3334 }
1339 else 3335 else
1340 ev_timer_stop (EV_A_ w); 3336 ev_timer_stop (EV_A_ w);
1341 } 3337 }
1342 else if (w->repeat) 3338 else if (w->repeat)
3339 {
3340 ev_at (w) = w->repeat;
1343 ev_timer_start (EV_A_ w); 3341 ev_timer_start (EV_A_ w);
1344} 3342 }
1345 3343
1346void 3344 EV_FREQUENT_CHECK;
3345}
3346
3347ev_tstamp
3348ev_timer_remaining (EV_P_ ev_timer *w)
3349{
3350 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3351}
3352
3353#if EV_PERIODIC_ENABLE
3354void noinline
1347ev_periodic_start (EV_P_ struct ev_periodic *w) 3355ev_periodic_start (EV_P_ ev_periodic *w)
1348{ 3356{
1349 if (ev_is_active (w)) 3357 if (expect_false (ev_is_active (w)))
1350 return; 3358 return;
1351 3359
1352 if (w->reschedule_cb) 3360 if (w->reschedule_cb)
1353 ((WT)w)->at = w->reschedule_cb (w, rt_now); 3361 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1354 else if (w->interval) 3362 else if (w->interval)
1355 { 3363 {
1356 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3364 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1357 /* this formula differs from the one in periodic_reify because we do not always round up */ 3365 periodic_recalc (EV_A_ w);
1358 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1359 } 3366 }
3367 else
3368 ev_at (w) = w->offset;
1360 3369
3370 EV_FREQUENT_CHECK;
3371
3372 ++periodiccnt;
1361 ev_start (EV_A_ (W)w, ++periodiccnt); 3373 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1362 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 3374 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1363 periodics [periodiccnt - 1] = w; 3375 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1364 upheap ((WT *)periodics, periodiccnt - 1); 3376 ANHE_at_cache (periodics [ev_active (w)]);
3377 upheap (periodics, ev_active (w));
1365 3378
3379 EV_FREQUENT_CHECK;
3380
1366 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3381 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1367} 3382}
1368 3383
1369void 3384void noinline
1370ev_periodic_stop (EV_P_ struct ev_periodic *w) 3385ev_periodic_stop (EV_P_ ev_periodic *w)
1371{ 3386{
1372 ev_clear_pending (EV_A_ (W)w); 3387 clear_pending (EV_A_ (W)w);
1373 if (!ev_is_active (w)) 3388 if (expect_false (!ev_is_active (w)))
1374 return; 3389 return;
1375 3390
3391 EV_FREQUENT_CHECK;
3392
3393 {
3394 int active = ev_active (w);
3395
1376 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3396 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1377 3397
1378 if (((W)w)->active < periodiccnt--) 3398 --periodiccnt;
3399
3400 if (expect_true (active < periodiccnt + HEAP0))
1379 { 3401 {
1380 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3402 periodics [active] = periodics [periodiccnt + HEAP0];
1381 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3403 adjustheap (periodics, periodiccnt, active);
1382 } 3404 }
3405 }
1383 3406
1384 ev_stop (EV_A_ (W)w); 3407 ev_stop (EV_A_ (W)w);
1385}
1386 3408
1387void 3409 EV_FREQUENT_CHECK;
3410}
3411
3412void noinline
1388ev_periodic_again (EV_P_ struct ev_periodic *w) 3413ev_periodic_again (EV_P_ ev_periodic *w)
1389{ 3414{
1390 /* TODO: use adjustheap and recalculation */ 3415 /* TODO: use adjustheap and recalculation */
1391 ev_periodic_stop (EV_A_ w); 3416 ev_periodic_stop (EV_A_ w);
1392 ev_periodic_start (EV_A_ w); 3417 ev_periodic_start (EV_A_ w);
1393} 3418}
1394 3419#endif
1395void
1396ev_idle_start (EV_P_ struct ev_idle *w)
1397{
1398 if (ev_is_active (w))
1399 return;
1400
1401 ev_start (EV_A_ (W)w, ++idlecnt);
1402 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1403 idles [idlecnt - 1] = w;
1404}
1405
1406void
1407ev_idle_stop (EV_P_ struct ev_idle *w)
1408{
1409 ev_clear_pending (EV_A_ (W)w);
1410 if (ev_is_active (w))
1411 return;
1412
1413 idles [((W)w)->active - 1] = idles [--idlecnt];
1414 ev_stop (EV_A_ (W)w);
1415}
1416
1417void
1418ev_prepare_start (EV_P_ struct ev_prepare *w)
1419{
1420 if (ev_is_active (w))
1421 return;
1422
1423 ev_start (EV_A_ (W)w, ++preparecnt);
1424 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1425 prepares [preparecnt - 1] = w;
1426}
1427
1428void
1429ev_prepare_stop (EV_P_ struct ev_prepare *w)
1430{
1431 ev_clear_pending (EV_A_ (W)w);
1432 if (ev_is_active (w))
1433 return;
1434
1435 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1436 ev_stop (EV_A_ (W)w);
1437}
1438
1439void
1440ev_check_start (EV_P_ struct ev_check *w)
1441{
1442 if (ev_is_active (w))
1443 return;
1444
1445 ev_start (EV_A_ (W)w, ++checkcnt);
1446 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1447 checks [checkcnt - 1] = w;
1448}
1449
1450void
1451ev_check_stop (EV_P_ struct ev_check *w)
1452{
1453 ev_clear_pending (EV_A_ (W)w);
1454 if (ev_is_active (w))
1455 return;
1456
1457 checks [((W)w)->active - 1] = checks [--checkcnt];
1458 ev_stop (EV_A_ (W)w);
1459}
1460 3420
1461#ifndef SA_RESTART 3421#ifndef SA_RESTART
1462# define SA_RESTART 0 3422# define SA_RESTART 0
1463#endif 3423#endif
1464 3424
3425#if EV_SIGNAL_ENABLE
3426
3427void noinline
3428ev_signal_start (EV_P_ ev_signal *w)
3429{
3430 if (expect_false (ev_is_active (w)))
3431 return;
3432
3433 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3434
3435#if EV_MULTIPLICITY
3436 assert (("libev: a signal must not be attached to two different loops",
3437 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3438
3439 signals [w->signum - 1].loop = EV_A;
3440#endif
3441
3442 EV_FREQUENT_CHECK;
3443
3444#if EV_USE_SIGNALFD
3445 if (sigfd == -2)
3446 {
3447 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3448 if (sigfd < 0 && errno == EINVAL)
3449 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3450
3451 if (sigfd >= 0)
3452 {
3453 fd_intern (sigfd); /* doing it twice will not hurt */
3454
3455 sigemptyset (&sigfd_set);
3456
3457 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3458 ev_set_priority (&sigfd_w, EV_MAXPRI);
3459 ev_io_start (EV_A_ &sigfd_w);
3460 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3461 }
3462 }
3463
3464 if (sigfd >= 0)
3465 {
3466 /* TODO: check .head */
3467 sigaddset (&sigfd_set, w->signum);
3468 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3469
3470 signalfd (sigfd, &sigfd_set, 0);
3471 }
3472#endif
3473
3474 ev_start (EV_A_ (W)w, 1);
3475 wlist_add (&signals [w->signum - 1].head, (WL)w);
3476
3477 if (!((WL)w)->next)
3478# if EV_USE_SIGNALFD
3479 if (sigfd < 0) /*TODO*/
3480# endif
3481 {
3482# ifdef _WIN32
3483 evpipe_init (EV_A);
3484
3485 signal (w->signum, ev_sighandler);
3486# else
3487 struct sigaction sa;
3488
3489 evpipe_init (EV_A);
3490
3491 sa.sa_handler = ev_sighandler;
3492 sigfillset (&sa.sa_mask);
3493 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3494 sigaction (w->signum, &sa, 0);
3495
3496 if (origflags & EVFLAG_NOSIGMASK)
3497 {
3498 sigemptyset (&sa.sa_mask);
3499 sigaddset (&sa.sa_mask, w->signum);
3500 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3501 }
3502#endif
3503 }
3504
3505 EV_FREQUENT_CHECK;
3506}
3507
3508void noinline
3509ev_signal_stop (EV_P_ ev_signal *w)
3510{
3511 clear_pending (EV_A_ (W)w);
3512 if (expect_false (!ev_is_active (w)))
3513 return;
3514
3515 EV_FREQUENT_CHECK;
3516
3517 wlist_del (&signals [w->signum - 1].head, (WL)w);
3518 ev_stop (EV_A_ (W)w);
3519
3520 if (!signals [w->signum - 1].head)
3521 {
3522#if EV_MULTIPLICITY
3523 signals [w->signum - 1].loop = 0; /* unattach from signal */
3524#endif
3525#if EV_USE_SIGNALFD
3526 if (sigfd >= 0)
3527 {
3528 sigset_t ss;
3529
3530 sigemptyset (&ss);
3531 sigaddset (&ss, w->signum);
3532 sigdelset (&sigfd_set, w->signum);
3533
3534 signalfd (sigfd, &sigfd_set, 0);
3535 sigprocmask (SIG_UNBLOCK, &ss, 0);
3536 }
3537 else
3538#endif
3539 signal (w->signum, SIG_DFL);
3540 }
3541
3542 EV_FREQUENT_CHECK;
3543}
3544
3545#endif
3546
3547#if EV_CHILD_ENABLE
3548
1465void 3549void
1466ev_signal_start (EV_P_ struct ev_signal *w) 3550ev_child_start (EV_P_ ev_child *w)
1467{ 3551{
1468#if EV_MULTIPLICITY 3552#if EV_MULTIPLICITY
1469 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 3553 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1470#endif 3554#endif
1471 if (ev_is_active (w)) 3555 if (expect_false (ev_is_active (w)))
1472 return; 3556 return;
1473 3557
1474 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3558 EV_FREQUENT_CHECK;
1475 3559
1476 ev_start (EV_A_ (W)w, 1); 3560 ev_start (EV_A_ (W)w, 1);
1477 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3561 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1478 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1479 3562
1480 if (!((WL)w)->next) 3563 EV_FREQUENT_CHECK;
3564}
3565
3566void
3567ev_child_stop (EV_P_ ev_child *w)
3568{
3569 clear_pending (EV_A_ (W)w);
3570 if (expect_false (!ev_is_active (w)))
3571 return;
3572
3573 EV_FREQUENT_CHECK;
3574
3575 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3576 ev_stop (EV_A_ (W)w);
3577
3578 EV_FREQUENT_CHECK;
3579}
3580
3581#endif
3582
3583#if EV_STAT_ENABLE
3584
3585# ifdef _WIN32
3586# undef lstat
3587# define lstat(a,b) _stati64 (a,b)
3588# endif
3589
3590#define DEF_STAT_INTERVAL 5.0074891
3591#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3592#define MIN_STAT_INTERVAL 0.1074891
3593
3594static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3595
3596#if EV_USE_INOTIFY
3597
3598/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3599# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3600
3601static void noinline
3602infy_add (EV_P_ ev_stat *w)
3603{
3604 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3605
3606 if (w->wd >= 0)
3607 {
3608 struct statfs sfs;
3609
3610 /* now local changes will be tracked by inotify, but remote changes won't */
3611 /* unless the filesystem is known to be local, we therefore still poll */
3612 /* also do poll on <2.6.25, but with normal frequency */
3613
3614 if (!fs_2625)
3615 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3616 else if (!statfs (w->path, &sfs)
3617 && (sfs.f_type == 0x1373 /* devfs */
3618 || sfs.f_type == 0xEF53 /* ext2/3 */
3619 || sfs.f_type == 0x3153464a /* jfs */
3620 || sfs.f_type == 0x52654973 /* reiser3 */
3621 || sfs.f_type == 0x01021994 /* tempfs */
3622 || sfs.f_type == 0x58465342 /* xfs */))
3623 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3624 else
3625 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1481 { 3626 }
1482#if WIN32 3627 else
1483 signal (w->signum, sighandler); 3628 {
3629 /* can't use inotify, continue to stat */
3630 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3631
3632 /* if path is not there, monitor some parent directory for speedup hints */
3633 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3634 /* but an efficiency issue only */
3635 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3636 {
3637 char path [4096];
3638 strcpy (path, w->path);
3639
3640 do
3641 {
3642 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3643 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3644
3645 char *pend = strrchr (path, '/');
3646
3647 if (!pend || pend == path)
3648 break;
3649
3650 *pend = 0;
3651 w->wd = inotify_add_watch (fs_fd, path, mask);
3652 }
3653 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3654 }
3655 }
3656
3657 if (w->wd >= 0)
3658 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3659
3660 /* now re-arm timer, if required */
3661 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3662 ev_timer_again (EV_A_ &w->timer);
3663 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3664}
3665
3666static void noinline
3667infy_del (EV_P_ ev_stat *w)
3668{
3669 int slot;
3670 int wd = w->wd;
3671
3672 if (wd < 0)
3673 return;
3674
3675 w->wd = -2;
3676 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3677 wlist_del (&fs_hash [slot].head, (WL)w);
3678
3679 /* remove this watcher, if others are watching it, they will rearm */
3680 inotify_rm_watch (fs_fd, wd);
3681}
3682
3683static void noinline
3684infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3685{
3686 if (slot < 0)
3687 /* overflow, need to check for all hash slots */
3688 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3689 infy_wd (EV_A_ slot, wd, ev);
3690 else
3691 {
3692 WL w_;
3693
3694 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3695 {
3696 ev_stat *w = (ev_stat *)w_;
3697 w_ = w_->next; /* lets us remove this watcher and all before it */
3698
3699 if (w->wd == wd || wd == -1)
3700 {
3701 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3702 {
3703 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3704 w->wd = -1;
3705 infy_add (EV_A_ w); /* re-add, no matter what */
3706 }
3707
3708 stat_timer_cb (EV_A_ &w->timer, 0);
3709 }
3710 }
3711 }
3712}
3713
3714static void
3715infy_cb (EV_P_ ev_io *w, int revents)
3716{
3717 char buf [EV_INOTIFY_BUFSIZE];
3718 int ofs;
3719 int len = read (fs_fd, buf, sizeof (buf));
3720
3721 for (ofs = 0; ofs < len; )
3722 {
3723 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3724 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3725 ofs += sizeof (struct inotify_event) + ev->len;
3726 }
3727}
3728
3729inline_size void ecb_cold
3730ev_check_2625 (EV_P)
3731{
3732 /* kernels < 2.6.25 are borked
3733 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3734 */
3735 if (ev_linux_version () < 0x020619)
3736 return;
3737
3738 fs_2625 = 1;
3739}
3740
3741inline_size int
3742infy_newfd (void)
3743{
3744#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3745 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3746 if (fd >= 0)
3747 return fd;
3748#endif
3749 return inotify_init ();
3750}
3751
3752inline_size void
3753infy_init (EV_P)
3754{
3755 if (fs_fd != -2)
3756 return;
3757
3758 fs_fd = -1;
3759
3760 ev_check_2625 (EV_A);
3761
3762 fs_fd = infy_newfd ();
3763
3764 if (fs_fd >= 0)
3765 {
3766 fd_intern (fs_fd);
3767 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3768 ev_set_priority (&fs_w, EV_MAXPRI);
3769 ev_io_start (EV_A_ &fs_w);
3770 ev_unref (EV_A);
3771 }
3772}
3773
3774inline_size void
3775infy_fork (EV_P)
3776{
3777 int slot;
3778
3779 if (fs_fd < 0)
3780 return;
3781
3782 ev_ref (EV_A);
3783 ev_io_stop (EV_A_ &fs_w);
3784 close (fs_fd);
3785 fs_fd = infy_newfd ();
3786
3787 if (fs_fd >= 0)
3788 {
3789 fd_intern (fs_fd);
3790 ev_io_set (&fs_w, fs_fd, EV_READ);
3791 ev_io_start (EV_A_ &fs_w);
3792 ev_unref (EV_A);
3793 }
3794
3795 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3796 {
3797 WL w_ = fs_hash [slot].head;
3798 fs_hash [slot].head = 0;
3799
3800 while (w_)
3801 {
3802 ev_stat *w = (ev_stat *)w_;
3803 w_ = w_->next; /* lets us add this watcher */
3804
3805 w->wd = -1;
3806
3807 if (fs_fd >= 0)
3808 infy_add (EV_A_ w); /* re-add, no matter what */
3809 else
3810 {
3811 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3812 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3813 ev_timer_again (EV_A_ &w->timer);
3814 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3815 }
3816 }
3817 }
3818}
3819
3820#endif
3821
3822#ifdef _WIN32
3823# define EV_LSTAT(p,b) _stati64 (p, b)
1484#else 3824#else
1485 struct sigaction sa; 3825# define EV_LSTAT(p,b) lstat (p, b)
1486 sa.sa_handler = sighandler;
1487 sigfillset (&sa.sa_mask);
1488 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1489 sigaction (w->signum, &sa, 0);
1490#endif 3826#endif
1491 }
1492}
1493 3827
1494void 3828void
1495ev_signal_stop (EV_P_ struct ev_signal *w) 3829ev_stat_stat (EV_P_ ev_stat *w)
1496{ 3830{
1497 ev_clear_pending (EV_A_ (W)w); 3831 if (lstat (w->path, &w->attr) < 0)
1498 if (!ev_is_active (w)) 3832 w->attr.st_nlink = 0;
3833 else if (!w->attr.st_nlink)
3834 w->attr.st_nlink = 1;
3835}
3836
3837static void noinline
3838stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3839{
3840 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3841
3842 ev_statdata prev = w->attr;
3843 ev_stat_stat (EV_A_ w);
3844
3845 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3846 if (
3847 prev.st_dev != w->attr.st_dev
3848 || prev.st_ino != w->attr.st_ino
3849 || prev.st_mode != w->attr.st_mode
3850 || prev.st_nlink != w->attr.st_nlink
3851 || prev.st_uid != w->attr.st_uid
3852 || prev.st_gid != w->attr.st_gid
3853 || prev.st_rdev != w->attr.st_rdev
3854 || prev.st_size != w->attr.st_size
3855 || prev.st_atime != w->attr.st_atime
3856 || prev.st_mtime != w->attr.st_mtime
3857 || prev.st_ctime != w->attr.st_ctime
3858 ) {
3859 /* we only update w->prev on actual differences */
3860 /* in case we test more often than invoke the callback, */
3861 /* to ensure that prev is always different to attr */
3862 w->prev = prev;
3863
3864 #if EV_USE_INOTIFY
3865 if (fs_fd >= 0)
3866 {
3867 infy_del (EV_A_ w);
3868 infy_add (EV_A_ w);
3869 ev_stat_stat (EV_A_ w); /* avoid race... */
3870 }
3871 #endif
3872
3873 ev_feed_event (EV_A_ w, EV_STAT);
3874 }
3875}
3876
3877void
3878ev_stat_start (EV_P_ ev_stat *w)
3879{
3880 if (expect_false (ev_is_active (w)))
1499 return; 3881 return;
1500 3882
1501 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3883 ev_stat_stat (EV_A_ w);
3884
3885 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3886 w->interval = MIN_STAT_INTERVAL;
3887
3888 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3889 ev_set_priority (&w->timer, ev_priority (w));
3890
3891#if EV_USE_INOTIFY
3892 infy_init (EV_A);
3893
3894 if (fs_fd >= 0)
3895 infy_add (EV_A_ w);
3896 else
3897#endif
3898 {
3899 ev_timer_again (EV_A_ &w->timer);
3900 ev_unref (EV_A);
3901 }
3902
3903 ev_start (EV_A_ (W)w, 1);
3904
3905 EV_FREQUENT_CHECK;
3906}
3907
3908void
3909ev_stat_stop (EV_P_ ev_stat *w)
3910{
3911 clear_pending (EV_A_ (W)w);
3912 if (expect_false (!ev_is_active (w)))
3913 return;
3914
3915 EV_FREQUENT_CHECK;
3916
3917#if EV_USE_INOTIFY
3918 infy_del (EV_A_ w);
3919#endif
3920
3921 if (ev_is_active (&w->timer))
3922 {
3923 ev_ref (EV_A);
3924 ev_timer_stop (EV_A_ &w->timer);
3925 }
3926
1502 ev_stop (EV_A_ (W)w); 3927 ev_stop (EV_A_ (W)w);
1503 3928
1504 if (!signals [w->signum - 1].head) 3929 EV_FREQUENT_CHECK;
1505 signal (w->signum, SIG_DFL);
1506} 3930}
3931#endif
1507 3932
3933#if EV_IDLE_ENABLE
1508void 3934void
1509ev_child_start (EV_P_ struct ev_child *w) 3935ev_idle_start (EV_P_ ev_idle *w)
1510{ 3936{
1511#if EV_MULTIPLICITY
1512 assert (("child watchers are only supported in the default loop", loop == default_loop));
1513#endif
1514 if (ev_is_active (w)) 3937 if (expect_false (ev_is_active (w)))
1515 return; 3938 return;
1516 3939
3940 pri_adjust (EV_A_ (W)w);
3941
3942 EV_FREQUENT_CHECK;
3943
3944 {
3945 int active = ++idlecnt [ABSPRI (w)];
3946
3947 ++idleall;
3948 ev_start (EV_A_ (W)w, active);
3949
3950 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3951 idles [ABSPRI (w)][active - 1] = w;
3952 }
3953
3954 EV_FREQUENT_CHECK;
3955}
3956
3957void
3958ev_idle_stop (EV_P_ ev_idle *w)
3959{
3960 clear_pending (EV_A_ (W)w);
3961 if (expect_false (!ev_is_active (w)))
3962 return;
3963
3964 EV_FREQUENT_CHECK;
3965
3966 {
3967 int active = ev_active (w);
3968
3969 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3970 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3971
3972 ev_stop (EV_A_ (W)w);
3973 --idleall;
3974 }
3975
3976 EV_FREQUENT_CHECK;
3977}
3978#endif
3979
3980#if EV_PREPARE_ENABLE
3981void
3982ev_prepare_start (EV_P_ ev_prepare *w)
3983{
3984 if (expect_false (ev_is_active (w)))
3985 return;
3986
3987 EV_FREQUENT_CHECK;
3988
3989 ev_start (EV_A_ (W)w, ++preparecnt);
3990 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3991 prepares [preparecnt - 1] = w;
3992
3993 EV_FREQUENT_CHECK;
3994}
3995
3996void
3997ev_prepare_stop (EV_P_ ev_prepare *w)
3998{
3999 clear_pending (EV_A_ (W)w);
4000 if (expect_false (!ev_is_active (w)))
4001 return;
4002
4003 EV_FREQUENT_CHECK;
4004
4005 {
4006 int active = ev_active (w);
4007
4008 prepares [active - 1] = prepares [--preparecnt];
4009 ev_active (prepares [active - 1]) = active;
4010 }
4011
4012 ev_stop (EV_A_ (W)w);
4013
4014 EV_FREQUENT_CHECK;
4015}
4016#endif
4017
4018#if EV_CHECK_ENABLE
4019void
4020ev_check_start (EV_P_ ev_check *w)
4021{
4022 if (expect_false (ev_is_active (w)))
4023 return;
4024
4025 EV_FREQUENT_CHECK;
4026
4027 ev_start (EV_A_ (W)w, ++checkcnt);
4028 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4029 checks [checkcnt - 1] = w;
4030
4031 EV_FREQUENT_CHECK;
4032}
4033
4034void
4035ev_check_stop (EV_P_ ev_check *w)
4036{
4037 clear_pending (EV_A_ (W)w);
4038 if (expect_false (!ev_is_active (w)))
4039 return;
4040
4041 EV_FREQUENT_CHECK;
4042
4043 {
4044 int active = ev_active (w);
4045
4046 checks [active - 1] = checks [--checkcnt];
4047 ev_active (checks [active - 1]) = active;
4048 }
4049
4050 ev_stop (EV_A_ (W)w);
4051
4052 EV_FREQUENT_CHECK;
4053}
4054#endif
4055
4056#if EV_EMBED_ENABLE
4057void noinline
4058ev_embed_sweep (EV_P_ ev_embed *w)
4059{
4060 ev_run (w->other, EVRUN_NOWAIT);
4061}
4062
4063static void
4064embed_io_cb (EV_P_ ev_io *io, int revents)
4065{
4066 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4067
4068 if (ev_cb (w))
4069 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4070 else
4071 ev_run (w->other, EVRUN_NOWAIT);
4072}
4073
4074static void
4075embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4076{
4077 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4078
4079 {
4080 EV_P = w->other;
4081
4082 while (fdchangecnt)
4083 {
4084 fd_reify (EV_A);
4085 ev_run (EV_A_ EVRUN_NOWAIT);
4086 }
4087 }
4088}
4089
4090static void
4091embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4092{
4093 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4094
4095 ev_embed_stop (EV_A_ w);
4096
4097 {
4098 EV_P = w->other;
4099
4100 ev_loop_fork (EV_A);
4101 ev_run (EV_A_ EVRUN_NOWAIT);
4102 }
4103
4104 ev_embed_start (EV_A_ w);
4105}
4106
4107#if 0
4108static void
4109embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4110{
4111 ev_idle_stop (EV_A_ idle);
4112}
4113#endif
4114
4115void
4116ev_embed_start (EV_P_ ev_embed *w)
4117{
4118 if (expect_false (ev_is_active (w)))
4119 return;
4120
4121 {
4122 EV_P = w->other;
4123 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4124 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4125 }
4126
4127 EV_FREQUENT_CHECK;
4128
4129 ev_set_priority (&w->io, ev_priority (w));
4130 ev_io_start (EV_A_ &w->io);
4131
4132 ev_prepare_init (&w->prepare, embed_prepare_cb);
4133 ev_set_priority (&w->prepare, EV_MINPRI);
4134 ev_prepare_start (EV_A_ &w->prepare);
4135
4136 ev_fork_init (&w->fork, embed_fork_cb);
4137 ev_fork_start (EV_A_ &w->fork);
4138
4139 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4140
1517 ev_start (EV_A_ (W)w, 1); 4141 ev_start (EV_A_ (W)w, 1);
1518 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4142
4143 EV_FREQUENT_CHECK;
1519} 4144}
1520 4145
1521void 4146void
1522ev_child_stop (EV_P_ struct ev_child *w) 4147ev_embed_stop (EV_P_ ev_embed *w)
1523{ 4148{
1524 ev_clear_pending (EV_A_ (W)w); 4149 clear_pending (EV_A_ (W)w);
1525 if (ev_is_active (w)) 4150 if (expect_false (!ev_is_active (w)))
1526 return; 4151 return;
1527 4152
1528 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4153 EV_FREQUENT_CHECK;
4154
4155 ev_io_stop (EV_A_ &w->io);
4156 ev_prepare_stop (EV_A_ &w->prepare);
4157 ev_fork_stop (EV_A_ &w->fork);
4158
1529 ev_stop (EV_A_ (W)w); 4159 ev_stop (EV_A_ (W)w);
4160
4161 EV_FREQUENT_CHECK;
1530} 4162}
4163#endif
4164
4165#if EV_FORK_ENABLE
4166void
4167ev_fork_start (EV_P_ ev_fork *w)
4168{
4169 if (expect_false (ev_is_active (w)))
4170 return;
4171
4172 EV_FREQUENT_CHECK;
4173
4174 ev_start (EV_A_ (W)w, ++forkcnt);
4175 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4176 forks [forkcnt - 1] = w;
4177
4178 EV_FREQUENT_CHECK;
4179}
4180
4181void
4182ev_fork_stop (EV_P_ ev_fork *w)
4183{
4184 clear_pending (EV_A_ (W)w);
4185 if (expect_false (!ev_is_active (w)))
4186 return;
4187
4188 EV_FREQUENT_CHECK;
4189
4190 {
4191 int active = ev_active (w);
4192
4193 forks [active - 1] = forks [--forkcnt];
4194 ev_active (forks [active - 1]) = active;
4195 }
4196
4197 ev_stop (EV_A_ (W)w);
4198
4199 EV_FREQUENT_CHECK;
4200}
4201#endif
4202
4203#if EV_CLEANUP_ENABLE
4204void
4205ev_cleanup_start (EV_P_ ev_cleanup *w)
4206{
4207 if (expect_false (ev_is_active (w)))
4208 return;
4209
4210 EV_FREQUENT_CHECK;
4211
4212 ev_start (EV_A_ (W)w, ++cleanupcnt);
4213 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4214 cleanups [cleanupcnt - 1] = w;
4215
4216 /* cleanup watchers should never keep a refcount on the loop */
4217 ev_unref (EV_A);
4218 EV_FREQUENT_CHECK;
4219}
4220
4221void
4222ev_cleanup_stop (EV_P_ ev_cleanup *w)
4223{
4224 clear_pending (EV_A_ (W)w);
4225 if (expect_false (!ev_is_active (w)))
4226 return;
4227
4228 EV_FREQUENT_CHECK;
4229 ev_ref (EV_A);
4230
4231 {
4232 int active = ev_active (w);
4233
4234 cleanups [active - 1] = cleanups [--cleanupcnt];
4235 ev_active (cleanups [active - 1]) = active;
4236 }
4237
4238 ev_stop (EV_A_ (W)w);
4239
4240 EV_FREQUENT_CHECK;
4241}
4242#endif
4243
4244#if EV_ASYNC_ENABLE
4245void
4246ev_async_start (EV_P_ ev_async *w)
4247{
4248 if (expect_false (ev_is_active (w)))
4249 return;
4250
4251 w->sent = 0;
4252
4253 evpipe_init (EV_A);
4254
4255 EV_FREQUENT_CHECK;
4256
4257 ev_start (EV_A_ (W)w, ++asynccnt);
4258 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4259 asyncs [asynccnt - 1] = w;
4260
4261 EV_FREQUENT_CHECK;
4262}
4263
4264void
4265ev_async_stop (EV_P_ ev_async *w)
4266{
4267 clear_pending (EV_A_ (W)w);
4268 if (expect_false (!ev_is_active (w)))
4269 return;
4270
4271 EV_FREQUENT_CHECK;
4272
4273 {
4274 int active = ev_active (w);
4275
4276 asyncs [active - 1] = asyncs [--asynccnt];
4277 ev_active (asyncs [active - 1]) = active;
4278 }
4279
4280 ev_stop (EV_A_ (W)w);
4281
4282 EV_FREQUENT_CHECK;
4283}
4284
4285void
4286ev_async_send (EV_P_ ev_async *w)
4287{
4288 w->sent = 1;
4289 evpipe_write (EV_A_ &async_pending);
4290}
4291#endif
1531 4292
1532/*****************************************************************************/ 4293/*****************************************************************************/
1533 4294
1534struct ev_once 4295struct ev_once
1535{ 4296{
1536 struct ev_io io; 4297 ev_io io;
1537 struct ev_timer to; 4298 ev_timer to;
1538 void (*cb)(int revents, void *arg); 4299 void (*cb)(int revents, void *arg);
1539 void *arg; 4300 void *arg;
1540}; 4301};
1541 4302
1542static void 4303static void
1543once_cb (EV_P_ struct ev_once *once, int revents) 4304once_cb (EV_P_ struct ev_once *once, int revents)
1544{ 4305{
1545 void (*cb)(int revents, void *arg) = once->cb; 4306 void (*cb)(int revents, void *arg) = once->cb;
1546 void *arg = once->arg; 4307 void *arg = once->arg;
1547 4308
1548 ev_io_stop (EV_A_ &once->io); 4309 ev_io_stop (EV_A_ &once->io);
1549 ev_timer_stop (EV_A_ &once->to); 4310 ev_timer_stop (EV_A_ &once->to);
1550 ev_free (once); 4311 ev_free (once);
1551 4312
1552 cb (revents, arg); 4313 cb (revents, arg);
1553} 4314}
1554 4315
1555static void 4316static void
1556once_cb_io (EV_P_ struct ev_io *w, int revents) 4317once_cb_io (EV_P_ ev_io *w, int revents)
1557{ 4318{
1558 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4319 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4320
4321 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1559} 4322}
1560 4323
1561static void 4324static void
1562once_cb_to (EV_P_ struct ev_timer *w, int revents) 4325once_cb_to (EV_P_ ev_timer *w, int revents)
1563{ 4326{
1564 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4327 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4328
4329 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1565} 4330}
1566 4331
1567void 4332void
1568ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4333ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1569{ 4334{
1570 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4335 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1571 4336
1572 if (!once) 4337 if (expect_false (!once))
4338 {
1573 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4339 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1574 else 4340 return;
1575 { 4341 }
4342
1576 once->cb = cb; 4343 once->cb = cb;
1577 once->arg = arg; 4344 once->arg = arg;
1578 4345
1579 ev_init (&once->io, once_cb_io); 4346 ev_init (&once->io, once_cb_io);
1580 if (fd >= 0) 4347 if (fd >= 0)
4348 {
4349 ev_io_set (&once->io, fd, events);
4350 ev_io_start (EV_A_ &once->io);
4351 }
4352
4353 ev_init (&once->to, once_cb_to);
4354 if (timeout >= 0.)
4355 {
4356 ev_timer_set (&once->to, timeout, 0.);
4357 ev_timer_start (EV_A_ &once->to);
4358 }
4359}
4360
4361/*****************************************************************************/
4362
4363#if EV_WALK_ENABLE
4364void ecb_cold
4365ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4366{
4367 int i, j;
4368 ev_watcher_list *wl, *wn;
4369
4370 if (types & (EV_IO | EV_EMBED))
4371 for (i = 0; i < anfdmax; ++i)
4372 for (wl = anfds [i].head; wl; )
1581 { 4373 {
1582 ev_io_set (&once->io, fd, events); 4374 wn = wl->next;
1583 ev_io_start (EV_A_ &once->io); 4375
4376#if EV_EMBED_ENABLE
4377 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4378 {
4379 if (types & EV_EMBED)
4380 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4381 }
4382 else
4383#endif
4384#if EV_USE_INOTIFY
4385 if (ev_cb ((ev_io *)wl) == infy_cb)
4386 ;
4387 else
4388#endif
4389 if ((ev_io *)wl != &pipe_w)
4390 if (types & EV_IO)
4391 cb (EV_A_ EV_IO, wl);
4392
4393 wl = wn;
1584 } 4394 }
1585 4395
1586 ev_init (&once->to, once_cb_to); 4396 if (types & (EV_TIMER | EV_STAT))
1587 if (timeout >= 0.) 4397 for (i = timercnt + HEAP0; i-- > HEAP0; )
4398#if EV_STAT_ENABLE
4399 /*TODO: timer is not always active*/
4400 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1588 { 4401 {
1589 ev_timer_set (&once->to, timeout, 0.); 4402 if (types & EV_STAT)
1590 ev_timer_start (EV_A_ &once->to); 4403 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1591 } 4404 }
1592 } 4405 else
1593} 4406#endif
4407 if (types & EV_TIMER)
4408 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1594 4409
4410#if EV_PERIODIC_ENABLE
4411 if (types & EV_PERIODIC)
4412 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4413 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4414#endif
4415
4416#if EV_IDLE_ENABLE
4417 if (types & EV_IDLE)
4418 for (j = NUMPRI; j--; )
4419 for (i = idlecnt [j]; i--; )
4420 cb (EV_A_ EV_IDLE, idles [j][i]);
4421#endif
4422
4423#if EV_FORK_ENABLE
4424 if (types & EV_FORK)
4425 for (i = forkcnt; i--; )
4426 if (ev_cb (forks [i]) != embed_fork_cb)
4427 cb (EV_A_ EV_FORK, forks [i]);
4428#endif
4429
4430#if EV_ASYNC_ENABLE
4431 if (types & EV_ASYNC)
4432 for (i = asynccnt; i--; )
4433 cb (EV_A_ EV_ASYNC, asyncs [i]);
4434#endif
4435
4436#if EV_PREPARE_ENABLE
4437 if (types & EV_PREPARE)
4438 for (i = preparecnt; i--; )
4439# if EV_EMBED_ENABLE
4440 if (ev_cb (prepares [i]) != embed_prepare_cb)
4441# endif
4442 cb (EV_A_ EV_PREPARE, prepares [i]);
4443#endif
4444
4445#if EV_CHECK_ENABLE
4446 if (types & EV_CHECK)
4447 for (i = checkcnt; i--; )
4448 cb (EV_A_ EV_CHECK, checks [i]);
4449#endif
4450
4451#if EV_SIGNAL_ENABLE
4452 if (types & EV_SIGNAL)
4453 for (i = 0; i < EV_NSIG - 1; ++i)
4454 for (wl = signals [i].head; wl; )
4455 {
4456 wn = wl->next;
4457 cb (EV_A_ EV_SIGNAL, wl);
4458 wl = wn;
4459 }
4460#endif
4461
4462#if EV_CHILD_ENABLE
4463 if (types & EV_CHILD)
4464 for (i = (EV_PID_HASHSIZE); i--; )
4465 for (wl = childs [i]; wl; )
4466 {
4467 wn = wl->next;
4468 cb (EV_A_ EV_CHILD, wl);
4469 wl = wn;
4470 }
4471#endif
4472/* EV_STAT 0x00001000 /* stat data changed */
4473/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4474}
4475#endif
4476
4477#if EV_MULTIPLICITY
4478 #include "ev_wrap.h"
4479#endif
4480

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines