ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.45 by root, Sat Nov 3 09:19:58 2007 UTC vs.
Revision 1.84 by root, Fri Nov 9 23:04:35 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 59#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 60#include <stddef.h>
41 61
42#include <stdio.h> 62#include <stdio.h>
43 63
44#include <assert.h> 64#include <assert.h>
45#include <errno.h> 65#include <errno.h>
46#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
47#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
48# include <sys/wait.h> 74# include <sys/wait.h>
49#endif 75#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 76/**/
54 77
55#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
57#endif 80#endif
68# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
69#endif 92#endif
70 93
71#ifndef EV_USE_KQUEUE 94#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
73#endif 106#endif
74 107
75#ifndef EV_USE_REALTIME 108#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 109# define EV_USE_REALTIME 1
77#endif 110#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 130
131#ifdef EV_H
132# include EV_H
133#else
98#include "ev.h" 134# include "ev.h"
135#endif
99 136
100#if __GNUC__ >= 3 137#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value)) 138# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 139# define inline inline
103#else 140#else
113 150
114typedef struct ev_watcher *W; 151typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 152typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 153typedef struct ev_watcher_time *WT;
117 154
118static ev_tstamp now_floor, now, diff; /* monotonic clock */ 155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119ev_tstamp ev_now;
120int ev_method;
121 156
122static int have_monotonic; /* runtime */ 157#include "ev_win32.c"
123
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
125static void (*method_modify)(int fd, int oev, int nev);
126static void (*method_poll)(ev_tstamp timeout);
127 158
128/*****************************************************************************/ 159/*****************************************************************************/
129 160
130ev_tstamp 161static void (*syserr_cb)(const char *msg);
162
163void ev_set_syserr_cb (void (*cb)(const char *msg))
164{
165 syserr_cb = cb;
166}
167
168static void
169syserr (const char *msg)
170{
171 if (!msg)
172 msg = "(libev) system error";
173
174 if (syserr_cb)
175 syserr_cb (msg);
176 else
177 {
178 perror (msg);
179 abort ();
180 }
181}
182
183static void *(*alloc)(void *ptr, long size);
184
185void ev_set_allocator (void *(*cb)(void *ptr, long size))
186{
187 alloc = cb;
188}
189
190static void *
191ev_realloc (void *ptr, long size)
192{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194
195 if (!ptr && size)
196 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort ();
199 }
200
201 return ptr;
202}
203
204#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0)
206
207/*****************************************************************************/
208
209typedef struct
210{
211 WL head;
212 unsigned char events;
213 unsigned char reify;
214} ANFD;
215
216typedef struct
217{
218 W w;
219 int events;
220} ANPENDING;
221
222#if EV_MULTIPLICITY
223
224 struct ev_loop
225 {
226 #define VAR(name,decl) decl;
227 #include "ev_vars.h"
228 #undef VAR
229 };
230 #include "ev_wrap.h"
231
232 struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop;
234
235#else
236
237 #define VAR(name,decl) static decl;
238 #include "ev_vars.h"
239 #undef VAR
240
241 static int default_loop;
242
243#endif
244
245/*****************************************************************************/
246
247inline ev_tstamp
131ev_time (void) 248ev_time (void)
132{ 249{
133#if EV_USE_REALTIME 250#if EV_USE_REALTIME
134 struct timespec ts; 251 struct timespec ts;
135 clock_gettime (CLOCK_REALTIME, &ts); 252 clock_gettime (CLOCK_REALTIME, &ts);
139 gettimeofday (&tv, 0); 256 gettimeofday (&tv, 0);
140 return tv.tv_sec + tv.tv_usec * 1e-6; 257 return tv.tv_sec + tv.tv_usec * 1e-6;
141#endif 258#endif
142} 259}
143 260
144static ev_tstamp 261inline ev_tstamp
145get_clock (void) 262get_clock (void)
146{ 263{
147#if EV_USE_MONOTONIC 264#if EV_USE_MONOTONIC
148 if (expect_true (have_monotonic)) 265 if (expect_true (have_monotonic))
149 { 266 {
154#endif 271#endif
155 272
156 return ev_time (); 273 return ev_time ();
157} 274}
158 275
276ev_tstamp
277ev_now (EV_P)
278{
279 return rt_now;
280}
281
159#define array_roundsize(base,n) ((n) | 4 & ~3) 282#define array_roundsize(type,n) ((n) | 4 & ~3)
160 283
161#define array_needsize(base,cur,cnt,init) \ 284#define array_needsize(type,base,cur,cnt,init) \
162 if (expect_false ((cnt) > cur)) \ 285 if (expect_false ((cnt) > cur)) \
163 { \ 286 { \
164 int newcnt = cur; \ 287 int newcnt = cur; \
165 do \ 288 do \
166 { \ 289 { \
167 newcnt = array_roundsize (base, newcnt << 1); \ 290 newcnt = array_roundsize (type, newcnt << 1); \
168 } \ 291 } \
169 while ((cnt) > newcnt); \ 292 while ((cnt) > newcnt); \
170 \ 293 \
171 base = realloc (base, sizeof (*base) * (newcnt)); \ 294 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
172 init (base + cur, newcnt - cur); \ 295 init (base + cur, newcnt - cur); \
173 cur = newcnt; \ 296 cur = newcnt; \
174 } 297 }
298
299#define array_slim(type,stem) \
300 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
301 { \
302 stem ## max = array_roundsize (stem ## cnt >> 1); \
303 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
304 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
305 }
306
307/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
308/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
309#define array_free_microshit(stem) \
310 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
311
312#define array_free(stem, idx) \
313 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
175 314
176/*****************************************************************************/ 315/*****************************************************************************/
177
178typedef struct
179{
180 struct ev_io *head;
181 unsigned char events;
182 unsigned char reify;
183} ANFD;
184
185static ANFD *anfds;
186static int anfdmax;
187 316
188static void 317static void
189anfds_init (ANFD *base, int count) 318anfds_init (ANFD *base, int count)
190{ 319{
191 while (count--) 320 while (count--)
196 325
197 ++base; 326 ++base;
198 } 327 }
199} 328}
200 329
201typedef struct 330void
331ev_feed_event (EV_P_ void *w, int revents)
202{ 332{
203 W w; 333 W w_ = (W)w;
204 int events;
205} ANPENDING;
206 334
207static ANPENDING *pendings [NUMPRI];
208static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209
210static void
211event (W w, int events)
212{
213 if (w->pending) 335 if (w_->pending)
214 { 336 {
215 pendings [ABSPRI (w)][w->pending - 1].events |= events; 337 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
216 return; 338 return;
217 } 339 }
218 340
219 w->pending = ++pendingcnt [ABSPRI (w)]; 341 w_->pending = ++pendingcnt [ABSPRI (w_)];
220 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 342 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
221 pendings [ABSPRI (w)][w->pending - 1].w = w; 343 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
222 pendings [ABSPRI (w)][w->pending - 1].events = events; 344 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
223} 345}
224 346
225static void 347static void
226queue_events (W *events, int eventcnt, int type) 348queue_events (EV_P_ W *events, int eventcnt, int type)
227{ 349{
228 int i; 350 int i;
229 351
230 for (i = 0; i < eventcnt; ++i) 352 for (i = 0; i < eventcnt; ++i)
231 event (events [i], type); 353 ev_feed_event (EV_A_ events [i], type);
232} 354}
233 355
234static void 356inline void
235fd_event (int fd, int events) 357fd_event (EV_P_ int fd, int revents)
236{ 358{
237 ANFD *anfd = anfds + fd; 359 ANFD *anfd = anfds + fd;
238 struct ev_io *w; 360 struct ev_io *w;
239 361
240 for (w = anfd->head; w; w = w->next) 362 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
241 { 363 {
242 int ev = w->events & events; 364 int ev = w->events & revents;
243 365
244 if (ev) 366 if (ev)
245 event ((W)w, ev); 367 ev_feed_event (EV_A_ (W)w, ev);
246 } 368 }
369}
370
371void
372ev_feed_fd_event (EV_P_ int fd, int revents)
373{
374 fd_event (EV_A_ fd, revents);
247} 375}
248 376
249/*****************************************************************************/ 377/*****************************************************************************/
250 378
251static int *fdchanges;
252static int fdchangemax, fdchangecnt;
253
254static void 379static void
255fd_reify (void) 380fd_reify (EV_P)
256{ 381{
257 int i; 382 int i;
258 383
259 for (i = 0; i < fdchangecnt; ++i) 384 for (i = 0; i < fdchangecnt; ++i)
260 { 385 {
262 ANFD *anfd = anfds + fd; 387 ANFD *anfd = anfds + fd;
263 struct ev_io *w; 388 struct ev_io *w;
264 389
265 int events = 0; 390 int events = 0;
266 391
267 for (w = anfd->head; w; w = w->next) 392 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
268 events |= w->events; 393 events |= w->events;
269 394
270 anfd->reify = 0; 395 anfd->reify = 0;
271 396
272 if (anfd->events != events)
273 {
274 method_modify (fd, anfd->events, events); 397 method_modify (EV_A_ fd, anfd->events, events);
275 anfd->events = events; 398 anfd->events = events;
276 }
277 } 399 }
278 400
279 fdchangecnt = 0; 401 fdchangecnt = 0;
280} 402}
281 403
282static void 404static void
283fd_change (int fd) 405fd_change (EV_P_ int fd)
284{ 406{
285 if (anfds [fd].reify || fdchangecnt < 0) 407 if (anfds [fd].reify)
286 return; 408 return;
287 409
288 anfds [fd].reify = 1; 410 anfds [fd].reify = 1;
289 411
290 ++fdchangecnt; 412 ++fdchangecnt;
291 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 413 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
292 fdchanges [fdchangecnt - 1] = fd; 414 fdchanges [fdchangecnt - 1] = fd;
293} 415}
294 416
295static void 417static void
296fd_kill (int fd) 418fd_kill (EV_P_ int fd)
297{ 419{
298 struct ev_io *w; 420 struct ev_io *w;
299 421
300 printf ("killing fd %d\n", fd);//D
301 while ((w = anfds [fd].head)) 422 while ((w = (struct ev_io *)anfds [fd].head))
302 { 423 {
303 ev_io_stop (w); 424 ev_io_stop (EV_A_ w);
304 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 425 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305 } 426 }
427}
428
429static int
430fd_valid (int fd)
431{
432#ifdef WIN32
433 return !!win32_get_osfhandle (fd);
434#else
435 return fcntl (fd, F_GETFD) != -1;
436#endif
306} 437}
307 438
308/* called on EBADF to verify fds */ 439/* called on EBADF to verify fds */
309static void 440static void
310fd_ebadf (void) 441fd_ebadf (EV_P)
311{ 442{
312 int fd; 443 int fd;
313 444
314 for (fd = 0; fd < anfdmax; ++fd) 445 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 446 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 447 if (!fd_valid (fd) == -1 && errno == EBADF)
317 fd_kill (fd); 448 fd_kill (EV_A_ fd);
318} 449}
319 450
320/* called on ENOMEM in select/poll to kill some fds and retry */ 451/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 452static void
322fd_enomem (void) 453fd_enomem (EV_P)
323{ 454{
324 int fd = anfdmax; 455 int fd;
325 456
326 while (fd--) 457 for (fd = anfdmax; fd--; )
327 if (anfds [fd].events) 458 if (anfds [fd].events)
328 { 459 {
329 close (fd);
330 fd_kill (fd); 460 fd_kill (EV_A_ fd);
331 return; 461 return;
332 } 462 }
333} 463}
334 464
465/* usually called after fork if method needs to re-arm all fds from scratch */
466static void
467fd_rearm_all (EV_P)
468{
469 int fd;
470
471 /* this should be highly optimised to not do anything but set a flag */
472 for (fd = 0; fd < anfdmax; ++fd)
473 if (anfds [fd].events)
474 {
475 anfds [fd].events = 0;
476 fd_change (EV_A_ fd);
477 }
478}
479
335/*****************************************************************************/ 480/*****************************************************************************/
336 481
337static struct ev_timer **timers;
338static int timermax, timercnt;
339
340static struct ev_periodic **periodics;
341static int periodicmax, periodiccnt;
342
343static void 482static void
344upheap (WT *timers, int k) 483upheap (WT *heap, int k)
345{ 484{
346 WT w = timers [k]; 485 WT w = heap [k];
347 486
348 while (k && timers [k >> 1]->at > w->at) 487 while (k && heap [k >> 1]->at > w->at)
349 { 488 {
350 timers [k] = timers [k >> 1]; 489 heap [k] = heap [k >> 1];
351 timers [k]->active = k + 1; 490 ((W)heap [k])->active = k + 1;
352 k >>= 1; 491 k >>= 1;
353 } 492 }
354 493
355 timers [k] = w; 494 heap [k] = w;
356 timers [k]->active = k + 1; 495 ((W)heap [k])->active = k + 1;
357 496
358} 497}
359 498
360static void 499static void
361downheap (WT *timers, int N, int k) 500downheap (WT *heap, int N, int k)
362{ 501{
363 WT w = timers [k]; 502 WT w = heap [k];
364 503
365 while (k < (N >> 1)) 504 while (k < (N >> 1))
366 { 505 {
367 int j = k << 1; 506 int j = k << 1;
368 507
369 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 508 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
370 ++j; 509 ++j;
371 510
372 if (w->at <= timers [j]->at) 511 if (w->at <= heap [j]->at)
373 break; 512 break;
374 513
375 timers [k] = timers [j]; 514 heap [k] = heap [j];
376 timers [k]->active = k + 1; 515 ((W)heap [k])->active = k + 1;
377 k = j; 516 k = j;
378 } 517 }
379 518
380 timers [k] = w; 519 heap [k] = w;
381 timers [k]->active = k + 1; 520 ((W)heap [k])->active = k + 1;
521}
522
523inline void
524adjustheap (WT *heap, int N, int k, ev_tstamp at)
525{
526 ev_tstamp old_at = heap [k]->at;
527 heap [k]->at = at;
528
529 if (old_at < at)
530 downheap (heap, N, k);
531 else
532 upheap (heap, k);
382} 533}
383 534
384/*****************************************************************************/ 535/*****************************************************************************/
385 536
386typedef struct 537typedef struct
387{ 538{
388 struct ev_signal *head; 539 WL head;
389 sig_atomic_t volatile gotsig; 540 sig_atomic_t volatile gotsig;
390} ANSIG; 541} ANSIG;
391 542
392static ANSIG *signals; 543static ANSIG *signals;
393static int signalmax; 544static int signalmax;
409} 560}
410 561
411static void 562static void
412sighandler (int signum) 563sighandler (int signum)
413{ 564{
565#if WIN32
566 signal (signum, sighandler);
567#endif
568
414 signals [signum - 1].gotsig = 1; 569 signals [signum - 1].gotsig = 1;
415 570
416 if (!gotsig) 571 if (!gotsig)
417 { 572 {
573 int old_errno = errno;
418 gotsig = 1; 574 gotsig = 1;
575#ifdef WIN32
576 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
577#else
419 write (sigpipe [1], &signum, 1); 578 write (sigpipe [1], &signum, 1);
579#endif
580 errno = old_errno;
420 } 581 }
421} 582}
422 583
584void
585ev_feed_signal_event (EV_P_ int signum)
586{
587 WL w;
588
589#if EV_MULTIPLICITY
590 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
591#endif
592
593 --signum;
594
595 if (signum < 0 || signum >= signalmax)
596 return;
597
598 signals [signum].gotsig = 0;
599
600 for (w = signals [signum].head; w; w = w->next)
601 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
602}
603
423static void 604static void
424sigcb (struct ev_io *iow, int revents) 605sigcb (EV_P_ struct ev_io *iow, int revents)
425{ 606{
426 struct ev_signal *w;
427 int signum; 607 int signum;
428 608
609#ifdef WIN32
610 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
611#else
429 read (sigpipe [0], &revents, 1); 612 read (sigpipe [0], &revents, 1);
613#endif
430 gotsig = 0; 614 gotsig = 0;
431 615
432 for (signum = signalmax; signum--; ) 616 for (signum = signalmax; signum--; )
433 if (signals [signum].gotsig) 617 if (signals [signum].gotsig)
434 { 618 ev_feed_signal_event (EV_A_ signum + 1);
435 signals [signum].gotsig = 0;
436
437 for (w = signals [signum].head; w; w = w->next)
438 event ((W)w, EV_SIGNAL);
439 }
440} 619}
441 620
442static void 621static void
443siginit (void) 622siginit (EV_P)
444{ 623{
445#ifndef WIN32 624#ifndef WIN32
446 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 625 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
447 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 626 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
448 627
450 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 629 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
451 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 630 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
452#endif 631#endif
453 632
454 ev_io_set (&sigev, sigpipe [0], EV_READ); 633 ev_io_set (&sigev, sigpipe [0], EV_READ);
455 ev_io_start (&sigev); 634 ev_io_start (EV_A_ &sigev);
635 ev_unref (EV_A); /* child watcher should not keep loop alive */
456} 636}
457 637
458/*****************************************************************************/ 638/*****************************************************************************/
459 639
460static struct ev_idle **idles;
461static int idlemax, idlecnt;
462
463static struct ev_prepare **prepares;
464static int preparemax, preparecnt;
465
466static struct ev_check **checks;
467static int checkmax, checkcnt;
468
469/*****************************************************************************/
470
471static struct ev_child *childs [PID_HASHSIZE]; 640static struct ev_child *childs [PID_HASHSIZE];
641
642#ifndef WIN32
643
472static struct ev_signal childev; 644static struct ev_signal childev;
473
474#ifndef WIN32
475 645
476#ifndef WCONTINUED 646#ifndef WCONTINUED
477# define WCONTINUED 0 647# define WCONTINUED 0
478#endif 648#endif
479 649
480static void 650static void
481childcb (struct ev_signal *sw, int revents) 651child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
482{ 652{
483 struct ev_child *w; 653 struct ev_child *w;
654
655 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
656 if (w->pid == pid || !w->pid)
657 {
658 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
659 w->rpid = pid;
660 w->rstatus = status;
661 ev_feed_event (EV_A_ (W)w, EV_CHILD);
662 }
663}
664
665static void
666childcb (EV_P_ struct ev_signal *sw, int revents)
667{
484 int pid, status; 668 int pid, status;
485 669
486 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 670 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
487 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 671 {
488 if (w->pid == pid || !w->pid) 672 /* make sure we are called again until all childs have been reaped */
489 { 673 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
490 w->status = status; 674
491 event ((W)w, EV_CHILD); 675 child_reap (EV_A_ sw, pid, pid, status);
492 } 676 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
677 }
493} 678}
494 679
495#endif 680#endif
496 681
497/*****************************************************************************/ 682/*****************************************************************************/
519ev_version_minor (void) 704ev_version_minor (void)
520{ 705{
521 return EV_VERSION_MINOR; 706 return EV_VERSION_MINOR;
522} 707}
523 708
524/* return true if we are running with elevated privileges and ignore env variables */ 709/* return true if we are running with elevated privileges and should ignore env variables */
525static int 710static int
526enable_secure () 711enable_secure (void)
527{ 712{
713#ifdef WIN32
714 return 0;
715#else
528 return getuid () != geteuid () 716 return getuid () != geteuid ()
529 || getgid () != getegid (); 717 || getgid () != getegid ();
718#endif
530} 719}
531 720
532int ev_init (int methods) 721int
722ev_method (EV_P)
533{ 723{
724 return method;
725}
726
727static void
728loop_init (EV_P_ int methods)
729{
534 if (!ev_method) 730 if (!method)
535 { 731 {
536#if EV_USE_MONOTONIC 732#if EV_USE_MONOTONIC
537 { 733 {
538 struct timespec ts; 734 struct timespec ts;
539 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 735 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
540 have_monotonic = 1; 736 have_monotonic = 1;
541 } 737 }
542#endif 738#endif
543 739
544 ev_now = ev_time (); 740 rt_now = ev_time ();
545 now = get_clock (); 741 mn_now = get_clock ();
546 now_floor = now; 742 now_floor = mn_now;
547 diff = ev_now - now; 743 rtmn_diff = rt_now - mn_now;
548
549 if (pipe (sigpipe))
550 return 0;
551 744
552 if (methods == EVMETHOD_AUTO) 745 if (methods == EVMETHOD_AUTO)
553 if (!enable_secure () && getenv ("LIBEV_METHODS")) 746 if (!enable_secure () && getenv ("LIBEV_METHODS"))
554 methods = atoi (getenv ("LIBEV_METHODS")); 747 methods = atoi (getenv ("LIBEV_METHODS"));
555 else 748 else
556 methods = EVMETHOD_ANY; 749 methods = EVMETHOD_ANY;
557 750
558 ev_method = 0; 751 method = 0;
752#if EV_USE_WIN32
753 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
754#endif
559#if EV_USE_KQUEUE 755#if EV_USE_KQUEUE
560 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 756 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
561#endif 757#endif
562#if EV_USE_EPOLL 758#if EV_USE_EPOLL
563 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 759 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
564#endif 760#endif
565#if EV_USE_POLL 761#if EV_USE_POLL
566 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 762 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
567#endif 763#endif
568#if EV_USE_SELECT 764#if EV_USE_SELECT
569 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 765 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
570#endif 766#endif
571 767
768 ev_init (&sigev, sigcb);
769 ev_set_priority (&sigev, EV_MAXPRI);
770 }
771}
772
773void
774loop_destroy (EV_P)
775{
776 int i;
777
778#if EV_USE_WIN32
779 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
780#endif
781#if EV_USE_KQUEUE
782 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
783#endif
784#if EV_USE_EPOLL
785 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
786#endif
787#if EV_USE_POLL
788 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
789#endif
790#if EV_USE_SELECT
791 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
792#endif
793
794 for (i = NUMPRI; i--; )
795 array_free (pending, [i]);
796
797 /* have to use the microsoft-never-gets-it-right macro */
798 array_free_microshit (fdchange);
799 array_free_microshit (timer);
800 array_free_microshit (periodic);
801 array_free_microshit (idle);
802 array_free_microshit (prepare);
803 array_free_microshit (check);
804
805 method = 0;
806}
807
808static void
809loop_fork (EV_P)
810{
811#if EV_USE_EPOLL
812 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
813#endif
814#if EV_USE_KQUEUE
815 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
816#endif
817
818 if (ev_is_active (&sigev))
819 {
820 /* default loop */
821
822 ev_ref (EV_A);
823 ev_io_stop (EV_A_ &sigev);
824 close (sigpipe [0]);
825 close (sigpipe [1]);
826
827 while (pipe (sigpipe))
828 syserr ("(libev) error creating pipe");
829
830 siginit (EV_A);
831 }
832
833 postfork = 0;
834}
835
836#if EV_MULTIPLICITY
837struct ev_loop *
838ev_loop_new (int methods)
839{
840 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
841
842 memset (loop, 0, sizeof (struct ev_loop));
843
844 loop_init (EV_A_ methods);
845
846 if (ev_method (EV_A))
847 return loop;
848
849 return 0;
850}
851
852void
853ev_loop_destroy (EV_P)
854{
855 loop_destroy (EV_A);
856 ev_free (loop);
857}
858
859void
860ev_loop_fork (EV_P)
861{
862 postfork = 1;
863}
864
865#endif
866
867#if EV_MULTIPLICITY
868struct ev_loop *
869#else
870int
871#endif
872ev_default_loop (int methods)
873{
874 if (sigpipe [0] == sigpipe [1])
875 if (pipe (sigpipe))
876 return 0;
877
878 if (!default_loop)
879 {
880#if EV_MULTIPLICITY
881 struct ev_loop *loop = default_loop = &default_loop_struct;
882#else
883 default_loop = 1;
884#endif
885
886 loop_init (EV_A_ methods);
887
572 if (ev_method) 888 if (ev_method (EV_A))
573 { 889 {
574 ev_watcher_init (&sigev, sigcb);
575 siginit (); 890 siginit (EV_A);
576 891
577#ifndef WIN32 892#ifndef WIN32
578 ev_signal_init (&childev, childcb, SIGCHLD); 893 ev_signal_init (&childev, childcb, SIGCHLD);
894 ev_set_priority (&childev, EV_MAXPRI);
579 ev_signal_start (&childev); 895 ev_signal_start (EV_A_ &childev);
896 ev_unref (EV_A); /* child watcher should not keep loop alive */
580#endif 897#endif
581 } 898 }
899 else
900 default_loop = 0;
582 } 901 }
583 902
584 return ev_method; 903 return default_loop;
904}
905
906void
907ev_default_destroy (void)
908{
909#if EV_MULTIPLICITY
910 struct ev_loop *loop = default_loop;
911#endif
912
913#ifndef WIN32
914 ev_ref (EV_A); /* child watcher */
915 ev_signal_stop (EV_A_ &childev);
916#endif
917
918 ev_ref (EV_A); /* signal watcher */
919 ev_io_stop (EV_A_ &sigev);
920
921 close (sigpipe [0]); sigpipe [0] = 0;
922 close (sigpipe [1]); sigpipe [1] = 0;
923
924 loop_destroy (EV_A);
925}
926
927void
928ev_default_fork (void)
929{
930#if EV_MULTIPLICITY
931 struct ev_loop *loop = default_loop;
932#endif
933
934 if (method)
935 postfork = 1;
585} 936}
586 937
587/*****************************************************************************/ 938/*****************************************************************************/
588 939
589void
590ev_fork_prepare (void)
591{
592 /* nop */
593}
594
595void
596ev_fork_parent (void)
597{
598 /* nop */
599}
600
601void
602ev_fork_child (void)
603{
604#if EV_USE_EPOLL
605 if (ev_method == EVMETHOD_EPOLL)
606 epoll_postfork_child ();
607#endif
608
609 ev_io_stop (&sigev);
610 close (sigpipe [0]);
611 close (sigpipe [1]);
612 pipe (sigpipe);
613 siginit ();
614}
615
616/*****************************************************************************/
617
618static void 940static int
941any_pending (EV_P)
942{
943 int pri;
944
945 for (pri = NUMPRI; pri--; )
946 if (pendingcnt [pri])
947 return 1;
948
949 return 0;
950}
951
952static void
619call_pending (void) 953call_pending (EV_P)
620{ 954{
621 int pri; 955 int pri;
622 956
623 for (pri = NUMPRI; pri--; ) 957 for (pri = NUMPRI; pri--; )
624 while (pendingcnt [pri]) 958 while (pendingcnt [pri])
626 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 960 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
627 961
628 if (p->w) 962 if (p->w)
629 { 963 {
630 p->w->pending = 0; 964 p->w->pending = 0;
631 p->w->cb (p->w, p->events); 965 EV_CB_INVOKE (p->w, p->events);
632 } 966 }
633 } 967 }
634} 968}
635 969
636static void 970static void
637timers_reify (void) 971timers_reify (EV_P)
638{ 972{
639 while (timercnt && timers [0]->at <= now) 973 while (timercnt && ((WT)timers [0])->at <= mn_now)
640 { 974 {
641 struct ev_timer *w = timers [0]; 975 struct ev_timer *w = timers [0];
976
977 assert (("inactive timer on timer heap detected", ev_is_active (w)));
642 978
643 /* first reschedule or stop timer */ 979 /* first reschedule or stop timer */
644 if (w->repeat) 980 if (w->repeat)
645 { 981 {
646 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 982 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
647 w->at = now + w->repeat; 983 ((WT)w)->at = mn_now + w->repeat;
648 downheap ((WT *)timers, timercnt, 0); 984 downheap ((WT *)timers, timercnt, 0);
649 } 985 }
650 else 986 else
651 ev_timer_stop (w); /* nonrepeating: stop timer */ 987 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
652 988
653 event ((W)w, EV_TIMEOUT); 989 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
654 } 990 }
655} 991}
656 992
657static void 993static void
658periodics_reify (void) 994periodics_reify (EV_P)
659{ 995{
660 while (periodiccnt && periodics [0]->at <= ev_now) 996 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
661 { 997 {
662 struct ev_periodic *w = periodics [0]; 998 struct ev_periodic *w = periodics [0];
663 999
1000 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1001
664 /* first reschedule or stop timer */ 1002 /* first reschedule or stop timer */
665 if (w->interval) 1003 if (w->reschedule_cb)
666 { 1004 {
1005 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
1006
1007 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
1008 downheap ((WT *)periodics, periodiccnt, 0);
1009 }
1010 else if (w->interval)
1011 {
667 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1012 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
668 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 1013 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
669 downheap ((WT *)periodics, periodiccnt, 0); 1014 downheap ((WT *)periodics, periodiccnt, 0);
670 } 1015 }
671 else 1016 else
672 ev_periodic_stop (w); /* nonrepeating: stop timer */ 1017 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
673 1018
674 event ((W)w, EV_PERIODIC); 1019 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
675 } 1020 }
676} 1021}
677 1022
678static void 1023static void
679periodics_reschedule (ev_tstamp diff) 1024periodics_reschedule (EV_P)
680{ 1025{
681 int i; 1026 int i;
682 1027
683 /* adjust periodics after time jump */ 1028 /* adjust periodics after time jump */
684 for (i = 0; i < periodiccnt; ++i) 1029 for (i = 0; i < periodiccnt; ++i)
685 { 1030 {
686 struct ev_periodic *w = periodics [i]; 1031 struct ev_periodic *w = periodics [i];
687 1032
1033 if (w->reschedule_cb)
1034 ((WT)w)->at = w->reschedule_cb (w, rt_now);
688 if (w->interval) 1035 else if (w->interval)
689 {
690 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1036 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
691
692 if (fabs (diff) >= 1e-4)
693 {
694 ev_periodic_stop (w);
695 ev_periodic_start (w);
696
697 i = 0; /* restart loop, inefficient, but time jumps should be rare */
698 }
699 }
700 } 1037 }
701}
702 1038
703static int 1039 /* now rebuild the heap */
1040 for (i = periodiccnt >> 1; i--; )
1041 downheap ((WT *)periodics, periodiccnt, i);
1042}
1043
1044inline int
704time_update_monotonic (void) 1045time_update_monotonic (EV_P)
705{ 1046{
706 now = get_clock (); 1047 mn_now = get_clock ();
707 1048
708 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 1049 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
709 { 1050 {
710 ev_now = now + diff; 1051 rt_now = rtmn_diff + mn_now;
711 return 0; 1052 return 0;
712 } 1053 }
713 else 1054 else
714 { 1055 {
715 now_floor = now; 1056 now_floor = mn_now;
716 ev_now = ev_time (); 1057 rt_now = ev_time ();
717 return 1; 1058 return 1;
718 } 1059 }
719} 1060}
720 1061
721static void 1062static void
722time_update (void) 1063time_update (EV_P)
723{ 1064{
724 int i; 1065 int i;
725 1066
726#if EV_USE_MONOTONIC 1067#if EV_USE_MONOTONIC
727 if (expect_true (have_monotonic)) 1068 if (expect_true (have_monotonic))
728 { 1069 {
729 if (time_update_monotonic ()) 1070 if (time_update_monotonic (EV_A))
730 { 1071 {
731 ev_tstamp odiff = diff; 1072 ev_tstamp odiff = rtmn_diff;
732 1073
733 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1074 for (i = 4; --i; ) /* loop a few times, before making important decisions */
734 { 1075 {
735 diff = ev_now - now; 1076 rtmn_diff = rt_now - mn_now;
736 1077
737 if (fabs (odiff - diff) < MIN_TIMEJUMP) 1078 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
738 return; /* all is well */ 1079 return; /* all is well */
739 1080
740 ev_now = ev_time (); 1081 rt_now = ev_time ();
741 now = get_clock (); 1082 mn_now = get_clock ();
742 now_floor = now; 1083 now_floor = mn_now;
743 } 1084 }
744 1085
745 periodics_reschedule (diff - odiff); 1086 periodics_reschedule (EV_A);
746 /* no timer adjustment, as the monotonic clock doesn't jump */ 1087 /* no timer adjustment, as the monotonic clock doesn't jump */
1088 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
747 } 1089 }
748 } 1090 }
749 else 1091 else
750#endif 1092#endif
751 { 1093 {
752 ev_now = ev_time (); 1094 rt_now = ev_time ();
753 1095
754 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1096 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
755 { 1097 {
756 periodics_reschedule (ev_now - now); 1098 periodics_reschedule (EV_A);
757 1099
758 /* adjust timers. this is easy, as the offset is the same for all */ 1100 /* adjust timers. this is easy, as the offset is the same for all */
759 for (i = 0; i < timercnt; ++i) 1101 for (i = 0; i < timercnt; ++i)
760 timers [i]->at += diff; 1102 ((WT)timers [i])->at += rt_now - mn_now;
761 } 1103 }
762 1104
763 now = ev_now; 1105 mn_now = rt_now;
764 } 1106 }
765} 1107}
766 1108
767int ev_loop_done; 1109void
1110ev_ref (EV_P)
1111{
1112 ++activecnt;
1113}
768 1114
1115void
1116ev_unref (EV_P)
1117{
1118 --activecnt;
1119}
1120
1121static int loop_done;
1122
1123void
769void ev_loop (int flags) 1124ev_loop (EV_P_ int flags)
770{ 1125{
771 double block; 1126 double block;
772 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1127 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
773 1128
774 do 1129 do
775 { 1130 {
776 /* queue check watchers (and execute them) */ 1131 /* queue check watchers (and execute them) */
777 if (expect_false (preparecnt)) 1132 if (expect_false (preparecnt))
778 { 1133 {
779 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1134 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
780 call_pending (); 1135 call_pending (EV_A);
781 } 1136 }
782 1137
1138 /* we might have forked, so reify kernel state if necessary */
1139 if (expect_false (postfork))
1140 loop_fork (EV_A);
1141
783 /* update fd-related kernel structures */ 1142 /* update fd-related kernel structures */
784 fd_reify (); 1143 fd_reify (EV_A);
785 1144
786 /* calculate blocking time */ 1145 /* calculate blocking time */
787 1146
788 /* we only need this for !monotonic clockor timers, but as we basically 1147 /* we only need this for !monotonic clock or timers, but as we basically
789 always have timers, we just calculate it always */ 1148 always have timers, we just calculate it always */
790#if EV_USE_MONOTONIC 1149#if EV_USE_MONOTONIC
791 if (expect_true (have_monotonic)) 1150 if (expect_true (have_monotonic))
792 time_update_monotonic (); 1151 time_update_monotonic (EV_A);
793 else 1152 else
794#endif 1153#endif
795 { 1154 {
796 ev_now = ev_time (); 1155 rt_now = ev_time ();
797 now = ev_now; 1156 mn_now = rt_now;
798 } 1157 }
799 1158
800 if (flags & EVLOOP_NONBLOCK || idlecnt) 1159 if (flags & EVLOOP_NONBLOCK || idlecnt)
801 block = 0.; 1160 block = 0.;
802 else 1161 else
803 { 1162 {
804 block = MAX_BLOCKTIME; 1163 block = MAX_BLOCKTIME;
805 1164
806 if (timercnt) 1165 if (timercnt)
807 { 1166 {
808 ev_tstamp to = timers [0]->at - now + method_fudge; 1167 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
809 if (block > to) block = to; 1168 if (block > to) block = to;
810 } 1169 }
811 1170
812 if (periodiccnt) 1171 if (periodiccnt)
813 { 1172 {
814 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1173 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
815 if (block > to) block = to; 1174 if (block > to) block = to;
816 } 1175 }
817 1176
818 if (block < 0.) block = 0.; 1177 if (block < 0.) block = 0.;
819 } 1178 }
820 1179
821 method_poll (block); 1180 method_poll (EV_A_ block);
822 1181
823 /* update ev_now, do magic */ 1182 /* update rt_now, do magic */
824 time_update (); 1183 time_update (EV_A);
825 1184
826 /* queue pending timers and reschedule them */ 1185 /* queue pending timers and reschedule them */
827 timers_reify (); /* relative timers called last */ 1186 timers_reify (EV_A); /* relative timers called last */
828 periodics_reify (); /* absolute timers called first */ 1187 periodics_reify (EV_A); /* absolute timers called first */
829 1188
830 /* queue idle watchers unless io or timers are pending */ 1189 /* queue idle watchers unless io or timers are pending */
831 if (!pendingcnt) 1190 if (idlecnt && !any_pending (EV_A))
832 queue_events ((W *)idles, idlecnt, EV_IDLE); 1191 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
833 1192
834 /* queue check watchers, to be executed first */ 1193 /* queue check watchers, to be executed first */
835 if (checkcnt) 1194 if (checkcnt)
836 queue_events ((W *)checks, checkcnt, EV_CHECK); 1195 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
837 1196
838 call_pending (); 1197 call_pending (EV_A);
839 } 1198 }
840 while (!ev_loop_done); 1199 while (activecnt && !loop_done);
841 1200
842 if (ev_loop_done != 2) 1201 if (loop_done != 2)
843 ev_loop_done = 0; 1202 loop_done = 0;
1203}
1204
1205void
1206ev_unloop (EV_P_ int how)
1207{
1208 loop_done = how;
844} 1209}
845 1210
846/*****************************************************************************/ 1211/*****************************************************************************/
847 1212
848static void 1213inline void
849wlist_add (WL *head, WL elem) 1214wlist_add (WL *head, WL elem)
850{ 1215{
851 elem->next = *head; 1216 elem->next = *head;
852 *head = elem; 1217 *head = elem;
853} 1218}
854 1219
855static void 1220inline void
856wlist_del (WL *head, WL elem) 1221wlist_del (WL *head, WL elem)
857{ 1222{
858 while (*head) 1223 while (*head)
859 { 1224 {
860 if (*head == elem) 1225 if (*head == elem)
865 1230
866 head = &(*head)->next; 1231 head = &(*head)->next;
867 } 1232 }
868} 1233}
869 1234
870static void 1235inline void
871ev_clear_pending (W w) 1236ev_clear_pending (EV_P_ W w)
872{ 1237{
873 if (w->pending) 1238 if (w->pending)
874 { 1239 {
875 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1240 pendings [ABSPRI (w)][w->pending - 1].w = 0;
876 w->pending = 0; 1241 w->pending = 0;
877 } 1242 }
878} 1243}
879 1244
880static void 1245inline void
881ev_start (W w, int active) 1246ev_start (EV_P_ W w, int active)
882{ 1247{
883 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1248 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
884 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1249 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
885 1250
886 w->active = active; 1251 w->active = active;
1252 ev_ref (EV_A);
887} 1253}
888 1254
889static void 1255inline void
890ev_stop (W w) 1256ev_stop (EV_P_ W w)
891{ 1257{
1258 ev_unref (EV_A);
892 w->active = 0; 1259 w->active = 0;
893} 1260}
894 1261
895/*****************************************************************************/ 1262/*****************************************************************************/
896 1263
897void 1264void
898ev_io_start (struct ev_io *w) 1265ev_io_start (EV_P_ struct ev_io *w)
899{ 1266{
900 int fd = w->fd; 1267 int fd = w->fd;
901 1268
902 if (ev_is_active (w)) 1269 if (ev_is_active (w))
903 return; 1270 return;
904 1271
905 assert (("ev_io_start called with negative fd", fd >= 0)); 1272 assert (("ev_io_start called with negative fd", fd >= 0));
906 1273
907 ev_start ((W)w, 1); 1274 ev_start (EV_A_ (W)w, 1);
908 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1275 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
909 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1276 wlist_add ((WL *)&anfds[fd].head, (WL)w);
910 1277
911 fd_change (fd); 1278 fd_change (EV_A_ fd);
912} 1279}
913 1280
914void 1281void
915ev_io_stop (struct ev_io *w) 1282ev_io_stop (EV_P_ struct ev_io *w)
916{ 1283{
917 ev_clear_pending ((W)w); 1284 ev_clear_pending (EV_A_ (W)w);
918 if (!ev_is_active (w)) 1285 if (!ev_is_active (w))
919 return; 1286 return;
920 1287
921 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1288 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
922 ev_stop ((W)w); 1289 ev_stop (EV_A_ (W)w);
923 1290
924 fd_change (w->fd); 1291 fd_change (EV_A_ w->fd);
925} 1292}
926 1293
927void 1294void
928ev_timer_start (struct ev_timer *w) 1295ev_timer_start (EV_P_ struct ev_timer *w)
929{ 1296{
930 if (ev_is_active (w)) 1297 if (ev_is_active (w))
931 return; 1298 return;
932 1299
933 w->at += now; 1300 ((WT)w)->at += mn_now;
934 1301
935 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1302 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
936 1303
937 ev_start ((W)w, ++timercnt); 1304 ev_start (EV_A_ (W)w, ++timercnt);
938 array_needsize (timers, timermax, timercnt, ); 1305 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
939 timers [timercnt - 1] = w; 1306 timers [timercnt - 1] = w;
940 upheap ((WT *)timers, timercnt - 1); 1307 upheap ((WT *)timers, timercnt - 1);
941}
942 1308
1309 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1310}
1311
943void 1312void
944ev_timer_stop (struct ev_timer *w) 1313ev_timer_stop (EV_P_ struct ev_timer *w)
945{ 1314{
946 ev_clear_pending ((W)w); 1315 ev_clear_pending (EV_A_ (W)w);
947 if (!ev_is_active (w)) 1316 if (!ev_is_active (w))
948 return; 1317 return;
949 1318
1319 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1320
950 if (w->active < timercnt--) 1321 if (((W)w)->active < timercnt--)
951 { 1322 {
952 timers [w->active - 1] = timers [timercnt]; 1323 timers [((W)w)->active - 1] = timers [timercnt];
953 downheap ((WT *)timers, timercnt, w->active - 1); 1324 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
954 } 1325 }
955 1326
956 w->at = w->repeat; 1327 ((WT)w)->at = w->repeat;
957 1328
958 ev_stop ((W)w); 1329 ev_stop (EV_A_ (W)w);
959} 1330}
960 1331
961void 1332void
962ev_timer_again (struct ev_timer *w) 1333ev_timer_again (EV_P_ struct ev_timer *w)
963{ 1334{
964 if (ev_is_active (w)) 1335 if (ev_is_active (w))
965 { 1336 {
966 if (w->repeat) 1337 if (w->repeat)
967 {
968 w->at = now + w->repeat;
969 downheap ((WT *)timers, timercnt, w->active - 1); 1338 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
970 }
971 else 1339 else
972 ev_timer_stop (w); 1340 ev_timer_stop (EV_A_ w);
973 } 1341 }
974 else if (w->repeat) 1342 else if (w->repeat)
975 ev_timer_start (w); 1343 ev_timer_start (EV_A_ w);
976} 1344}
977 1345
978void 1346void
979ev_periodic_start (struct ev_periodic *w) 1347ev_periodic_start (EV_P_ struct ev_periodic *w)
980{ 1348{
981 if (ev_is_active (w)) 1349 if (ev_is_active (w))
982 return; 1350 return;
983 1351
1352 if (w->reschedule_cb)
1353 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1354 else if (w->interval)
1355 {
984 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1356 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
985
986 /* this formula differs from the one in periodic_reify because we do not always round up */ 1357 /* this formula differs from the one in periodic_reify because we do not always round up */
987 if (w->interval)
988 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1358 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1359 }
989 1360
990 ev_start ((W)w, ++periodiccnt); 1361 ev_start (EV_A_ (W)w, ++periodiccnt);
991 array_needsize (periodics, periodicmax, periodiccnt, ); 1362 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
992 periodics [periodiccnt - 1] = w; 1363 periodics [periodiccnt - 1] = w;
993 upheap ((WT *)periodics, periodiccnt - 1); 1364 upheap ((WT *)periodics, periodiccnt - 1);
994}
995 1365
1366 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1367}
1368
996void 1369void
997ev_periodic_stop (struct ev_periodic *w) 1370ev_periodic_stop (EV_P_ struct ev_periodic *w)
998{ 1371{
999 ev_clear_pending ((W)w); 1372 ev_clear_pending (EV_A_ (W)w);
1000 if (!ev_is_active (w)) 1373 if (!ev_is_active (w))
1001 return; 1374 return;
1002 1375
1376 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1377
1003 if (w->active < periodiccnt--) 1378 if (((W)w)->active < periodiccnt--)
1004 { 1379 {
1005 periodics [w->active - 1] = periodics [periodiccnt]; 1380 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1006 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1381 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1007 } 1382 }
1008 1383
1009 ev_stop ((W)w); 1384 ev_stop (EV_A_ (W)w);
1010} 1385}
1011 1386
1012void 1387void
1388ev_periodic_again (EV_P_ struct ev_periodic *w)
1389{
1390 /* TODO: use adjustheap and recalculation */
1391 ev_periodic_stop (EV_A_ w);
1392 ev_periodic_start (EV_A_ w);
1393}
1394
1395void
1013ev_signal_start (struct ev_signal *w) 1396ev_idle_start (EV_P_ struct ev_idle *w)
1014{ 1397{
1015 if (ev_is_active (w)) 1398 if (ev_is_active (w))
1016 return; 1399 return;
1017 1400
1401 ev_start (EV_A_ (W)w, ++idlecnt);
1402 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1403 idles [idlecnt - 1] = w;
1404}
1405
1406void
1407ev_idle_stop (EV_P_ struct ev_idle *w)
1408{
1409 ev_clear_pending (EV_A_ (W)w);
1410 if (ev_is_active (w))
1411 return;
1412
1413 idles [((W)w)->active - 1] = idles [--idlecnt];
1414 ev_stop (EV_A_ (W)w);
1415}
1416
1417void
1418ev_prepare_start (EV_P_ struct ev_prepare *w)
1419{
1420 if (ev_is_active (w))
1421 return;
1422
1423 ev_start (EV_A_ (W)w, ++preparecnt);
1424 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1425 prepares [preparecnt - 1] = w;
1426}
1427
1428void
1429ev_prepare_stop (EV_P_ struct ev_prepare *w)
1430{
1431 ev_clear_pending (EV_A_ (W)w);
1432 if (ev_is_active (w))
1433 return;
1434
1435 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1436 ev_stop (EV_A_ (W)w);
1437}
1438
1439void
1440ev_check_start (EV_P_ struct ev_check *w)
1441{
1442 if (ev_is_active (w))
1443 return;
1444
1445 ev_start (EV_A_ (W)w, ++checkcnt);
1446 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1447 checks [checkcnt - 1] = w;
1448}
1449
1450void
1451ev_check_stop (EV_P_ struct ev_check *w)
1452{
1453 ev_clear_pending (EV_A_ (W)w);
1454 if (ev_is_active (w))
1455 return;
1456
1457 checks [((W)w)->active - 1] = checks [--checkcnt];
1458 ev_stop (EV_A_ (W)w);
1459}
1460
1461#ifndef SA_RESTART
1462# define SA_RESTART 0
1463#endif
1464
1465void
1466ev_signal_start (EV_P_ struct ev_signal *w)
1467{
1468#if EV_MULTIPLICITY
1469 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1470#endif
1471 if (ev_is_active (w))
1472 return;
1473
1018 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1474 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1019 1475
1020 ev_start ((W)w, 1); 1476 ev_start (EV_A_ (W)w, 1);
1021 array_needsize (signals, signalmax, w->signum, signals_init); 1477 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1022 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1478 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1023 1479
1024 if (!w->next) 1480 if (!((WL)w)->next)
1025 { 1481 {
1482#if WIN32
1483 signal (w->signum, sighandler);
1484#else
1026 struct sigaction sa; 1485 struct sigaction sa;
1027 sa.sa_handler = sighandler; 1486 sa.sa_handler = sighandler;
1028 sigfillset (&sa.sa_mask); 1487 sigfillset (&sa.sa_mask);
1029 sa.sa_flags = 0; 1488 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1030 sigaction (w->signum, &sa, 0); 1489 sigaction (w->signum, &sa, 0);
1490#endif
1031 } 1491 }
1032} 1492}
1033 1493
1034void 1494void
1035ev_signal_stop (struct ev_signal *w) 1495ev_signal_stop (EV_P_ struct ev_signal *w)
1036{ 1496{
1037 ev_clear_pending ((W)w); 1497 ev_clear_pending (EV_A_ (W)w);
1038 if (!ev_is_active (w)) 1498 if (!ev_is_active (w))
1039 return; 1499 return;
1040 1500
1041 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1501 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1042 ev_stop ((W)w); 1502 ev_stop (EV_A_ (W)w);
1043 1503
1044 if (!signals [w->signum - 1].head) 1504 if (!signals [w->signum - 1].head)
1045 signal (w->signum, SIG_DFL); 1505 signal (w->signum, SIG_DFL);
1046} 1506}
1047 1507
1048void 1508void
1049ev_idle_start (struct ev_idle *w) 1509ev_child_start (EV_P_ struct ev_child *w)
1050{ 1510{
1511#if EV_MULTIPLICITY
1512 assert (("child watchers are only supported in the default loop", loop == default_loop));
1513#endif
1051 if (ev_is_active (w)) 1514 if (ev_is_active (w))
1052 return; 1515 return;
1053 1516
1054 ev_start ((W)w, ++idlecnt); 1517 ev_start (EV_A_ (W)w, 1);
1055 array_needsize (idles, idlemax, idlecnt, ); 1518 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1056 idles [idlecnt - 1] = w;
1057} 1519}
1058 1520
1059void 1521void
1060ev_idle_stop (struct ev_idle *w) 1522ev_child_stop (EV_P_ struct ev_child *w)
1061{ 1523{
1062 ev_clear_pending ((W)w); 1524 ev_clear_pending (EV_A_ (W)w);
1063 if (ev_is_active (w)) 1525 if (ev_is_active (w))
1064 return; 1526 return;
1065 1527
1066 idles [w->active - 1] = idles [--idlecnt];
1067 ev_stop ((W)w);
1068}
1069
1070void
1071ev_prepare_start (struct ev_prepare *w)
1072{
1073 if (ev_is_active (w))
1074 return;
1075
1076 ev_start ((W)w, ++preparecnt);
1077 array_needsize (prepares, preparemax, preparecnt, );
1078 prepares [preparecnt - 1] = w;
1079}
1080
1081void
1082ev_prepare_stop (struct ev_prepare *w)
1083{
1084 ev_clear_pending ((W)w);
1085 if (ev_is_active (w))
1086 return;
1087
1088 prepares [w->active - 1] = prepares [--preparecnt];
1089 ev_stop ((W)w);
1090}
1091
1092void
1093ev_check_start (struct ev_check *w)
1094{
1095 if (ev_is_active (w))
1096 return;
1097
1098 ev_start ((W)w, ++checkcnt);
1099 array_needsize (checks, checkmax, checkcnt, );
1100 checks [checkcnt - 1] = w;
1101}
1102
1103void
1104ev_check_stop (struct ev_check *w)
1105{
1106 ev_clear_pending ((W)w);
1107 if (ev_is_active (w))
1108 return;
1109
1110 checks [w->active - 1] = checks [--checkcnt];
1111 ev_stop ((W)w);
1112}
1113
1114void
1115ev_child_start (struct ev_child *w)
1116{
1117 if (ev_is_active (w))
1118 return;
1119
1120 ev_start ((W)w, 1);
1121 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1122}
1123
1124void
1125ev_child_stop (struct ev_child *w)
1126{
1127 ev_clear_pending ((W)w);
1128 if (ev_is_active (w))
1129 return;
1130
1131 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1528 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1132 ev_stop ((W)w); 1529 ev_stop (EV_A_ (W)w);
1133} 1530}
1134 1531
1135/*****************************************************************************/ 1532/*****************************************************************************/
1136 1533
1137struct ev_once 1534struct ev_once
1141 void (*cb)(int revents, void *arg); 1538 void (*cb)(int revents, void *arg);
1142 void *arg; 1539 void *arg;
1143}; 1540};
1144 1541
1145static void 1542static void
1146once_cb (struct ev_once *once, int revents) 1543once_cb (EV_P_ struct ev_once *once, int revents)
1147{ 1544{
1148 void (*cb)(int revents, void *arg) = once->cb; 1545 void (*cb)(int revents, void *arg) = once->cb;
1149 void *arg = once->arg; 1546 void *arg = once->arg;
1150 1547
1151 ev_io_stop (&once->io); 1548 ev_io_stop (EV_A_ &once->io);
1152 ev_timer_stop (&once->to); 1549 ev_timer_stop (EV_A_ &once->to);
1153 free (once); 1550 ev_free (once);
1154 1551
1155 cb (revents, arg); 1552 cb (revents, arg);
1156} 1553}
1157 1554
1158static void 1555static void
1159once_cb_io (struct ev_io *w, int revents) 1556once_cb_io (EV_P_ struct ev_io *w, int revents)
1160{ 1557{
1161 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1558 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1162} 1559}
1163 1560
1164static void 1561static void
1165once_cb_to (struct ev_timer *w, int revents) 1562once_cb_to (EV_P_ struct ev_timer *w, int revents)
1166{ 1563{
1167 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1564 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1168} 1565}
1169 1566
1170void 1567void
1171ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1568ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1172{ 1569{
1173 struct ev_once *once = malloc (sizeof (struct ev_once)); 1570 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1174 1571
1175 if (!once) 1572 if (!once)
1176 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1573 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1177 else 1574 else
1178 { 1575 {
1179 once->cb = cb; 1576 once->cb = cb;
1180 once->arg = arg; 1577 once->arg = arg;
1181 1578
1182 ev_watcher_init (&once->io, once_cb_io); 1579 ev_init (&once->io, once_cb_io);
1183 if (fd >= 0) 1580 if (fd >= 0)
1184 { 1581 {
1185 ev_io_set (&once->io, fd, events); 1582 ev_io_set (&once->io, fd, events);
1186 ev_io_start (&once->io); 1583 ev_io_start (EV_A_ &once->io);
1187 } 1584 }
1188 1585
1189 ev_watcher_init (&once->to, once_cb_to); 1586 ev_init (&once->to, once_cb_to);
1190 if (timeout >= 0.) 1587 if (timeout >= 0.)
1191 { 1588 {
1192 ev_timer_set (&once->to, timeout, 0.); 1589 ev_timer_set (&once->to, timeout, 0.);
1193 ev_timer_start (&once->to); 1590 ev_timer_start (EV_A_ &once->to);
1194 } 1591 }
1195 } 1592 }
1196} 1593}
1197 1594
1198/*****************************************************************************/
1199
1200#if 0
1201
1202struct ev_io wio;
1203
1204static void
1205sin_cb (struct ev_io *w, int revents)
1206{
1207 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1208}
1209
1210static void
1211ocb (struct ev_timer *w, int revents)
1212{
1213 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1214 ev_timer_stop (w);
1215 ev_timer_start (w);
1216}
1217
1218static void
1219scb (struct ev_signal *w, int revents)
1220{
1221 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1222 ev_io_stop (&wio);
1223 ev_io_start (&wio);
1224}
1225
1226static void
1227gcb (struct ev_signal *w, int revents)
1228{
1229 fprintf (stderr, "generic %x\n", revents);
1230
1231}
1232
1233int main (void)
1234{
1235 ev_init (0);
1236
1237 ev_io_init (&wio, sin_cb, 0, EV_READ);
1238 ev_io_start (&wio);
1239
1240 struct ev_timer t[10000];
1241
1242#if 0
1243 int i;
1244 for (i = 0; i < 10000; ++i)
1245 {
1246 struct ev_timer *w = t + i;
1247 ev_watcher_init (w, ocb, i);
1248 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1249 ev_timer_start (w);
1250 if (drand48 () < 0.5)
1251 ev_timer_stop (w);
1252 }
1253#endif
1254
1255 struct ev_timer t1;
1256 ev_timer_init (&t1, ocb, 5, 10);
1257 ev_timer_start (&t1);
1258
1259 struct ev_signal sig;
1260 ev_signal_init (&sig, scb, SIGQUIT);
1261 ev_signal_start (&sig);
1262
1263 struct ev_check cw;
1264 ev_check_init (&cw, gcb);
1265 ev_check_start (&cw);
1266
1267 struct ev_idle iw;
1268 ev_idle_init (&iw, gcb);
1269 ev_idle_start (&iw);
1270
1271 ev_loop (0);
1272
1273 return 0;
1274}
1275
1276#endif
1277
1278
1279
1280

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines