ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.55 by root, Sun Nov 4 00:39:24 2007 UTC vs.
Revision 1.84 by root, Fri Nov 9 23:04:35 2007 UTC

28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#ifndef EV_STANDALONE 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 59#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 60#include <stddef.h>
41 61
42#include <stdio.h> 62#include <stdio.h>
43 63
44#include <assert.h> 64#include <assert.h>
45#include <errno.h> 65#include <errno.h>
46#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
47#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
48# include <sys/wait.h> 74# include <sys/wait.h>
49#endif 75#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 76/**/
54 77
55#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
57#endif 80#endif
58 81
59#ifndef EV_USE_SELECT 82#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 83# define EV_USE_SELECT 1
61#endif 84#endif
62 85
63#ifndef EV_USEV_POLL 86#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif 88#endif
66 89
67#ifndef EV_USE_EPOLL 90#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
69#endif 92#endif
70 93
71#ifndef EV_USE_KQUEUE 94#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
73#endif 106#endif
74 107
75#ifndef EV_USE_REALTIME 108#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 109# define EV_USE_REALTIME 1
77#endif 110#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 130
131#ifdef EV_H
132# include EV_H
133#else
98#include "ev.h" 134# include "ev.h"
135#endif
99 136
100#if __GNUC__ >= 3 137#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value)) 138# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 139# define inline inline
103#else 140#else
115typedef struct ev_watcher_list *WL; 152typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 153typedef struct ev_watcher_time *WT;
117 154
118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119 156
157#include "ev_win32.c"
158
120/*****************************************************************************/ 159/*****************************************************************************/
121 160
161static void (*syserr_cb)(const char *msg);
162
163void ev_set_syserr_cb (void (*cb)(const char *msg))
164{
165 syserr_cb = cb;
166}
167
168static void
169syserr (const char *msg)
170{
171 if (!msg)
172 msg = "(libev) system error";
173
174 if (syserr_cb)
175 syserr_cb (msg);
176 else
177 {
178 perror (msg);
179 abort ();
180 }
181}
182
183static void *(*alloc)(void *ptr, long size);
184
185void ev_set_allocator (void *(*cb)(void *ptr, long size))
186{
187 alloc = cb;
188}
189
190static void *
191ev_realloc (void *ptr, long size)
192{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194
195 if (!ptr && size)
196 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort ();
199 }
200
201 return ptr;
202}
203
204#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0)
206
207/*****************************************************************************/
208
122typedef struct 209typedef struct
123{ 210{
124 struct ev_watcher_list *head; 211 WL head;
125 unsigned char events; 212 unsigned char events;
126 unsigned char reify; 213 unsigned char reify;
127} ANFD; 214} ANFD;
128 215
129typedef struct 216typedef struct
132 int events; 219 int events;
133} ANPENDING; 220} ANPENDING;
134 221
135#if EV_MULTIPLICITY 222#if EV_MULTIPLICITY
136 223
137struct ev_loop 224 struct ev_loop
138{ 225 {
139# define VAR(name,decl) decl; 226 #define VAR(name,decl) decl;
140# include "ev_vars.h" 227 #include "ev_vars.h"
141};
142# undef VAR 228 #undef VAR
229 };
143# include "ev_wrap.h" 230 #include "ev_wrap.h"
231
232 struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop;
144 234
145#else 235#else
146 236
147# define VAR(name,decl) static decl; 237 #define VAR(name,decl) static decl;
148# include "ev_vars.h" 238 #include "ev_vars.h"
149# undef VAR 239 #undef VAR
240
241 static int default_loop;
150 242
151#endif 243#endif
152 244
153/*****************************************************************************/ 245/*****************************************************************************/
154 246
185ev_now (EV_P) 277ev_now (EV_P)
186{ 278{
187 return rt_now; 279 return rt_now;
188} 280}
189 281
190#define array_roundsize(base,n) ((n) | 4 & ~3) 282#define array_roundsize(type,n) ((n) | 4 & ~3)
191 283
192#define array_needsize(base,cur,cnt,init) \ 284#define array_needsize(type,base,cur,cnt,init) \
193 if (expect_false ((cnt) > cur)) \ 285 if (expect_false ((cnt) > cur)) \
194 { \ 286 { \
195 int newcnt = cur; \ 287 int newcnt = cur; \
196 do \ 288 do \
197 { \ 289 { \
198 newcnt = array_roundsize (base, newcnt << 1); \ 290 newcnt = array_roundsize (type, newcnt << 1); \
199 } \ 291 } \
200 while ((cnt) > newcnt); \ 292 while ((cnt) > newcnt); \
201 \ 293 \
202 base = realloc (base, sizeof (*base) * (newcnt)); \ 294 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
203 init (base + cur, newcnt - cur); \ 295 init (base + cur, newcnt - cur); \
204 cur = newcnt; \ 296 cur = newcnt; \
205 } 297 }
298
299#define array_slim(type,stem) \
300 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
301 { \
302 stem ## max = array_roundsize (stem ## cnt >> 1); \
303 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
304 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
305 }
306
307/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
308/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
309#define array_free_microshit(stem) \
310 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
311
312#define array_free(stem, idx) \
313 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
206 314
207/*****************************************************************************/ 315/*****************************************************************************/
208 316
209static void 317static void
210anfds_init (ANFD *base, int count) 318anfds_init (ANFD *base, int count)
217 325
218 ++base; 326 ++base;
219 } 327 }
220} 328}
221 329
222static void 330void
223event (EV_P_ W w, int events) 331ev_feed_event (EV_P_ void *w, int revents)
224{ 332{
333 W w_ = (W)w;
334
225 if (w->pending) 335 if (w_->pending)
226 { 336 {
227 pendings [ABSPRI (w)][w->pending - 1].events |= events; 337 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
228 return; 338 return;
229 } 339 }
230 340
231 w->pending = ++pendingcnt [ABSPRI (w)]; 341 w_->pending = ++pendingcnt [ABSPRI (w_)];
232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 342 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
233 pendings [ABSPRI (w)][w->pending - 1].w = w; 343 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
234 pendings [ABSPRI (w)][w->pending - 1].events = events; 344 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
235} 345}
236 346
237static void 347static void
238queue_events (EV_P_ W *events, int eventcnt, int type) 348queue_events (EV_P_ W *events, int eventcnt, int type)
239{ 349{
240 int i; 350 int i;
241 351
242 for (i = 0; i < eventcnt; ++i) 352 for (i = 0; i < eventcnt; ++i)
243 event (EV_A_ events [i], type); 353 ev_feed_event (EV_A_ events [i], type);
244} 354}
245 355
246static void 356inline void
247fd_event (EV_P_ int fd, int events) 357fd_event (EV_P_ int fd, int revents)
248{ 358{
249 ANFD *anfd = anfds + fd; 359 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 360 struct ev_io *w;
251 361
252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 362 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
253 { 363 {
254 int ev = w->events & events; 364 int ev = w->events & revents;
255 365
256 if (ev) 366 if (ev)
257 event (EV_A_ (W)w, ev); 367 ev_feed_event (EV_A_ (W)w, ev);
258 } 368 }
369}
370
371void
372ev_feed_fd_event (EV_P_ int fd, int revents)
373{
374 fd_event (EV_A_ fd, revents);
259} 375}
260 376
261/*****************************************************************************/ 377/*****************************************************************************/
262 378
263static void 379static void
276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 392 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
277 events |= w->events; 393 events |= w->events;
278 394
279 anfd->reify = 0; 395 anfd->reify = 0;
280 396
281 if (anfd->events != events)
282 {
283 method_modify (EV_A_ fd, anfd->events, events); 397 method_modify (EV_A_ fd, anfd->events, events);
284 anfd->events = events; 398 anfd->events = events;
285 }
286 } 399 }
287 400
288 fdchangecnt = 0; 401 fdchangecnt = 0;
289} 402}
290 403
291static void 404static void
292fd_change (EV_P_ int fd) 405fd_change (EV_P_ int fd)
293{ 406{
294 if (anfds [fd].reify || fdchangecnt < 0) 407 if (anfds [fd].reify)
295 return; 408 return;
296 409
297 anfds [fd].reify = 1; 410 anfds [fd].reify = 1;
298 411
299 ++fdchangecnt; 412 ++fdchangecnt;
300 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 413 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
301 fdchanges [fdchangecnt - 1] = fd; 414 fdchanges [fdchangecnt - 1] = fd;
302} 415}
303 416
304static void 417static void
305fd_kill (EV_P_ int fd) 418fd_kill (EV_P_ int fd)
307 struct ev_io *w; 420 struct ev_io *w;
308 421
309 while ((w = (struct ev_io *)anfds [fd].head)) 422 while ((w = (struct ev_io *)anfds [fd].head))
310 { 423 {
311 ev_io_stop (EV_A_ w); 424 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 425 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 } 426 }
427}
428
429static int
430fd_valid (int fd)
431{
432#ifdef WIN32
433 return !!win32_get_osfhandle (fd);
434#else
435 return fcntl (fd, F_GETFD) != -1;
436#endif
314} 437}
315 438
316/* called on EBADF to verify fds */ 439/* called on EBADF to verify fds */
317static void 440static void
318fd_ebadf (EV_P) 441fd_ebadf (EV_P)
319{ 442{
320 int fd; 443 int fd;
321 444
322 for (fd = 0; fd < anfdmax; ++fd) 445 for (fd = 0; fd < anfdmax; ++fd)
323 if (anfds [fd].events) 446 if (anfds [fd].events)
324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 447 if (!fd_valid (fd) == -1 && errno == EBADF)
325 fd_kill (EV_A_ fd); 448 fd_kill (EV_A_ fd);
326} 449}
327 450
328/* called on ENOMEM in select/poll to kill some fds and retry */ 451/* called on ENOMEM in select/poll to kill some fds and retry */
329static void 452static void
330fd_enomem (EV_P) 453fd_enomem (EV_P)
331{ 454{
332 int fd = anfdmax; 455 int fd;
333 456
334 while (fd--) 457 for (fd = anfdmax; fd--; )
335 if (anfds [fd].events) 458 if (anfds [fd].events)
336 { 459 {
337 close (fd);
338 fd_kill (EV_A_ fd); 460 fd_kill (EV_A_ fd);
339 return; 461 return;
340 } 462 }
341} 463}
342 464
465/* usually called after fork if method needs to re-arm all fds from scratch */
466static void
467fd_rearm_all (EV_P)
468{
469 int fd;
470
471 /* this should be highly optimised to not do anything but set a flag */
472 for (fd = 0; fd < anfdmax; ++fd)
473 if (anfds [fd].events)
474 {
475 anfds [fd].events = 0;
476 fd_change (EV_A_ fd);
477 }
478}
479
343/*****************************************************************************/ 480/*****************************************************************************/
344 481
345static void 482static void
346upheap (WT *heap, int k) 483upheap (WT *heap, int k)
347{ 484{
348 WT w = heap [k]; 485 WT w = heap [k];
349 486
350 while (k && heap [k >> 1]->at > w->at) 487 while (k && heap [k >> 1]->at > w->at)
351 { 488 {
352 heap [k] = heap [k >> 1]; 489 heap [k] = heap [k >> 1];
353 heap [k]->active = k + 1; 490 ((W)heap [k])->active = k + 1;
354 k >>= 1; 491 k >>= 1;
355 } 492 }
356 493
357 heap [k] = w; 494 heap [k] = w;
358 heap [k]->active = k + 1; 495 ((W)heap [k])->active = k + 1;
359 496
360} 497}
361 498
362static void 499static void
363downheap (WT *heap, int N, int k) 500downheap (WT *heap, int N, int k)
373 510
374 if (w->at <= heap [j]->at) 511 if (w->at <= heap [j]->at)
375 break; 512 break;
376 513
377 heap [k] = heap [j]; 514 heap [k] = heap [j];
378 heap [k]->active = k + 1; 515 ((W)heap [k])->active = k + 1;
379 k = j; 516 k = j;
380 } 517 }
381 518
382 heap [k] = w; 519 heap [k] = w;
383 heap [k]->active = k + 1; 520 ((W)heap [k])->active = k + 1;
521}
522
523inline void
524adjustheap (WT *heap, int N, int k, ev_tstamp at)
525{
526 ev_tstamp old_at = heap [k]->at;
527 heap [k]->at = at;
528
529 if (old_at < at)
530 downheap (heap, N, k);
531 else
532 upheap (heap, k);
384} 533}
385 534
386/*****************************************************************************/ 535/*****************************************************************************/
387 536
388typedef struct 537typedef struct
389{ 538{
390 struct ev_watcher_list *head; 539 WL head;
391 sig_atomic_t volatile gotsig; 540 sig_atomic_t volatile gotsig;
392} ANSIG; 541} ANSIG;
393 542
394static ANSIG *signals; 543static ANSIG *signals;
395static int signalmax; 544static int signalmax;
396 545
397static int sigpipe [2]; 546static int sigpipe [2];
398static sig_atomic_t volatile gotsig; 547static sig_atomic_t volatile gotsig;
548static struct ev_io sigev;
399 549
400static void 550static void
401signals_init (ANSIG *base, int count) 551signals_init (ANSIG *base, int count)
402{ 552{
403 while (count--) 553 while (count--)
410} 560}
411 561
412static void 562static void
413sighandler (int signum) 563sighandler (int signum)
414{ 564{
565#if WIN32
566 signal (signum, sighandler);
567#endif
568
415 signals [signum - 1].gotsig = 1; 569 signals [signum - 1].gotsig = 1;
416 570
417 if (!gotsig) 571 if (!gotsig)
418 { 572 {
419 int old_errno = errno; 573 int old_errno = errno;
420 gotsig = 1; 574 gotsig = 1;
575#ifdef WIN32
576 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
577#else
421 write (sigpipe [1], &signum, 1); 578 write (sigpipe [1], &signum, 1);
579#endif
422 errno = old_errno; 580 errno = old_errno;
423 } 581 }
424} 582}
425 583
584void
585ev_feed_signal_event (EV_P_ int signum)
586{
587 WL w;
588
589#if EV_MULTIPLICITY
590 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
591#endif
592
593 --signum;
594
595 if (signum < 0 || signum >= signalmax)
596 return;
597
598 signals [signum].gotsig = 0;
599
600 for (w = signals [signum].head; w; w = w->next)
601 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
602}
603
426static void 604static void
427sigcb (EV_P_ struct ev_io *iow, int revents) 605sigcb (EV_P_ struct ev_io *iow, int revents)
428{ 606{
429 struct ev_watcher_list *w;
430 int signum; 607 int signum;
431 608
609#ifdef WIN32
610 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
611#else
432 read (sigpipe [0], &revents, 1); 612 read (sigpipe [0], &revents, 1);
613#endif
433 gotsig = 0; 614 gotsig = 0;
434 615
435 for (signum = signalmax; signum--; ) 616 for (signum = signalmax; signum--; )
436 if (signals [signum].gotsig) 617 if (signals [signum].gotsig)
437 { 618 ev_feed_signal_event (EV_A_ signum + 1);
438 signals [signum].gotsig = 0;
439
440 for (w = signals [signum].head; w; w = w->next)
441 event (EV_A_ (W)w, EV_SIGNAL);
442 }
443} 619}
444 620
445static void 621static void
446siginit (EV_P) 622siginit (EV_P)
447{ 623{
459 ev_unref (EV_A); /* child watcher should not keep loop alive */ 635 ev_unref (EV_A); /* child watcher should not keep loop alive */
460} 636}
461 637
462/*****************************************************************************/ 638/*****************************************************************************/
463 639
640static struct ev_child *childs [PID_HASHSIZE];
641
464#ifndef WIN32 642#ifndef WIN32
643
644static struct ev_signal childev;
465 645
466#ifndef WCONTINUED 646#ifndef WCONTINUED
467# define WCONTINUED 0 647# define WCONTINUED 0
468#endif 648#endif
469 649
473 struct ev_child *w; 653 struct ev_child *w;
474 654
475 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 655 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
476 if (w->pid == pid || !w->pid) 656 if (w->pid == pid || !w->pid)
477 { 657 {
478 w->priority = sw->priority; /* need to do it *now* */ 658 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
479 w->rpid = pid; 659 w->rpid = pid;
480 w->rstatus = status; 660 w->rstatus = status;
481 event (EV_A_ (W)w, EV_CHILD); 661 ev_feed_event (EV_A_ (W)w, EV_CHILD);
482 } 662 }
483} 663}
484 664
485static void 665static void
486childcb (EV_P_ struct ev_signal *sw, int revents) 666childcb (EV_P_ struct ev_signal *sw, int revents)
488 int pid, status; 668 int pid, status;
489 669
490 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 670 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
491 { 671 {
492 /* make sure we are called again until all childs have been reaped */ 672 /* make sure we are called again until all childs have been reaped */
493 event (EV_A_ (W)sw, EV_SIGNAL); 673 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
494 674
495 child_reap (EV_A_ sw, pid, pid, status); 675 child_reap (EV_A_ sw, pid, pid, status);
496 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 676 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
497 } 677 }
498} 678}
505# include "ev_kqueue.c" 685# include "ev_kqueue.c"
506#endif 686#endif
507#if EV_USE_EPOLL 687#if EV_USE_EPOLL
508# include "ev_epoll.c" 688# include "ev_epoll.c"
509#endif 689#endif
510#if EV_USEV_POLL 690#if EV_USE_POLL
511# include "ev_poll.c" 691# include "ev_poll.c"
512#endif 692#endif
513#if EV_USE_SELECT 693#if EV_USE_SELECT
514# include "ev_select.c" 694# include "ev_select.c"
515#endif 695#endif
542ev_method (EV_P) 722ev_method (EV_P)
543{ 723{
544 return method; 724 return method;
545} 725}
546 726
547inline int 727static void
548loop_init (EV_P_ int methods) 728loop_init (EV_P_ int methods)
549{ 729{
550 if (!method) 730 if (!method)
551 { 731 {
552#if EV_USE_MONOTONIC 732#if EV_USE_MONOTONIC
560 rt_now = ev_time (); 740 rt_now = ev_time ();
561 mn_now = get_clock (); 741 mn_now = get_clock ();
562 now_floor = mn_now; 742 now_floor = mn_now;
563 rtmn_diff = rt_now - mn_now; 743 rtmn_diff = rt_now - mn_now;
564 744
565 if (pipe (sigpipe))
566 return 0;
567
568 if (methods == EVMETHOD_AUTO) 745 if (methods == EVMETHOD_AUTO)
569 if (!enable_secure () && getenv ("LIBmethodS")) 746 if (!enable_secure () && getenv ("LIBEV_METHODS"))
570 methods = atoi (getenv ("LIBmethodS")); 747 methods = atoi (getenv ("LIBEV_METHODS"));
571 else 748 else
572 methods = EVMETHOD_ANY; 749 methods = EVMETHOD_ANY;
573 750
574 method = 0; 751 method = 0;
752#if EV_USE_WIN32
753 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
754#endif
575#if EV_USE_KQUEUE 755#if EV_USE_KQUEUE
576 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 756 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
577#endif 757#endif
578#if EV_USE_EPOLL 758#if EV_USE_EPOLL
579 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 759 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
580#endif 760#endif
581#if EV_USEV_POLL 761#if EV_USE_POLL
582 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 762 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
583#endif 763#endif
584#if EV_USE_SELECT 764#if EV_USE_SELECT
585 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 765 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
586#endif 766#endif
587 767
768 ev_init (&sigev, sigcb);
769 ev_set_priority (&sigev, EV_MAXPRI);
770 }
771}
772
773void
774loop_destroy (EV_P)
775{
776 int i;
777
778#if EV_USE_WIN32
779 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
780#endif
781#if EV_USE_KQUEUE
782 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
783#endif
784#if EV_USE_EPOLL
785 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
786#endif
787#if EV_USE_POLL
788 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
789#endif
790#if EV_USE_SELECT
791 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
792#endif
793
794 for (i = NUMPRI; i--; )
795 array_free (pending, [i]);
796
797 /* have to use the microsoft-never-gets-it-right macro */
798 array_free_microshit (fdchange);
799 array_free_microshit (timer);
800 array_free_microshit (periodic);
801 array_free_microshit (idle);
802 array_free_microshit (prepare);
803 array_free_microshit (check);
804
805 method = 0;
806}
807
808static void
809loop_fork (EV_P)
810{
811#if EV_USE_EPOLL
812 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
813#endif
814#if EV_USE_KQUEUE
815 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
816#endif
817
818 if (ev_is_active (&sigev))
819 {
820 /* default loop */
821
822 ev_ref (EV_A);
823 ev_io_stop (EV_A_ &sigev);
824 close (sigpipe [0]);
825 close (sigpipe [1]);
826
827 while (pipe (sigpipe))
828 syserr ("(libev) error creating pipe");
829
830 siginit (EV_A);
831 }
832
833 postfork = 0;
834}
835
836#if EV_MULTIPLICITY
837struct ev_loop *
838ev_loop_new (int methods)
839{
840 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
841
842 memset (loop, 0, sizeof (struct ev_loop));
843
844 loop_init (EV_A_ methods);
845
846 if (ev_method (EV_A))
847 return loop;
848
849 return 0;
850}
851
852void
853ev_loop_destroy (EV_P)
854{
855 loop_destroy (EV_A);
856 ev_free (loop);
857}
858
859void
860ev_loop_fork (EV_P)
861{
862 postfork = 1;
863}
864
865#endif
866
867#if EV_MULTIPLICITY
868struct ev_loop *
869#else
870int
871#endif
872ev_default_loop (int methods)
873{
874 if (sigpipe [0] == sigpipe [1])
875 if (pipe (sigpipe))
876 return 0;
877
878 if (!default_loop)
879 {
880#if EV_MULTIPLICITY
881 struct ev_loop *loop = default_loop = &default_loop_struct;
882#else
883 default_loop = 1;
884#endif
885
886 loop_init (EV_A_ methods);
887
588 if (method) 888 if (ev_method (EV_A))
589 { 889 {
590 ev_watcher_init (&sigev, sigcb);
591 ev_set_priority (&sigev, EV_MAXPRI);
592 siginit (EV_A); 890 siginit (EV_A);
593 891
594#ifndef WIN32 892#ifndef WIN32
595 ev_signal_init (&childev, childcb, SIGCHLD); 893 ev_signal_init (&childev, childcb, SIGCHLD);
596 ev_set_priority (&childev, EV_MAXPRI); 894 ev_set_priority (&childev, EV_MAXPRI);
597 ev_signal_start (EV_A_ &childev); 895 ev_signal_start (EV_A_ &childev);
598 ev_unref (EV_A); /* child watcher should not keep loop alive */ 896 ev_unref (EV_A); /* child watcher should not keep loop alive */
599#endif 897#endif
600 } 898 }
899 else
900 default_loop = 0;
601 } 901 }
602 902
603 return method; 903 return default_loop;
604} 904}
605 905
906void
907ev_default_destroy (void)
908{
606#if EV_MULTIPLICITY 909#if EV_MULTIPLICITY
910 struct ev_loop *loop = default_loop;
911#endif
607 912
608struct ev_loop * 913#ifndef WIN32
609ev_loop_new (int methods) 914 ev_ref (EV_A); /* child watcher */
610{ 915 ev_signal_stop (EV_A_ &childev);
611 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 916#endif
612 917
613 if (loop_init (EV_A_ methods)) 918 ev_ref (EV_A); /* signal watcher */
919 ev_io_stop (EV_A_ &sigev);
920
921 close (sigpipe [0]); sigpipe [0] = 0;
922 close (sigpipe [1]); sigpipe [1] = 0;
923
924 loop_destroy (EV_A);
925}
926
927void
928ev_default_fork (void)
929{
930#if EV_MULTIPLICITY
931 struct ev_loop *loop = default_loop;
932#endif
933
934 if (method)
935 postfork = 1;
936}
937
938/*****************************************************************************/
939
940static int
941any_pending (EV_P)
942{
943 int pri;
944
945 for (pri = NUMPRI; pri--; )
946 if (pendingcnt [pri])
614 return loop; 947 return 1;
615
616 ev_loop_delete (loop);
617 948
618 return 0; 949 return 0;
619} 950}
620
621void
622ev_loop_delete (EV_P)
623{
624 /*TODO*/
625 free (loop);
626}
627
628#else
629
630int
631ev_init (int methods)
632{
633 return loop_init (methods);
634}
635
636#endif
637
638/*****************************************************************************/
639
640void
641ev_fork_prepare (void)
642{
643 /* nop */
644}
645
646void
647ev_fork_parent (void)
648{
649 /* nop */
650}
651
652void
653ev_fork_child (void)
654{
655 /*TODO*/
656#if !EV_MULTIPLICITY
657#if EV_USE_EPOLL
658 if (method == EVMETHOD_EPOLL)
659 epoll_postfork_child (EV_A);
660#endif
661
662 ev_io_stop (EV_A_ &sigev);
663 close (sigpipe [0]);
664 close (sigpipe [1]);
665 pipe (sigpipe);
666 siginit (EV_A);
667#endif
668}
669
670/*****************************************************************************/
671 951
672static void 952static void
673call_pending (EV_P) 953call_pending (EV_P)
674{ 954{
675 int pri; 955 int pri;
680 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 960 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
681 961
682 if (p->w) 962 if (p->w)
683 { 963 {
684 p->w->pending = 0; 964 p->w->pending = 0;
685 p->w->cb (EV_A_ p->w, p->events); 965 EV_CB_INVOKE (p->w, p->events);
686 } 966 }
687 } 967 }
688} 968}
689 969
690static void 970static void
691timers_reify (EV_P) 971timers_reify (EV_P)
692{ 972{
693 while (timercnt && timers [0]->at <= mn_now) 973 while (timercnt && ((WT)timers [0])->at <= mn_now)
694 { 974 {
695 struct ev_timer *w = timers [0]; 975 struct ev_timer *w = timers [0];
976
977 assert (("inactive timer on timer heap detected", ev_is_active (w)));
696 978
697 /* first reschedule or stop timer */ 979 /* first reschedule or stop timer */
698 if (w->repeat) 980 if (w->repeat)
699 { 981 {
700 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 982 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
701 w->at = mn_now + w->repeat; 983 ((WT)w)->at = mn_now + w->repeat;
702 downheap ((WT *)timers, timercnt, 0); 984 downheap ((WT *)timers, timercnt, 0);
703 } 985 }
704 else 986 else
705 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 987 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
706 988
707 event (EV_A_ (W)w, EV_TIMEOUT); 989 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
708 } 990 }
709} 991}
710 992
711static void 993static void
712periodics_reify (EV_P) 994periodics_reify (EV_P)
713{ 995{
714 while (periodiccnt && periodics [0]->at <= rt_now) 996 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
715 { 997 {
716 struct ev_periodic *w = periodics [0]; 998 struct ev_periodic *w = periodics [0];
717 999
1000 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1001
718 /* first reschedule or stop timer */ 1002 /* first reschedule or stop timer */
719 if (w->interval) 1003 if (w->reschedule_cb)
720 { 1004 {
1005 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
1006
1007 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
1008 downheap ((WT *)periodics, periodiccnt, 0);
1009 }
1010 else if (w->interval)
1011 {
721 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1012 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
722 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1013 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
723 downheap ((WT *)periodics, periodiccnt, 0); 1014 downheap ((WT *)periodics, periodiccnt, 0);
724 } 1015 }
725 else 1016 else
726 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1017 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
727 1018
728 event (EV_A_ (W)w, EV_PERIODIC); 1019 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
729 } 1020 }
730} 1021}
731 1022
732static void 1023static void
733periodics_reschedule (EV_P) 1024periodics_reschedule (EV_P)
737 /* adjust periodics after time jump */ 1028 /* adjust periodics after time jump */
738 for (i = 0; i < periodiccnt; ++i) 1029 for (i = 0; i < periodiccnt; ++i)
739 { 1030 {
740 struct ev_periodic *w = periodics [i]; 1031 struct ev_periodic *w = periodics [i];
741 1032
1033 if (w->reschedule_cb)
1034 ((WT)w)->at = w->reschedule_cb (w, rt_now);
742 if (w->interval) 1035 else if (w->interval)
743 {
744 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1036 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
745
746 if (fabs (diff) >= 1e-4)
747 {
748 ev_periodic_stop (EV_A_ w);
749 ev_periodic_start (EV_A_ w);
750
751 i = 0; /* restart loop, inefficient, but time jumps should be rare */
752 }
753 }
754 } 1037 }
1038
1039 /* now rebuild the heap */
1040 for (i = periodiccnt >> 1; i--; )
1041 downheap ((WT *)periodics, periodiccnt, i);
755} 1042}
756 1043
757inline int 1044inline int
758time_update_monotonic (EV_P) 1045time_update_monotonic (EV_P)
759{ 1046{
810 { 1097 {
811 periodics_reschedule (EV_A); 1098 periodics_reschedule (EV_A);
812 1099
813 /* adjust timers. this is easy, as the offset is the same for all */ 1100 /* adjust timers. this is easy, as the offset is the same for all */
814 for (i = 0; i < timercnt; ++i) 1101 for (i = 0; i < timercnt; ++i)
815 timers [i]->at += rt_now - mn_now; 1102 ((WT)timers [i])->at += rt_now - mn_now;
816 } 1103 }
817 1104
818 mn_now = rt_now; 1105 mn_now = rt_now;
819 } 1106 }
820} 1107}
846 { 1133 {
847 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1134 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
848 call_pending (EV_A); 1135 call_pending (EV_A);
849 } 1136 }
850 1137
1138 /* we might have forked, so reify kernel state if necessary */
1139 if (expect_false (postfork))
1140 loop_fork (EV_A);
1141
851 /* update fd-related kernel structures */ 1142 /* update fd-related kernel structures */
852 fd_reify (EV_A); 1143 fd_reify (EV_A);
853 1144
854 /* calculate blocking time */ 1145 /* calculate blocking time */
855 1146
856 /* we only need this for !monotonic clockor timers, but as we basically 1147 /* we only need this for !monotonic clock or timers, but as we basically
857 always have timers, we just calculate it always */ 1148 always have timers, we just calculate it always */
858#if EV_USE_MONOTONIC 1149#if EV_USE_MONOTONIC
859 if (expect_true (have_monotonic)) 1150 if (expect_true (have_monotonic))
860 time_update_monotonic (EV_A); 1151 time_update_monotonic (EV_A);
861 else 1152 else
871 { 1162 {
872 block = MAX_BLOCKTIME; 1163 block = MAX_BLOCKTIME;
873 1164
874 if (timercnt) 1165 if (timercnt)
875 { 1166 {
876 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1167 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
877 if (block > to) block = to; 1168 if (block > to) block = to;
878 } 1169 }
879 1170
880 if (periodiccnt) 1171 if (periodiccnt)
881 { 1172 {
882 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1173 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
883 if (block > to) block = to; 1174 if (block > to) block = to;
884 } 1175 }
885 1176
886 if (block < 0.) block = 0.; 1177 if (block < 0.) block = 0.;
887 } 1178 }
894 /* queue pending timers and reschedule them */ 1185 /* queue pending timers and reschedule them */
895 timers_reify (EV_A); /* relative timers called last */ 1186 timers_reify (EV_A); /* relative timers called last */
896 periodics_reify (EV_A); /* absolute timers called first */ 1187 periodics_reify (EV_A); /* absolute timers called first */
897 1188
898 /* queue idle watchers unless io or timers are pending */ 1189 /* queue idle watchers unless io or timers are pending */
899 if (!pendingcnt) 1190 if (idlecnt && !any_pending (EV_A))
900 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1191 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
901 1192
902 /* queue check watchers, to be executed first */ 1193 /* queue check watchers, to be executed first */
903 if (checkcnt) 1194 if (checkcnt)
904 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1195 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
979 return; 1270 return;
980 1271
981 assert (("ev_io_start called with negative fd", fd >= 0)); 1272 assert (("ev_io_start called with negative fd", fd >= 0));
982 1273
983 ev_start (EV_A_ (W)w, 1); 1274 ev_start (EV_A_ (W)w, 1);
984 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1275 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
985 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1276 wlist_add ((WL *)&anfds[fd].head, (WL)w);
986 1277
987 fd_change (EV_A_ fd); 1278 fd_change (EV_A_ fd);
988} 1279}
989 1280
1004ev_timer_start (EV_P_ struct ev_timer *w) 1295ev_timer_start (EV_P_ struct ev_timer *w)
1005{ 1296{
1006 if (ev_is_active (w)) 1297 if (ev_is_active (w))
1007 return; 1298 return;
1008 1299
1009 w->at += mn_now; 1300 ((WT)w)->at += mn_now;
1010 1301
1011 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1302 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1012 1303
1013 ev_start (EV_A_ (W)w, ++timercnt); 1304 ev_start (EV_A_ (W)w, ++timercnt);
1014 array_needsize (timers, timermax, timercnt, ); 1305 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1015 timers [timercnt - 1] = w; 1306 timers [timercnt - 1] = w;
1016 upheap ((WT *)timers, timercnt - 1); 1307 upheap ((WT *)timers, timercnt - 1);
1308
1309 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1017} 1310}
1018 1311
1019void 1312void
1020ev_timer_stop (EV_P_ struct ev_timer *w) 1313ev_timer_stop (EV_P_ struct ev_timer *w)
1021{ 1314{
1022 ev_clear_pending (EV_A_ (W)w); 1315 ev_clear_pending (EV_A_ (W)w);
1023 if (!ev_is_active (w)) 1316 if (!ev_is_active (w))
1024 return; 1317 return;
1025 1318
1319 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1320
1026 if (w->active < timercnt--) 1321 if (((W)w)->active < timercnt--)
1027 { 1322 {
1028 timers [w->active - 1] = timers [timercnt]; 1323 timers [((W)w)->active - 1] = timers [timercnt];
1029 downheap ((WT *)timers, timercnt, w->active - 1); 1324 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1030 } 1325 }
1031 1326
1032 w->at = w->repeat; 1327 ((WT)w)->at = w->repeat;
1033 1328
1034 ev_stop (EV_A_ (W)w); 1329 ev_stop (EV_A_ (W)w);
1035} 1330}
1036 1331
1037void 1332void
1038ev_timer_again (EV_P_ struct ev_timer *w) 1333ev_timer_again (EV_P_ struct ev_timer *w)
1039{ 1334{
1040 if (ev_is_active (w)) 1335 if (ev_is_active (w))
1041 { 1336 {
1042 if (w->repeat) 1337 if (w->repeat)
1043 {
1044 w->at = mn_now + w->repeat;
1045 downheap ((WT *)timers, timercnt, w->active - 1); 1338 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1046 }
1047 else 1339 else
1048 ev_timer_stop (EV_A_ w); 1340 ev_timer_stop (EV_A_ w);
1049 } 1341 }
1050 else if (w->repeat) 1342 else if (w->repeat)
1051 ev_timer_start (EV_A_ w); 1343 ev_timer_start (EV_A_ w);
1055ev_periodic_start (EV_P_ struct ev_periodic *w) 1347ev_periodic_start (EV_P_ struct ev_periodic *w)
1056{ 1348{
1057 if (ev_is_active (w)) 1349 if (ev_is_active (w))
1058 return; 1350 return;
1059 1351
1352 if (w->reschedule_cb)
1353 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1354 else if (w->interval)
1355 {
1060 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1356 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1061
1062 /* this formula differs from the one in periodic_reify because we do not always round up */ 1357 /* this formula differs from the one in periodic_reify because we do not always round up */
1063 if (w->interval)
1064 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1358 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1359 }
1065 1360
1066 ev_start (EV_A_ (W)w, ++periodiccnt); 1361 ev_start (EV_A_ (W)w, ++periodiccnt);
1067 array_needsize (periodics, periodicmax, periodiccnt, ); 1362 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1068 periodics [periodiccnt - 1] = w; 1363 periodics [periodiccnt - 1] = w;
1069 upheap ((WT *)periodics, periodiccnt - 1); 1364 upheap ((WT *)periodics, periodiccnt - 1);
1365
1366 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1070} 1367}
1071 1368
1072void 1369void
1073ev_periodic_stop (EV_P_ struct ev_periodic *w) 1370ev_periodic_stop (EV_P_ struct ev_periodic *w)
1074{ 1371{
1075 ev_clear_pending (EV_A_ (W)w); 1372 ev_clear_pending (EV_A_ (W)w);
1076 if (!ev_is_active (w)) 1373 if (!ev_is_active (w))
1077 return; 1374 return;
1078 1375
1376 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1377
1079 if (w->active < periodiccnt--) 1378 if (((W)w)->active < periodiccnt--)
1080 { 1379 {
1081 periodics [w->active - 1] = periodics [periodiccnt]; 1380 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1082 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1381 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1083 } 1382 }
1084 1383
1384 ev_stop (EV_A_ (W)w);
1385}
1386
1387void
1388ev_periodic_again (EV_P_ struct ev_periodic *w)
1389{
1390 /* TODO: use adjustheap and recalculation */
1391 ev_periodic_stop (EV_A_ w);
1392 ev_periodic_start (EV_A_ w);
1393}
1394
1395void
1396ev_idle_start (EV_P_ struct ev_idle *w)
1397{
1398 if (ev_is_active (w))
1399 return;
1400
1401 ev_start (EV_A_ (W)w, ++idlecnt);
1402 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1403 idles [idlecnt - 1] = w;
1404}
1405
1406void
1407ev_idle_stop (EV_P_ struct ev_idle *w)
1408{
1409 ev_clear_pending (EV_A_ (W)w);
1410 if (ev_is_active (w))
1411 return;
1412
1413 idles [((W)w)->active - 1] = idles [--idlecnt];
1414 ev_stop (EV_A_ (W)w);
1415}
1416
1417void
1418ev_prepare_start (EV_P_ struct ev_prepare *w)
1419{
1420 if (ev_is_active (w))
1421 return;
1422
1423 ev_start (EV_A_ (W)w, ++preparecnt);
1424 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1425 prepares [preparecnt - 1] = w;
1426}
1427
1428void
1429ev_prepare_stop (EV_P_ struct ev_prepare *w)
1430{
1431 ev_clear_pending (EV_A_ (W)w);
1432 if (ev_is_active (w))
1433 return;
1434
1435 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1436 ev_stop (EV_A_ (W)w);
1437}
1438
1439void
1440ev_check_start (EV_P_ struct ev_check *w)
1441{
1442 if (ev_is_active (w))
1443 return;
1444
1445 ev_start (EV_A_ (W)w, ++checkcnt);
1446 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1447 checks [checkcnt - 1] = w;
1448}
1449
1450void
1451ev_check_stop (EV_P_ struct ev_check *w)
1452{
1453 ev_clear_pending (EV_A_ (W)w);
1454 if (ev_is_active (w))
1455 return;
1456
1457 checks [((W)w)->active - 1] = checks [--checkcnt];
1085 ev_stop (EV_A_ (W)w); 1458 ev_stop (EV_A_ (W)w);
1086} 1459}
1087 1460
1088#ifndef SA_RESTART 1461#ifndef SA_RESTART
1089# define SA_RESTART 0 1462# define SA_RESTART 0
1090#endif 1463#endif
1091 1464
1092void 1465void
1093ev_signal_start (EV_P_ struct ev_signal *w) 1466ev_signal_start (EV_P_ struct ev_signal *w)
1094{ 1467{
1468#if EV_MULTIPLICITY
1469 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1470#endif
1095 if (ev_is_active (w)) 1471 if (ev_is_active (w))
1096 return; 1472 return;
1097 1473
1098 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1474 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1099 1475
1100 ev_start (EV_A_ (W)w, 1); 1476 ev_start (EV_A_ (W)w, 1);
1101 array_needsize (signals, signalmax, w->signum, signals_init); 1477 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1102 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1478 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1103 1479
1104 if (!w->next) 1480 if (!((WL)w)->next)
1105 { 1481 {
1482#if WIN32
1483 signal (w->signum, sighandler);
1484#else
1106 struct sigaction sa; 1485 struct sigaction sa;
1107 sa.sa_handler = sighandler; 1486 sa.sa_handler = sighandler;
1108 sigfillset (&sa.sa_mask); 1487 sigfillset (&sa.sa_mask);
1109 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1488 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1110 sigaction (w->signum, &sa, 0); 1489 sigaction (w->signum, &sa, 0);
1490#endif
1111 } 1491 }
1112} 1492}
1113 1493
1114void 1494void
1115ev_signal_stop (EV_P_ struct ev_signal *w) 1495ev_signal_stop (EV_P_ struct ev_signal *w)
1124 if (!signals [w->signum - 1].head) 1504 if (!signals [w->signum - 1].head)
1125 signal (w->signum, SIG_DFL); 1505 signal (w->signum, SIG_DFL);
1126} 1506}
1127 1507
1128void 1508void
1129ev_idle_start (EV_P_ struct ev_idle *w)
1130{
1131 if (ev_is_active (w))
1132 return;
1133
1134 ev_start (EV_A_ (W)w, ++idlecnt);
1135 array_needsize (idles, idlemax, idlecnt, );
1136 idles [idlecnt - 1] = w;
1137}
1138
1139void
1140ev_idle_stop (EV_P_ struct ev_idle *w)
1141{
1142 ev_clear_pending (EV_A_ (W)w);
1143 if (ev_is_active (w))
1144 return;
1145
1146 idles [w->active - 1] = idles [--idlecnt];
1147 ev_stop (EV_A_ (W)w);
1148}
1149
1150void
1151ev_prepare_start (EV_P_ struct ev_prepare *w)
1152{
1153 if (ev_is_active (w))
1154 return;
1155
1156 ev_start (EV_A_ (W)w, ++preparecnt);
1157 array_needsize (prepares, preparemax, preparecnt, );
1158 prepares [preparecnt - 1] = w;
1159}
1160
1161void
1162ev_prepare_stop (EV_P_ struct ev_prepare *w)
1163{
1164 ev_clear_pending (EV_A_ (W)w);
1165 if (ev_is_active (w))
1166 return;
1167
1168 prepares [w->active - 1] = prepares [--preparecnt];
1169 ev_stop (EV_A_ (W)w);
1170}
1171
1172void
1173ev_check_start (EV_P_ struct ev_check *w)
1174{
1175 if (ev_is_active (w))
1176 return;
1177
1178 ev_start (EV_A_ (W)w, ++checkcnt);
1179 array_needsize (checks, checkmax, checkcnt, );
1180 checks [checkcnt - 1] = w;
1181}
1182
1183void
1184ev_check_stop (EV_P_ struct ev_check *w)
1185{
1186 ev_clear_pending (EV_A_ (W)w);
1187 if (ev_is_active (w))
1188 return;
1189
1190 checks [w->active - 1] = checks [--checkcnt];
1191 ev_stop (EV_A_ (W)w);
1192}
1193
1194void
1195ev_child_start (EV_P_ struct ev_child *w) 1509ev_child_start (EV_P_ struct ev_child *w)
1196{ 1510{
1511#if EV_MULTIPLICITY
1512 assert (("child watchers are only supported in the default loop", loop == default_loop));
1513#endif
1197 if (ev_is_active (w)) 1514 if (ev_is_active (w))
1198 return; 1515 return;
1199 1516
1200 ev_start (EV_A_ (W)w, 1); 1517 ev_start (EV_A_ (W)w, 1);
1201 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1518 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1228 void (*cb)(int revents, void *arg) = once->cb; 1545 void (*cb)(int revents, void *arg) = once->cb;
1229 void *arg = once->arg; 1546 void *arg = once->arg;
1230 1547
1231 ev_io_stop (EV_A_ &once->io); 1548 ev_io_stop (EV_A_ &once->io);
1232 ev_timer_stop (EV_A_ &once->to); 1549 ev_timer_stop (EV_A_ &once->to);
1233 free (once); 1550 ev_free (once);
1234 1551
1235 cb (revents, arg); 1552 cb (revents, arg);
1236} 1553}
1237 1554
1238static void 1555static void
1248} 1565}
1249 1566
1250void 1567void
1251ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1568ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1252{ 1569{
1253 struct ev_once *once = malloc (sizeof (struct ev_once)); 1570 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1254 1571
1255 if (!once) 1572 if (!once)
1256 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1573 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1257 else 1574 else
1258 { 1575 {
1259 once->cb = cb; 1576 once->cb = cb;
1260 once->arg = arg; 1577 once->arg = arg;
1261 1578
1262 ev_watcher_init (&once->io, once_cb_io); 1579 ev_init (&once->io, once_cb_io);
1263 if (fd >= 0) 1580 if (fd >= 0)
1264 { 1581 {
1265 ev_io_set (&once->io, fd, events); 1582 ev_io_set (&once->io, fd, events);
1266 ev_io_start (EV_A_ &once->io); 1583 ev_io_start (EV_A_ &once->io);
1267 } 1584 }
1268 1585
1269 ev_watcher_init (&once->to, once_cb_to); 1586 ev_init (&once->to, once_cb_to);
1270 if (timeout >= 0.) 1587 if (timeout >= 0.)
1271 { 1588 {
1272 ev_timer_set (&once->to, timeout, 0.); 1589 ev_timer_set (&once->to, timeout, 0.);
1273 ev_timer_start (EV_A_ &once->to); 1590 ev_timer_start (EV_A_ &once->to);
1274 } 1591 }
1275 } 1592 }
1276} 1593}
1277 1594
1278/*****************************************************************************/
1279
1280#if 0
1281
1282struct ev_io wio;
1283
1284static void
1285sin_cb (struct ev_io *w, int revents)
1286{
1287 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1288}
1289
1290static void
1291ocb (struct ev_timer *w, int revents)
1292{
1293 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1294 ev_timer_stop (w);
1295 ev_timer_start (w);
1296}
1297
1298static void
1299scb (struct ev_signal *w, int revents)
1300{
1301 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1302 ev_io_stop (&wio);
1303 ev_io_start (&wio);
1304}
1305
1306static void
1307gcb (struct ev_signal *w, int revents)
1308{
1309 fprintf (stderr, "generic %x\n", revents);
1310
1311}
1312
1313int main (void)
1314{
1315 ev_init (0);
1316
1317 ev_io_init (&wio, sin_cb, 0, EV_READ);
1318 ev_io_start (&wio);
1319
1320 struct ev_timer t[10000];
1321
1322#if 0
1323 int i;
1324 for (i = 0; i < 10000; ++i)
1325 {
1326 struct ev_timer *w = t + i;
1327 ev_watcher_init (w, ocb, i);
1328 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1329 ev_timer_start (w);
1330 if (drand48 () < 0.5)
1331 ev_timer_stop (w);
1332 }
1333#endif
1334
1335 struct ev_timer t1;
1336 ev_timer_init (&t1, ocb, 5, 10);
1337 ev_timer_start (&t1);
1338
1339 struct ev_signal sig;
1340 ev_signal_init (&sig, scb, SIGQUIT);
1341 ev_signal_start (&sig);
1342
1343 struct ev_check cw;
1344 ev_check_init (&cw, gcb);
1345 ev_check_start (&cw);
1346
1347 struct ev_idle iw;
1348 ev_idle_init (&iw, gcb);
1349 ev_idle_start (&iw);
1350
1351 ev_loop (0);
1352
1353 return 0;
1354}
1355
1356#endif
1357
1358
1359
1360

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines