ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.61 by root, Sun Nov 4 19:45:09 2007 UTC vs.
Revision 1.84 by root, Fri Nov 9 23:04:35 2007 UTC

54 54
55#endif 55#endif
56 56
57#include <math.h> 57#include <math.h>
58#include <stdlib.h> 58#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 59#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 60#include <stddef.h>
63 61
64#include <stdio.h> 62#include <stdio.h>
65 63
66#include <assert.h> 64#include <assert.h>
67#include <errno.h> 65#include <errno.h>
68#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
69#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
70# include <sys/wait.h> 74# include <sys/wait.h>
71#endif 75#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 76/**/
76 77
77#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
79#endif 80#endif
90# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
91#endif 92#endif
92 93
93#ifndef EV_USE_KQUEUE 94#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
95#endif 106#endif
96 107
97#ifndef EV_USE_REALTIME 108#ifndef EV_USE_REALTIME
98# define EV_USE_REALTIME 1 109# define EV_USE_REALTIME 1
99#endif 110#endif
115#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
116#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
117#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
118/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
119 130
131#ifdef EV_H
132# include EV_H
133#else
120#include "ev.h" 134# include "ev.h"
135#endif
121 136
122#if __GNUC__ >= 3 137#if __GNUC__ >= 3
123# define expect(expr,value) __builtin_expect ((expr),(value)) 138# define expect(expr,value) __builtin_expect ((expr),(value))
124# define inline inline 139# define inline inline
125#else 140#else
137typedef struct ev_watcher_list *WL; 152typedef struct ev_watcher_list *WL;
138typedef struct ev_watcher_time *WT; 153typedef struct ev_watcher_time *WT;
139 154
140static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
141 156
157#include "ev_win32.c"
158
142/*****************************************************************************/ 159/*****************************************************************************/
143 160
161static void (*syserr_cb)(const char *msg);
162
163void ev_set_syserr_cb (void (*cb)(const char *msg))
164{
165 syserr_cb = cb;
166}
167
168static void
169syserr (const char *msg)
170{
171 if (!msg)
172 msg = "(libev) system error";
173
174 if (syserr_cb)
175 syserr_cb (msg);
176 else
177 {
178 perror (msg);
179 abort ();
180 }
181}
182
183static void *(*alloc)(void *ptr, long size);
184
185void ev_set_allocator (void *(*cb)(void *ptr, long size))
186{
187 alloc = cb;
188}
189
190static void *
191ev_realloc (void *ptr, long size)
192{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194
195 if (!ptr && size)
196 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort ();
199 }
200
201 return ptr;
202}
203
204#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0)
206
207/*****************************************************************************/
208
144typedef struct 209typedef struct
145{ 210{
146 struct ev_watcher_list *head; 211 WL head;
147 unsigned char events; 212 unsigned char events;
148 unsigned char reify; 213 unsigned char reify;
149} ANFD; 214} ANFD;
150 215
151typedef struct 216typedef struct
154 int events; 219 int events;
155} ANPENDING; 220} ANPENDING;
156 221
157#if EV_MULTIPLICITY 222#if EV_MULTIPLICITY
158 223
159struct ev_loop 224 struct ev_loop
160{ 225 {
161# define VAR(name,decl) decl; 226 #define VAR(name,decl) decl;
162# include "ev_vars.h" 227 #include "ev_vars.h"
163};
164# undef VAR 228 #undef VAR
229 };
165# include "ev_wrap.h" 230 #include "ev_wrap.h"
231
232 struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop;
166 234
167#else 235#else
168 236
169# define VAR(name,decl) static decl; 237 #define VAR(name,decl) static decl;
170# include "ev_vars.h" 238 #include "ev_vars.h"
171# undef VAR 239 #undef VAR
240
241 static int default_loop;
172 242
173#endif 243#endif
174 244
175/*****************************************************************************/ 245/*****************************************************************************/
176 246
207ev_now (EV_P) 277ev_now (EV_P)
208{ 278{
209 return rt_now; 279 return rt_now;
210} 280}
211 281
212#define array_roundsize(base,n) ((n) | 4 & ~3) 282#define array_roundsize(type,n) ((n) | 4 & ~3)
213 283
214#define array_needsize(base,cur,cnt,init) \ 284#define array_needsize(type,base,cur,cnt,init) \
215 if (expect_false ((cnt) > cur)) \ 285 if (expect_false ((cnt) > cur)) \
216 { \ 286 { \
217 int newcnt = cur; \ 287 int newcnt = cur; \
218 do \ 288 do \
219 { \ 289 { \
220 newcnt = array_roundsize (base, newcnt << 1); \ 290 newcnt = array_roundsize (type, newcnt << 1); \
221 } \ 291 } \
222 while ((cnt) > newcnt); \ 292 while ((cnt) > newcnt); \
223 \ 293 \
224 base = realloc (base, sizeof (*base) * (newcnt)); \ 294 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
225 init (base + cur, newcnt - cur); \ 295 init (base + cur, newcnt - cur); \
226 cur = newcnt; \ 296 cur = newcnt; \
227 } 297 }
298
299#define array_slim(type,stem) \
300 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
301 { \
302 stem ## max = array_roundsize (stem ## cnt >> 1); \
303 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
304 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
305 }
306
307/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
308/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
309#define array_free_microshit(stem) \
310 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
311
312#define array_free(stem, idx) \
313 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
228 314
229/*****************************************************************************/ 315/*****************************************************************************/
230 316
231static void 317static void
232anfds_init (ANFD *base, int count) 318anfds_init (ANFD *base, int count)
239 325
240 ++base; 326 ++base;
241 } 327 }
242} 328}
243 329
244static void 330void
245event (EV_P_ W w, int events) 331ev_feed_event (EV_P_ void *w, int revents)
246{ 332{
333 W w_ = (W)w;
334
247 if (w->pending) 335 if (w_->pending)
248 { 336 {
249 pendings [ABSPRI (w)][w->pending - 1].events |= events; 337 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
250 return; 338 return;
251 } 339 }
252 340
253 w->pending = ++pendingcnt [ABSPRI (w)]; 341 w_->pending = ++pendingcnt [ABSPRI (w_)];
254 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 342 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
255 pendings [ABSPRI (w)][w->pending - 1].w = w; 343 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
256 pendings [ABSPRI (w)][w->pending - 1].events = events; 344 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
257} 345}
258 346
259static void 347static void
260queue_events (EV_P_ W *events, int eventcnt, int type) 348queue_events (EV_P_ W *events, int eventcnt, int type)
261{ 349{
262 int i; 350 int i;
263 351
264 for (i = 0; i < eventcnt; ++i) 352 for (i = 0; i < eventcnt; ++i)
265 event (EV_A_ events [i], type); 353 ev_feed_event (EV_A_ events [i], type);
266} 354}
267 355
268static void 356inline void
269fd_event (EV_P_ int fd, int events) 357fd_event (EV_P_ int fd, int revents)
270{ 358{
271 ANFD *anfd = anfds + fd; 359 ANFD *anfd = anfds + fd;
272 struct ev_io *w; 360 struct ev_io *w;
273 361
274 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 362 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
275 { 363 {
276 int ev = w->events & events; 364 int ev = w->events & revents;
277 365
278 if (ev) 366 if (ev)
279 event (EV_A_ (W)w, ev); 367 ev_feed_event (EV_A_ (W)w, ev);
280 } 368 }
369}
370
371void
372ev_feed_fd_event (EV_P_ int fd, int revents)
373{
374 fd_event (EV_A_ fd, revents);
281} 375}
282 376
283/*****************************************************************************/ 377/*****************************************************************************/
284 378
285static void 379static void
298 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 392 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
299 events |= w->events; 393 events |= w->events;
300 394
301 anfd->reify = 0; 395 anfd->reify = 0;
302 396
303 if (anfd->events != events)
304 {
305 method_modify (EV_A_ fd, anfd->events, events); 397 method_modify (EV_A_ fd, anfd->events, events);
306 anfd->events = events; 398 anfd->events = events;
307 }
308 } 399 }
309 400
310 fdchangecnt = 0; 401 fdchangecnt = 0;
311} 402}
312 403
313static void 404static void
314fd_change (EV_P_ int fd) 405fd_change (EV_P_ int fd)
315{ 406{
316 if (anfds [fd].reify || fdchangecnt < 0) 407 if (anfds [fd].reify)
317 return; 408 return;
318 409
319 anfds [fd].reify = 1; 410 anfds [fd].reify = 1;
320 411
321 ++fdchangecnt; 412 ++fdchangecnt;
322 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 413 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
323 fdchanges [fdchangecnt - 1] = fd; 414 fdchanges [fdchangecnt - 1] = fd;
324} 415}
325 416
326static void 417static void
327fd_kill (EV_P_ int fd) 418fd_kill (EV_P_ int fd)
329 struct ev_io *w; 420 struct ev_io *w;
330 421
331 while ((w = (struct ev_io *)anfds [fd].head)) 422 while ((w = (struct ev_io *)anfds [fd].head))
332 { 423 {
333 ev_io_stop (EV_A_ w); 424 ev_io_stop (EV_A_ w);
334 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 425 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
335 } 426 }
427}
428
429static int
430fd_valid (int fd)
431{
432#ifdef WIN32
433 return !!win32_get_osfhandle (fd);
434#else
435 return fcntl (fd, F_GETFD) != -1;
436#endif
336} 437}
337 438
338/* called on EBADF to verify fds */ 439/* called on EBADF to verify fds */
339static void 440static void
340fd_ebadf (EV_P) 441fd_ebadf (EV_P)
341{ 442{
342 int fd; 443 int fd;
343 444
344 for (fd = 0; fd < anfdmax; ++fd) 445 for (fd = 0; fd < anfdmax; ++fd)
345 if (anfds [fd].events) 446 if (anfds [fd].events)
346 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 447 if (!fd_valid (fd) == -1 && errno == EBADF)
347 fd_kill (EV_A_ fd); 448 fd_kill (EV_A_ fd);
348} 449}
349 450
350/* called on ENOMEM in select/poll to kill some fds and retry */ 451/* called on ENOMEM in select/poll to kill some fds and retry */
351static void 452static void
352fd_enomem (EV_P) 453fd_enomem (EV_P)
353{ 454{
354 int fd = anfdmax; 455 int fd;
355 456
356 while (fd--) 457 for (fd = anfdmax; fd--; )
357 if (anfds [fd].events) 458 if (anfds [fd].events)
358 { 459 {
359 close (fd);
360 fd_kill (EV_A_ fd); 460 fd_kill (EV_A_ fd);
361 return; 461 return;
362 } 462 }
363} 463}
364 464
365/* susually called after fork if method needs to re-arm all fds from scratch */ 465/* usually called after fork if method needs to re-arm all fds from scratch */
366static void 466static void
367fd_rearm_all (EV_P) 467fd_rearm_all (EV_P)
368{ 468{
369 int fd; 469 int fd;
370 470
385 WT w = heap [k]; 485 WT w = heap [k];
386 486
387 while (k && heap [k >> 1]->at > w->at) 487 while (k && heap [k >> 1]->at > w->at)
388 { 488 {
389 heap [k] = heap [k >> 1]; 489 heap [k] = heap [k >> 1];
390 heap [k]->active = k + 1; 490 ((W)heap [k])->active = k + 1;
391 k >>= 1; 491 k >>= 1;
392 } 492 }
393 493
394 heap [k] = w; 494 heap [k] = w;
395 heap [k]->active = k + 1; 495 ((W)heap [k])->active = k + 1;
396 496
397} 497}
398 498
399static void 499static void
400downheap (WT *heap, int N, int k) 500downheap (WT *heap, int N, int k)
410 510
411 if (w->at <= heap [j]->at) 511 if (w->at <= heap [j]->at)
412 break; 512 break;
413 513
414 heap [k] = heap [j]; 514 heap [k] = heap [j];
415 heap [k]->active = k + 1; 515 ((W)heap [k])->active = k + 1;
416 k = j; 516 k = j;
417 } 517 }
418 518
419 heap [k] = w; 519 heap [k] = w;
420 heap [k]->active = k + 1; 520 ((W)heap [k])->active = k + 1;
521}
522
523inline void
524adjustheap (WT *heap, int N, int k, ev_tstamp at)
525{
526 ev_tstamp old_at = heap [k]->at;
527 heap [k]->at = at;
528
529 if (old_at < at)
530 downheap (heap, N, k);
531 else
532 upheap (heap, k);
421} 533}
422 534
423/*****************************************************************************/ 535/*****************************************************************************/
424 536
425typedef struct 537typedef struct
426{ 538{
427 struct ev_watcher_list *head; 539 WL head;
428 sig_atomic_t volatile gotsig; 540 sig_atomic_t volatile gotsig;
429} ANSIG; 541} ANSIG;
430 542
431static ANSIG *signals; 543static ANSIG *signals;
432static int signalmax; 544static int signalmax;
448} 560}
449 561
450static void 562static void
451sighandler (int signum) 563sighandler (int signum)
452{ 564{
565#if WIN32
566 signal (signum, sighandler);
567#endif
568
453 signals [signum - 1].gotsig = 1; 569 signals [signum - 1].gotsig = 1;
454 570
455 if (!gotsig) 571 if (!gotsig)
456 { 572 {
457 int old_errno = errno; 573 int old_errno = errno;
458 gotsig = 1; 574 gotsig = 1;
575#ifdef WIN32
576 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
577#else
459 write (sigpipe [1], &signum, 1); 578 write (sigpipe [1], &signum, 1);
579#endif
460 errno = old_errno; 580 errno = old_errno;
461 } 581 }
462} 582}
463 583
584void
585ev_feed_signal_event (EV_P_ int signum)
586{
587 WL w;
588
589#if EV_MULTIPLICITY
590 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
591#endif
592
593 --signum;
594
595 if (signum < 0 || signum >= signalmax)
596 return;
597
598 signals [signum].gotsig = 0;
599
600 for (w = signals [signum].head; w; w = w->next)
601 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
602}
603
464static void 604static void
465sigcb (EV_P_ struct ev_io *iow, int revents) 605sigcb (EV_P_ struct ev_io *iow, int revents)
466{ 606{
467 struct ev_watcher_list *w;
468 int signum; 607 int signum;
469 608
609#ifdef WIN32
610 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
611#else
470 read (sigpipe [0], &revents, 1); 612 read (sigpipe [0], &revents, 1);
613#endif
471 gotsig = 0; 614 gotsig = 0;
472 615
473 for (signum = signalmax; signum--; ) 616 for (signum = signalmax; signum--; )
474 if (signals [signum].gotsig) 617 if (signals [signum].gotsig)
475 { 618 ev_feed_signal_event (EV_A_ signum + 1);
476 signals [signum].gotsig = 0;
477
478 for (w = signals [signum].head; w; w = w->next)
479 event (EV_A_ (W)w, EV_SIGNAL);
480 }
481} 619}
482 620
483static void 621static void
484siginit (EV_P) 622siginit (EV_P)
485{ 623{
497 ev_unref (EV_A); /* child watcher should not keep loop alive */ 635 ev_unref (EV_A); /* child watcher should not keep loop alive */
498} 636}
499 637
500/*****************************************************************************/ 638/*****************************************************************************/
501 639
640static struct ev_child *childs [PID_HASHSIZE];
641
502#ifndef WIN32 642#ifndef WIN32
503 643
504static struct ev_child *childs [PID_HASHSIZE];
505static struct ev_signal childev; 644static struct ev_signal childev;
506 645
507#ifndef WCONTINUED 646#ifndef WCONTINUED
508# define WCONTINUED 0 647# define WCONTINUED 0
509#endif 648#endif
514 struct ev_child *w; 653 struct ev_child *w;
515 654
516 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 655 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
517 if (w->pid == pid || !w->pid) 656 if (w->pid == pid || !w->pid)
518 { 657 {
519 w->priority = sw->priority; /* need to do it *now* */ 658 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
520 w->rpid = pid; 659 w->rpid = pid;
521 w->rstatus = status; 660 w->rstatus = status;
522 event (EV_A_ (W)w, EV_CHILD); 661 ev_feed_event (EV_A_ (W)w, EV_CHILD);
523 } 662 }
524} 663}
525 664
526static void 665static void
527childcb (EV_P_ struct ev_signal *sw, int revents) 666childcb (EV_P_ struct ev_signal *sw, int revents)
529 int pid, status; 668 int pid, status;
530 669
531 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 670 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
532 { 671 {
533 /* make sure we are called again until all childs have been reaped */ 672 /* make sure we are called again until all childs have been reaped */
534 event (EV_A_ (W)sw, EV_SIGNAL); 673 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
535 674
536 child_reap (EV_A_ sw, pid, pid, status); 675 child_reap (EV_A_ sw, pid, pid, status);
537 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 676 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
538 } 677 }
539} 678}
608 methods = atoi (getenv ("LIBEV_METHODS")); 747 methods = atoi (getenv ("LIBEV_METHODS"));
609 else 748 else
610 methods = EVMETHOD_ANY; 749 methods = EVMETHOD_ANY;
611 750
612 method = 0; 751 method = 0;
752#if EV_USE_WIN32
753 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
754#endif
613#if EV_USE_KQUEUE 755#if EV_USE_KQUEUE
614 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 756 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
615#endif 757#endif
616#if EV_USE_EPOLL 758#if EV_USE_EPOLL
617 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 759 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
620 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 762 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
621#endif 763#endif
622#if EV_USE_SELECT 764#if EV_USE_SELECT
623 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 765 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
624#endif 766#endif
767
768 ev_init (&sigev, sigcb);
769 ev_set_priority (&sigev, EV_MAXPRI);
625 } 770 }
626} 771}
627 772
628void 773void
629loop_destroy (EV_P) 774loop_destroy (EV_P)
630{ 775{
776 int i;
777
778#if EV_USE_WIN32
779 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
780#endif
631#if EV_USE_KQUEUE 781#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 782 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
633#endif 783#endif
634#if EV_USE_EPOLL 784#if EV_USE_EPOLL
635 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 785 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
639#endif 789#endif
640#if EV_USE_SELECT 790#if EV_USE_SELECT
641 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 791 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
642#endif 792#endif
643 793
794 for (i = NUMPRI; i--; )
795 array_free (pending, [i]);
796
797 /* have to use the microsoft-never-gets-it-right macro */
798 array_free_microshit (fdchange);
799 array_free_microshit (timer);
800 array_free_microshit (periodic);
801 array_free_microshit (idle);
802 array_free_microshit (prepare);
803 array_free_microshit (check);
804
644 method = 0; 805 method = 0;
645 /*TODO*/
646} 806}
647 807
648void 808static void
649loop_fork (EV_P) 809loop_fork (EV_P)
650{ 810{
651 /*TODO*/
652#if EV_USE_EPOLL 811#if EV_USE_EPOLL
653 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 812 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
654#endif 813#endif
655#if EV_USE_KQUEUE 814#if EV_USE_KQUEUE
656 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 815 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
657#endif 816#endif
817
818 if (ev_is_active (&sigev))
819 {
820 /* default loop */
821
822 ev_ref (EV_A);
823 ev_io_stop (EV_A_ &sigev);
824 close (sigpipe [0]);
825 close (sigpipe [1]);
826
827 while (pipe (sigpipe))
828 syserr ("(libev) error creating pipe");
829
830 siginit (EV_A);
831 }
832
833 postfork = 0;
658} 834}
659 835
660#if EV_MULTIPLICITY 836#if EV_MULTIPLICITY
661struct ev_loop * 837struct ev_loop *
662ev_loop_new (int methods) 838ev_loop_new (int methods)
663{ 839{
664 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 840 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
841
842 memset (loop, 0, sizeof (struct ev_loop));
665 843
666 loop_init (EV_A_ methods); 844 loop_init (EV_A_ methods);
667 845
668 if (ev_method (EV_A)) 846 if (ev_method (EV_A))
669 return loop; 847 return loop;
673 851
674void 852void
675ev_loop_destroy (EV_P) 853ev_loop_destroy (EV_P)
676{ 854{
677 loop_destroy (EV_A); 855 loop_destroy (EV_A);
678 free (loop); 856 ev_free (loop);
679} 857}
680 858
681void 859void
682ev_loop_fork (EV_P) 860ev_loop_fork (EV_P)
683{ 861{
684 loop_fork (EV_A); 862 postfork = 1;
685} 863}
686 864
687#endif 865#endif
688 866
689#if EV_MULTIPLICITY 867#if EV_MULTIPLICITY
690struct ev_loop default_loop_struct;
691static struct ev_loop *default_loop;
692
693struct ev_loop * 868struct ev_loop *
694#else 869#else
695static int default_loop;
696
697int 870int
698#endif 871#endif
699ev_default_loop (int methods) 872ev_default_loop (int methods)
700{ 873{
701 if (sigpipe [0] == sigpipe [1]) 874 if (sigpipe [0] == sigpipe [1])
712 885
713 loop_init (EV_A_ methods); 886 loop_init (EV_A_ methods);
714 887
715 if (ev_method (EV_A)) 888 if (ev_method (EV_A))
716 { 889 {
717 ev_watcher_init (&sigev, sigcb);
718 ev_set_priority (&sigev, EV_MAXPRI);
719 siginit (EV_A); 890 siginit (EV_A);
720 891
721#ifndef WIN32 892#ifndef WIN32
722 ev_signal_init (&childev, childcb, SIGCHLD); 893 ev_signal_init (&childev, childcb, SIGCHLD);
723 ev_set_priority (&childev, EV_MAXPRI); 894 ev_set_priority (&childev, EV_MAXPRI);
737{ 908{
738#if EV_MULTIPLICITY 909#if EV_MULTIPLICITY
739 struct ev_loop *loop = default_loop; 910 struct ev_loop *loop = default_loop;
740#endif 911#endif
741 912
913#ifndef WIN32
742 ev_ref (EV_A); /* child watcher */ 914 ev_ref (EV_A); /* child watcher */
743 ev_signal_stop (EV_A_ &childev); 915 ev_signal_stop (EV_A_ &childev);
916#endif
744 917
745 ev_ref (EV_A); /* signal watcher */ 918 ev_ref (EV_A); /* signal watcher */
746 ev_io_stop (EV_A_ &sigev); 919 ev_io_stop (EV_A_ &sigev);
747 920
748 close (sigpipe [0]); sigpipe [0] = 0; 921 close (sigpipe [0]); sigpipe [0] = 0;
756{ 929{
757#if EV_MULTIPLICITY 930#if EV_MULTIPLICITY
758 struct ev_loop *loop = default_loop; 931 struct ev_loop *loop = default_loop;
759#endif 932#endif
760 933
761 loop_fork (EV_A); 934 if (method)
762 935 postfork = 1;
763 ev_io_stop (EV_A_ &sigev);
764 close (sigpipe [0]);
765 close (sigpipe [1]);
766 pipe (sigpipe);
767
768 ev_ref (EV_A); /* signal watcher */
769 siginit (EV_A);
770} 936}
771 937
772/*****************************************************************************/ 938/*****************************************************************************/
939
940static int
941any_pending (EV_P)
942{
943 int pri;
944
945 for (pri = NUMPRI; pri--; )
946 if (pendingcnt [pri])
947 return 1;
948
949 return 0;
950}
773 951
774static void 952static void
775call_pending (EV_P) 953call_pending (EV_P)
776{ 954{
777 int pri; 955 int pri;
782 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 960 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
783 961
784 if (p->w) 962 if (p->w)
785 { 963 {
786 p->w->pending = 0; 964 p->w->pending = 0;
787 p->w->cb (EV_A_ p->w, p->events); 965 EV_CB_INVOKE (p->w, p->events);
788 } 966 }
789 } 967 }
790} 968}
791 969
792static void 970static void
793timers_reify (EV_P) 971timers_reify (EV_P)
794{ 972{
795 while (timercnt && timers [0]->at <= mn_now) 973 while (timercnt && ((WT)timers [0])->at <= mn_now)
796 { 974 {
797 struct ev_timer *w = timers [0]; 975 struct ev_timer *w = timers [0];
798 976
799 assert (("inactive timer on timer heap detected", ev_is_active (w))); 977 assert (("inactive timer on timer heap detected", ev_is_active (w)));
800 978
801 /* first reschedule or stop timer */ 979 /* first reschedule or stop timer */
802 if (w->repeat) 980 if (w->repeat)
803 { 981 {
804 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 982 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
805 w->at = mn_now + w->repeat; 983 ((WT)w)->at = mn_now + w->repeat;
806 downheap ((WT *)timers, timercnt, 0); 984 downheap ((WT *)timers, timercnt, 0);
807 } 985 }
808 else 986 else
809 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 987 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
810 988
811 event (EV_A_ (W)w, EV_TIMEOUT); 989 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
812 } 990 }
813} 991}
814 992
815static void 993static void
816periodics_reify (EV_P) 994periodics_reify (EV_P)
817{ 995{
818 while (periodiccnt && periodics [0]->at <= rt_now) 996 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
819 { 997 {
820 struct ev_periodic *w = periodics [0]; 998 struct ev_periodic *w = periodics [0];
821 999
822 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1000 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
823 1001
824 /* first reschedule or stop timer */ 1002 /* first reschedule or stop timer */
825 if (w->interval) 1003 if (w->reschedule_cb)
826 { 1004 {
1005 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
1006
1007 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
1008 downheap ((WT *)periodics, periodiccnt, 0);
1009 }
1010 else if (w->interval)
1011 {
827 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1012 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
828 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1013 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
829 downheap ((WT *)periodics, periodiccnt, 0); 1014 downheap ((WT *)periodics, periodiccnt, 0);
830 } 1015 }
831 else 1016 else
832 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1017 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
833 1018
834 event (EV_A_ (W)w, EV_PERIODIC); 1019 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
835 } 1020 }
836} 1021}
837 1022
838static void 1023static void
839periodics_reschedule (EV_P) 1024periodics_reschedule (EV_P)
843 /* adjust periodics after time jump */ 1028 /* adjust periodics after time jump */
844 for (i = 0; i < periodiccnt; ++i) 1029 for (i = 0; i < periodiccnt; ++i)
845 { 1030 {
846 struct ev_periodic *w = periodics [i]; 1031 struct ev_periodic *w = periodics [i];
847 1032
1033 if (w->reschedule_cb)
1034 ((WT)w)->at = w->reschedule_cb (w, rt_now);
848 if (w->interval) 1035 else if (w->interval)
849 {
850 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1036 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
851
852 if (fabs (diff) >= 1e-4)
853 {
854 ev_periodic_stop (EV_A_ w);
855 ev_periodic_start (EV_A_ w);
856
857 i = 0; /* restart loop, inefficient, but time jumps should be rare */
858 }
859 }
860 } 1037 }
1038
1039 /* now rebuild the heap */
1040 for (i = periodiccnt >> 1; i--; )
1041 downheap ((WT *)periodics, periodiccnt, i);
861} 1042}
862 1043
863inline int 1044inline int
864time_update_monotonic (EV_P) 1045time_update_monotonic (EV_P)
865{ 1046{
916 { 1097 {
917 periodics_reschedule (EV_A); 1098 periodics_reschedule (EV_A);
918 1099
919 /* adjust timers. this is easy, as the offset is the same for all */ 1100 /* adjust timers. this is easy, as the offset is the same for all */
920 for (i = 0; i < timercnt; ++i) 1101 for (i = 0; i < timercnt; ++i)
921 timers [i]->at += rt_now - mn_now; 1102 ((WT)timers [i])->at += rt_now - mn_now;
922 } 1103 }
923 1104
924 mn_now = rt_now; 1105 mn_now = rt_now;
925 } 1106 }
926} 1107}
952 { 1133 {
953 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1134 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
954 call_pending (EV_A); 1135 call_pending (EV_A);
955 } 1136 }
956 1137
1138 /* we might have forked, so reify kernel state if necessary */
1139 if (expect_false (postfork))
1140 loop_fork (EV_A);
1141
957 /* update fd-related kernel structures */ 1142 /* update fd-related kernel structures */
958 fd_reify (EV_A); 1143 fd_reify (EV_A);
959 1144
960 /* calculate blocking time */ 1145 /* calculate blocking time */
961 1146
962 /* we only need this for !monotonic clockor timers, but as we basically 1147 /* we only need this for !monotonic clock or timers, but as we basically
963 always have timers, we just calculate it always */ 1148 always have timers, we just calculate it always */
964#if EV_USE_MONOTONIC 1149#if EV_USE_MONOTONIC
965 if (expect_true (have_monotonic)) 1150 if (expect_true (have_monotonic))
966 time_update_monotonic (EV_A); 1151 time_update_monotonic (EV_A);
967 else 1152 else
977 { 1162 {
978 block = MAX_BLOCKTIME; 1163 block = MAX_BLOCKTIME;
979 1164
980 if (timercnt) 1165 if (timercnt)
981 { 1166 {
982 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1167 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
983 if (block > to) block = to; 1168 if (block > to) block = to;
984 } 1169 }
985 1170
986 if (periodiccnt) 1171 if (periodiccnt)
987 { 1172 {
988 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1173 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
989 if (block > to) block = to; 1174 if (block > to) block = to;
990 } 1175 }
991 1176
992 if (block < 0.) block = 0.; 1177 if (block < 0.) block = 0.;
993 } 1178 }
1000 /* queue pending timers and reschedule them */ 1185 /* queue pending timers and reschedule them */
1001 timers_reify (EV_A); /* relative timers called last */ 1186 timers_reify (EV_A); /* relative timers called last */
1002 periodics_reify (EV_A); /* absolute timers called first */ 1187 periodics_reify (EV_A); /* absolute timers called first */
1003 1188
1004 /* queue idle watchers unless io or timers are pending */ 1189 /* queue idle watchers unless io or timers are pending */
1005 if (!pendingcnt) 1190 if (idlecnt && !any_pending (EV_A))
1006 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1191 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1007 1192
1008 /* queue check watchers, to be executed first */ 1193 /* queue check watchers, to be executed first */
1009 if (checkcnt) 1194 if (checkcnt)
1010 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1195 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1085 return; 1270 return;
1086 1271
1087 assert (("ev_io_start called with negative fd", fd >= 0)); 1272 assert (("ev_io_start called with negative fd", fd >= 0));
1088 1273
1089 ev_start (EV_A_ (W)w, 1); 1274 ev_start (EV_A_ (W)w, 1);
1090 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1275 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1091 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1276 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1092 1277
1093 fd_change (EV_A_ fd); 1278 fd_change (EV_A_ fd);
1094} 1279}
1095 1280
1110ev_timer_start (EV_P_ struct ev_timer *w) 1295ev_timer_start (EV_P_ struct ev_timer *w)
1111{ 1296{
1112 if (ev_is_active (w)) 1297 if (ev_is_active (w))
1113 return; 1298 return;
1114 1299
1115 w->at += mn_now; 1300 ((WT)w)->at += mn_now;
1116 1301
1117 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1302 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1118 1303
1119 ev_start (EV_A_ (W)w, ++timercnt); 1304 ev_start (EV_A_ (W)w, ++timercnt);
1120 array_needsize (timers, timermax, timercnt, ); 1305 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1121 timers [timercnt - 1] = w; 1306 timers [timercnt - 1] = w;
1122 upheap ((WT *)timers, timercnt - 1); 1307 upheap ((WT *)timers, timercnt - 1);
1308
1309 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1123} 1310}
1124 1311
1125void 1312void
1126ev_timer_stop (EV_P_ struct ev_timer *w) 1313ev_timer_stop (EV_P_ struct ev_timer *w)
1127{ 1314{
1128 ev_clear_pending (EV_A_ (W)w); 1315 ev_clear_pending (EV_A_ (W)w);
1129 if (!ev_is_active (w)) 1316 if (!ev_is_active (w))
1130 return; 1317 return;
1131 1318
1319 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1320
1132 if (w->active < timercnt--) 1321 if (((W)w)->active < timercnt--)
1133 { 1322 {
1134 timers [w->active - 1] = timers [timercnt]; 1323 timers [((W)w)->active - 1] = timers [timercnt];
1135 downheap ((WT *)timers, timercnt, w->active - 1); 1324 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1136 } 1325 }
1137 1326
1138 w->at = w->repeat; 1327 ((WT)w)->at = w->repeat;
1139 1328
1140 ev_stop (EV_A_ (W)w); 1329 ev_stop (EV_A_ (W)w);
1141} 1330}
1142 1331
1143void 1332void
1144ev_timer_again (EV_P_ struct ev_timer *w) 1333ev_timer_again (EV_P_ struct ev_timer *w)
1145{ 1334{
1146 if (ev_is_active (w)) 1335 if (ev_is_active (w))
1147 { 1336 {
1148 if (w->repeat) 1337 if (w->repeat)
1149 {
1150 w->at = mn_now + w->repeat;
1151 downheap ((WT *)timers, timercnt, w->active - 1); 1338 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1152 }
1153 else 1339 else
1154 ev_timer_stop (EV_A_ w); 1340 ev_timer_stop (EV_A_ w);
1155 } 1341 }
1156 else if (w->repeat) 1342 else if (w->repeat)
1157 ev_timer_start (EV_A_ w); 1343 ev_timer_start (EV_A_ w);
1161ev_periodic_start (EV_P_ struct ev_periodic *w) 1347ev_periodic_start (EV_P_ struct ev_periodic *w)
1162{ 1348{
1163 if (ev_is_active (w)) 1349 if (ev_is_active (w))
1164 return; 1350 return;
1165 1351
1352 if (w->reschedule_cb)
1353 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1354 else if (w->interval)
1355 {
1166 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1356 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1167
1168 /* this formula differs from the one in periodic_reify because we do not always round up */ 1357 /* this formula differs from the one in periodic_reify because we do not always round up */
1169 if (w->interval)
1170 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1358 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1359 }
1171 1360
1172 ev_start (EV_A_ (W)w, ++periodiccnt); 1361 ev_start (EV_A_ (W)w, ++periodiccnt);
1173 array_needsize (periodics, periodicmax, periodiccnt, ); 1362 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1174 periodics [periodiccnt - 1] = w; 1363 periodics [periodiccnt - 1] = w;
1175 upheap ((WT *)periodics, periodiccnt - 1); 1364 upheap ((WT *)periodics, periodiccnt - 1);
1365
1366 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1176} 1367}
1177 1368
1178void 1369void
1179ev_periodic_stop (EV_P_ struct ev_periodic *w) 1370ev_periodic_stop (EV_P_ struct ev_periodic *w)
1180{ 1371{
1181 ev_clear_pending (EV_A_ (W)w); 1372 ev_clear_pending (EV_A_ (W)w);
1182 if (!ev_is_active (w)) 1373 if (!ev_is_active (w))
1183 return; 1374 return;
1184 1375
1376 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1377
1185 if (w->active < periodiccnt--) 1378 if (((W)w)->active < periodiccnt--)
1186 { 1379 {
1187 periodics [w->active - 1] = periodics [periodiccnt]; 1380 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1188 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1381 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1189 } 1382 }
1190 1383
1191 ev_stop (EV_A_ (W)w); 1384 ev_stop (EV_A_ (W)w);
1192} 1385}
1193 1386
1194void 1387void
1388ev_periodic_again (EV_P_ struct ev_periodic *w)
1389{
1390 /* TODO: use adjustheap and recalculation */
1391 ev_periodic_stop (EV_A_ w);
1392 ev_periodic_start (EV_A_ w);
1393}
1394
1395void
1195ev_idle_start (EV_P_ struct ev_idle *w) 1396ev_idle_start (EV_P_ struct ev_idle *w)
1196{ 1397{
1197 if (ev_is_active (w)) 1398 if (ev_is_active (w))
1198 return; 1399 return;
1199 1400
1200 ev_start (EV_A_ (W)w, ++idlecnt); 1401 ev_start (EV_A_ (W)w, ++idlecnt);
1201 array_needsize (idles, idlemax, idlecnt, ); 1402 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1202 idles [idlecnt - 1] = w; 1403 idles [idlecnt - 1] = w;
1203} 1404}
1204 1405
1205void 1406void
1206ev_idle_stop (EV_P_ struct ev_idle *w) 1407ev_idle_stop (EV_P_ struct ev_idle *w)
1207{ 1408{
1208 ev_clear_pending (EV_A_ (W)w); 1409 ev_clear_pending (EV_A_ (W)w);
1209 if (ev_is_active (w)) 1410 if (ev_is_active (w))
1210 return; 1411 return;
1211 1412
1212 idles [w->active - 1] = idles [--idlecnt]; 1413 idles [((W)w)->active - 1] = idles [--idlecnt];
1213 ev_stop (EV_A_ (W)w); 1414 ev_stop (EV_A_ (W)w);
1214} 1415}
1215 1416
1216void 1417void
1217ev_prepare_start (EV_P_ struct ev_prepare *w) 1418ev_prepare_start (EV_P_ struct ev_prepare *w)
1218{ 1419{
1219 if (ev_is_active (w)) 1420 if (ev_is_active (w))
1220 return; 1421 return;
1221 1422
1222 ev_start (EV_A_ (W)w, ++preparecnt); 1423 ev_start (EV_A_ (W)w, ++preparecnt);
1223 array_needsize (prepares, preparemax, preparecnt, ); 1424 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1224 prepares [preparecnt - 1] = w; 1425 prepares [preparecnt - 1] = w;
1225} 1426}
1226 1427
1227void 1428void
1228ev_prepare_stop (EV_P_ struct ev_prepare *w) 1429ev_prepare_stop (EV_P_ struct ev_prepare *w)
1229{ 1430{
1230 ev_clear_pending (EV_A_ (W)w); 1431 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w)) 1432 if (ev_is_active (w))
1232 return; 1433 return;
1233 1434
1234 prepares [w->active - 1] = prepares [--preparecnt]; 1435 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1235 ev_stop (EV_A_ (W)w); 1436 ev_stop (EV_A_ (W)w);
1236} 1437}
1237 1438
1238void 1439void
1239ev_check_start (EV_P_ struct ev_check *w) 1440ev_check_start (EV_P_ struct ev_check *w)
1240{ 1441{
1241 if (ev_is_active (w)) 1442 if (ev_is_active (w))
1242 return; 1443 return;
1243 1444
1244 ev_start (EV_A_ (W)w, ++checkcnt); 1445 ev_start (EV_A_ (W)w, ++checkcnt);
1245 array_needsize (checks, checkmax, checkcnt, ); 1446 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1246 checks [checkcnt - 1] = w; 1447 checks [checkcnt - 1] = w;
1247} 1448}
1248 1449
1249void 1450void
1250ev_check_stop (EV_P_ struct ev_check *w) 1451ev_check_stop (EV_P_ struct ev_check *w)
1251{ 1452{
1252 ev_clear_pending (EV_A_ (W)w); 1453 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w)) 1454 if (ev_is_active (w))
1254 return; 1455 return;
1255 1456
1256 checks [w->active - 1] = checks [--checkcnt]; 1457 checks [((W)w)->active - 1] = checks [--checkcnt];
1257 ev_stop (EV_A_ (W)w); 1458 ev_stop (EV_A_ (W)w);
1258} 1459}
1259 1460
1260#ifndef SA_RESTART 1461#ifndef SA_RESTART
1261# define SA_RESTART 0 1462# define SA_RESTART 0
1271 return; 1472 return;
1272 1473
1273 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1474 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1274 1475
1275 ev_start (EV_A_ (W)w, 1); 1476 ev_start (EV_A_ (W)w, 1);
1276 array_needsize (signals, signalmax, w->signum, signals_init); 1477 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1277 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1478 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1278 1479
1279 if (!w->next) 1480 if (!((WL)w)->next)
1280 { 1481 {
1482#if WIN32
1483 signal (w->signum, sighandler);
1484#else
1281 struct sigaction sa; 1485 struct sigaction sa;
1282 sa.sa_handler = sighandler; 1486 sa.sa_handler = sighandler;
1283 sigfillset (&sa.sa_mask); 1487 sigfillset (&sa.sa_mask);
1284 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1488 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1285 sigaction (w->signum, &sa, 0); 1489 sigaction (w->signum, &sa, 0);
1490#endif
1286 } 1491 }
1287} 1492}
1288 1493
1289void 1494void
1290ev_signal_stop (EV_P_ struct ev_signal *w) 1495ev_signal_stop (EV_P_ struct ev_signal *w)
1340 void (*cb)(int revents, void *arg) = once->cb; 1545 void (*cb)(int revents, void *arg) = once->cb;
1341 void *arg = once->arg; 1546 void *arg = once->arg;
1342 1547
1343 ev_io_stop (EV_A_ &once->io); 1548 ev_io_stop (EV_A_ &once->io);
1344 ev_timer_stop (EV_A_ &once->to); 1549 ev_timer_stop (EV_A_ &once->to);
1345 free (once); 1550 ev_free (once);
1346 1551
1347 cb (revents, arg); 1552 cb (revents, arg);
1348} 1553}
1349 1554
1350static void 1555static void
1360} 1565}
1361 1566
1362void 1567void
1363ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1568ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1364{ 1569{
1365 struct ev_once *once = malloc (sizeof (struct ev_once)); 1570 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1366 1571
1367 if (!once) 1572 if (!once)
1368 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1573 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1369 else 1574 else
1370 { 1575 {
1371 once->cb = cb; 1576 once->cb = cb;
1372 once->arg = arg; 1577 once->arg = arg;
1373 1578
1374 ev_watcher_init (&once->io, once_cb_io); 1579 ev_init (&once->io, once_cb_io);
1375 if (fd >= 0) 1580 if (fd >= 0)
1376 { 1581 {
1377 ev_io_set (&once->io, fd, events); 1582 ev_io_set (&once->io, fd, events);
1378 ev_io_start (EV_A_ &once->io); 1583 ev_io_start (EV_A_ &once->io);
1379 } 1584 }
1380 1585
1381 ev_watcher_init (&once->to, once_cb_to); 1586 ev_init (&once->to, once_cb_to);
1382 if (timeout >= 0.) 1587 if (timeout >= 0.)
1383 { 1588 {
1384 ev_timer_set (&once->to, timeout, 0.); 1589 ev_timer_set (&once->to, timeout, 0.);
1385 ev_timer_start (EV_A_ &once->to); 1590 ev_timer_start (EV_A_ &once->to);
1386 } 1591 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines