ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.62 by root, Sun Nov 4 20:38:07 2007 UTC vs.
Revision 1.84 by root, Fri Nov 9 23:04:35 2007 UTC

54 54
55#endif 55#endif
56 56
57#include <math.h> 57#include <math.h>
58#include <stdlib.h> 58#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 59#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 60#include <stddef.h>
63 61
64#include <stdio.h> 62#include <stdio.h>
65 63
66#include <assert.h> 64#include <assert.h>
67#include <errno.h> 65#include <errno.h>
68#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
69#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
70# include <sys/wait.h> 74# include <sys/wait.h>
71#endif 75#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 76/**/
76 77
77#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
79#endif 80#endif
94# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
95#endif 96#endif
96 97
97#ifndef EV_USE_WIN32 98#ifndef EV_USE_WIN32
98# ifdef WIN32 99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
99# define EV_USE_WIN32 1 102# define EV_USE_SELECT 1
100# else 103# else
101# define EV_USE_WIN32 0 104# define EV_USE_WIN32 0
102# endif 105# endif
103#endif 106#endif
104 107
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 130
131#ifdef EV_H
132# include EV_H
133#else
128#include "ev.h" 134# include "ev.h"
135#endif
129 136
130#if __GNUC__ >= 3 137#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 138# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 139# define inline inline
133#else 140#else
145typedef struct ev_watcher_list *WL; 152typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 153typedef struct ev_watcher_time *WT;
147 154
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 156
157#include "ev_win32.c"
158
150/*****************************************************************************/ 159/*****************************************************************************/
151 160
161static void (*syserr_cb)(const char *msg);
162
163void ev_set_syserr_cb (void (*cb)(const char *msg))
164{
165 syserr_cb = cb;
166}
167
168static void
169syserr (const char *msg)
170{
171 if (!msg)
172 msg = "(libev) system error";
173
174 if (syserr_cb)
175 syserr_cb (msg);
176 else
177 {
178 perror (msg);
179 abort ();
180 }
181}
182
183static void *(*alloc)(void *ptr, long size);
184
185void ev_set_allocator (void *(*cb)(void *ptr, long size))
186{
187 alloc = cb;
188}
189
190static void *
191ev_realloc (void *ptr, long size)
192{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194
195 if (!ptr && size)
196 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort ();
199 }
200
201 return ptr;
202}
203
204#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0)
206
207/*****************************************************************************/
208
152typedef struct 209typedef struct
153{ 210{
154 struct ev_watcher_list *head; 211 WL head;
155 unsigned char events; 212 unsigned char events;
156 unsigned char reify; 213 unsigned char reify;
157} ANFD; 214} ANFD;
158 215
159typedef struct 216typedef struct
162 int events; 219 int events;
163} ANPENDING; 220} ANPENDING;
164 221
165#if EV_MULTIPLICITY 222#if EV_MULTIPLICITY
166 223
167struct ev_loop 224 struct ev_loop
168{ 225 {
169# define VAR(name,decl) decl; 226 #define VAR(name,decl) decl;
170# include "ev_vars.h" 227 #include "ev_vars.h"
171};
172# undef VAR 228 #undef VAR
229 };
173# include "ev_wrap.h" 230 #include "ev_wrap.h"
231
232 struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop;
174 234
175#else 235#else
176 236
177# define VAR(name,decl) static decl; 237 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 238 #include "ev_vars.h"
179# undef VAR 239 #undef VAR
240
241 static int default_loop;
180 242
181#endif 243#endif
182 244
183/*****************************************************************************/ 245/*****************************************************************************/
184 246
215ev_now (EV_P) 277ev_now (EV_P)
216{ 278{
217 return rt_now; 279 return rt_now;
218} 280}
219 281
220#define array_roundsize(base,n) ((n) | 4 & ~3) 282#define array_roundsize(type,n) ((n) | 4 & ~3)
221 283
222#define array_needsize(base,cur,cnt,init) \ 284#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 285 if (expect_false ((cnt) > cur)) \
224 { \ 286 { \
225 int newcnt = cur; \ 287 int newcnt = cur; \
226 do \ 288 do \
227 { \ 289 { \
228 newcnt = array_roundsize (base, newcnt << 1); \ 290 newcnt = array_roundsize (type, newcnt << 1); \
229 } \ 291 } \
230 while ((cnt) > newcnt); \ 292 while ((cnt) > newcnt); \
231 \ 293 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 294 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
233 init (base + cur, newcnt - cur); \ 295 init (base + cur, newcnt - cur); \
234 cur = newcnt; \ 296 cur = newcnt; \
235 } 297 }
298
299#define array_slim(type,stem) \
300 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
301 { \
302 stem ## max = array_roundsize (stem ## cnt >> 1); \
303 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
304 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
305 }
306
307/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
308/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
309#define array_free_microshit(stem) \
310 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
311
312#define array_free(stem, idx) \
313 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
236 314
237/*****************************************************************************/ 315/*****************************************************************************/
238 316
239static void 317static void
240anfds_init (ANFD *base, int count) 318anfds_init (ANFD *base, int count)
247 325
248 ++base; 326 ++base;
249 } 327 }
250} 328}
251 329
252static void 330void
253event (EV_P_ W w, int events) 331ev_feed_event (EV_P_ void *w, int revents)
254{ 332{
333 W w_ = (W)w;
334
255 if (w->pending) 335 if (w_->pending)
256 { 336 {
257 pendings [ABSPRI (w)][w->pending - 1].events |= events; 337 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
258 return; 338 return;
259 } 339 }
260 340
261 w->pending = ++pendingcnt [ABSPRI (w)]; 341 w_->pending = ++pendingcnt [ABSPRI (w_)];
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 342 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
263 pendings [ABSPRI (w)][w->pending - 1].w = w; 343 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
264 pendings [ABSPRI (w)][w->pending - 1].events = events; 344 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
265} 345}
266 346
267static void 347static void
268queue_events (EV_P_ W *events, int eventcnt, int type) 348queue_events (EV_P_ W *events, int eventcnt, int type)
269{ 349{
270 int i; 350 int i;
271 351
272 for (i = 0; i < eventcnt; ++i) 352 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type); 353 ev_feed_event (EV_A_ events [i], type);
274} 354}
275 355
276static void 356inline void
277fd_event (EV_P_ int fd, int events) 357fd_event (EV_P_ int fd, int revents)
278{ 358{
279 ANFD *anfd = anfds + fd; 359 ANFD *anfd = anfds + fd;
280 struct ev_io *w; 360 struct ev_io *w;
281 361
282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 362 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
283 { 363 {
284 int ev = w->events & events; 364 int ev = w->events & revents;
285 365
286 if (ev) 366 if (ev)
287 event (EV_A_ (W)w, ev); 367 ev_feed_event (EV_A_ (W)w, ev);
288 } 368 }
369}
370
371void
372ev_feed_fd_event (EV_P_ int fd, int revents)
373{
374 fd_event (EV_A_ fd, revents);
289} 375}
290 376
291/*****************************************************************************/ 377/*****************************************************************************/
292 378
293static void 379static void
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 392 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
307 events |= w->events; 393 events |= w->events;
308 394
309 anfd->reify = 0; 395 anfd->reify = 0;
310 396
311 if (anfd->events != events)
312 {
313 method_modify (EV_A_ fd, anfd->events, events); 397 method_modify (EV_A_ fd, anfd->events, events);
314 anfd->events = events; 398 anfd->events = events;
315 }
316 } 399 }
317 400
318 fdchangecnt = 0; 401 fdchangecnt = 0;
319} 402}
320 403
321static void 404static void
322fd_change (EV_P_ int fd) 405fd_change (EV_P_ int fd)
323{ 406{
324 if (anfds [fd].reify || fdchangecnt < 0) 407 if (anfds [fd].reify)
325 return; 408 return;
326 409
327 anfds [fd].reify = 1; 410 anfds [fd].reify = 1;
328 411
329 ++fdchangecnt; 412 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 413 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
331 fdchanges [fdchangecnt - 1] = fd; 414 fdchanges [fdchangecnt - 1] = fd;
332} 415}
333 416
334static void 417static void
335fd_kill (EV_P_ int fd) 418fd_kill (EV_P_ int fd)
337 struct ev_io *w; 420 struct ev_io *w;
338 421
339 while ((w = (struct ev_io *)anfds [fd].head)) 422 while ((w = (struct ev_io *)anfds [fd].head))
340 { 423 {
341 ev_io_stop (EV_A_ w); 424 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 425 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 426 }
427}
428
429static int
430fd_valid (int fd)
431{
432#ifdef WIN32
433 return !!win32_get_osfhandle (fd);
434#else
435 return fcntl (fd, F_GETFD) != -1;
436#endif
344} 437}
345 438
346/* called on EBADF to verify fds */ 439/* called on EBADF to verify fds */
347static void 440static void
348fd_ebadf (EV_P) 441fd_ebadf (EV_P)
349{ 442{
350 int fd; 443 int fd;
351 444
352 for (fd = 0; fd < anfdmax; ++fd) 445 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 446 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 447 if (!fd_valid (fd) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd); 448 fd_kill (EV_A_ fd);
356} 449}
357 450
358/* called on ENOMEM in select/poll to kill some fds and retry */ 451/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 452static void
362 int fd; 455 int fd;
363 456
364 for (fd = anfdmax; fd--; ) 457 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 458 if (anfds [fd].events)
366 { 459 {
367 close (fd);
368 fd_kill (EV_A_ fd); 460 fd_kill (EV_A_ fd);
369 return; 461 return;
370 } 462 }
371} 463}
372 464
373/* susually called after fork if method needs to re-arm all fds from scratch */ 465/* usually called after fork if method needs to re-arm all fds from scratch */
374static void 466static void
375fd_rearm_all (EV_P) 467fd_rearm_all (EV_P)
376{ 468{
377 int fd; 469 int fd;
378 470
426 518
427 heap [k] = w; 519 heap [k] = w;
428 ((W)heap [k])->active = k + 1; 520 ((W)heap [k])->active = k + 1;
429} 521}
430 522
523inline void
524adjustheap (WT *heap, int N, int k, ev_tstamp at)
525{
526 ev_tstamp old_at = heap [k]->at;
527 heap [k]->at = at;
528
529 if (old_at < at)
530 downheap (heap, N, k);
531 else
532 upheap (heap, k);
533}
534
431/*****************************************************************************/ 535/*****************************************************************************/
432 536
433typedef struct 537typedef struct
434{ 538{
435 struct ev_watcher_list *head; 539 WL head;
436 sig_atomic_t volatile gotsig; 540 sig_atomic_t volatile gotsig;
437} ANSIG; 541} ANSIG;
438 542
439static ANSIG *signals; 543static ANSIG *signals;
440static int signalmax; 544static int signalmax;
456} 560}
457 561
458static void 562static void
459sighandler (int signum) 563sighandler (int signum)
460{ 564{
565#if WIN32
566 signal (signum, sighandler);
567#endif
568
461 signals [signum - 1].gotsig = 1; 569 signals [signum - 1].gotsig = 1;
462 570
463 if (!gotsig) 571 if (!gotsig)
464 { 572 {
465 int old_errno = errno; 573 int old_errno = errno;
466 gotsig = 1; 574 gotsig = 1;
575#ifdef WIN32
576 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
577#else
467 write (sigpipe [1], &signum, 1); 578 write (sigpipe [1], &signum, 1);
579#endif
468 errno = old_errno; 580 errno = old_errno;
469 } 581 }
470} 582}
471 583
584void
585ev_feed_signal_event (EV_P_ int signum)
586{
587 WL w;
588
589#if EV_MULTIPLICITY
590 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
591#endif
592
593 --signum;
594
595 if (signum < 0 || signum >= signalmax)
596 return;
597
598 signals [signum].gotsig = 0;
599
600 for (w = signals [signum].head; w; w = w->next)
601 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
602}
603
472static void 604static void
473sigcb (EV_P_ struct ev_io *iow, int revents) 605sigcb (EV_P_ struct ev_io *iow, int revents)
474{ 606{
475 struct ev_watcher_list *w;
476 int signum; 607 int signum;
477 608
609#ifdef WIN32
610 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
611#else
478 read (sigpipe [0], &revents, 1); 612 read (sigpipe [0], &revents, 1);
613#endif
479 gotsig = 0; 614 gotsig = 0;
480 615
481 for (signum = signalmax; signum--; ) 616 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig) 617 if (signals [signum].gotsig)
483 { 618 ev_feed_signal_event (EV_A_ signum + 1);
484 signals [signum].gotsig = 0;
485
486 for (w = signals [signum].head; w; w = w->next)
487 event (EV_A_ (W)w, EV_SIGNAL);
488 }
489} 619}
490 620
491static void 621static void
492siginit (EV_P) 622siginit (EV_P)
493{ 623{
505 ev_unref (EV_A); /* child watcher should not keep loop alive */ 635 ev_unref (EV_A); /* child watcher should not keep loop alive */
506} 636}
507 637
508/*****************************************************************************/ 638/*****************************************************************************/
509 639
640static struct ev_child *childs [PID_HASHSIZE];
641
510#ifndef WIN32 642#ifndef WIN32
511 643
512static struct ev_child *childs [PID_HASHSIZE];
513static struct ev_signal childev; 644static struct ev_signal childev;
514 645
515#ifndef WCONTINUED 646#ifndef WCONTINUED
516# define WCONTINUED 0 647# define WCONTINUED 0
517#endif 648#endif
522 struct ev_child *w; 653 struct ev_child *w;
523 654
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 655 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid) 656 if (w->pid == pid || !w->pid)
526 { 657 {
527 w->priority = sw->priority; /* need to do it *now* */ 658 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid; 659 w->rpid = pid;
529 w->rstatus = status; 660 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD); 661 ev_feed_event (EV_A_ (W)w, EV_CHILD);
531 } 662 }
532} 663}
533 664
534static void 665static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 666childcb (EV_P_ struct ev_signal *sw, int revents)
537 int pid, status; 668 int pid, status;
538 669
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 670 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 671 {
541 /* make sure we are called again until all childs have been reaped */ 672 /* make sure we are called again until all childs have been reaped */
542 event (EV_A_ (W)sw, EV_SIGNAL); 673 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 674
544 child_reap (EV_A_ sw, pid, pid, status); 675 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 676 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 } 677 }
547} 678}
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 762 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632#endif 763#endif
633#if EV_USE_SELECT 764#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 765 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635#endif 766#endif
767
768 ev_init (&sigev, sigcb);
769 ev_set_priority (&sigev, EV_MAXPRI);
636 } 770 }
637} 771}
638 772
639void 773void
640loop_destroy (EV_P) 774loop_destroy (EV_P)
641{ 775{
776 int i;
777
642#if EV_USE_WIN32 778#if EV_USE_WIN32
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 779 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
644#endif 780#endif
645#if EV_USE_KQUEUE 781#if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 782 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
653#endif 789#endif
654#if EV_USE_SELECT 790#if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 791 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
656#endif 792#endif
657 793
794 for (i = NUMPRI; i--; )
795 array_free (pending, [i]);
796
797 /* have to use the microsoft-never-gets-it-right macro */
798 array_free_microshit (fdchange);
799 array_free_microshit (timer);
800 array_free_microshit (periodic);
801 array_free_microshit (idle);
802 array_free_microshit (prepare);
803 array_free_microshit (check);
804
658 method = 0; 805 method = 0;
659 /*TODO*/
660} 806}
661 807
662void 808static void
663loop_fork (EV_P) 809loop_fork (EV_P)
664{ 810{
665 /*TODO*/
666#if EV_USE_EPOLL 811#if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 812 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
668#endif 813#endif
669#if EV_USE_KQUEUE 814#if EV_USE_KQUEUE
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 815 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
671#endif 816#endif
817
818 if (ev_is_active (&sigev))
819 {
820 /* default loop */
821
822 ev_ref (EV_A);
823 ev_io_stop (EV_A_ &sigev);
824 close (sigpipe [0]);
825 close (sigpipe [1]);
826
827 while (pipe (sigpipe))
828 syserr ("(libev) error creating pipe");
829
830 siginit (EV_A);
831 }
832
833 postfork = 0;
672} 834}
673 835
674#if EV_MULTIPLICITY 836#if EV_MULTIPLICITY
675struct ev_loop * 837struct ev_loop *
676ev_loop_new (int methods) 838ev_loop_new (int methods)
677{ 839{
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 840 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
841
842 memset (loop, 0, sizeof (struct ev_loop));
679 843
680 loop_init (EV_A_ methods); 844 loop_init (EV_A_ methods);
681 845
682 if (ev_method (EV_A)) 846 if (ev_method (EV_A))
683 return loop; 847 return loop;
687 851
688void 852void
689ev_loop_destroy (EV_P) 853ev_loop_destroy (EV_P)
690{ 854{
691 loop_destroy (EV_A); 855 loop_destroy (EV_A);
692 free (loop); 856 ev_free (loop);
693} 857}
694 858
695void 859void
696ev_loop_fork (EV_P) 860ev_loop_fork (EV_P)
697{ 861{
698 loop_fork (EV_A); 862 postfork = 1;
699} 863}
700 864
701#endif 865#endif
702 866
703#if EV_MULTIPLICITY 867#if EV_MULTIPLICITY
704struct ev_loop default_loop_struct;
705static struct ev_loop *default_loop;
706
707struct ev_loop * 868struct ev_loop *
708#else 869#else
709static int default_loop;
710
711int 870int
712#endif 871#endif
713ev_default_loop (int methods) 872ev_default_loop (int methods)
714{ 873{
715 if (sigpipe [0] == sigpipe [1]) 874 if (sigpipe [0] == sigpipe [1])
726 885
727 loop_init (EV_A_ methods); 886 loop_init (EV_A_ methods);
728 887
729 if (ev_method (EV_A)) 888 if (ev_method (EV_A))
730 { 889 {
731 ev_watcher_init (&sigev, sigcb);
732 ev_set_priority (&sigev, EV_MAXPRI);
733 siginit (EV_A); 890 siginit (EV_A);
734 891
735#ifndef WIN32 892#ifndef WIN32
736 ev_signal_init (&childev, childcb, SIGCHLD); 893 ev_signal_init (&childev, childcb, SIGCHLD);
737 ev_set_priority (&childev, EV_MAXPRI); 894 ev_set_priority (&childev, EV_MAXPRI);
751{ 908{
752#if EV_MULTIPLICITY 909#if EV_MULTIPLICITY
753 struct ev_loop *loop = default_loop; 910 struct ev_loop *loop = default_loop;
754#endif 911#endif
755 912
913#ifndef WIN32
756 ev_ref (EV_A); /* child watcher */ 914 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev); 915 ev_signal_stop (EV_A_ &childev);
916#endif
758 917
759 ev_ref (EV_A); /* signal watcher */ 918 ev_ref (EV_A); /* signal watcher */
760 ev_io_stop (EV_A_ &sigev); 919 ev_io_stop (EV_A_ &sigev);
761 920
762 close (sigpipe [0]); sigpipe [0] = 0; 921 close (sigpipe [0]); sigpipe [0] = 0;
770{ 929{
771#if EV_MULTIPLICITY 930#if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop; 931 struct ev_loop *loop = default_loop;
773#endif 932#endif
774 933
775 loop_fork (EV_A); 934 if (method)
776 935 postfork = 1;
777 ev_io_stop (EV_A_ &sigev);
778 close (sigpipe [0]);
779 close (sigpipe [1]);
780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
783 siginit (EV_A);
784} 936}
785 937
786/*****************************************************************************/ 938/*****************************************************************************/
939
940static int
941any_pending (EV_P)
942{
943 int pri;
944
945 for (pri = NUMPRI; pri--; )
946 if (pendingcnt [pri])
947 return 1;
948
949 return 0;
950}
787 951
788static void 952static void
789call_pending (EV_P) 953call_pending (EV_P)
790{ 954{
791 int pri; 955 int pri;
796 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 960 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
797 961
798 if (p->w) 962 if (p->w)
799 { 963 {
800 p->w->pending = 0; 964 p->w->pending = 0;
801 p->w->cb (EV_A_ p->w, p->events); 965 EV_CB_INVOKE (p->w, p->events);
802 } 966 }
803 } 967 }
804} 968}
805 969
806static void 970static void
807timers_reify (EV_P) 971timers_reify (EV_P)
808{ 972{
809 while (timercnt && timers [0]->at <= mn_now) 973 while (timercnt && ((WT)timers [0])->at <= mn_now)
810 { 974 {
811 struct ev_timer *w = timers [0]; 975 struct ev_timer *w = timers [0];
812 976
813 assert (("inactive timer on timer heap detected", ev_is_active (w))); 977 assert (("inactive timer on timer heap detected", ev_is_active (w)));
814 978
815 /* first reschedule or stop timer */ 979 /* first reschedule or stop timer */
816 if (w->repeat) 980 if (w->repeat)
817 { 981 {
818 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 982 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
819 w->at = mn_now + w->repeat; 983 ((WT)w)->at = mn_now + w->repeat;
820 downheap ((WT *)timers, timercnt, 0); 984 downheap ((WT *)timers, timercnt, 0);
821 } 985 }
822 else 986 else
823 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 987 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
824 988
825 event (EV_A_ (W)w, EV_TIMEOUT); 989 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
826 } 990 }
827} 991}
828 992
829static void 993static void
830periodics_reify (EV_P) 994periodics_reify (EV_P)
831{ 995{
832 while (periodiccnt && periodics [0]->at <= rt_now) 996 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
833 { 997 {
834 struct ev_periodic *w = periodics [0]; 998 struct ev_periodic *w = periodics [0];
835 999
836 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1000 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
837 1001
838 /* first reschedule or stop timer */ 1002 /* first reschedule or stop timer */
839 if (w->interval) 1003 if (w->reschedule_cb)
840 { 1004 {
1005 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
1006
1007 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
1008 downheap ((WT *)periodics, periodiccnt, 0);
1009 }
1010 else if (w->interval)
1011 {
841 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1012 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
842 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1013 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
843 downheap ((WT *)periodics, periodiccnt, 0); 1014 downheap ((WT *)periodics, periodiccnt, 0);
844 } 1015 }
845 else 1016 else
846 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1017 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
847 1018
848 event (EV_A_ (W)w, EV_PERIODIC); 1019 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
849 } 1020 }
850} 1021}
851 1022
852static void 1023static void
853periodics_reschedule (EV_P) 1024periodics_reschedule (EV_P)
857 /* adjust periodics after time jump */ 1028 /* adjust periodics after time jump */
858 for (i = 0; i < periodiccnt; ++i) 1029 for (i = 0; i < periodiccnt; ++i)
859 { 1030 {
860 struct ev_periodic *w = periodics [i]; 1031 struct ev_periodic *w = periodics [i];
861 1032
1033 if (w->reschedule_cb)
1034 ((WT)w)->at = w->reschedule_cb (w, rt_now);
862 if (w->interval) 1035 else if (w->interval)
863 {
864 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1036 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
865
866 if (fabs (diff) >= 1e-4)
867 {
868 ev_periodic_stop (EV_A_ w);
869 ev_periodic_start (EV_A_ w);
870
871 i = 0; /* restart loop, inefficient, but time jumps should be rare */
872 }
873 }
874 } 1037 }
1038
1039 /* now rebuild the heap */
1040 for (i = periodiccnt >> 1; i--; )
1041 downheap ((WT *)periodics, periodiccnt, i);
875} 1042}
876 1043
877inline int 1044inline int
878time_update_monotonic (EV_P) 1045time_update_monotonic (EV_P)
879{ 1046{
930 { 1097 {
931 periodics_reschedule (EV_A); 1098 periodics_reschedule (EV_A);
932 1099
933 /* adjust timers. this is easy, as the offset is the same for all */ 1100 /* adjust timers. this is easy, as the offset is the same for all */
934 for (i = 0; i < timercnt; ++i) 1101 for (i = 0; i < timercnt; ++i)
935 timers [i]->at += rt_now - mn_now; 1102 ((WT)timers [i])->at += rt_now - mn_now;
936 } 1103 }
937 1104
938 mn_now = rt_now; 1105 mn_now = rt_now;
939 } 1106 }
940} 1107}
966 { 1133 {
967 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1134 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
968 call_pending (EV_A); 1135 call_pending (EV_A);
969 } 1136 }
970 1137
1138 /* we might have forked, so reify kernel state if necessary */
1139 if (expect_false (postfork))
1140 loop_fork (EV_A);
1141
971 /* update fd-related kernel structures */ 1142 /* update fd-related kernel structures */
972 fd_reify (EV_A); 1143 fd_reify (EV_A);
973 1144
974 /* calculate blocking time */ 1145 /* calculate blocking time */
975 1146
976 /* we only need this for !monotonic clockor timers, but as we basically 1147 /* we only need this for !monotonic clock or timers, but as we basically
977 always have timers, we just calculate it always */ 1148 always have timers, we just calculate it always */
978#if EV_USE_MONOTONIC 1149#if EV_USE_MONOTONIC
979 if (expect_true (have_monotonic)) 1150 if (expect_true (have_monotonic))
980 time_update_monotonic (EV_A); 1151 time_update_monotonic (EV_A);
981 else 1152 else
991 { 1162 {
992 block = MAX_BLOCKTIME; 1163 block = MAX_BLOCKTIME;
993 1164
994 if (timercnt) 1165 if (timercnt)
995 { 1166 {
996 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1167 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
997 if (block > to) block = to; 1168 if (block > to) block = to;
998 } 1169 }
999 1170
1000 if (periodiccnt) 1171 if (periodiccnt)
1001 { 1172 {
1002 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1173 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
1003 if (block > to) block = to; 1174 if (block > to) block = to;
1004 } 1175 }
1005 1176
1006 if (block < 0.) block = 0.; 1177 if (block < 0.) block = 0.;
1007 } 1178 }
1014 /* queue pending timers and reschedule them */ 1185 /* queue pending timers and reschedule them */
1015 timers_reify (EV_A); /* relative timers called last */ 1186 timers_reify (EV_A); /* relative timers called last */
1016 periodics_reify (EV_A); /* absolute timers called first */ 1187 periodics_reify (EV_A); /* absolute timers called first */
1017 1188
1018 /* queue idle watchers unless io or timers are pending */ 1189 /* queue idle watchers unless io or timers are pending */
1019 if (!pendingcnt) 1190 if (idlecnt && !any_pending (EV_A))
1020 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1191 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1021 1192
1022 /* queue check watchers, to be executed first */ 1193 /* queue check watchers, to be executed first */
1023 if (checkcnt) 1194 if (checkcnt)
1024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1195 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1099 return; 1270 return;
1100 1271
1101 assert (("ev_io_start called with negative fd", fd >= 0)); 1272 assert (("ev_io_start called with negative fd", fd >= 0));
1102 1273
1103 ev_start (EV_A_ (W)w, 1); 1274 ev_start (EV_A_ (W)w, 1);
1104 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1275 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1105 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1276 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1106 1277
1107 fd_change (EV_A_ fd); 1278 fd_change (EV_A_ fd);
1108} 1279}
1109 1280
1124ev_timer_start (EV_P_ struct ev_timer *w) 1295ev_timer_start (EV_P_ struct ev_timer *w)
1125{ 1296{
1126 if (ev_is_active (w)) 1297 if (ev_is_active (w))
1127 return; 1298 return;
1128 1299
1129 w->at += mn_now; 1300 ((WT)w)->at += mn_now;
1130 1301
1131 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1302 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1132 1303
1133 ev_start (EV_A_ (W)w, ++timercnt); 1304 ev_start (EV_A_ (W)w, ++timercnt);
1134 array_needsize (timers, timermax, timercnt, ); 1305 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1135 timers [timercnt - 1] = w; 1306 timers [timercnt - 1] = w;
1136 upheap ((WT *)timers, timercnt - 1); 1307 upheap ((WT *)timers, timercnt - 1);
1137 1308
1138 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1309 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1139} 1310}
1151 { 1322 {
1152 timers [((W)w)->active - 1] = timers [timercnt]; 1323 timers [((W)w)->active - 1] = timers [timercnt];
1153 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1324 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1154 } 1325 }
1155 1326
1156 w->at = w->repeat; 1327 ((WT)w)->at = w->repeat;
1157 1328
1158 ev_stop (EV_A_ (W)w); 1329 ev_stop (EV_A_ (W)w);
1159} 1330}
1160 1331
1161void 1332void
1162ev_timer_again (EV_P_ struct ev_timer *w) 1333ev_timer_again (EV_P_ struct ev_timer *w)
1163{ 1334{
1164 if (ev_is_active (w)) 1335 if (ev_is_active (w))
1165 { 1336 {
1166 if (w->repeat) 1337 if (w->repeat)
1167 {
1168 w->at = mn_now + w->repeat;
1169 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1338 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1170 }
1171 else 1339 else
1172 ev_timer_stop (EV_A_ w); 1340 ev_timer_stop (EV_A_ w);
1173 } 1341 }
1174 else if (w->repeat) 1342 else if (w->repeat)
1175 ev_timer_start (EV_A_ w); 1343 ev_timer_start (EV_A_ w);
1179ev_periodic_start (EV_P_ struct ev_periodic *w) 1347ev_periodic_start (EV_P_ struct ev_periodic *w)
1180{ 1348{
1181 if (ev_is_active (w)) 1349 if (ev_is_active (w))
1182 return; 1350 return;
1183 1351
1352 if (w->reschedule_cb)
1353 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1354 else if (w->interval)
1355 {
1184 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1356 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1185
1186 /* this formula differs from the one in periodic_reify because we do not always round up */ 1357 /* this formula differs from the one in periodic_reify because we do not always round up */
1187 if (w->interval)
1188 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1358 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1359 }
1189 1360
1190 ev_start (EV_A_ (W)w, ++periodiccnt); 1361 ev_start (EV_A_ (W)w, ++periodiccnt);
1191 array_needsize (periodics, periodicmax, periodiccnt, ); 1362 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1192 periodics [periodiccnt - 1] = w; 1363 periodics [periodiccnt - 1] = w;
1193 upheap ((WT *)periodics, periodiccnt - 1); 1364 upheap ((WT *)periodics, periodiccnt - 1);
1194 1365
1195 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1366 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1196} 1367}
1212 1383
1213 ev_stop (EV_A_ (W)w); 1384 ev_stop (EV_A_ (W)w);
1214} 1385}
1215 1386
1216void 1387void
1388ev_periodic_again (EV_P_ struct ev_periodic *w)
1389{
1390 /* TODO: use adjustheap and recalculation */
1391 ev_periodic_stop (EV_A_ w);
1392 ev_periodic_start (EV_A_ w);
1393}
1394
1395void
1217ev_idle_start (EV_P_ struct ev_idle *w) 1396ev_idle_start (EV_P_ struct ev_idle *w)
1218{ 1397{
1219 if (ev_is_active (w)) 1398 if (ev_is_active (w))
1220 return; 1399 return;
1221 1400
1222 ev_start (EV_A_ (W)w, ++idlecnt); 1401 ev_start (EV_A_ (W)w, ++idlecnt);
1223 array_needsize (idles, idlemax, idlecnt, ); 1402 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1224 idles [idlecnt - 1] = w; 1403 idles [idlecnt - 1] = w;
1225} 1404}
1226 1405
1227void 1406void
1228ev_idle_stop (EV_P_ struct ev_idle *w) 1407ev_idle_stop (EV_P_ struct ev_idle *w)
1240{ 1419{
1241 if (ev_is_active (w)) 1420 if (ev_is_active (w))
1242 return; 1421 return;
1243 1422
1244 ev_start (EV_A_ (W)w, ++preparecnt); 1423 ev_start (EV_A_ (W)w, ++preparecnt);
1245 array_needsize (prepares, preparemax, preparecnt, ); 1424 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1246 prepares [preparecnt - 1] = w; 1425 prepares [preparecnt - 1] = w;
1247} 1426}
1248 1427
1249void 1428void
1250ev_prepare_stop (EV_P_ struct ev_prepare *w) 1429ev_prepare_stop (EV_P_ struct ev_prepare *w)
1262{ 1441{
1263 if (ev_is_active (w)) 1442 if (ev_is_active (w))
1264 return; 1443 return;
1265 1444
1266 ev_start (EV_A_ (W)w, ++checkcnt); 1445 ev_start (EV_A_ (W)w, ++checkcnt);
1267 array_needsize (checks, checkmax, checkcnt, ); 1446 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1268 checks [checkcnt - 1] = w; 1447 checks [checkcnt - 1] = w;
1269} 1448}
1270 1449
1271void 1450void
1272ev_check_stop (EV_P_ struct ev_check *w) 1451ev_check_stop (EV_P_ struct ev_check *w)
1293 return; 1472 return;
1294 1473
1295 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1474 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1296 1475
1297 ev_start (EV_A_ (W)w, 1); 1476 ev_start (EV_A_ (W)w, 1);
1298 array_needsize (signals, signalmax, w->signum, signals_init); 1477 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1299 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1478 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1300 1479
1301 if (!w->next) 1480 if (!((WL)w)->next)
1302 { 1481 {
1482#if WIN32
1483 signal (w->signum, sighandler);
1484#else
1303 struct sigaction sa; 1485 struct sigaction sa;
1304 sa.sa_handler = sighandler; 1486 sa.sa_handler = sighandler;
1305 sigfillset (&sa.sa_mask); 1487 sigfillset (&sa.sa_mask);
1306 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1488 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1307 sigaction (w->signum, &sa, 0); 1489 sigaction (w->signum, &sa, 0);
1490#endif
1308 } 1491 }
1309} 1492}
1310 1493
1311void 1494void
1312ev_signal_stop (EV_P_ struct ev_signal *w) 1495ev_signal_stop (EV_P_ struct ev_signal *w)
1362 void (*cb)(int revents, void *arg) = once->cb; 1545 void (*cb)(int revents, void *arg) = once->cb;
1363 void *arg = once->arg; 1546 void *arg = once->arg;
1364 1547
1365 ev_io_stop (EV_A_ &once->io); 1548 ev_io_stop (EV_A_ &once->io);
1366 ev_timer_stop (EV_A_ &once->to); 1549 ev_timer_stop (EV_A_ &once->to);
1367 free (once); 1550 ev_free (once);
1368 1551
1369 cb (revents, arg); 1552 cb (revents, arg);
1370} 1553}
1371 1554
1372static void 1555static void
1382} 1565}
1383 1566
1384void 1567void
1385ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1568ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1386{ 1569{
1387 struct ev_once *once = malloc (sizeof (struct ev_once)); 1570 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1388 1571
1389 if (!once) 1572 if (!once)
1390 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1573 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1391 else 1574 else
1392 { 1575 {
1393 once->cb = cb; 1576 once->cb = cb;
1394 once->arg = arg; 1577 once->arg = arg;
1395 1578
1396 ev_watcher_init (&once->io, once_cb_io); 1579 ev_init (&once->io, once_cb_io);
1397 if (fd >= 0) 1580 if (fd >= 0)
1398 { 1581 {
1399 ev_io_set (&once->io, fd, events); 1582 ev_io_set (&once->io, fd, events);
1400 ev_io_start (EV_A_ &once->io); 1583 ev_io_start (EV_A_ &once->io);
1401 } 1584 }
1402 1585
1403 ev_watcher_init (&once->to, once_cb_to); 1586 ev_init (&once->to, once_cb_to);
1404 if (timeout >= 0.) 1587 if (timeout >= 0.)
1405 { 1588 {
1406 ev_timer_set (&once->to, timeout, 0.); 1589 ev_timer_set (&once->to, timeout, 0.);
1407 ev_timer_start (EV_A_ &once->to); 1590 ev_timer_start (EV_A_ &once->to);
1408 } 1591 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines