ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.69 by root, Tue Nov 6 00:10:04 2007 UTC vs.
Revision 1.84 by root, Fri Nov 9 23:04:35 2007 UTC

54 54
55#endif 55#endif
56 56
57#include <math.h> 57#include <math.h>
58#include <stdlib.h> 58#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 59#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 60#include <stddef.h>
63 61
64#include <stdio.h> 62#include <stdio.h>
65 63
66#include <assert.h> 64#include <assert.h>
67#include <errno.h> 65#include <errno.h>
68#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
69#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
70# include <sys/wait.h> 74# include <sys/wait.h>
71#endif 75#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 76/**/
76 77
77#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
79#endif 80#endif
94# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
95#endif 96#endif
96 97
97#ifndef EV_USE_WIN32 98#ifndef EV_USE_WIN32
98# ifdef WIN32 99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
99# define EV_USE_WIN32 1 102# define EV_USE_SELECT 1
100# else 103# else
101# define EV_USE_WIN32 0 104# define EV_USE_WIN32 0
102# endif 105# endif
103#endif 106#endif
104 107
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 130
131#ifdef EV_H
132# include EV_H
133#else
128#include "ev.h" 134# include "ev.h"
135#endif
129 136
130#if __GNUC__ >= 3 137#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 138# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 139# define inline inline
133#else 140#else
145typedef struct ev_watcher_list *WL; 152typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 153typedef struct ev_watcher_time *WT;
147 154
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 156
150#if WIN32 157#include "ev_win32.c"
151/* note: the comment below could not be substantiated, but what would I care */
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif
155 158
156/*****************************************************************************/ 159/*****************************************************************************/
157 160
158static void (*syserr_cb)(void); 161static void (*syserr_cb)(const char *msg);
159 162
160void ev_set_syserr_cb (void (*cb)(void)) 163void ev_set_syserr_cb (void (*cb)(const char *msg))
161{ 164{
162 syserr_cb = cb; 165 syserr_cb = cb;
163} 166}
164 167
165static void 168static void
166syserr (void) 169syserr (const char *msg)
167{ 170{
171 if (!msg)
172 msg = "(libev) system error";
173
168 if (syserr_cb) 174 if (syserr_cb)
169 syserr_cb (); 175 syserr_cb (msg);
170 else 176 else
171 { 177 {
172 perror ("libev"); 178 perror (msg);
173 abort (); 179 abort ();
174 } 180 }
175} 181}
176 182
177static void *(*alloc)(void *ptr, long size); 183static void *(*alloc)(void *ptr, long size);
213 int events; 219 int events;
214} ANPENDING; 220} ANPENDING;
215 221
216#if EV_MULTIPLICITY 222#if EV_MULTIPLICITY
217 223
218struct ev_loop 224 struct ev_loop
219{ 225 {
220# define VAR(name,decl) decl; 226 #define VAR(name,decl) decl;
221# include "ev_vars.h" 227 #include "ev_vars.h"
222};
223# undef VAR 228 #undef VAR
229 };
224# include "ev_wrap.h" 230 #include "ev_wrap.h"
231
232 struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop;
225 234
226#else 235#else
227 236
228# define VAR(name,decl) static decl; 237 #define VAR(name,decl) static decl;
229# include "ev_vars.h" 238 #include "ev_vars.h"
230# undef VAR 239 #undef VAR
240
241 static int default_loop;
231 242
232#endif 243#endif
233 244
234/*****************************************************************************/ 245/*****************************************************************************/
235 246
266ev_now (EV_P) 277ev_now (EV_P)
267{ 278{
268 return rt_now; 279 return rt_now;
269} 280}
270 281
271#define array_roundsize(base,n) ((n) | 4 & ~3) 282#define array_roundsize(type,n) ((n) | 4 & ~3)
272 283
273#define array_needsize(base,cur,cnt,init) \ 284#define array_needsize(type,base,cur,cnt,init) \
274 if (expect_false ((cnt) > cur)) \ 285 if (expect_false ((cnt) > cur)) \
275 { \ 286 { \
276 int newcnt = cur; \ 287 int newcnt = cur; \
277 do \ 288 do \
278 { \ 289 { \
279 newcnt = array_roundsize (base, newcnt << 1); \ 290 newcnt = array_roundsize (type, newcnt << 1); \
280 } \ 291 } \
281 while ((cnt) > newcnt); \ 292 while ((cnt) > newcnt); \
282 \ 293 \
283 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 294 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
284 init (base + cur, newcnt - cur); \ 295 init (base + cur, newcnt - cur); \
285 cur = newcnt; \ 296 cur = newcnt; \
286 } 297 }
287 298
288#define array_slim(stem) \ 299#define array_slim(type,stem) \
289 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 300 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
290 { \ 301 { \
291 stem ## max = array_roundsize (stem ## cnt >> 1); \ 302 stem ## max = array_roundsize (stem ## cnt >> 1); \
292 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 303 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
293 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 304 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
294 } 305 }
306
307/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
308/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
309#define array_free_microshit(stem) \
310 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
295 311
296#define array_free(stem, idx) \ 312#define array_free(stem, idx) \
297 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 313 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
298 314
299/*****************************************************************************/ 315/*****************************************************************************/
309 325
310 ++base; 326 ++base;
311 } 327 }
312} 328}
313 329
314static void 330void
315event (EV_P_ W w, int events) 331ev_feed_event (EV_P_ void *w, int revents)
316{ 332{
333 W w_ = (W)w;
334
317 if (w->pending) 335 if (w_->pending)
318 { 336 {
319 pendings [ABSPRI (w)][w->pending - 1].events |= events; 337 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
320 return; 338 return;
321 } 339 }
322 340
323 w->pending = ++pendingcnt [ABSPRI (w)]; 341 w_->pending = ++pendingcnt [ABSPRI (w_)];
324 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 342 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
325 pendings [ABSPRI (w)][w->pending - 1].w = w; 343 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
326 pendings [ABSPRI (w)][w->pending - 1].events = events; 344 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
327} 345}
328 346
329static void 347static void
330queue_events (EV_P_ W *events, int eventcnt, int type) 348queue_events (EV_P_ W *events, int eventcnt, int type)
331{ 349{
332 int i; 350 int i;
333 351
334 for (i = 0; i < eventcnt; ++i) 352 for (i = 0; i < eventcnt; ++i)
335 event (EV_A_ events [i], type); 353 ev_feed_event (EV_A_ events [i], type);
336} 354}
337 355
338static void 356inline void
339fd_event (EV_P_ int fd, int events) 357fd_event (EV_P_ int fd, int revents)
340{ 358{
341 ANFD *anfd = anfds + fd; 359 ANFD *anfd = anfds + fd;
342 struct ev_io *w; 360 struct ev_io *w;
343 361
344 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 362 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
345 { 363 {
346 int ev = w->events & events; 364 int ev = w->events & revents;
347 365
348 if (ev) 366 if (ev)
349 event (EV_A_ (W)w, ev); 367 ev_feed_event (EV_A_ (W)w, ev);
350 } 368 }
369}
370
371void
372ev_feed_fd_event (EV_P_ int fd, int revents)
373{
374 fd_event (EV_A_ fd, revents);
351} 375}
352 376
353/*****************************************************************************/ 377/*****************************************************************************/
354 378
355static void 379static void
378} 402}
379 403
380static void 404static void
381fd_change (EV_P_ int fd) 405fd_change (EV_P_ int fd)
382{ 406{
383 if (anfds [fd].reify || fdchangecnt < 0) 407 if (anfds [fd].reify)
384 return; 408 return;
385 409
386 anfds [fd].reify = 1; 410 anfds [fd].reify = 1;
387 411
388 ++fdchangecnt; 412 ++fdchangecnt;
389 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 413 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
390 fdchanges [fdchangecnt - 1] = fd; 414 fdchanges [fdchangecnt - 1] = fd;
391} 415}
392 416
393static void 417static void
394fd_kill (EV_P_ int fd) 418fd_kill (EV_P_ int fd)
396 struct ev_io *w; 420 struct ev_io *w;
397 421
398 while ((w = (struct ev_io *)anfds [fd].head)) 422 while ((w = (struct ev_io *)anfds [fd].head))
399 { 423 {
400 ev_io_stop (EV_A_ w); 424 ev_io_stop (EV_A_ w);
401 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 425 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
402 } 426 }
427}
428
429static int
430fd_valid (int fd)
431{
432#ifdef WIN32
433 return !!win32_get_osfhandle (fd);
434#else
435 return fcntl (fd, F_GETFD) != -1;
436#endif
403} 437}
404 438
405/* called on EBADF to verify fds */ 439/* called on EBADF to verify fds */
406static void 440static void
407fd_ebadf (EV_P) 441fd_ebadf (EV_P)
408{ 442{
409 int fd; 443 int fd;
410 444
411 for (fd = 0; fd < anfdmax; ++fd) 445 for (fd = 0; fd < anfdmax; ++fd)
412 if (anfds [fd].events) 446 if (anfds [fd].events)
413 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 447 if (!fd_valid (fd) == -1 && errno == EBADF)
414 fd_kill (EV_A_ fd); 448 fd_kill (EV_A_ fd);
415} 449}
416 450
417/* called on ENOMEM in select/poll to kill some fds and retry */ 451/* called on ENOMEM in select/poll to kill some fds and retry */
418static void 452static void
426 fd_kill (EV_A_ fd); 460 fd_kill (EV_A_ fd);
427 return; 461 return;
428 } 462 }
429} 463}
430 464
431/* susually called after fork if method needs to re-arm all fds from scratch */ 465/* usually called after fork if method needs to re-arm all fds from scratch */
432static void 466static void
433fd_rearm_all (EV_P) 467fd_rearm_all (EV_P)
434{ 468{
435 int fd; 469 int fd;
436 470
484 518
485 heap [k] = w; 519 heap [k] = w;
486 ((W)heap [k])->active = k + 1; 520 ((W)heap [k])->active = k + 1;
487} 521}
488 522
523inline void
524adjustheap (WT *heap, int N, int k, ev_tstamp at)
525{
526 ev_tstamp old_at = heap [k]->at;
527 heap [k]->at = at;
528
529 if (old_at < at)
530 downheap (heap, N, k);
531 else
532 upheap (heap, k);
533}
534
489/*****************************************************************************/ 535/*****************************************************************************/
490 536
491typedef struct 537typedef struct
492{ 538{
493 WL head; 539 WL head;
524 570
525 if (!gotsig) 571 if (!gotsig)
526 { 572 {
527 int old_errno = errno; 573 int old_errno = errno;
528 gotsig = 1; 574 gotsig = 1;
575#ifdef WIN32
576 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
577#else
529 write (sigpipe [1], &signum, 1); 578 write (sigpipe [1], &signum, 1);
579#endif
530 errno = old_errno; 580 errno = old_errno;
531 } 581 }
532} 582}
533 583
584void
585ev_feed_signal_event (EV_P_ int signum)
586{
587 WL w;
588
589#if EV_MULTIPLICITY
590 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
591#endif
592
593 --signum;
594
595 if (signum < 0 || signum >= signalmax)
596 return;
597
598 signals [signum].gotsig = 0;
599
600 for (w = signals [signum].head; w; w = w->next)
601 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
602}
603
534static void 604static void
535sigcb (EV_P_ struct ev_io *iow, int revents) 605sigcb (EV_P_ struct ev_io *iow, int revents)
536{ 606{
537 WL w;
538 int signum; 607 int signum;
539 608
609#ifdef WIN32
610 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
611#else
540 read (sigpipe [0], &revents, 1); 612 read (sigpipe [0], &revents, 1);
613#endif
541 gotsig = 0; 614 gotsig = 0;
542 615
543 for (signum = signalmax; signum--; ) 616 for (signum = signalmax; signum--; )
544 if (signals [signum].gotsig) 617 if (signals [signum].gotsig)
545 { 618 ev_feed_signal_event (EV_A_ signum + 1);
546 signals [signum].gotsig = 0;
547
548 for (w = signals [signum].head; w; w = w->next)
549 event (EV_A_ (W)w, EV_SIGNAL);
550 }
551} 619}
552 620
553static void 621static void
554siginit (EV_P) 622siginit (EV_P)
555{ 623{
567 ev_unref (EV_A); /* child watcher should not keep loop alive */ 635 ev_unref (EV_A); /* child watcher should not keep loop alive */
568} 636}
569 637
570/*****************************************************************************/ 638/*****************************************************************************/
571 639
640static struct ev_child *childs [PID_HASHSIZE];
641
572#ifndef WIN32 642#ifndef WIN32
573 643
574static struct ev_child *childs [PID_HASHSIZE];
575static struct ev_signal childev; 644static struct ev_signal childev;
576 645
577#ifndef WCONTINUED 646#ifndef WCONTINUED
578# define WCONTINUED 0 647# define WCONTINUED 0
579#endif 648#endif
587 if (w->pid == pid || !w->pid) 656 if (w->pid == pid || !w->pid)
588 { 657 {
589 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 658 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
590 w->rpid = pid; 659 w->rpid = pid;
591 w->rstatus = status; 660 w->rstatus = status;
592 event (EV_A_ (W)w, EV_CHILD); 661 ev_feed_event (EV_A_ (W)w, EV_CHILD);
593 } 662 }
594} 663}
595 664
596static void 665static void
597childcb (EV_P_ struct ev_signal *sw, int revents) 666childcb (EV_P_ struct ev_signal *sw, int revents)
599 int pid, status; 668 int pid, status;
600 669
601 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 670 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
602 { 671 {
603 /* make sure we are called again until all childs have been reaped */ 672 /* make sure we are called again until all childs have been reaped */
604 event (EV_A_ (W)sw, EV_SIGNAL); 673 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
605 674
606 child_reap (EV_A_ sw, pid, pid, status); 675 child_reap (EV_A_ sw, pid, pid, status);
607 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 676 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
608 } 677 }
609} 678}
693 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 762 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
694#endif 763#endif
695#if EV_USE_SELECT 764#if EV_USE_SELECT
696 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 765 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
697#endif 766#endif
767
768 ev_init (&sigev, sigcb);
769 ev_set_priority (&sigev, EV_MAXPRI);
698 } 770 }
699} 771}
700 772
701void 773void
702loop_destroy (EV_P) 774loop_destroy (EV_P)
720#endif 792#endif
721 793
722 for (i = NUMPRI; i--; ) 794 for (i = NUMPRI; i--; )
723 array_free (pending, [i]); 795 array_free (pending, [i]);
724 796
797 /* have to use the microsoft-never-gets-it-right macro */
725 array_free (fdchange, ); 798 array_free_microshit (fdchange);
726 array_free (timer, ); 799 array_free_microshit (timer);
727 array_free (periodic, ); 800 array_free_microshit (periodic);
728 array_free (idle, ); 801 array_free_microshit (idle);
729 array_free (prepare, ); 802 array_free_microshit (prepare);
730 array_free (check, ); 803 array_free_microshit (check);
731 804
732 method = 0; 805 method = 0;
733 /*TODO*/
734} 806}
735 807
736void 808static void
737loop_fork (EV_P) 809loop_fork (EV_P)
738{ 810{
739 /*TODO*/
740#if EV_USE_EPOLL 811#if EV_USE_EPOLL
741 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 812 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
742#endif 813#endif
743#if EV_USE_KQUEUE 814#if EV_USE_KQUEUE
744 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 815 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
745#endif 816#endif
817
818 if (ev_is_active (&sigev))
819 {
820 /* default loop */
821
822 ev_ref (EV_A);
823 ev_io_stop (EV_A_ &sigev);
824 close (sigpipe [0]);
825 close (sigpipe [1]);
826
827 while (pipe (sigpipe))
828 syserr ("(libev) error creating pipe");
829
830 siginit (EV_A);
831 }
832
833 postfork = 0;
746} 834}
747 835
748#if EV_MULTIPLICITY 836#if EV_MULTIPLICITY
749struct ev_loop * 837struct ev_loop *
750ev_loop_new (int methods) 838ev_loop_new (int methods)
769} 857}
770 858
771void 859void
772ev_loop_fork (EV_P) 860ev_loop_fork (EV_P)
773{ 861{
774 loop_fork (EV_A); 862 postfork = 1;
775} 863}
776 864
777#endif 865#endif
778 866
779#if EV_MULTIPLICITY 867#if EV_MULTIPLICITY
780struct ev_loop default_loop_struct;
781static struct ev_loop *default_loop;
782
783struct ev_loop * 868struct ev_loop *
784#else 869#else
785static int default_loop;
786
787int 870int
788#endif 871#endif
789ev_default_loop (int methods) 872ev_default_loop (int methods)
790{ 873{
791 if (sigpipe [0] == sigpipe [1]) 874 if (sigpipe [0] == sigpipe [1])
802 885
803 loop_init (EV_A_ methods); 886 loop_init (EV_A_ methods);
804 887
805 if (ev_method (EV_A)) 888 if (ev_method (EV_A))
806 { 889 {
807 ev_watcher_init (&sigev, sigcb);
808 ev_set_priority (&sigev, EV_MAXPRI);
809 siginit (EV_A); 890 siginit (EV_A);
810 891
811#ifndef WIN32 892#ifndef WIN32
812 ev_signal_init (&childev, childcb, SIGCHLD); 893 ev_signal_init (&childev, childcb, SIGCHLD);
813 ev_set_priority (&childev, EV_MAXPRI); 894 ev_set_priority (&childev, EV_MAXPRI);
827{ 908{
828#if EV_MULTIPLICITY 909#if EV_MULTIPLICITY
829 struct ev_loop *loop = default_loop; 910 struct ev_loop *loop = default_loop;
830#endif 911#endif
831 912
913#ifndef WIN32
832 ev_ref (EV_A); /* child watcher */ 914 ev_ref (EV_A); /* child watcher */
833 ev_signal_stop (EV_A_ &childev); 915 ev_signal_stop (EV_A_ &childev);
916#endif
834 917
835 ev_ref (EV_A); /* signal watcher */ 918 ev_ref (EV_A); /* signal watcher */
836 ev_io_stop (EV_A_ &sigev); 919 ev_io_stop (EV_A_ &sigev);
837 920
838 close (sigpipe [0]); sigpipe [0] = 0; 921 close (sigpipe [0]); sigpipe [0] = 0;
846{ 929{
847#if EV_MULTIPLICITY 930#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop; 931 struct ev_loop *loop = default_loop;
849#endif 932#endif
850 933
851 loop_fork (EV_A); 934 if (method)
852 935 postfork = 1;
853 ev_io_stop (EV_A_ &sigev);
854 close (sigpipe [0]);
855 close (sigpipe [1]);
856 pipe (sigpipe);
857
858 ev_ref (EV_A); /* signal watcher */
859 siginit (EV_A);
860} 936}
861 937
862/*****************************************************************************/ 938/*****************************************************************************/
939
940static int
941any_pending (EV_P)
942{
943 int pri;
944
945 for (pri = NUMPRI; pri--; )
946 if (pendingcnt [pri])
947 return 1;
948
949 return 0;
950}
863 951
864static void 952static void
865call_pending (EV_P) 953call_pending (EV_P)
866{ 954{
867 int pri; 955 int pri;
872 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 960 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
873 961
874 if (p->w) 962 if (p->w)
875 { 963 {
876 p->w->pending = 0; 964 p->w->pending = 0;
877 p->w->cb (EV_A_ p->w, p->events); 965 EV_CB_INVOKE (p->w, p->events);
878 } 966 }
879 } 967 }
880} 968}
881 969
882static void 970static void
896 downheap ((WT *)timers, timercnt, 0); 984 downheap ((WT *)timers, timercnt, 0);
897 } 985 }
898 else 986 else
899 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 987 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
900 988
901 event (EV_A_ (W)w, EV_TIMEOUT); 989 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
902 } 990 }
903} 991}
904 992
905static void 993static void
906periodics_reify (EV_P) 994periodics_reify (EV_P)
910 struct ev_periodic *w = periodics [0]; 998 struct ev_periodic *w = periodics [0];
911 999
912 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1000 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
913 1001
914 /* first reschedule or stop timer */ 1002 /* first reschedule or stop timer */
1003 if (w->reschedule_cb)
1004 {
1005 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
1006
1007 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
1008 downheap ((WT *)periodics, periodiccnt, 0);
1009 }
915 if (w->interval) 1010 else if (w->interval)
916 { 1011 {
917 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1012 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
918 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1013 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
919 downheap ((WT *)periodics, periodiccnt, 0); 1014 downheap ((WT *)periodics, periodiccnt, 0);
920 } 1015 }
921 else 1016 else
922 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1017 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
923 1018
924 event (EV_A_ (W)w, EV_PERIODIC); 1019 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
925 } 1020 }
926} 1021}
927 1022
928static void 1023static void
929periodics_reschedule (EV_P) 1024periodics_reschedule (EV_P)
933 /* adjust periodics after time jump */ 1028 /* adjust periodics after time jump */
934 for (i = 0; i < periodiccnt; ++i) 1029 for (i = 0; i < periodiccnt; ++i)
935 { 1030 {
936 struct ev_periodic *w = periodics [i]; 1031 struct ev_periodic *w = periodics [i];
937 1032
1033 if (w->reschedule_cb)
1034 ((WT)w)->at = w->reschedule_cb (w, rt_now);
938 if (w->interval) 1035 else if (w->interval)
939 {
940 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1036 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
941
942 if (fabs (diff) >= 1e-4)
943 {
944 ev_periodic_stop (EV_A_ w);
945 ev_periodic_start (EV_A_ w);
946
947 i = 0; /* restart loop, inefficient, but time jumps should be rare */
948 }
949 }
950 } 1037 }
1038
1039 /* now rebuild the heap */
1040 for (i = periodiccnt >> 1; i--; )
1041 downheap ((WT *)periodics, periodiccnt, i);
951} 1042}
952 1043
953inline int 1044inline int
954time_update_monotonic (EV_P) 1045time_update_monotonic (EV_P)
955{ 1046{
1042 { 1133 {
1043 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1134 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1044 call_pending (EV_A); 1135 call_pending (EV_A);
1045 } 1136 }
1046 1137
1138 /* we might have forked, so reify kernel state if necessary */
1139 if (expect_false (postfork))
1140 loop_fork (EV_A);
1141
1047 /* update fd-related kernel structures */ 1142 /* update fd-related kernel structures */
1048 fd_reify (EV_A); 1143 fd_reify (EV_A);
1049 1144
1050 /* calculate blocking time */ 1145 /* calculate blocking time */
1051 1146
1052 /* we only need this for !monotonic clockor timers, but as we basically 1147 /* we only need this for !monotonic clock or timers, but as we basically
1053 always have timers, we just calculate it always */ 1148 always have timers, we just calculate it always */
1054#if EV_USE_MONOTONIC 1149#if EV_USE_MONOTONIC
1055 if (expect_true (have_monotonic)) 1150 if (expect_true (have_monotonic))
1056 time_update_monotonic (EV_A); 1151 time_update_monotonic (EV_A);
1057 else 1152 else
1090 /* queue pending timers and reschedule them */ 1185 /* queue pending timers and reschedule them */
1091 timers_reify (EV_A); /* relative timers called last */ 1186 timers_reify (EV_A); /* relative timers called last */
1092 periodics_reify (EV_A); /* absolute timers called first */ 1187 periodics_reify (EV_A); /* absolute timers called first */
1093 1188
1094 /* queue idle watchers unless io or timers are pending */ 1189 /* queue idle watchers unless io or timers are pending */
1095 if (!pendingcnt) 1190 if (idlecnt && !any_pending (EV_A))
1096 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1191 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1097 1192
1098 /* queue check watchers, to be executed first */ 1193 /* queue check watchers, to be executed first */
1099 if (checkcnt) 1194 if (checkcnt)
1100 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1195 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1175 return; 1270 return;
1176 1271
1177 assert (("ev_io_start called with negative fd", fd >= 0)); 1272 assert (("ev_io_start called with negative fd", fd >= 0));
1178 1273
1179 ev_start (EV_A_ (W)w, 1); 1274 ev_start (EV_A_ (W)w, 1);
1180 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1275 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1181 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1276 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1182 1277
1183 fd_change (EV_A_ fd); 1278 fd_change (EV_A_ fd);
1184} 1279}
1185 1280
1205 ((WT)w)->at += mn_now; 1300 ((WT)w)->at += mn_now;
1206 1301
1207 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1302 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1208 1303
1209 ev_start (EV_A_ (W)w, ++timercnt); 1304 ev_start (EV_A_ (W)w, ++timercnt);
1210 array_needsize (timers, timermax, timercnt, ); 1305 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1211 timers [timercnt - 1] = w; 1306 timers [timercnt - 1] = w;
1212 upheap ((WT *)timers, timercnt - 1); 1307 upheap ((WT *)timers, timercnt - 1);
1213 1308
1214 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1309 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1215} 1310}
1238ev_timer_again (EV_P_ struct ev_timer *w) 1333ev_timer_again (EV_P_ struct ev_timer *w)
1239{ 1334{
1240 if (ev_is_active (w)) 1335 if (ev_is_active (w))
1241 { 1336 {
1242 if (w->repeat) 1337 if (w->repeat)
1243 {
1244 ((WT)w)->at = mn_now + w->repeat;
1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1338 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1246 }
1247 else 1339 else
1248 ev_timer_stop (EV_A_ w); 1340 ev_timer_stop (EV_A_ w);
1249 } 1341 }
1250 else if (w->repeat) 1342 else if (w->repeat)
1251 ev_timer_start (EV_A_ w); 1343 ev_timer_start (EV_A_ w);
1255ev_periodic_start (EV_P_ struct ev_periodic *w) 1347ev_periodic_start (EV_P_ struct ev_periodic *w)
1256{ 1348{
1257 if (ev_is_active (w)) 1349 if (ev_is_active (w))
1258 return; 1350 return;
1259 1351
1352 if (w->reschedule_cb)
1353 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1354 else if (w->interval)
1355 {
1260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1356 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1261
1262 /* this formula differs from the one in periodic_reify because we do not always round up */ 1357 /* this formula differs from the one in periodic_reify because we do not always round up */
1263 if (w->interval)
1264 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1358 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1359 }
1265 1360
1266 ev_start (EV_A_ (W)w, ++periodiccnt); 1361 ev_start (EV_A_ (W)w, ++periodiccnt);
1267 array_needsize (periodics, periodicmax, periodiccnt, ); 1362 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1268 periodics [periodiccnt - 1] = w; 1363 periodics [periodiccnt - 1] = w;
1269 upheap ((WT *)periodics, periodiccnt - 1); 1364 upheap ((WT *)periodics, periodiccnt - 1);
1270 1365
1271 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1366 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1272} 1367}
1288 1383
1289 ev_stop (EV_A_ (W)w); 1384 ev_stop (EV_A_ (W)w);
1290} 1385}
1291 1386
1292void 1387void
1388ev_periodic_again (EV_P_ struct ev_periodic *w)
1389{
1390 /* TODO: use adjustheap and recalculation */
1391 ev_periodic_stop (EV_A_ w);
1392 ev_periodic_start (EV_A_ w);
1393}
1394
1395void
1293ev_idle_start (EV_P_ struct ev_idle *w) 1396ev_idle_start (EV_P_ struct ev_idle *w)
1294{ 1397{
1295 if (ev_is_active (w)) 1398 if (ev_is_active (w))
1296 return; 1399 return;
1297 1400
1298 ev_start (EV_A_ (W)w, ++idlecnt); 1401 ev_start (EV_A_ (W)w, ++idlecnt);
1299 array_needsize (idles, idlemax, idlecnt, ); 1402 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1300 idles [idlecnt - 1] = w; 1403 idles [idlecnt - 1] = w;
1301} 1404}
1302 1405
1303void 1406void
1304ev_idle_stop (EV_P_ struct ev_idle *w) 1407ev_idle_stop (EV_P_ struct ev_idle *w)
1316{ 1419{
1317 if (ev_is_active (w)) 1420 if (ev_is_active (w))
1318 return; 1421 return;
1319 1422
1320 ev_start (EV_A_ (W)w, ++preparecnt); 1423 ev_start (EV_A_ (W)w, ++preparecnt);
1321 array_needsize (prepares, preparemax, preparecnt, ); 1424 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1322 prepares [preparecnt - 1] = w; 1425 prepares [preparecnt - 1] = w;
1323} 1426}
1324 1427
1325void 1428void
1326ev_prepare_stop (EV_P_ struct ev_prepare *w) 1429ev_prepare_stop (EV_P_ struct ev_prepare *w)
1338{ 1441{
1339 if (ev_is_active (w)) 1442 if (ev_is_active (w))
1340 return; 1443 return;
1341 1444
1342 ev_start (EV_A_ (W)w, ++checkcnt); 1445 ev_start (EV_A_ (W)w, ++checkcnt);
1343 array_needsize (checks, checkmax, checkcnt, ); 1446 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1344 checks [checkcnt - 1] = w; 1447 checks [checkcnt - 1] = w;
1345} 1448}
1346 1449
1347void 1450void
1348ev_check_stop (EV_P_ struct ev_check *w) 1451ev_check_stop (EV_P_ struct ev_check *w)
1369 return; 1472 return;
1370 1473
1371 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1474 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1372 1475
1373 ev_start (EV_A_ (W)w, 1); 1476 ev_start (EV_A_ (W)w, 1);
1374 array_needsize (signals, signalmax, w->signum, signals_init); 1477 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1375 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1478 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1376 1479
1377 if (!((WL)w)->next) 1480 if (!((WL)w)->next)
1378 { 1481 {
1379#if WIN32 1482#if WIN32
1462} 1565}
1463 1566
1464void 1567void
1465ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1568ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1466{ 1569{
1467 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1570 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1468 1571
1469 if (!once) 1572 if (!once)
1470 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1573 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1471 else 1574 else
1472 { 1575 {
1473 once->cb = cb; 1576 once->cb = cb;
1474 once->arg = arg; 1577 once->arg = arg;
1475 1578
1476 ev_watcher_init (&once->io, once_cb_io); 1579 ev_init (&once->io, once_cb_io);
1477 if (fd >= 0) 1580 if (fd >= 0)
1478 { 1581 {
1479 ev_io_set (&once->io, fd, events); 1582 ev_io_set (&once->io, fd, events);
1480 ev_io_start (EV_A_ &once->io); 1583 ev_io_start (EV_A_ &once->io);
1481 } 1584 }
1482 1585
1483 ev_watcher_init (&once->to, once_cb_to); 1586 ev_init (&once->to, once_cb_to);
1484 if (timeout >= 0.) 1587 if (timeout >= 0.)
1485 { 1588 {
1486 ev_timer_set (&once->to, timeout, 0.); 1589 ev_timer_set (&once->to, timeout, 0.);
1487 ev_timer_start (EV_A_ &once->to); 1590 ev_timer_start (EV_A_ &once->to);
1488 } 1591 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines