ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.85 by root, Sat Nov 10 03:13:50 2007 UTC vs.
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
59# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 60# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
41# endif 65# endif
42 66
67# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 68# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
45# endif 73# endif
46 74
75# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
97# endif
98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
53# endif 105# endif
54 106
55#endif 107#endif
56 108
57#include <math.h> 109#include <math.h>
66#include <sys/types.h> 118#include <sys/types.h>
67#include <time.h> 119#include <time.h>
68 120
69#include <signal.h> 121#include <signal.h>
70 122
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
76/**/
77
78#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1
80#endif
81
82#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1
84#endif
85
86#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88#endif
89
90#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0
92#endif
93
94#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME
109# define EV_USE_REALTIME 1
110#endif
111
112/**/
113
114#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0
117#endif
118
119#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0
122#endif
123
124/**/
125
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130
131#ifdef EV_H 123#ifdef EV_H
132# include EV_H 124# include EV_H
133#else 125#else
134# include "ev.h" 126# include "ev.h"
135#endif 127#endif
136 128
129#ifndef _WIN32
130# include <sys/time.h>
131# include <sys/wait.h>
132# include <unistd.h>
133#else
134# define WIN32_LEAN_AND_MEAN
135# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1
138# endif
139#endif
140
141/**/
142
143#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0
145#endif
146
147#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0
149#endif
150
151#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1
153#endif
154
155#ifndef EV_USE_POLL
156# ifdef _WIN32
157# define EV_USE_POLL 0
158# else
159# define EV_USE_POLL 1
160# endif
161#endif
162
163#ifndef EV_USE_EPOLL
164# define EV_USE_EPOLL 0
165#endif
166
167#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0
169#endif
170
171#ifndef EV_USE_PORT
172# define EV_USE_PORT 0
173#endif
174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
195/**/
196
197#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0
200#endif
201
202#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0
205#endif
206
207#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h>
209#endif
210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
219/**/
220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000
227 * and intervals up to 20 years.
228 * Better solutions welcome.
229 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235
137#if __GNUC__ >= 3 236#if __GNUC__ >= 3
138# define expect(expr,value) __builtin_expect ((expr),(value)) 237# define expect(expr,value) __builtin_expect ((expr),(value))
139# define inline inline 238# define noinline __attribute__ ((noinline))
140#else 239#else
141# define expect(expr,value) (expr) 240# define expect(expr,value) (expr)
142# define inline static 241# define noinline
242# if __STDC_VERSION__ < 199901L
243# define inline
244# endif
143#endif 245#endif
144 246
145#define expect_false(expr) expect ((expr) != 0, 0) 247#define expect_false(expr) expect ((expr) != 0, 0)
146#define expect_true(expr) expect ((expr) != 0, 1) 248#define expect_true(expr) expect ((expr) != 0, 1)
249#define inline_size static inline
250
251#if EV_MINIMAL
252# define inline_speed static noinline
253#else
254# define inline_speed static inline
255#endif
147 256
148#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
149#define ABSPRI(w) ((w)->priority - EV_MINPRI) 258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
150 259
260#define EMPTY /* required for microsofts broken pseudo-c compiler */
261#define EMPTY2(a,b) /* used to suppress some warnings */
262
151typedef struct ev_watcher *W; 263typedef ev_watcher *W;
152typedef struct ev_watcher_list *WL; 264typedef ev_watcher_list *WL;
153typedef struct ev_watcher_time *WT; 265typedef ev_watcher_time *WT;
154 266
155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
156 268
269#ifdef _WIN32
157#include "ev_win32.c" 270# include "ev_win32.c"
271#endif
158 272
159/*****************************************************************************/ 273/*****************************************************************************/
160 274
161static void (*syserr_cb)(const char *msg); 275static void (*syserr_cb)(const char *msg);
162 276
277void
163void ev_set_syserr_cb (void (*cb)(const char *msg)) 278ev_set_syserr_cb (void (*cb)(const char *msg))
164{ 279{
165 syserr_cb = cb; 280 syserr_cb = cb;
166} 281}
167 282
168static void 283static void noinline
169syserr (const char *msg) 284syserr (const char *msg)
170{ 285{
171 if (!msg) 286 if (!msg)
172 msg = "(libev) system error"; 287 msg = "(libev) system error";
173 288
180 } 295 }
181} 296}
182 297
183static void *(*alloc)(void *ptr, long size); 298static void *(*alloc)(void *ptr, long size);
184 299
300void
185void ev_set_allocator (void *(*cb)(void *ptr, long size)) 301ev_set_allocator (void *(*cb)(void *ptr, long size))
186{ 302{
187 alloc = cb; 303 alloc = cb;
188} 304}
189 305
190static void * 306inline_speed void *
191ev_realloc (void *ptr, long size) 307ev_realloc (void *ptr, long size)
192{ 308{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194 310
195 if (!ptr && size) 311 if (!ptr && size)
209typedef struct 325typedef struct
210{ 326{
211 WL head; 327 WL head;
212 unsigned char events; 328 unsigned char events;
213 unsigned char reify; 329 unsigned char reify;
330#if EV_SELECT_IS_WINSOCKET
331 SOCKET handle;
332#endif
214} ANFD; 333} ANFD;
215 334
216typedef struct 335typedef struct
217{ 336{
218 W w; 337 W w;
219 int events; 338 int events;
220} ANPENDING; 339} ANPENDING;
221 340
341#if EV_USE_INOTIFY
342typedef struct
343{
344 WL head;
345} ANFS;
346#endif
347
222#if EV_MULTIPLICITY 348#if EV_MULTIPLICITY
223 349
224 struct ev_loop 350 struct ev_loop
225 { 351 {
352 ev_tstamp ev_rt_now;
353 #define ev_rt_now ((loop)->ev_rt_now)
226 #define VAR(name,decl) decl; 354 #define VAR(name,decl) decl;
227 #include "ev_vars.h" 355 #include "ev_vars.h"
228 #undef VAR 356 #undef VAR
229 }; 357 };
230 #include "ev_wrap.h" 358 #include "ev_wrap.h"
231 359
232 struct ev_loop default_loop_struct; 360 static struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop; 361 struct ev_loop *ev_default_loop_ptr;
234 362
235#else 363#else
236 364
365 ev_tstamp ev_rt_now;
237 #define VAR(name,decl) static decl; 366 #define VAR(name,decl) static decl;
238 #include "ev_vars.h" 367 #include "ev_vars.h"
239 #undef VAR 368 #undef VAR
240 369
241 static int default_loop; 370 static int ev_default_loop_ptr;
242 371
243#endif 372#endif
244 373
245/*****************************************************************************/ 374/*****************************************************************************/
246 375
247inline ev_tstamp 376ev_tstamp
248ev_time (void) 377ev_time (void)
249{ 378{
250#if EV_USE_REALTIME 379#if EV_USE_REALTIME
251 struct timespec ts; 380 struct timespec ts;
252 clock_gettime (CLOCK_REALTIME, &ts); 381 clock_gettime (CLOCK_REALTIME, &ts);
256 gettimeofday (&tv, 0); 385 gettimeofday (&tv, 0);
257 return tv.tv_sec + tv.tv_usec * 1e-6; 386 return tv.tv_sec + tv.tv_usec * 1e-6;
258#endif 387#endif
259} 388}
260 389
261inline ev_tstamp 390ev_tstamp inline_size
262get_clock (void) 391get_clock (void)
263{ 392{
264#if EV_USE_MONOTONIC 393#if EV_USE_MONOTONIC
265 if (expect_true (have_monotonic)) 394 if (expect_true (have_monotonic))
266 { 395 {
279{ 408{
280 return ev_rt_now; 409 return ev_rt_now;
281} 410}
282#endif 411#endif
283 412
284#define array_roundsize(type,n) ((n) | 4 & ~3) 413int inline_size
414array_nextsize (int elem, int cur, int cnt)
415{
416 int ncur = cur + 1;
417
418 do
419 ncur <<= 1;
420 while (cnt > ncur);
421
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096)
424 {
425 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
427 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem;
429 }
430
431 return ncur;
432}
433
434static noinline void *
435array_realloc (int elem, void *base, int *cur, int cnt)
436{
437 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur);
439}
285 440
286#define array_needsize(type,base,cur,cnt,init) \ 441#define array_needsize(type,base,cur,cnt,init) \
287 if (expect_false ((cnt) > cur)) \ 442 if (expect_false ((cnt) > (cur))) \
288 { \ 443 { \
289 int newcnt = cur; \ 444 int ocur_ = (cur); \
290 do \ 445 (base) = (type *)array_realloc \
291 { \ 446 (sizeof (type), (base), &(cur), (cnt)); \
292 newcnt = array_roundsize (type, newcnt << 1); \ 447 init ((base) + (ocur_), (cur) - ocur_); \
293 } \
294 while ((cnt) > newcnt); \
295 \
296 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
297 init (base + cur, newcnt - cur); \
298 cur = newcnt; \
299 } 448 }
300 449
450#if 0
301#define array_slim(type,stem) \ 451#define array_slim(type,stem) \
302 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 452 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
303 { \ 453 { \
304 stem ## max = array_roundsize (stem ## cnt >> 1); \ 454 stem ## max = array_roundsize (stem ## cnt >> 1); \
305 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 455 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
306 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
307 } 457 }
308 458#endif
309/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
310/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
311#define array_free_microshit(stem) \
312 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
313 459
314#define array_free(stem, idx) \ 460#define array_free(stem, idx) \
315 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
316 462
317/*****************************************************************************/ 463/*****************************************************************************/
318 464
319static void 465void noinline
466ev_feed_event (EV_P_ void *w, int revents)
467{
468 W w_ = (W)w;
469 int pri = ABSPRI (w_);
470
471 if (expect_false (w_->pending))
472 pendings [pri][w_->pending - 1].events |= revents;
473 else
474 {
475 w_->pending = ++pendingcnt [pri];
476 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
477 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents;
479 }
480}
481
482void inline_size
483queue_events (EV_P_ W *events, int eventcnt, int type)
484{
485 int i;
486
487 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type);
489}
490
491/*****************************************************************************/
492
493void inline_size
320anfds_init (ANFD *base, int count) 494anfds_init (ANFD *base, int count)
321{ 495{
322 while (count--) 496 while (count--)
323 { 497 {
324 base->head = 0; 498 base->head = 0;
327 501
328 ++base; 502 ++base;
329 } 503 }
330} 504}
331 505
332void 506void inline_speed
333ev_feed_event (EV_P_ void *w, int revents)
334{
335 W w_ = (W)w;
336
337 if (w_->pending)
338 {
339 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
340 return;
341 }
342
343 w_->pending = ++pendingcnt [ABSPRI (w_)];
344 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
345 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
346 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
347}
348
349static void
350queue_events (EV_P_ W *events, int eventcnt, int type)
351{
352 int i;
353
354 for (i = 0; i < eventcnt; ++i)
355 ev_feed_event (EV_A_ events [i], type);
356}
357
358inline void
359fd_event (EV_P_ int fd, int revents) 507fd_event (EV_P_ int fd, int revents)
360{ 508{
361 ANFD *anfd = anfds + fd; 509 ANFD *anfd = anfds + fd;
362 struct ev_io *w; 510 ev_io *w;
363 511
364 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 512 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
365 { 513 {
366 int ev = w->events & revents; 514 int ev = w->events & revents;
367 515
368 if (ev) 516 if (ev)
369 ev_feed_event (EV_A_ (W)w, ev); 517 ev_feed_event (EV_A_ (W)w, ev);
371} 519}
372 520
373void 521void
374ev_feed_fd_event (EV_P_ int fd, int revents) 522ev_feed_fd_event (EV_P_ int fd, int revents)
375{ 523{
524 if (fd >= 0 && fd < anfdmax)
376 fd_event (EV_A_ fd, revents); 525 fd_event (EV_A_ fd, revents);
377} 526}
378 527
379/*****************************************************************************/ 528void inline_size
380
381static void
382fd_reify (EV_P) 529fd_reify (EV_P)
383{ 530{
384 int i; 531 int i;
385 532
386 for (i = 0; i < fdchangecnt; ++i) 533 for (i = 0; i < fdchangecnt; ++i)
387 { 534 {
388 int fd = fdchanges [i]; 535 int fd = fdchanges [i];
389 ANFD *anfd = anfds + fd; 536 ANFD *anfd = anfds + fd;
390 struct ev_io *w; 537 ev_io *w;
391 538
392 int events = 0; 539 int events = 0;
393 540
394 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
395 events |= w->events; 542 events |= w->events;
396 543
544#if EV_SELECT_IS_WINSOCKET
545 if (events)
546 {
547 unsigned long argp;
548 anfd->handle = _get_osfhandle (fd);
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
550 }
551#endif
552
397 anfd->reify = 0; 553 anfd->reify = 0;
398 554
399 method_modify (EV_A_ fd, anfd->events, events); 555 backend_modify (EV_A_ fd, anfd->events, events);
400 anfd->events = events; 556 anfd->events = events;
401 } 557 }
402 558
403 fdchangecnt = 0; 559 fdchangecnt = 0;
404} 560}
405 561
406static void 562void inline_size
407fd_change (EV_P_ int fd) 563fd_change (EV_P_ int fd)
408{ 564{
409 if (anfds [fd].reify) 565 if (expect_false (anfds [fd].reify))
410 return; 566 return;
411 567
412 anfds [fd].reify = 1; 568 anfds [fd].reify = 1;
413 569
414 ++fdchangecnt; 570 ++fdchangecnt;
415 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
416 fdchanges [fdchangecnt - 1] = fd; 572 fdchanges [fdchangecnt - 1] = fd;
417} 573}
418 574
419static void 575void inline_speed
420fd_kill (EV_P_ int fd) 576fd_kill (EV_P_ int fd)
421{ 577{
422 struct ev_io *w; 578 ev_io *w;
423 579
424 while ((w = (struct ev_io *)anfds [fd].head)) 580 while ((w = (ev_io *)anfds [fd].head))
425 { 581 {
426 ev_io_stop (EV_A_ w); 582 ev_io_stop (EV_A_ w);
427 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
428 } 584 }
429} 585}
430 586
431static int 587int inline_size
432fd_valid (int fd) 588fd_valid (int fd)
433{ 589{
434#ifdef WIN32 590#ifdef _WIN32
435 return !!win32_get_osfhandle (fd); 591 return _get_osfhandle (fd) != -1;
436#else 592#else
437 return fcntl (fd, F_GETFD) != -1; 593 return fcntl (fd, F_GETFD) != -1;
438#endif 594#endif
439} 595}
440 596
441/* called on EBADF to verify fds */ 597/* called on EBADF to verify fds */
442static void 598static void noinline
443fd_ebadf (EV_P) 599fd_ebadf (EV_P)
444{ 600{
445 int fd; 601 int fd;
446 602
447 for (fd = 0; fd < anfdmax; ++fd) 603 for (fd = 0; fd < anfdmax; ++fd)
449 if (!fd_valid (fd) == -1 && errno == EBADF) 605 if (!fd_valid (fd) == -1 && errno == EBADF)
450 fd_kill (EV_A_ fd); 606 fd_kill (EV_A_ fd);
451} 607}
452 608
453/* called on ENOMEM in select/poll to kill some fds and retry */ 609/* called on ENOMEM in select/poll to kill some fds and retry */
454static void 610static void noinline
455fd_enomem (EV_P) 611fd_enomem (EV_P)
456{ 612{
457 int fd; 613 int fd;
458 614
459 for (fd = anfdmax; fd--; ) 615 for (fd = anfdmax; fd--; )
462 fd_kill (EV_A_ fd); 618 fd_kill (EV_A_ fd);
463 return; 619 return;
464 } 620 }
465} 621}
466 622
467/* usually called after fork if method needs to re-arm all fds from scratch */ 623/* usually called after fork if backend needs to re-arm all fds from scratch */
468static void 624static void noinline
469fd_rearm_all (EV_P) 625fd_rearm_all (EV_P)
470{ 626{
471 int fd; 627 int fd;
472 628
473 /* this should be highly optimised to not do anything but set a flag */
474 for (fd = 0; fd < anfdmax; ++fd) 629 for (fd = 0; fd < anfdmax; ++fd)
475 if (anfds [fd].events) 630 if (anfds [fd].events)
476 { 631 {
477 anfds [fd].events = 0; 632 anfds [fd].events = 0;
478 fd_change (EV_A_ fd); 633 fd_change (EV_A_ fd);
479 } 634 }
480} 635}
481 636
482/*****************************************************************************/ 637/*****************************************************************************/
483 638
484static void 639void inline_speed
485upheap (WT *heap, int k) 640upheap (WT *heap, int k)
486{ 641{
487 WT w = heap [k]; 642 WT w = heap [k];
488 643
489 while (k && heap [k >> 1]->at > w->at) 644 while (k && heap [k >> 1]->at > w->at)
496 heap [k] = w; 651 heap [k] = w;
497 ((W)heap [k])->active = k + 1; 652 ((W)heap [k])->active = k + 1;
498 653
499} 654}
500 655
501static void 656void inline_speed
502downheap (WT *heap, int N, int k) 657downheap (WT *heap, int N, int k)
503{ 658{
504 WT w = heap [k]; 659 WT w = heap [k];
505 660
506 while (k < (N >> 1)) 661 while (k < (N >> 1))
520 675
521 heap [k] = w; 676 heap [k] = w;
522 ((W)heap [k])->active = k + 1; 677 ((W)heap [k])->active = k + 1;
523} 678}
524 679
525inline void 680void inline_size
526adjustheap (WT *heap, int N, int k, ev_tstamp at) 681adjustheap (WT *heap, int N, int k)
527{ 682{
528 ev_tstamp old_at = heap [k]->at; 683 upheap (heap, k);
529 heap [k]->at = at;
530
531 if (old_at < at)
532 downheap (heap, N, k); 684 downheap (heap, N, k);
533 else
534 upheap (heap, k);
535} 685}
536 686
537/*****************************************************************************/ 687/*****************************************************************************/
538 688
539typedef struct 689typedef struct
545static ANSIG *signals; 695static ANSIG *signals;
546static int signalmax; 696static int signalmax;
547 697
548static int sigpipe [2]; 698static int sigpipe [2];
549static sig_atomic_t volatile gotsig; 699static sig_atomic_t volatile gotsig;
550static struct ev_io sigev; 700static ev_io sigev;
551 701
552static void 702void inline_size
553signals_init (ANSIG *base, int count) 703signals_init (ANSIG *base, int count)
554{ 704{
555 while (count--) 705 while (count--)
556 { 706 {
557 base->head = 0; 707 base->head = 0;
562} 712}
563 713
564static void 714static void
565sighandler (int signum) 715sighandler (int signum)
566{ 716{
567#if WIN32 717#if _WIN32
568 signal (signum, sighandler); 718 signal (signum, sighandler);
569#endif 719#endif
570 720
571 signals [signum - 1].gotsig = 1; 721 signals [signum - 1].gotsig = 1;
572 722
573 if (!gotsig) 723 if (!gotsig)
574 { 724 {
575 int old_errno = errno; 725 int old_errno = errno;
576 gotsig = 1; 726 gotsig = 1;
577#ifdef WIN32
578 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
579#else
580 write (sigpipe [1], &signum, 1); 727 write (sigpipe [1], &signum, 1);
581#endif
582 errno = old_errno; 728 errno = old_errno;
583 } 729 }
584} 730}
585 731
586void 732void noinline
587ev_feed_signal_event (EV_P_ int signum) 733ev_feed_signal_event (EV_P_ int signum)
588{ 734{
589 WL w; 735 WL w;
590 736
591#if EV_MULTIPLICITY 737#if EV_MULTIPLICITY
592 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 738 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
593#endif 739#endif
594 740
595 --signum; 741 --signum;
596 742
597 if (signum < 0 || signum >= signalmax) 743 if (signum < 0 || signum >= signalmax)
602 for (w = signals [signum].head; w; w = w->next) 748 for (w = signals [signum].head; w; w = w->next)
603 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 749 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
604} 750}
605 751
606static void 752static void
607sigcb (EV_P_ struct ev_io *iow, int revents) 753sigcb (EV_P_ ev_io *iow, int revents)
608{ 754{
609 int signum; 755 int signum;
610 756
611#ifdef WIN32
612 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
613#else
614 read (sigpipe [0], &revents, 1); 757 read (sigpipe [0], &revents, 1);
615#endif
616 gotsig = 0; 758 gotsig = 0;
617 759
618 for (signum = signalmax; signum--; ) 760 for (signum = signalmax; signum--; )
619 if (signals [signum].gotsig) 761 if (signals [signum].gotsig)
620 ev_feed_signal_event (EV_A_ signum + 1); 762 ev_feed_signal_event (EV_A_ signum + 1);
621} 763}
622 764
623static void 765void inline_speed
766fd_intern (int fd)
767{
768#ifdef _WIN32
769 int arg = 1;
770 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
771#else
772 fcntl (fd, F_SETFD, FD_CLOEXEC);
773 fcntl (fd, F_SETFL, O_NONBLOCK);
774#endif
775}
776
777static void noinline
624siginit (EV_P) 778siginit (EV_P)
625{ 779{
626#ifndef WIN32 780 fd_intern (sigpipe [0]);
627 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 781 fd_intern (sigpipe [1]);
628 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
629
630 /* rather than sort out wether we really need nb, set it */
631 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
632 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
633#endif
634 782
635 ev_io_set (&sigev, sigpipe [0], EV_READ); 783 ev_io_set (&sigev, sigpipe [0], EV_READ);
636 ev_io_start (EV_A_ &sigev); 784 ev_io_start (EV_A_ &sigev);
637 ev_unref (EV_A); /* child watcher should not keep loop alive */ 785 ev_unref (EV_A); /* child watcher should not keep loop alive */
638} 786}
639 787
640/*****************************************************************************/ 788/*****************************************************************************/
641 789
642static struct ev_child *childs [PID_HASHSIZE]; 790static ev_child *childs [EV_PID_HASHSIZE];
643 791
644#ifndef WIN32 792#ifndef _WIN32
645 793
646static struct ev_signal childev; 794static ev_signal childev;
795
796void inline_speed
797child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
798{
799 ev_child *w;
800
801 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
802 if (w->pid == pid || !w->pid)
803 {
804 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
805 w->rpid = pid;
806 w->rstatus = status;
807 ev_feed_event (EV_A_ (W)w, EV_CHILD);
808 }
809}
647 810
648#ifndef WCONTINUED 811#ifndef WCONTINUED
649# define WCONTINUED 0 812# define WCONTINUED 0
650#endif 813#endif
651 814
652static void 815static void
653child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
654{
655 struct ev_child *w;
656
657 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
658 if (w->pid == pid || !w->pid)
659 {
660 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
661 w->rpid = pid;
662 w->rstatus = status;
663 ev_feed_event (EV_A_ (W)w, EV_CHILD);
664 }
665}
666
667static void
668childcb (EV_P_ struct ev_signal *sw, int revents) 816childcb (EV_P_ ev_signal *sw, int revents)
669{ 817{
670 int pid, status; 818 int pid, status;
671 819
820 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
672 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 821 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
673 { 822 if (!WCONTINUED
823 || errno != EINVAL
824 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
825 return;
826
674 /* make sure we are called again until all childs have been reaped */ 827 /* make sure we are called again until all childs have been reaped */
828 /* we need to do it this way so that the callback gets called before we continue */
675 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 829 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
676 830
677 child_reap (EV_A_ sw, pid, pid, status); 831 child_reap (EV_A_ sw, pid, pid, status);
832 if (EV_PID_HASHSIZE > 1)
678 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 833 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
679 }
680} 834}
681 835
682#endif 836#endif
683 837
684/*****************************************************************************/ 838/*****************************************************************************/
685 839
840#if EV_USE_PORT
841# include "ev_port.c"
842#endif
686#if EV_USE_KQUEUE 843#if EV_USE_KQUEUE
687# include "ev_kqueue.c" 844# include "ev_kqueue.c"
688#endif 845#endif
689#if EV_USE_EPOLL 846#if EV_USE_EPOLL
690# include "ev_epoll.c" 847# include "ev_epoll.c"
707{ 864{
708 return EV_VERSION_MINOR; 865 return EV_VERSION_MINOR;
709} 866}
710 867
711/* return true if we are running with elevated privileges and should ignore env variables */ 868/* return true if we are running with elevated privileges and should ignore env variables */
712static int 869int inline_size
713enable_secure (void) 870enable_secure (void)
714{ 871{
715#ifdef WIN32 872#ifdef _WIN32
716 return 0; 873 return 0;
717#else 874#else
718 return getuid () != geteuid () 875 return getuid () != geteuid ()
719 || getgid () != getegid (); 876 || getgid () != getegid ();
720#endif 877#endif
721} 878}
722 879
723int 880unsigned int
724ev_method (EV_P) 881ev_supported_backends (void)
725{ 882{
726 return method; 883 unsigned int flags = 0;
727}
728 884
729static void 885 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
730loop_init (EV_P_ int methods) 886 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
887 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
888 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
889 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
890
891 return flags;
892}
893
894unsigned int
895ev_recommended_backends (void)
731{ 896{
732 if (!method) 897 unsigned int flags = ev_supported_backends ();
898
899#ifndef __NetBSD__
900 /* kqueue is borked on everything but netbsd apparently */
901 /* it usually doesn't work correctly on anything but sockets and pipes */
902 flags &= ~EVBACKEND_KQUEUE;
903#endif
904#ifdef __APPLE__
905 // flags &= ~EVBACKEND_KQUEUE; for documentation
906 flags &= ~EVBACKEND_POLL;
907#endif
908
909 return flags;
910}
911
912unsigned int
913ev_embeddable_backends (void)
914{
915 return EVBACKEND_EPOLL
916 | EVBACKEND_KQUEUE
917 | EVBACKEND_PORT;
918}
919
920unsigned int
921ev_backend (EV_P)
922{
923 return backend;
924}
925
926unsigned int
927ev_loop_count (EV_P)
928{
929 return loop_count;
930}
931
932static void noinline
933loop_init (EV_P_ unsigned int flags)
934{
935 if (!backend)
733 { 936 {
734#if EV_USE_MONOTONIC 937#if EV_USE_MONOTONIC
735 { 938 {
736 struct timespec ts; 939 struct timespec ts;
737 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 940 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
742 ev_rt_now = ev_time (); 945 ev_rt_now = ev_time ();
743 mn_now = get_clock (); 946 mn_now = get_clock ();
744 now_floor = mn_now; 947 now_floor = mn_now;
745 rtmn_diff = ev_rt_now - mn_now; 948 rtmn_diff = ev_rt_now - mn_now;
746 949
747 if (methods == EVMETHOD_AUTO) 950 /* pid check not overridable via env */
748 if (!enable_secure () && getenv ("LIBEV_METHODS")) 951#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid ();
954#endif
955
956 if (!(flags & EVFLAG_NOENV)
957 && !enable_secure ()
958 && getenv ("LIBEV_FLAGS"))
749 methods = atoi (getenv ("LIBEV_METHODS")); 959 flags = atoi (getenv ("LIBEV_FLAGS"));
750 else
751 methods = EVMETHOD_ANY;
752 960
753 method = 0; 961 if (!(flags & 0x0000ffffUL))
962 flags |= ev_recommended_backends ();
963
964 backend = 0;
965 backend_fd = -1;
754#if EV_USE_WIN32 966#if EV_USE_INOTIFY
755 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 967 fs_fd = -2;
968#endif
969
970#if EV_USE_PORT
971 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
756#endif 972#endif
757#if EV_USE_KQUEUE 973#if EV_USE_KQUEUE
758 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 974 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
759#endif 975#endif
760#if EV_USE_EPOLL 976#if EV_USE_EPOLL
761 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 977 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
762#endif 978#endif
763#if EV_USE_POLL 979#if EV_USE_POLL
764 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 980 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
765#endif 981#endif
766#if EV_USE_SELECT 982#if EV_USE_SELECT
767 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 983 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
768#endif 984#endif
769 985
770 ev_init (&sigev, sigcb); 986 ev_init (&sigev, sigcb);
771 ev_set_priority (&sigev, EV_MAXPRI); 987 ev_set_priority (&sigev, EV_MAXPRI);
772 } 988 }
773} 989}
774 990
775void 991static void noinline
776loop_destroy (EV_P) 992loop_destroy (EV_P)
777{ 993{
778 int i; 994 int i;
779 995
780#if EV_USE_WIN32 996#if EV_USE_INOTIFY
781 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 997 if (fs_fd >= 0)
998 close (fs_fd);
999#endif
1000
1001 if (backend_fd >= 0)
1002 close (backend_fd);
1003
1004#if EV_USE_PORT
1005 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
782#endif 1006#endif
783#if EV_USE_KQUEUE 1007#if EV_USE_KQUEUE
784 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1008 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
785#endif 1009#endif
786#if EV_USE_EPOLL 1010#if EV_USE_EPOLL
787 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1011 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
788#endif 1012#endif
789#if EV_USE_POLL 1013#if EV_USE_POLL
790 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1014 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
791#endif 1015#endif
792#if EV_USE_SELECT 1016#if EV_USE_SELECT
793 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1017 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
794#endif 1018#endif
795 1019
796 for (i = NUMPRI; i--; ) 1020 for (i = NUMPRI; i--; )
1021 {
797 array_free (pending, [i]); 1022 array_free (pending, [i]);
1023#if EV_IDLE_ENABLE
1024 array_free (idle, [i]);
1025#endif
1026 }
798 1027
799 /* have to use the microsoft-never-gets-it-right macro */ 1028 /* have to use the microsoft-never-gets-it-right macro */
800 array_free_microshit (fdchange); 1029 array_free (fdchange, EMPTY);
801 array_free_microshit (timer); 1030 array_free (timer, EMPTY);
802 array_free_microshit (periodic); 1031#if EV_PERIODIC_ENABLE
803 array_free_microshit (idle); 1032 array_free (periodic, EMPTY);
804 array_free_microshit (prepare); 1033#endif
805 array_free_microshit (check); 1034 array_free (prepare, EMPTY);
1035 array_free (check, EMPTY);
806 1036
807 method = 0; 1037 backend = 0;
808} 1038}
809 1039
810static void 1040void inline_size infy_fork (EV_P);
1041
1042void inline_size
811loop_fork (EV_P) 1043loop_fork (EV_P)
812{ 1044{
1045#if EV_USE_PORT
1046 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1047#endif
1048#if EV_USE_KQUEUE
1049 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1050#endif
813#if EV_USE_EPOLL 1051#if EV_USE_EPOLL
814 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1052 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
815#endif 1053#endif
816#if EV_USE_KQUEUE 1054#if EV_USE_INOTIFY
817 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1055 infy_fork (EV_A);
818#endif 1056#endif
819 1057
820 if (ev_is_active (&sigev)) 1058 if (ev_is_active (&sigev))
821 { 1059 {
822 /* default loop */ 1060 /* default loop */
835 postfork = 0; 1073 postfork = 0;
836} 1074}
837 1075
838#if EV_MULTIPLICITY 1076#if EV_MULTIPLICITY
839struct ev_loop * 1077struct ev_loop *
840ev_loop_new (int methods) 1078ev_loop_new (unsigned int flags)
841{ 1079{
842 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1080 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
843 1081
844 memset (loop, 0, sizeof (struct ev_loop)); 1082 memset (loop, 0, sizeof (struct ev_loop));
845 1083
846 loop_init (EV_A_ methods); 1084 loop_init (EV_A_ flags);
847 1085
848 if (ev_method (EV_A)) 1086 if (ev_backend (EV_A))
849 return loop; 1087 return loop;
850 1088
851 return 0; 1089 return 0;
852} 1090}
853 1091
866 1104
867#endif 1105#endif
868 1106
869#if EV_MULTIPLICITY 1107#if EV_MULTIPLICITY
870struct ev_loop * 1108struct ev_loop *
1109ev_default_loop_init (unsigned int flags)
871#else 1110#else
872int 1111int
1112ev_default_loop (unsigned int flags)
873#endif 1113#endif
874ev_default_loop (int methods)
875{ 1114{
876 if (sigpipe [0] == sigpipe [1]) 1115 if (sigpipe [0] == sigpipe [1])
877 if (pipe (sigpipe)) 1116 if (pipe (sigpipe))
878 return 0; 1117 return 0;
879 1118
880 if (!default_loop) 1119 if (!ev_default_loop_ptr)
881 { 1120 {
882#if EV_MULTIPLICITY 1121#if EV_MULTIPLICITY
883 struct ev_loop *loop = default_loop = &default_loop_struct; 1122 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
884#else 1123#else
885 default_loop = 1; 1124 ev_default_loop_ptr = 1;
886#endif 1125#endif
887 1126
888 loop_init (EV_A_ methods); 1127 loop_init (EV_A_ flags);
889 1128
890 if (ev_method (EV_A)) 1129 if (ev_backend (EV_A))
891 { 1130 {
892 siginit (EV_A); 1131 siginit (EV_A);
893 1132
894#ifndef WIN32 1133#ifndef _WIN32
895 ev_signal_init (&childev, childcb, SIGCHLD); 1134 ev_signal_init (&childev, childcb, SIGCHLD);
896 ev_set_priority (&childev, EV_MAXPRI); 1135 ev_set_priority (&childev, EV_MAXPRI);
897 ev_signal_start (EV_A_ &childev); 1136 ev_signal_start (EV_A_ &childev);
898 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1137 ev_unref (EV_A); /* child watcher should not keep loop alive */
899#endif 1138#endif
900 } 1139 }
901 else 1140 else
902 default_loop = 0; 1141 ev_default_loop_ptr = 0;
903 } 1142 }
904 1143
905 return default_loop; 1144 return ev_default_loop_ptr;
906} 1145}
907 1146
908void 1147void
909ev_default_destroy (void) 1148ev_default_destroy (void)
910{ 1149{
911#if EV_MULTIPLICITY 1150#if EV_MULTIPLICITY
912 struct ev_loop *loop = default_loop; 1151 struct ev_loop *loop = ev_default_loop_ptr;
913#endif 1152#endif
914 1153
915#ifndef WIN32 1154#ifndef _WIN32
916 ev_ref (EV_A); /* child watcher */ 1155 ev_ref (EV_A); /* child watcher */
917 ev_signal_stop (EV_A_ &childev); 1156 ev_signal_stop (EV_A_ &childev);
918#endif 1157#endif
919 1158
920 ev_ref (EV_A); /* signal watcher */ 1159 ev_ref (EV_A); /* signal watcher */
928 1167
929void 1168void
930ev_default_fork (void) 1169ev_default_fork (void)
931{ 1170{
932#if EV_MULTIPLICITY 1171#if EV_MULTIPLICITY
933 struct ev_loop *loop = default_loop; 1172 struct ev_loop *loop = ev_default_loop_ptr;
934#endif 1173#endif
935 1174
936 if (method) 1175 if (backend)
937 postfork = 1; 1176 postfork = 1;
938} 1177}
939 1178
940/*****************************************************************************/ 1179/*****************************************************************************/
941 1180
942static int 1181void
943any_pending (EV_P) 1182ev_invoke (EV_P_ void *w, int revents)
944{ 1183{
945 int pri; 1184 EV_CB_INVOKE ((W)w, revents);
946
947 for (pri = NUMPRI; pri--; )
948 if (pendingcnt [pri])
949 return 1;
950
951 return 0;
952} 1185}
953 1186
954static void 1187void inline_speed
955call_pending (EV_P) 1188call_pending (EV_P)
956{ 1189{
957 int pri; 1190 int pri;
958 1191
959 for (pri = NUMPRI; pri--; ) 1192 for (pri = NUMPRI; pri--; )
960 while (pendingcnt [pri]) 1193 while (pendingcnt [pri])
961 { 1194 {
962 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1195 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
963 1196
964 if (p->w) 1197 if (expect_true (p->w))
965 { 1198 {
1199 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1200
966 p->w->pending = 0; 1201 p->w->pending = 0;
967 EV_CB_INVOKE (p->w, p->events); 1202 EV_CB_INVOKE (p->w, p->events);
968 } 1203 }
969 } 1204 }
970} 1205}
971 1206
972static void 1207void inline_size
973timers_reify (EV_P) 1208timers_reify (EV_P)
974{ 1209{
975 while (timercnt && ((WT)timers [0])->at <= mn_now) 1210 while (timercnt && ((WT)timers [0])->at <= mn_now)
976 { 1211 {
977 struct ev_timer *w = timers [0]; 1212 ev_timer *w = timers [0];
978 1213
979 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
980 1215
981 /* first reschedule or stop timer */ 1216 /* first reschedule or stop timer */
982 if (w->repeat) 1217 if (w->repeat)
983 { 1218 {
984 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1219 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1220
985 ((WT)w)->at = mn_now + w->repeat; 1221 ((WT)w)->at += w->repeat;
1222 if (((WT)w)->at < mn_now)
1223 ((WT)w)->at = mn_now;
1224
986 downheap ((WT *)timers, timercnt, 0); 1225 downheap ((WT *)timers, timercnt, 0);
987 } 1226 }
988 else 1227 else
989 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1228 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
990 1229
991 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
992 } 1231 }
993} 1232}
994 1233
995static void 1234#if EV_PERIODIC_ENABLE
1235void inline_size
996periodics_reify (EV_P) 1236periodics_reify (EV_P)
997{ 1237{
998 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
999 { 1239 {
1000 struct ev_periodic *w = periodics [0]; 1240 ev_periodic *w = periodics [0];
1001 1241
1002 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1003 1243
1004 /* first reschedule or stop timer */ 1244 /* first reschedule or stop timer */
1005 if (w->reschedule_cb) 1245 if (w->reschedule_cb)
1006 { 1246 {
1007 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1008
1009 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1010 downheap ((WT *)periodics, periodiccnt, 0); 1249 downheap ((WT *)periodics, periodiccnt, 0);
1011 } 1250 }
1012 else if (w->interval) 1251 else if (w->interval)
1013 { 1252 {
1014 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval;
1015 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1016 downheap ((WT *)periodics, periodiccnt, 0); 1255 downheap ((WT *)periodics, periodiccnt, 0);
1017 } 1256 }
1018 else 1257 else
1019 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1020 1259
1021 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1022 } 1261 }
1023} 1262}
1024 1263
1025static void 1264static void noinline
1026periodics_reschedule (EV_P) 1265periodics_reschedule (EV_P)
1027{ 1266{
1028 int i; 1267 int i;
1029 1268
1030 /* adjust periodics after time jump */ 1269 /* adjust periodics after time jump */
1031 for (i = 0; i < periodiccnt; ++i) 1270 for (i = 0; i < periodiccnt; ++i)
1032 { 1271 {
1033 struct ev_periodic *w = periodics [i]; 1272 ev_periodic *w = periodics [i];
1034 1273
1035 if (w->reschedule_cb) 1274 if (w->reschedule_cb)
1036 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1037 else if (w->interval) 1276 else if (w->interval)
1038 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1039 } 1278 }
1040 1279
1041 /* now rebuild the heap */ 1280 /* now rebuild the heap */
1042 for (i = periodiccnt >> 1; i--; ) 1281 for (i = periodiccnt >> 1; i--; )
1043 downheap ((WT *)periodics, periodiccnt, i); 1282 downheap ((WT *)periodics, periodiccnt, i);
1044} 1283}
1284#endif
1045 1285
1046inline int 1286#if EV_IDLE_ENABLE
1287void inline_size
1288idle_reify (EV_P)
1289{
1290 if (expect_false (idleall))
1291 {
1292 int pri;
1293
1294 for (pri = NUMPRI; pri--; )
1295 {
1296 if (pendingcnt [pri])
1297 break;
1298
1299 if (idlecnt [pri])
1300 {
1301 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1302 break;
1303 }
1304 }
1305 }
1306}
1307#endif
1308
1309int inline_size
1047time_update_monotonic (EV_P) 1310time_update_monotonic (EV_P)
1048{ 1311{
1049 mn_now = get_clock (); 1312 mn_now = get_clock ();
1050 1313
1051 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1059 ev_rt_now = ev_time (); 1322 ev_rt_now = ev_time ();
1060 return 1; 1323 return 1;
1061 } 1324 }
1062} 1325}
1063 1326
1064static void 1327void inline_size
1065time_update (EV_P) 1328time_update (EV_P)
1066{ 1329{
1067 int i; 1330 int i;
1068 1331
1069#if EV_USE_MONOTONIC 1332#if EV_USE_MONOTONIC
1071 { 1334 {
1072 if (time_update_monotonic (EV_A)) 1335 if (time_update_monotonic (EV_A))
1073 { 1336 {
1074 ev_tstamp odiff = rtmn_diff; 1337 ev_tstamp odiff = rtmn_diff;
1075 1338
1076 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1077 { 1348 {
1078 rtmn_diff = ev_rt_now - mn_now; 1349 rtmn_diff = ev_rt_now - mn_now;
1079 1350
1080 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1081 return; /* all is well */ 1352 return; /* all is well */
1083 ev_rt_now = ev_time (); 1354 ev_rt_now = ev_time ();
1084 mn_now = get_clock (); 1355 mn_now = get_clock ();
1085 now_floor = mn_now; 1356 now_floor = mn_now;
1086 } 1357 }
1087 1358
1359# if EV_PERIODIC_ENABLE
1088 periodics_reschedule (EV_A); 1360 periodics_reschedule (EV_A);
1361# endif
1089 /* no timer adjustment, as the monotonic clock doesn't jump */ 1362 /* no timer adjustment, as the monotonic clock doesn't jump */
1090 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1091 } 1364 }
1092 } 1365 }
1093 else 1366 else
1095 { 1368 {
1096 ev_rt_now = ev_time (); 1369 ev_rt_now = ev_time ();
1097 1370
1098 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1099 { 1372 {
1373#if EV_PERIODIC_ENABLE
1100 periodics_reschedule (EV_A); 1374 periodics_reschedule (EV_A);
1375#endif
1101 1376
1102 /* adjust timers. this is easy, as the offset is the same for all */ 1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1103 for (i = 0; i < timercnt; ++i) 1378 for (i = 0; i < timercnt; ++i)
1104 ((WT)timers [i])->at += ev_rt_now - mn_now; 1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1105 } 1380 }
1106 1381
1107 mn_now = ev_rt_now; 1382 mn_now = ev_rt_now;
1123static int loop_done; 1398static int loop_done;
1124 1399
1125void 1400void
1126ev_loop (EV_P_ int flags) 1401ev_loop (EV_P_ int flags)
1127{ 1402{
1128 double block;
1129 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1404 ? EVUNLOOP_ONE
1405 : EVUNLOOP_CANCEL;
1406
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1130 1408
1131 do 1409 do
1132 { 1410 {
1411#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid))
1414 {
1415 curpid = getpid ();
1416 postfork = 1;
1417 }
1418#endif
1419
1420#if EV_FORK_ENABLE
1421 /* we might have forked, so queue fork handlers */
1422 if (expect_false (postfork))
1423 if (forkcnt)
1424 {
1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1426 call_pending (EV_A);
1427 }
1428#endif
1429
1133 /* queue check watchers (and execute them) */ 1430 /* queue prepare watchers (and execute them) */
1134 if (expect_false (preparecnt)) 1431 if (expect_false (preparecnt))
1135 { 1432 {
1136 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1137 call_pending (EV_A); 1434 call_pending (EV_A);
1138 } 1435 }
1139 1436
1437 if (expect_false (!activecnt))
1438 break;
1439
1140 /* we might have forked, so reify kernel state if necessary */ 1440 /* we might have forked, so reify kernel state if necessary */
1141 if (expect_false (postfork)) 1441 if (expect_false (postfork))
1142 loop_fork (EV_A); 1442 loop_fork (EV_A);
1143 1443
1144 /* update fd-related kernel structures */ 1444 /* update fd-related kernel structures */
1145 fd_reify (EV_A); 1445 fd_reify (EV_A);
1146 1446
1147 /* calculate blocking time */ 1447 /* calculate blocking time */
1448 {
1449 ev_tstamp block;
1148 1450
1149 /* we only need this for !monotonic clock or timers, but as we basically 1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1150 always have timers, we just calculate it always */ 1452 block = 0.; /* do not block at all */
1453 else
1454 {
1455 /* update time to cancel out callback processing overhead */
1151#if EV_USE_MONOTONIC 1456#if EV_USE_MONOTONIC
1152 if (expect_true (have_monotonic)) 1457 if (expect_true (have_monotonic))
1153 time_update_monotonic (EV_A); 1458 time_update_monotonic (EV_A);
1154 else 1459 else
1155#endif 1460#endif
1156 { 1461 {
1157 ev_rt_now = ev_time (); 1462 ev_rt_now = ev_time ();
1158 mn_now = ev_rt_now; 1463 mn_now = ev_rt_now;
1159 } 1464 }
1160 1465
1161 if (flags & EVLOOP_NONBLOCK || idlecnt)
1162 block = 0.;
1163 else
1164 {
1165 block = MAX_BLOCKTIME; 1466 block = MAX_BLOCKTIME;
1166 1467
1167 if (timercnt) 1468 if (timercnt)
1168 { 1469 {
1169 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1170 if (block > to) block = to; 1471 if (block > to) block = to;
1171 } 1472 }
1172 1473
1474#if EV_PERIODIC_ENABLE
1173 if (periodiccnt) 1475 if (periodiccnt)
1174 { 1476 {
1175 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1176 if (block > to) block = to; 1478 if (block > to) block = to;
1177 } 1479 }
1480#endif
1178 1481
1179 if (block < 0.) block = 0.; 1482 if (expect_false (block < 0.)) block = 0.;
1180 } 1483 }
1181 1484
1485 ++loop_count;
1182 method_poll (EV_A_ block); 1486 backend_poll (EV_A_ block);
1487 }
1183 1488
1184 /* update ev_rt_now, do magic */ 1489 /* update ev_rt_now, do magic */
1185 time_update (EV_A); 1490 time_update (EV_A);
1186 1491
1187 /* queue pending timers and reschedule them */ 1492 /* queue pending timers and reschedule them */
1188 timers_reify (EV_A); /* relative timers called last */ 1493 timers_reify (EV_A); /* relative timers called last */
1494#if EV_PERIODIC_ENABLE
1189 periodics_reify (EV_A); /* absolute timers called first */ 1495 periodics_reify (EV_A); /* absolute timers called first */
1496#endif
1190 1497
1498#if EV_IDLE_ENABLE
1191 /* queue idle watchers unless io or timers are pending */ 1499 /* queue idle watchers unless other events are pending */
1192 if (idlecnt && !any_pending (EV_A)) 1500 idle_reify (EV_A);
1193 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1501#endif
1194 1502
1195 /* queue check watchers, to be executed first */ 1503 /* queue check watchers, to be executed first */
1196 if (checkcnt) 1504 if (expect_false (checkcnt))
1197 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1505 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1198 1506
1199 call_pending (EV_A); 1507 call_pending (EV_A);
1508
1200 } 1509 }
1201 while (activecnt && !loop_done); 1510 while (expect_true (activecnt && !loop_done));
1202 1511
1203 if (loop_done != 2) 1512 if (loop_done == EVUNLOOP_ONE)
1204 loop_done = 0; 1513 loop_done = EVUNLOOP_CANCEL;
1205} 1514}
1206 1515
1207void 1516void
1208ev_unloop (EV_P_ int how) 1517ev_unloop (EV_P_ int how)
1209{ 1518{
1210 loop_done = how; 1519 loop_done = how;
1211} 1520}
1212 1521
1213/*****************************************************************************/ 1522/*****************************************************************************/
1214 1523
1215inline void 1524void inline_size
1216wlist_add (WL *head, WL elem) 1525wlist_add (WL *head, WL elem)
1217{ 1526{
1218 elem->next = *head; 1527 elem->next = *head;
1219 *head = elem; 1528 *head = elem;
1220} 1529}
1221 1530
1222inline void 1531void inline_size
1223wlist_del (WL *head, WL elem) 1532wlist_del (WL *head, WL elem)
1224{ 1533{
1225 while (*head) 1534 while (*head)
1226 { 1535 {
1227 if (*head == elem) 1536 if (*head == elem)
1232 1541
1233 head = &(*head)->next; 1542 head = &(*head)->next;
1234 } 1543 }
1235} 1544}
1236 1545
1237inline void 1546void inline_speed
1238ev_clear_pending (EV_P_ W w) 1547clear_pending (EV_P_ W w)
1239{ 1548{
1240 if (w->pending) 1549 if (w->pending)
1241 { 1550 {
1242 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1551 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1243 w->pending = 0; 1552 w->pending = 0;
1244 } 1553 }
1245} 1554}
1246 1555
1247inline void 1556int
1557ev_clear_pending (EV_P_ void *w)
1558{
1559 W w_ = (W)w;
1560 int pending = w_->pending;
1561
1562 if (expect_true (pending))
1563 {
1564 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1565 w_->pending = 0;
1566 p->w = 0;
1567 return p->events;
1568 }
1569 else
1570 return 0;
1571}
1572
1573void inline_size
1574pri_adjust (EV_P_ W w)
1575{
1576 int pri = w->priority;
1577 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1578 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1579 w->priority = pri;
1580}
1581
1582void inline_speed
1248ev_start (EV_P_ W w, int active) 1583ev_start (EV_P_ W w, int active)
1249{ 1584{
1250 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1585 pri_adjust (EV_A_ w);
1251 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1252
1253 w->active = active; 1586 w->active = active;
1254 ev_ref (EV_A); 1587 ev_ref (EV_A);
1255} 1588}
1256 1589
1257inline void 1590void inline_size
1258ev_stop (EV_P_ W w) 1591ev_stop (EV_P_ W w)
1259{ 1592{
1260 ev_unref (EV_A); 1593 ev_unref (EV_A);
1261 w->active = 0; 1594 w->active = 0;
1262} 1595}
1263 1596
1264/*****************************************************************************/ 1597/*****************************************************************************/
1265 1598
1266void 1599void noinline
1267ev_io_start (EV_P_ struct ev_io *w) 1600ev_io_start (EV_P_ ev_io *w)
1268{ 1601{
1269 int fd = w->fd; 1602 int fd = w->fd;
1270 1603
1271 if (ev_is_active (w)) 1604 if (expect_false (ev_is_active (w)))
1272 return; 1605 return;
1273 1606
1274 assert (("ev_io_start called with negative fd", fd >= 0)); 1607 assert (("ev_io_start called with negative fd", fd >= 0));
1275 1608
1276 ev_start (EV_A_ (W)w, 1); 1609 ev_start (EV_A_ (W)w, 1);
1278 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1611 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1279 1612
1280 fd_change (EV_A_ fd); 1613 fd_change (EV_A_ fd);
1281} 1614}
1282 1615
1283void 1616void noinline
1284ev_io_stop (EV_P_ struct ev_io *w) 1617ev_io_stop (EV_P_ ev_io *w)
1285{ 1618{
1286 ev_clear_pending (EV_A_ (W)w); 1619 clear_pending (EV_A_ (W)w);
1287 if (!ev_is_active (w)) 1620 if (expect_false (!ev_is_active (w)))
1288 return; 1621 return;
1622
1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1289 1624
1290 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1625 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1291 ev_stop (EV_A_ (W)w); 1626 ev_stop (EV_A_ (W)w);
1292 1627
1293 fd_change (EV_A_ w->fd); 1628 fd_change (EV_A_ w->fd);
1294} 1629}
1295 1630
1296void 1631void noinline
1297ev_timer_start (EV_P_ struct ev_timer *w) 1632ev_timer_start (EV_P_ ev_timer *w)
1298{ 1633{
1299 if (ev_is_active (w)) 1634 if (expect_false (ev_is_active (w)))
1300 return; 1635 return;
1301 1636
1302 ((WT)w)->at += mn_now; 1637 ((WT)w)->at += mn_now;
1303 1638
1304 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1305 1640
1306 ev_start (EV_A_ (W)w, ++timercnt); 1641 ev_start (EV_A_ (W)w, ++timercnt);
1307 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1308 timers [timercnt - 1] = w; 1643 timers [timercnt - 1] = w;
1309 upheap ((WT *)timers, timercnt - 1); 1644 upheap ((WT *)timers, timercnt - 1);
1310 1645
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1647}
1648
1649void noinline
1650ev_timer_stop (EV_P_ ev_timer *w)
1651{
1652 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w)))
1654 return;
1655
1311 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1312}
1313 1657
1314void 1658 {
1315ev_timer_stop (EV_P_ struct ev_timer *w) 1659 int active = ((W)w)->active;
1316{
1317 ev_clear_pending (EV_A_ (W)w);
1318 if (!ev_is_active (w))
1319 return;
1320 1660
1321 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1661 if (expect_true (--active < --timercnt))
1322
1323 if (((W)w)->active < timercnt--)
1324 { 1662 {
1325 timers [((W)w)->active - 1] = timers [timercnt]; 1663 timers [active] = timers [timercnt];
1326 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1664 adjustheap ((WT *)timers, timercnt, active);
1327 } 1665 }
1666 }
1328 1667
1329 ((WT)w)->at = w->repeat; 1668 ((WT)w)->at -= mn_now;
1330 1669
1331 ev_stop (EV_A_ (W)w); 1670 ev_stop (EV_A_ (W)w);
1332} 1671}
1333 1672
1334void 1673void noinline
1335ev_timer_again (EV_P_ struct ev_timer *w) 1674ev_timer_again (EV_P_ ev_timer *w)
1336{ 1675{
1337 if (ev_is_active (w)) 1676 if (ev_is_active (w))
1338 { 1677 {
1339 if (w->repeat) 1678 if (w->repeat)
1679 {
1680 ((WT)w)->at = mn_now + w->repeat;
1340 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat); 1681 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1682 }
1341 else 1683 else
1342 ev_timer_stop (EV_A_ w); 1684 ev_timer_stop (EV_A_ w);
1343 } 1685 }
1344 else if (w->repeat) 1686 else if (w->repeat)
1687 {
1688 w->at = w->repeat;
1345 ev_timer_start (EV_A_ w); 1689 ev_timer_start (EV_A_ w);
1690 }
1346} 1691}
1347 1692
1348void 1693#if EV_PERIODIC_ENABLE
1694void noinline
1349ev_periodic_start (EV_P_ struct ev_periodic *w) 1695ev_periodic_start (EV_P_ ev_periodic *w)
1350{ 1696{
1351 if (ev_is_active (w)) 1697 if (expect_false (ev_is_active (w)))
1352 return; 1698 return;
1353 1699
1354 if (w->reschedule_cb) 1700 if (w->reschedule_cb)
1355 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1356 else if (w->interval) 1702 else if (w->interval)
1357 { 1703 {
1358 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1359 /* this formula differs from the one in periodic_reify because we do not always round up */ 1705 /* this formula differs from the one in periodic_reify because we do not always round up */
1360 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1361 } 1707 }
1708 else
1709 ((WT)w)->at = w->offset;
1362 1710
1363 ev_start (EV_A_ (W)w, ++periodiccnt); 1711 ev_start (EV_A_ (W)w, ++periodiccnt);
1364 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1365 periodics [periodiccnt - 1] = w; 1713 periodics [periodiccnt - 1] = w;
1366 upheap ((WT *)periodics, periodiccnt - 1); 1714 upheap ((WT *)periodics, periodiccnt - 1);
1367 1715
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1717}
1718
1719void noinline
1720ev_periodic_stop (EV_P_ ev_periodic *w)
1721{
1722 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w)))
1724 return;
1725
1368 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1369}
1370 1727
1371void 1728 {
1372ev_periodic_stop (EV_P_ struct ev_periodic *w) 1729 int active = ((W)w)->active;
1373{
1374 ev_clear_pending (EV_A_ (W)w);
1375 if (!ev_is_active (w))
1376 return;
1377 1730
1378 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1731 if (expect_true (--active < --periodiccnt))
1379
1380 if (((W)w)->active < periodiccnt--)
1381 { 1732 {
1382 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1733 periodics [active] = periodics [periodiccnt];
1383 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1734 adjustheap ((WT *)periodics, periodiccnt, active);
1384 } 1735 }
1736 }
1385 1737
1386 ev_stop (EV_A_ (W)w); 1738 ev_stop (EV_A_ (W)w);
1387} 1739}
1388 1740
1389void 1741void noinline
1390ev_periodic_again (EV_P_ struct ev_periodic *w) 1742ev_periodic_again (EV_P_ ev_periodic *w)
1391{ 1743{
1392 /* TODO: use adjustheap and recalculation */ 1744 /* TODO: use adjustheap and recalculation */
1393 ev_periodic_stop (EV_A_ w); 1745 ev_periodic_stop (EV_A_ w);
1394 ev_periodic_start (EV_A_ w); 1746 ev_periodic_start (EV_A_ w);
1395} 1747}
1396 1748#endif
1397void
1398ev_idle_start (EV_P_ struct ev_idle *w)
1399{
1400 if (ev_is_active (w))
1401 return;
1402
1403 ev_start (EV_A_ (W)w, ++idlecnt);
1404 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1405 idles [idlecnt - 1] = w;
1406}
1407
1408void
1409ev_idle_stop (EV_P_ struct ev_idle *w)
1410{
1411 ev_clear_pending (EV_A_ (W)w);
1412 if (ev_is_active (w))
1413 return;
1414
1415 idles [((W)w)->active - 1] = idles [--idlecnt];
1416 ev_stop (EV_A_ (W)w);
1417}
1418
1419void
1420ev_prepare_start (EV_P_ struct ev_prepare *w)
1421{
1422 if (ev_is_active (w))
1423 return;
1424
1425 ev_start (EV_A_ (W)w, ++preparecnt);
1426 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1427 prepares [preparecnt - 1] = w;
1428}
1429
1430void
1431ev_prepare_stop (EV_P_ struct ev_prepare *w)
1432{
1433 ev_clear_pending (EV_A_ (W)w);
1434 if (ev_is_active (w))
1435 return;
1436
1437 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1438 ev_stop (EV_A_ (W)w);
1439}
1440
1441void
1442ev_check_start (EV_P_ struct ev_check *w)
1443{
1444 if (ev_is_active (w))
1445 return;
1446
1447 ev_start (EV_A_ (W)w, ++checkcnt);
1448 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1449 checks [checkcnt - 1] = w;
1450}
1451
1452void
1453ev_check_stop (EV_P_ struct ev_check *w)
1454{
1455 ev_clear_pending (EV_A_ (W)w);
1456 if (ev_is_active (w))
1457 return;
1458
1459 checks [((W)w)->active - 1] = checks [--checkcnt];
1460 ev_stop (EV_A_ (W)w);
1461}
1462 1749
1463#ifndef SA_RESTART 1750#ifndef SA_RESTART
1464# define SA_RESTART 0 1751# define SA_RESTART 0
1465#endif 1752#endif
1466 1753
1467void 1754void noinline
1468ev_signal_start (EV_P_ struct ev_signal *w) 1755ev_signal_start (EV_P_ ev_signal *w)
1469{ 1756{
1470#if EV_MULTIPLICITY 1757#if EV_MULTIPLICITY
1471 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1758 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1472#endif 1759#endif
1473 if (ev_is_active (w)) 1760 if (expect_false (ev_is_active (w)))
1474 return; 1761 return;
1475 1762
1476 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1477 1764
1478 ev_start (EV_A_ (W)w, 1); 1765 ev_start (EV_A_ (W)w, 1);
1479 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 1766 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1480 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1767 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1481 1768
1482 if (!((WL)w)->next) 1769 if (!((WL)w)->next)
1483 { 1770 {
1484#if WIN32 1771#if _WIN32
1485 signal (w->signum, sighandler); 1772 signal (w->signum, sighandler);
1486#else 1773#else
1487 struct sigaction sa; 1774 struct sigaction sa;
1488 sa.sa_handler = sighandler; 1775 sa.sa_handler = sighandler;
1489 sigfillset (&sa.sa_mask); 1776 sigfillset (&sa.sa_mask);
1491 sigaction (w->signum, &sa, 0); 1778 sigaction (w->signum, &sa, 0);
1492#endif 1779#endif
1493 } 1780 }
1494} 1781}
1495 1782
1496void 1783void noinline
1497ev_signal_stop (EV_P_ struct ev_signal *w) 1784ev_signal_stop (EV_P_ ev_signal *w)
1498{ 1785{
1499 ev_clear_pending (EV_A_ (W)w); 1786 clear_pending (EV_A_ (W)w);
1500 if (!ev_is_active (w)) 1787 if (expect_false (!ev_is_active (w)))
1501 return; 1788 return;
1502 1789
1503 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1504 ev_stop (EV_A_ (W)w); 1791 ev_stop (EV_A_ (W)w);
1505 1792
1506 if (!signals [w->signum - 1].head) 1793 if (!signals [w->signum - 1].head)
1507 signal (w->signum, SIG_DFL); 1794 signal (w->signum, SIG_DFL);
1508} 1795}
1509 1796
1510void 1797void
1511ev_child_start (EV_P_ struct ev_child *w) 1798ev_child_start (EV_P_ ev_child *w)
1512{ 1799{
1513#if EV_MULTIPLICITY 1800#if EV_MULTIPLICITY
1514 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1801 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1515#endif 1802#endif
1516 if (ev_is_active (w)) 1803 if (expect_false (ev_is_active (w)))
1517 return; 1804 return;
1518 1805
1519 ev_start (EV_A_ (W)w, 1); 1806 ev_start (EV_A_ (W)w, 1);
1520 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1521} 1808}
1522 1809
1523void 1810void
1524ev_child_stop (EV_P_ struct ev_child *w) 1811ev_child_stop (EV_P_ ev_child *w)
1525{ 1812{
1526 ev_clear_pending (EV_A_ (W)w); 1813 clear_pending (EV_A_ (W)w);
1527 if (ev_is_active (w)) 1814 if (expect_false (!ev_is_active (w)))
1528 return; 1815 return;
1529 1816
1530 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1531 ev_stop (EV_A_ (W)w); 1818 ev_stop (EV_A_ (W)w);
1532} 1819}
1533 1820
1821#if EV_STAT_ENABLE
1822
1823# ifdef _WIN32
1824# undef lstat
1825# define lstat(a,b) _stati64 (a,b)
1826# endif
1827
1828#define DEF_STAT_INTERVAL 5.0074891
1829#define MIN_STAT_INTERVAL 0.1074891
1830
1831static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1832
1833#if EV_USE_INOTIFY
1834# define EV_INOTIFY_BUFSIZE 8192
1835
1836static void noinline
1837infy_add (EV_P_ ev_stat *w)
1838{
1839 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1840
1841 if (w->wd < 0)
1842 {
1843 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1844
1845 /* monitor some parent directory for speedup hints */
1846 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1847 {
1848 char path [4096];
1849 strcpy (path, w->path);
1850
1851 do
1852 {
1853 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1854 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1855
1856 char *pend = strrchr (path, '/');
1857
1858 if (!pend)
1859 break; /* whoops, no '/', complain to your admin */
1860
1861 *pend = 0;
1862 w->wd = inotify_add_watch (fs_fd, path, mask);
1863 }
1864 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1865 }
1866 }
1867 else
1868 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1869
1870 if (w->wd >= 0)
1871 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1872}
1873
1874static void noinline
1875infy_del (EV_P_ ev_stat *w)
1876{
1877 int slot;
1878 int wd = w->wd;
1879
1880 if (wd < 0)
1881 return;
1882
1883 w->wd = -2;
1884 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1885 wlist_del (&fs_hash [slot].head, (WL)w);
1886
1887 /* remove this watcher, if others are watching it, they will rearm */
1888 inotify_rm_watch (fs_fd, wd);
1889}
1890
1891static void noinline
1892infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1893{
1894 if (slot < 0)
1895 /* overflow, need to check for all hahs slots */
1896 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1897 infy_wd (EV_A_ slot, wd, ev);
1898 else
1899 {
1900 WL w_;
1901
1902 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1903 {
1904 ev_stat *w = (ev_stat *)w_;
1905 w_ = w_->next; /* lets us remove this watcher and all before it */
1906
1907 if (w->wd == wd || wd == -1)
1908 {
1909 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1910 {
1911 w->wd = -1;
1912 infy_add (EV_A_ w); /* re-add, no matter what */
1913 }
1914
1915 stat_timer_cb (EV_A_ &w->timer, 0);
1916 }
1917 }
1918 }
1919}
1920
1921static void
1922infy_cb (EV_P_ ev_io *w, int revents)
1923{
1924 char buf [EV_INOTIFY_BUFSIZE];
1925 struct inotify_event *ev = (struct inotify_event *)buf;
1926 int ofs;
1927 int len = read (fs_fd, buf, sizeof (buf));
1928
1929 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1930 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1931}
1932
1933void inline_size
1934infy_init (EV_P)
1935{
1936 if (fs_fd != -2)
1937 return;
1938
1939 fs_fd = inotify_init ();
1940
1941 if (fs_fd >= 0)
1942 {
1943 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1944 ev_set_priority (&fs_w, EV_MAXPRI);
1945 ev_io_start (EV_A_ &fs_w);
1946 }
1947}
1948
1949void inline_size
1950infy_fork (EV_P)
1951{
1952 int slot;
1953
1954 if (fs_fd < 0)
1955 return;
1956
1957 close (fs_fd);
1958 fs_fd = inotify_init ();
1959
1960 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1961 {
1962 WL w_ = fs_hash [slot].head;
1963 fs_hash [slot].head = 0;
1964
1965 while (w_)
1966 {
1967 ev_stat *w = (ev_stat *)w_;
1968 w_ = w_->next; /* lets us add this watcher */
1969
1970 w->wd = -1;
1971
1972 if (fs_fd >= 0)
1973 infy_add (EV_A_ w); /* re-add, no matter what */
1974 else
1975 ev_timer_start (EV_A_ &w->timer);
1976 }
1977
1978 }
1979}
1980
1981#endif
1982
1983void
1984ev_stat_stat (EV_P_ ev_stat *w)
1985{
1986 if (lstat (w->path, &w->attr) < 0)
1987 w->attr.st_nlink = 0;
1988 else if (!w->attr.st_nlink)
1989 w->attr.st_nlink = 1;
1990}
1991
1992static void noinline
1993stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1994{
1995 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1996
1997 /* we copy this here each the time so that */
1998 /* prev has the old value when the callback gets invoked */
1999 w->prev = w->attr;
2000 ev_stat_stat (EV_A_ w);
2001
2002 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2003 if (
2004 w->prev.st_dev != w->attr.st_dev
2005 || w->prev.st_ino != w->attr.st_ino
2006 || w->prev.st_mode != w->attr.st_mode
2007 || w->prev.st_nlink != w->attr.st_nlink
2008 || w->prev.st_uid != w->attr.st_uid
2009 || w->prev.st_gid != w->attr.st_gid
2010 || w->prev.st_rdev != w->attr.st_rdev
2011 || w->prev.st_size != w->attr.st_size
2012 || w->prev.st_atime != w->attr.st_atime
2013 || w->prev.st_mtime != w->attr.st_mtime
2014 || w->prev.st_ctime != w->attr.st_ctime
2015 ) {
2016 #if EV_USE_INOTIFY
2017 infy_del (EV_A_ w);
2018 infy_add (EV_A_ w);
2019 ev_stat_stat (EV_A_ w); /* avoid race... */
2020 #endif
2021
2022 ev_feed_event (EV_A_ w, EV_STAT);
2023 }
2024}
2025
2026void
2027ev_stat_start (EV_P_ ev_stat *w)
2028{
2029 if (expect_false (ev_is_active (w)))
2030 return;
2031
2032 /* since we use memcmp, we need to clear any padding data etc. */
2033 memset (&w->prev, 0, sizeof (ev_statdata));
2034 memset (&w->attr, 0, sizeof (ev_statdata));
2035
2036 ev_stat_stat (EV_A_ w);
2037
2038 if (w->interval < MIN_STAT_INTERVAL)
2039 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2040
2041 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2042 ev_set_priority (&w->timer, ev_priority (w));
2043
2044#if EV_USE_INOTIFY
2045 infy_init (EV_A);
2046
2047 if (fs_fd >= 0)
2048 infy_add (EV_A_ w);
2049 else
2050#endif
2051 ev_timer_start (EV_A_ &w->timer);
2052
2053 ev_start (EV_A_ (W)w, 1);
2054}
2055
2056void
2057ev_stat_stop (EV_P_ ev_stat *w)
2058{
2059 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w)))
2061 return;
2062
2063#if EV_USE_INOTIFY
2064 infy_del (EV_A_ w);
2065#endif
2066 ev_timer_stop (EV_A_ &w->timer);
2067
2068 ev_stop (EV_A_ (W)w);
2069}
2070#endif
2071
2072#if EV_IDLE_ENABLE
2073void
2074ev_idle_start (EV_P_ ev_idle *w)
2075{
2076 if (expect_false (ev_is_active (w)))
2077 return;
2078
2079 pri_adjust (EV_A_ (W)w);
2080
2081 {
2082 int active = ++idlecnt [ABSPRI (w)];
2083
2084 ++idleall;
2085 ev_start (EV_A_ (W)w, active);
2086
2087 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2088 idles [ABSPRI (w)][active - 1] = w;
2089 }
2090}
2091
2092void
2093ev_idle_stop (EV_P_ ev_idle *w)
2094{
2095 clear_pending (EV_A_ (W)w);
2096 if (expect_false (!ev_is_active (w)))
2097 return;
2098
2099 {
2100 int active = ((W)w)->active;
2101
2102 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2103 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2104
2105 ev_stop (EV_A_ (W)w);
2106 --idleall;
2107 }
2108}
2109#endif
2110
2111void
2112ev_prepare_start (EV_P_ ev_prepare *w)
2113{
2114 if (expect_false (ev_is_active (w)))
2115 return;
2116
2117 ev_start (EV_A_ (W)w, ++preparecnt);
2118 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2119 prepares [preparecnt - 1] = w;
2120}
2121
2122void
2123ev_prepare_stop (EV_P_ ev_prepare *w)
2124{
2125 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w)))
2127 return;
2128
2129 {
2130 int active = ((W)w)->active;
2131 prepares [active - 1] = prepares [--preparecnt];
2132 ((W)prepares [active - 1])->active = active;
2133 }
2134
2135 ev_stop (EV_A_ (W)w);
2136}
2137
2138void
2139ev_check_start (EV_P_ ev_check *w)
2140{
2141 if (expect_false (ev_is_active (w)))
2142 return;
2143
2144 ev_start (EV_A_ (W)w, ++checkcnt);
2145 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2146 checks [checkcnt - 1] = w;
2147}
2148
2149void
2150ev_check_stop (EV_P_ ev_check *w)
2151{
2152 clear_pending (EV_A_ (W)w);
2153 if (expect_false (!ev_is_active (w)))
2154 return;
2155
2156 {
2157 int active = ((W)w)->active;
2158 checks [active - 1] = checks [--checkcnt];
2159 ((W)checks [active - 1])->active = active;
2160 }
2161
2162 ev_stop (EV_A_ (W)w);
2163}
2164
2165#if EV_EMBED_ENABLE
2166void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w)
2168{
2169 ev_loop (w->loop, EVLOOP_NONBLOCK);
2170}
2171
2172static void
2173embed_cb (EV_P_ ev_io *io, int revents)
2174{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176
2177 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else
2180 ev_embed_sweep (loop, w);
2181}
2182
2183void
2184ev_embed_start (EV_P_ ev_embed *w)
2185{
2186 if (expect_false (ev_is_active (w)))
2187 return;
2188
2189 {
2190 struct ev_loop *loop = w->loop;
2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2193 }
2194
2195 ev_set_priority (&w->io, ev_priority (w));
2196 ev_io_start (EV_A_ &w->io);
2197
2198 ev_start (EV_A_ (W)w, 1);
2199}
2200
2201void
2202ev_embed_stop (EV_P_ ev_embed *w)
2203{
2204 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w)))
2206 return;
2207
2208 ev_io_stop (EV_A_ &w->io);
2209
2210 ev_stop (EV_A_ (W)w);
2211}
2212#endif
2213
2214#if EV_FORK_ENABLE
2215void
2216ev_fork_start (EV_P_ ev_fork *w)
2217{
2218 if (expect_false (ev_is_active (w)))
2219 return;
2220
2221 ev_start (EV_A_ (W)w, ++forkcnt);
2222 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2223 forks [forkcnt - 1] = w;
2224}
2225
2226void
2227ev_fork_stop (EV_P_ ev_fork *w)
2228{
2229 clear_pending (EV_A_ (W)w);
2230 if (expect_false (!ev_is_active (w)))
2231 return;
2232
2233 {
2234 int active = ((W)w)->active;
2235 forks [active - 1] = forks [--forkcnt];
2236 ((W)forks [active - 1])->active = active;
2237 }
2238
2239 ev_stop (EV_A_ (W)w);
2240}
2241#endif
2242
1534/*****************************************************************************/ 2243/*****************************************************************************/
1535 2244
1536struct ev_once 2245struct ev_once
1537{ 2246{
1538 struct ev_io io; 2247 ev_io io;
1539 struct ev_timer to; 2248 ev_timer to;
1540 void (*cb)(int revents, void *arg); 2249 void (*cb)(int revents, void *arg);
1541 void *arg; 2250 void *arg;
1542}; 2251};
1543 2252
1544static void 2253static void
1553 2262
1554 cb (revents, arg); 2263 cb (revents, arg);
1555} 2264}
1556 2265
1557static void 2266static void
1558once_cb_io (EV_P_ struct ev_io *w, int revents) 2267once_cb_io (EV_P_ ev_io *w, int revents)
1559{ 2268{
1560 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2269 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1561} 2270}
1562 2271
1563static void 2272static void
1564once_cb_to (EV_P_ struct ev_timer *w, int revents) 2273once_cb_to (EV_P_ ev_timer *w, int revents)
1565{ 2274{
1566 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2275 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1567} 2276}
1568 2277
1569void 2278void
1570ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2279ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1571{ 2280{
1572 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2281 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1573 2282
1574 if (!once) 2283 if (expect_false (!once))
2284 {
1575 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2285 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1576 else 2286 return;
1577 { 2287 }
2288
1578 once->cb = cb; 2289 once->cb = cb;
1579 once->arg = arg; 2290 once->arg = arg;
1580 2291
1581 ev_init (&once->io, once_cb_io); 2292 ev_init (&once->io, once_cb_io);
1582 if (fd >= 0) 2293 if (fd >= 0)
1583 { 2294 {
1584 ev_io_set (&once->io, fd, events); 2295 ev_io_set (&once->io, fd, events);
1585 ev_io_start (EV_A_ &once->io); 2296 ev_io_start (EV_A_ &once->io);
1586 } 2297 }
1587 2298
1588 ev_init (&once->to, once_cb_to); 2299 ev_init (&once->to, once_cb_to);
1589 if (timeout >= 0.) 2300 if (timeout >= 0.)
1590 { 2301 {
1591 ev_timer_set (&once->to, timeout, 0.); 2302 ev_timer_set (&once->to, timeout, 0.);
1592 ev_timer_start (EV_A_ &once->to); 2303 ev_timer_start (EV_A_ &once->to);
1593 }
1594 } 2304 }
1595} 2305}
1596 2306
2307#ifdef __cplusplus
2308}
2309#endif
2310

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines