ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.85 by root, Sat Nov 10 03:13:50 2007 UTC vs.
Revision 1.182 by root, Wed Dec 12 01:27:08 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
59# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 60# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
41# endif 65# endif
42 66
67# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 68# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
45# endif 73# endif
46 74
75# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
97# endif
98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
53# endif 105# endif
54 106
55#endif 107#endif
56 108
57#include <math.h> 109#include <math.h>
66#include <sys/types.h> 118#include <sys/types.h>
67#include <time.h> 119#include <time.h>
68 120
69#include <signal.h> 121#include <signal.h>
70 122
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
76/**/
77
78#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1
80#endif
81
82#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1
84#endif
85
86#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88#endif
89
90#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0
92#endif
93
94#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME
109# define EV_USE_REALTIME 1
110#endif
111
112/**/
113
114#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0
117#endif
118
119#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0
122#endif
123
124/**/
125
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130
131#ifdef EV_H 123#ifdef EV_H
132# include EV_H 124# include EV_H
133#else 125#else
134# include "ev.h" 126# include "ev.h"
135#endif 127#endif
136 128
129#ifndef _WIN32
130# include <sys/time.h>
131# include <sys/wait.h>
132# include <unistd.h>
133#else
134# define WIN32_LEAN_AND_MEAN
135# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1
138# endif
139#endif
140
141/**/
142
143#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0
145#endif
146
147#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0
149#endif
150
151#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1
153#endif
154
155#ifndef EV_USE_POLL
156# ifdef _WIN32
157# define EV_USE_POLL 0
158# else
159# define EV_USE_POLL 1
160# endif
161#endif
162
163#ifndef EV_USE_EPOLL
164# define EV_USE_EPOLL 0
165#endif
166
167#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0
169#endif
170
171#ifndef EV_USE_PORT
172# define EV_USE_PORT 0
173#endif
174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
195/**/
196
197#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0
200#endif
201
202#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0
205#endif
206
207#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h>
209#endif
210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
219/**/
220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
230
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234
137#if __GNUC__ >= 3 235#if __GNUC__ >= 3
138# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
139# define inline inline 237# define noinline __attribute__ ((noinline))
140#else 238#else
141# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
142# define inline static 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
143#endif 244#endif
144 245
145#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
146#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
147 255
148#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
149#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
150 258
259#define EMPTY /* required for microsofts broken pseudo-c compiler */
260#define EMPTY2(a,b) /* used to suppress some warnings */
261
151typedef struct ev_watcher *W; 262typedef ev_watcher *W;
152typedef struct ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
153typedef struct ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
154 265
155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
156 267
268#ifdef _WIN32
157#include "ev_win32.c" 269# include "ev_win32.c"
270#endif
158 271
159/*****************************************************************************/ 272/*****************************************************************************/
160 273
161static void (*syserr_cb)(const char *msg); 274static void (*syserr_cb)(const char *msg);
162 275
276void
163void ev_set_syserr_cb (void (*cb)(const char *msg)) 277ev_set_syserr_cb (void (*cb)(const char *msg))
164{ 278{
165 syserr_cb = cb; 279 syserr_cb = cb;
166} 280}
167 281
168static void 282static void noinline
169syserr (const char *msg) 283syserr (const char *msg)
170{ 284{
171 if (!msg) 285 if (!msg)
172 msg = "(libev) system error"; 286 msg = "(libev) system error";
173 287
180 } 294 }
181} 295}
182 296
183static void *(*alloc)(void *ptr, long size); 297static void *(*alloc)(void *ptr, long size);
184 298
299void
185void ev_set_allocator (void *(*cb)(void *ptr, long size)) 300ev_set_allocator (void *(*cb)(void *ptr, long size))
186{ 301{
187 alloc = cb; 302 alloc = cb;
188} 303}
189 304
190static void * 305inline_speed void *
191ev_realloc (void *ptr, long size) 306ev_realloc (void *ptr, long size)
192{ 307{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194 309
195 if (!ptr && size) 310 if (!ptr && size)
209typedef struct 324typedef struct
210{ 325{
211 WL head; 326 WL head;
212 unsigned char events; 327 unsigned char events;
213 unsigned char reify; 328 unsigned char reify;
329#if EV_SELECT_IS_WINSOCKET
330 SOCKET handle;
331#endif
214} ANFD; 332} ANFD;
215 333
216typedef struct 334typedef struct
217{ 335{
218 W w; 336 W w;
219 int events; 337 int events;
220} ANPENDING; 338} ANPENDING;
221 339
340#if EV_USE_INOTIFY
341typedef struct
342{
343 WL head;
344} ANFS;
345#endif
346
222#if EV_MULTIPLICITY 347#if EV_MULTIPLICITY
223 348
224 struct ev_loop 349 struct ev_loop
225 { 350 {
351 ev_tstamp ev_rt_now;
352 #define ev_rt_now ((loop)->ev_rt_now)
226 #define VAR(name,decl) decl; 353 #define VAR(name,decl) decl;
227 #include "ev_vars.h" 354 #include "ev_vars.h"
228 #undef VAR 355 #undef VAR
229 }; 356 };
230 #include "ev_wrap.h" 357 #include "ev_wrap.h"
231 358
232 struct ev_loop default_loop_struct; 359 static struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop; 360 struct ev_loop *ev_default_loop_ptr;
234 361
235#else 362#else
236 363
364 ev_tstamp ev_rt_now;
237 #define VAR(name,decl) static decl; 365 #define VAR(name,decl) static decl;
238 #include "ev_vars.h" 366 #include "ev_vars.h"
239 #undef VAR 367 #undef VAR
240 368
241 static int default_loop; 369 static int ev_default_loop_ptr;
242 370
243#endif 371#endif
244 372
245/*****************************************************************************/ 373/*****************************************************************************/
246 374
247inline ev_tstamp 375ev_tstamp
248ev_time (void) 376ev_time (void)
249{ 377{
250#if EV_USE_REALTIME 378#if EV_USE_REALTIME
251 struct timespec ts; 379 struct timespec ts;
252 clock_gettime (CLOCK_REALTIME, &ts); 380 clock_gettime (CLOCK_REALTIME, &ts);
256 gettimeofday (&tv, 0); 384 gettimeofday (&tv, 0);
257 return tv.tv_sec + tv.tv_usec * 1e-6; 385 return tv.tv_sec + tv.tv_usec * 1e-6;
258#endif 386#endif
259} 387}
260 388
261inline ev_tstamp 389ev_tstamp inline_size
262get_clock (void) 390get_clock (void)
263{ 391{
264#if EV_USE_MONOTONIC 392#if EV_USE_MONOTONIC
265 if (expect_true (have_monotonic)) 393 if (expect_true (have_monotonic))
266 { 394 {
279{ 407{
280 return ev_rt_now; 408 return ev_rt_now;
281} 409}
282#endif 410#endif
283 411
284#define array_roundsize(type,n) ((n) | 4 & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
285 439
286#define array_needsize(type,base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
287 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
288 { \ 442 { \
289 int newcnt = cur; \ 443 int ocur_ = (cur); \
290 do \ 444 (base) = (type *)array_realloc \
291 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
292 newcnt = array_roundsize (type, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
293 } \
294 while ((cnt) > newcnt); \
295 \
296 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
297 init (base + cur, newcnt - cur); \
298 cur = newcnt; \
299 } 447 }
300 448
449#if 0
301#define array_slim(type,stem) \ 450#define array_slim(type,stem) \
302 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
303 { \ 452 { \
304 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
305 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
306 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
307 } 456 }
308 457#endif
309/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
310/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
311#define array_free_microshit(stem) \
312 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
313 458
314#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
315 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
316 461
317/*****************************************************************************/ 462/*****************************************************************************/
318 463
319static void 464void noinline
465ev_feed_event (EV_P_ void *w, int revents)
466{
467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
469
470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents;
478 }
479}
480
481void inline_speed
482queue_events (EV_P_ W *events, int eventcnt, int type)
483{
484 int i;
485
486 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type);
488}
489
490/*****************************************************************************/
491
492void inline_size
320anfds_init (ANFD *base, int count) 493anfds_init (ANFD *base, int count)
321{ 494{
322 while (count--) 495 while (count--)
323 { 496 {
324 base->head = 0; 497 base->head = 0;
327 500
328 ++base; 501 ++base;
329 } 502 }
330} 503}
331 504
332void 505void inline_speed
333ev_feed_event (EV_P_ void *w, int revents)
334{
335 W w_ = (W)w;
336
337 if (w_->pending)
338 {
339 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
340 return;
341 }
342
343 w_->pending = ++pendingcnt [ABSPRI (w_)];
344 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
345 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
346 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
347}
348
349static void
350queue_events (EV_P_ W *events, int eventcnt, int type)
351{
352 int i;
353
354 for (i = 0; i < eventcnt; ++i)
355 ev_feed_event (EV_A_ events [i], type);
356}
357
358inline void
359fd_event (EV_P_ int fd, int revents) 506fd_event (EV_P_ int fd, int revents)
360{ 507{
361 ANFD *anfd = anfds + fd; 508 ANFD *anfd = anfds + fd;
362 struct ev_io *w; 509 ev_io *w;
363 510
364 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 511 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
365 { 512 {
366 int ev = w->events & revents; 513 int ev = w->events & revents;
367 514
368 if (ev) 515 if (ev)
369 ev_feed_event (EV_A_ (W)w, ev); 516 ev_feed_event (EV_A_ (W)w, ev);
371} 518}
372 519
373void 520void
374ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
375{ 522{
523 if (fd >= 0 && fd < anfdmax)
376 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
377} 525}
378 526
379/*****************************************************************************/ 527void inline_size
380
381static void
382fd_reify (EV_P) 528fd_reify (EV_P)
383{ 529{
384 int i; 530 int i;
385 531
386 for (i = 0; i < fdchangecnt; ++i) 532 for (i = 0; i < fdchangecnt; ++i)
387 { 533 {
388 int fd = fdchanges [i]; 534 int fd = fdchanges [i];
389 ANFD *anfd = anfds + fd; 535 ANFD *anfd = anfds + fd;
390 struct ev_io *w; 536 ev_io *w;
391 537
392 int events = 0; 538 int events = 0;
393 539
394 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
395 events |= w->events; 541 events |= w->events;
396 542
543#if EV_SELECT_IS_WINSOCKET
544 if (events)
545 {
546 unsigned long argp;
547 anfd->handle = _get_osfhandle (fd);
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
549 }
550#endif
551
397 anfd->reify = 0; 552 anfd->reify = 0;
398 553
399 method_modify (EV_A_ fd, anfd->events, events); 554 backend_modify (EV_A_ fd, anfd->events, events);
400 anfd->events = events; 555 anfd->events = events;
401 } 556 }
402 557
403 fdchangecnt = 0; 558 fdchangecnt = 0;
404} 559}
405 560
406static void 561void inline_size
407fd_change (EV_P_ int fd) 562fd_change (EV_P_ int fd)
408{ 563{
409 if (anfds [fd].reify) 564 if (expect_false (anfds [fd].reify))
410 return; 565 return;
411 566
412 anfds [fd].reify = 1; 567 anfds [fd].reify = 1;
413 568
414 ++fdchangecnt; 569 ++fdchangecnt;
415 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
416 fdchanges [fdchangecnt - 1] = fd; 571 fdchanges [fdchangecnt - 1] = fd;
417} 572}
418 573
419static void 574void inline_speed
420fd_kill (EV_P_ int fd) 575fd_kill (EV_P_ int fd)
421{ 576{
422 struct ev_io *w; 577 ev_io *w;
423 578
424 while ((w = (struct ev_io *)anfds [fd].head)) 579 while ((w = (ev_io *)anfds [fd].head))
425 { 580 {
426 ev_io_stop (EV_A_ w); 581 ev_io_stop (EV_A_ w);
427 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 582 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
428 } 583 }
429} 584}
430 585
431static int 586int inline_size
432fd_valid (int fd) 587fd_valid (int fd)
433{ 588{
434#ifdef WIN32 589#ifdef _WIN32
435 return !!win32_get_osfhandle (fd); 590 return _get_osfhandle (fd) != -1;
436#else 591#else
437 return fcntl (fd, F_GETFD) != -1; 592 return fcntl (fd, F_GETFD) != -1;
438#endif 593#endif
439} 594}
440 595
441/* called on EBADF to verify fds */ 596/* called on EBADF to verify fds */
442static void 597static void noinline
443fd_ebadf (EV_P) 598fd_ebadf (EV_P)
444{ 599{
445 int fd; 600 int fd;
446 601
447 for (fd = 0; fd < anfdmax; ++fd) 602 for (fd = 0; fd < anfdmax; ++fd)
449 if (!fd_valid (fd) == -1 && errno == EBADF) 604 if (!fd_valid (fd) == -1 && errno == EBADF)
450 fd_kill (EV_A_ fd); 605 fd_kill (EV_A_ fd);
451} 606}
452 607
453/* called on ENOMEM in select/poll to kill some fds and retry */ 608/* called on ENOMEM in select/poll to kill some fds and retry */
454static void 609static void noinline
455fd_enomem (EV_P) 610fd_enomem (EV_P)
456{ 611{
457 int fd; 612 int fd;
458 613
459 for (fd = anfdmax; fd--; ) 614 for (fd = anfdmax; fd--; )
462 fd_kill (EV_A_ fd); 617 fd_kill (EV_A_ fd);
463 return; 618 return;
464 } 619 }
465} 620}
466 621
467/* usually called after fork if method needs to re-arm all fds from scratch */ 622/* usually called after fork if backend needs to re-arm all fds from scratch */
468static void 623static void noinline
469fd_rearm_all (EV_P) 624fd_rearm_all (EV_P)
470{ 625{
471 int fd; 626 int fd;
472 627
473 /* this should be highly optimised to not do anything but set a flag */
474 for (fd = 0; fd < anfdmax; ++fd) 628 for (fd = 0; fd < anfdmax; ++fd)
475 if (anfds [fd].events) 629 if (anfds [fd].events)
476 { 630 {
477 anfds [fd].events = 0; 631 anfds [fd].events = 0;
478 fd_change (EV_A_ fd); 632 fd_change (EV_A_ fd);
479 } 633 }
480} 634}
481 635
482/*****************************************************************************/ 636/*****************************************************************************/
483 637
484static void 638void inline_speed
485upheap (WT *heap, int k) 639upheap (WT *heap, int k)
486{ 640{
487 WT w = heap [k]; 641 WT w = heap [k];
488 642
489 while (k && heap [k >> 1]->at > w->at) 643 while (k)
490 { 644 {
645 int p = (k - 1) >> 1;
646
647 if (heap [p]->at <= w->at)
648 break;
649
491 heap [k] = heap [k >> 1]; 650 heap [k] = heap [p];
492 ((W)heap [k])->active = k + 1; 651 ((W)heap [k])->active = k + 1;
493 k >>= 1; 652 k = p;
494 } 653 }
495 654
496 heap [k] = w; 655 heap [k] = w;
497 ((W)heap [k])->active = k + 1; 656 ((W)heap [k])->active = k + 1;
498
499} 657}
500 658
501static void 659void inline_speed
502downheap (WT *heap, int N, int k) 660downheap (WT *heap, int N, int k)
503{ 661{
504 WT w = heap [k]; 662 WT w = heap [k];
505 663
506 while (k < (N >> 1)) 664 for (;;)
507 { 665 {
508 int j = k << 1; 666 int c = (k << 1) + 1;
509 667
510 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 668 if (c >= N)
511 ++j;
512
513 if (w->at <= heap [j]->at)
514 break; 669 break;
515 670
671 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
672 ? 1 : 0;
673
674 if (w->at <= heap [c]->at)
675 break;
676
516 heap [k] = heap [j]; 677 heap [k] = heap [c];
517 ((W)heap [k])->active = k + 1; 678 ((W)heap [k])->active = k + 1;
679
518 k = j; 680 k = c;
519 } 681 }
520 682
521 heap [k] = w; 683 heap [k] = w;
522 ((W)heap [k])->active = k + 1; 684 ((W)heap [k])->active = k + 1;
523} 685}
524 686
525inline void 687void inline_size
526adjustheap (WT *heap, int N, int k, ev_tstamp at) 688adjustheap (WT *heap, int N, int k)
527{ 689{
528 ev_tstamp old_at = heap [k]->at; 690 upheap (heap, k);
529 heap [k]->at = at;
530
531 if (old_at < at)
532 downheap (heap, N, k); 691 downheap (heap, N, k);
533 else
534 upheap (heap, k);
535} 692}
536 693
537/*****************************************************************************/ 694/*****************************************************************************/
538 695
539typedef struct 696typedef struct
545static ANSIG *signals; 702static ANSIG *signals;
546static int signalmax; 703static int signalmax;
547 704
548static int sigpipe [2]; 705static int sigpipe [2];
549static sig_atomic_t volatile gotsig; 706static sig_atomic_t volatile gotsig;
550static struct ev_io sigev; 707static ev_io sigev;
551 708
552static void 709void inline_size
553signals_init (ANSIG *base, int count) 710signals_init (ANSIG *base, int count)
554{ 711{
555 while (count--) 712 while (count--)
556 { 713 {
557 base->head = 0; 714 base->head = 0;
562} 719}
563 720
564static void 721static void
565sighandler (int signum) 722sighandler (int signum)
566{ 723{
567#if WIN32 724#if _WIN32
568 signal (signum, sighandler); 725 signal (signum, sighandler);
569#endif 726#endif
570 727
571 signals [signum - 1].gotsig = 1; 728 signals [signum - 1].gotsig = 1;
572 729
573 if (!gotsig) 730 if (!gotsig)
574 { 731 {
575 int old_errno = errno; 732 int old_errno = errno;
576 gotsig = 1; 733 gotsig = 1;
577#ifdef WIN32
578 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
579#else
580 write (sigpipe [1], &signum, 1); 734 write (sigpipe [1], &signum, 1);
581#endif
582 errno = old_errno; 735 errno = old_errno;
583 } 736 }
584} 737}
585 738
586void 739void noinline
587ev_feed_signal_event (EV_P_ int signum) 740ev_feed_signal_event (EV_P_ int signum)
588{ 741{
589 WL w; 742 WL w;
590 743
591#if EV_MULTIPLICITY 744#if EV_MULTIPLICITY
592 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 745 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
593#endif 746#endif
594 747
595 --signum; 748 --signum;
596 749
597 if (signum < 0 || signum >= signalmax) 750 if (signum < 0 || signum >= signalmax)
602 for (w = signals [signum].head; w; w = w->next) 755 for (w = signals [signum].head; w; w = w->next)
603 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 756 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
604} 757}
605 758
606static void 759static void
607sigcb (EV_P_ struct ev_io *iow, int revents) 760sigcb (EV_P_ ev_io *iow, int revents)
608{ 761{
609 int signum; 762 int signum;
610 763
611#ifdef WIN32
612 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
613#else
614 read (sigpipe [0], &revents, 1); 764 read (sigpipe [0], &revents, 1);
615#endif
616 gotsig = 0; 765 gotsig = 0;
617 766
618 for (signum = signalmax; signum--; ) 767 for (signum = signalmax; signum--; )
619 if (signals [signum].gotsig) 768 if (signals [signum].gotsig)
620 ev_feed_signal_event (EV_A_ signum + 1); 769 ev_feed_signal_event (EV_A_ signum + 1);
621} 770}
622 771
623static void 772void inline_speed
773fd_intern (int fd)
774{
775#ifdef _WIN32
776 int arg = 1;
777 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
778#else
779 fcntl (fd, F_SETFD, FD_CLOEXEC);
780 fcntl (fd, F_SETFL, O_NONBLOCK);
781#endif
782}
783
784static void noinline
624siginit (EV_P) 785siginit (EV_P)
625{ 786{
626#ifndef WIN32 787 fd_intern (sigpipe [0]);
627 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 788 fd_intern (sigpipe [1]);
628 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
629
630 /* rather than sort out wether we really need nb, set it */
631 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
632 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
633#endif
634 789
635 ev_io_set (&sigev, sigpipe [0], EV_READ); 790 ev_io_set (&sigev, sigpipe [0], EV_READ);
636 ev_io_start (EV_A_ &sigev); 791 ev_io_start (EV_A_ &sigev);
637 ev_unref (EV_A); /* child watcher should not keep loop alive */ 792 ev_unref (EV_A); /* child watcher should not keep loop alive */
638} 793}
639 794
640/*****************************************************************************/ 795/*****************************************************************************/
641 796
642static struct ev_child *childs [PID_HASHSIZE]; 797static WL childs [EV_PID_HASHSIZE];
643 798
644#ifndef WIN32 799#ifndef _WIN32
645 800
646static struct ev_signal childev; 801static ev_signal childev;
802
803void inline_speed
804child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
805{
806 ev_child *w;
807
808 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
809 if (w->pid == pid || !w->pid)
810 {
811 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
812 w->rpid = pid;
813 w->rstatus = status;
814 ev_feed_event (EV_A_ (W)w, EV_CHILD);
815 }
816}
647 817
648#ifndef WCONTINUED 818#ifndef WCONTINUED
649# define WCONTINUED 0 819# define WCONTINUED 0
650#endif 820#endif
651 821
652static void 822static void
653child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
654{
655 struct ev_child *w;
656
657 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
658 if (w->pid == pid || !w->pid)
659 {
660 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
661 w->rpid = pid;
662 w->rstatus = status;
663 ev_feed_event (EV_A_ (W)w, EV_CHILD);
664 }
665}
666
667static void
668childcb (EV_P_ struct ev_signal *sw, int revents) 823childcb (EV_P_ ev_signal *sw, int revents)
669{ 824{
670 int pid, status; 825 int pid, status;
671 826
827 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
672 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 828 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
673 { 829 if (!WCONTINUED
830 || errno != EINVAL
831 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
832 return;
833
674 /* make sure we are called again until all childs have been reaped */ 834 /* make sure we are called again until all childs have been reaped */
835 /* we need to do it this way so that the callback gets called before we continue */
675 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 836 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
676 837
677 child_reap (EV_A_ sw, pid, pid, status); 838 child_reap (EV_A_ sw, pid, pid, status);
839 if (EV_PID_HASHSIZE > 1)
678 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 840 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
679 }
680} 841}
681 842
682#endif 843#endif
683 844
684/*****************************************************************************/ 845/*****************************************************************************/
685 846
847#if EV_USE_PORT
848# include "ev_port.c"
849#endif
686#if EV_USE_KQUEUE 850#if EV_USE_KQUEUE
687# include "ev_kqueue.c" 851# include "ev_kqueue.c"
688#endif 852#endif
689#if EV_USE_EPOLL 853#if EV_USE_EPOLL
690# include "ev_epoll.c" 854# include "ev_epoll.c"
707{ 871{
708 return EV_VERSION_MINOR; 872 return EV_VERSION_MINOR;
709} 873}
710 874
711/* return true if we are running with elevated privileges and should ignore env variables */ 875/* return true if we are running with elevated privileges and should ignore env variables */
712static int 876int inline_size
713enable_secure (void) 877enable_secure (void)
714{ 878{
715#ifdef WIN32 879#ifdef _WIN32
716 return 0; 880 return 0;
717#else 881#else
718 return getuid () != geteuid () 882 return getuid () != geteuid ()
719 || getgid () != getegid (); 883 || getgid () != getegid ();
720#endif 884#endif
721} 885}
722 886
723int 887unsigned int
724ev_method (EV_P) 888ev_supported_backends (void)
725{ 889{
726 return method; 890 unsigned int flags = 0;
727}
728 891
729static void 892 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
730loop_init (EV_P_ int methods) 893 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
894 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
895 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
896 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
897
898 return flags;
899}
900
901unsigned int
902ev_recommended_backends (void)
731{ 903{
732 if (!method) 904 unsigned int flags = ev_supported_backends ();
905
906#ifndef __NetBSD__
907 /* kqueue is borked on everything but netbsd apparently */
908 /* it usually doesn't work correctly on anything but sockets and pipes */
909 flags &= ~EVBACKEND_KQUEUE;
910#endif
911#ifdef __APPLE__
912 // flags &= ~EVBACKEND_KQUEUE; for documentation
913 flags &= ~EVBACKEND_POLL;
914#endif
915
916 return flags;
917}
918
919unsigned int
920ev_embeddable_backends (void)
921{
922 return EVBACKEND_EPOLL
923 | EVBACKEND_KQUEUE
924 | EVBACKEND_PORT;
925}
926
927unsigned int
928ev_backend (EV_P)
929{
930 return backend;
931}
932
933unsigned int
934ev_loop_count (EV_P)
935{
936 return loop_count;
937}
938
939static void noinline
940loop_init (EV_P_ unsigned int flags)
941{
942 if (!backend)
733 { 943 {
734#if EV_USE_MONOTONIC 944#if EV_USE_MONOTONIC
735 { 945 {
736 struct timespec ts; 946 struct timespec ts;
737 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 947 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
742 ev_rt_now = ev_time (); 952 ev_rt_now = ev_time ();
743 mn_now = get_clock (); 953 mn_now = get_clock ();
744 now_floor = mn_now; 954 now_floor = mn_now;
745 rtmn_diff = ev_rt_now - mn_now; 955 rtmn_diff = ev_rt_now - mn_now;
746 956
747 if (methods == EVMETHOD_AUTO) 957 /* pid check not overridable via env */
748 if (!enable_secure () && getenv ("LIBEV_METHODS")) 958#ifndef _WIN32
959 if (flags & EVFLAG_FORKCHECK)
960 curpid = getpid ();
961#endif
962
963 if (!(flags & EVFLAG_NOENV)
964 && !enable_secure ()
965 && getenv ("LIBEV_FLAGS"))
749 methods = atoi (getenv ("LIBEV_METHODS")); 966 flags = atoi (getenv ("LIBEV_FLAGS"));
750 else
751 methods = EVMETHOD_ANY;
752 967
753 method = 0; 968 if (!(flags & 0x0000ffffUL))
969 flags |= ev_recommended_backends ();
970
971 backend = 0;
972 backend_fd = -1;
754#if EV_USE_WIN32 973#if EV_USE_INOTIFY
755 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 974 fs_fd = -2;
975#endif
976
977#if EV_USE_PORT
978 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
756#endif 979#endif
757#if EV_USE_KQUEUE 980#if EV_USE_KQUEUE
758 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 981 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
759#endif 982#endif
760#if EV_USE_EPOLL 983#if EV_USE_EPOLL
761 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 984 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
762#endif 985#endif
763#if EV_USE_POLL 986#if EV_USE_POLL
764 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 987 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
765#endif 988#endif
766#if EV_USE_SELECT 989#if EV_USE_SELECT
767 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 990 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
768#endif 991#endif
769 992
770 ev_init (&sigev, sigcb); 993 ev_init (&sigev, sigcb);
771 ev_set_priority (&sigev, EV_MAXPRI); 994 ev_set_priority (&sigev, EV_MAXPRI);
772 } 995 }
773} 996}
774 997
775void 998static void noinline
776loop_destroy (EV_P) 999loop_destroy (EV_P)
777{ 1000{
778 int i; 1001 int i;
779 1002
780#if EV_USE_WIN32 1003#if EV_USE_INOTIFY
781 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1004 if (fs_fd >= 0)
1005 close (fs_fd);
1006#endif
1007
1008 if (backend_fd >= 0)
1009 close (backend_fd);
1010
1011#if EV_USE_PORT
1012 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
782#endif 1013#endif
783#if EV_USE_KQUEUE 1014#if EV_USE_KQUEUE
784 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1015 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
785#endif 1016#endif
786#if EV_USE_EPOLL 1017#if EV_USE_EPOLL
787 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1018 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
788#endif 1019#endif
789#if EV_USE_POLL 1020#if EV_USE_POLL
790 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1021 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
791#endif 1022#endif
792#if EV_USE_SELECT 1023#if EV_USE_SELECT
793 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1024 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
794#endif 1025#endif
795 1026
796 for (i = NUMPRI; i--; ) 1027 for (i = NUMPRI; i--; )
1028 {
797 array_free (pending, [i]); 1029 array_free (pending, [i]);
1030#if EV_IDLE_ENABLE
1031 array_free (idle, [i]);
1032#endif
1033 }
798 1034
799 /* have to use the microsoft-never-gets-it-right macro */ 1035 /* have to use the microsoft-never-gets-it-right macro */
800 array_free_microshit (fdchange); 1036 array_free (fdchange, EMPTY);
801 array_free_microshit (timer); 1037 array_free (timer, EMPTY);
802 array_free_microshit (periodic); 1038#if EV_PERIODIC_ENABLE
803 array_free_microshit (idle); 1039 array_free (periodic, EMPTY);
804 array_free_microshit (prepare); 1040#endif
805 array_free_microshit (check); 1041 array_free (prepare, EMPTY);
1042 array_free (check, EMPTY);
806 1043
807 method = 0; 1044 backend = 0;
808} 1045}
809 1046
810static void 1047void inline_size infy_fork (EV_P);
1048
1049void inline_size
811loop_fork (EV_P) 1050loop_fork (EV_P)
812{ 1051{
1052#if EV_USE_PORT
1053 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1054#endif
1055#if EV_USE_KQUEUE
1056 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1057#endif
813#if EV_USE_EPOLL 1058#if EV_USE_EPOLL
814 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1059 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
815#endif 1060#endif
816#if EV_USE_KQUEUE 1061#if EV_USE_INOTIFY
817 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1062 infy_fork (EV_A);
818#endif 1063#endif
819 1064
820 if (ev_is_active (&sigev)) 1065 if (ev_is_active (&sigev))
821 { 1066 {
822 /* default loop */ 1067 /* default loop */
835 postfork = 0; 1080 postfork = 0;
836} 1081}
837 1082
838#if EV_MULTIPLICITY 1083#if EV_MULTIPLICITY
839struct ev_loop * 1084struct ev_loop *
840ev_loop_new (int methods) 1085ev_loop_new (unsigned int flags)
841{ 1086{
842 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1087 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
843 1088
844 memset (loop, 0, sizeof (struct ev_loop)); 1089 memset (loop, 0, sizeof (struct ev_loop));
845 1090
846 loop_init (EV_A_ methods); 1091 loop_init (EV_A_ flags);
847 1092
848 if (ev_method (EV_A)) 1093 if (ev_backend (EV_A))
849 return loop; 1094 return loop;
850 1095
851 return 0; 1096 return 0;
852} 1097}
853 1098
866 1111
867#endif 1112#endif
868 1113
869#if EV_MULTIPLICITY 1114#if EV_MULTIPLICITY
870struct ev_loop * 1115struct ev_loop *
1116ev_default_loop_init (unsigned int flags)
871#else 1117#else
872int 1118int
1119ev_default_loop (unsigned int flags)
873#endif 1120#endif
874ev_default_loop (int methods)
875{ 1121{
876 if (sigpipe [0] == sigpipe [1]) 1122 if (sigpipe [0] == sigpipe [1])
877 if (pipe (sigpipe)) 1123 if (pipe (sigpipe))
878 return 0; 1124 return 0;
879 1125
880 if (!default_loop) 1126 if (!ev_default_loop_ptr)
881 { 1127 {
882#if EV_MULTIPLICITY 1128#if EV_MULTIPLICITY
883 struct ev_loop *loop = default_loop = &default_loop_struct; 1129 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
884#else 1130#else
885 default_loop = 1; 1131 ev_default_loop_ptr = 1;
886#endif 1132#endif
887 1133
888 loop_init (EV_A_ methods); 1134 loop_init (EV_A_ flags);
889 1135
890 if (ev_method (EV_A)) 1136 if (ev_backend (EV_A))
891 { 1137 {
892 siginit (EV_A); 1138 siginit (EV_A);
893 1139
894#ifndef WIN32 1140#ifndef _WIN32
895 ev_signal_init (&childev, childcb, SIGCHLD); 1141 ev_signal_init (&childev, childcb, SIGCHLD);
896 ev_set_priority (&childev, EV_MAXPRI); 1142 ev_set_priority (&childev, EV_MAXPRI);
897 ev_signal_start (EV_A_ &childev); 1143 ev_signal_start (EV_A_ &childev);
898 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1144 ev_unref (EV_A); /* child watcher should not keep loop alive */
899#endif 1145#endif
900 } 1146 }
901 else 1147 else
902 default_loop = 0; 1148 ev_default_loop_ptr = 0;
903 } 1149 }
904 1150
905 return default_loop; 1151 return ev_default_loop_ptr;
906} 1152}
907 1153
908void 1154void
909ev_default_destroy (void) 1155ev_default_destroy (void)
910{ 1156{
911#if EV_MULTIPLICITY 1157#if EV_MULTIPLICITY
912 struct ev_loop *loop = default_loop; 1158 struct ev_loop *loop = ev_default_loop_ptr;
913#endif 1159#endif
914 1160
915#ifndef WIN32 1161#ifndef _WIN32
916 ev_ref (EV_A); /* child watcher */ 1162 ev_ref (EV_A); /* child watcher */
917 ev_signal_stop (EV_A_ &childev); 1163 ev_signal_stop (EV_A_ &childev);
918#endif 1164#endif
919 1165
920 ev_ref (EV_A); /* signal watcher */ 1166 ev_ref (EV_A); /* signal watcher */
928 1174
929void 1175void
930ev_default_fork (void) 1176ev_default_fork (void)
931{ 1177{
932#if EV_MULTIPLICITY 1178#if EV_MULTIPLICITY
933 struct ev_loop *loop = default_loop; 1179 struct ev_loop *loop = ev_default_loop_ptr;
934#endif 1180#endif
935 1181
936 if (method) 1182 if (backend)
937 postfork = 1; 1183 postfork = 1;
938} 1184}
939 1185
940/*****************************************************************************/ 1186/*****************************************************************************/
941 1187
942static int 1188void
943any_pending (EV_P) 1189ev_invoke (EV_P_ void *w, int revents)
944{ 1190{
945 int pri; 1191 EV_CB_INVOKE ((W)w, revents);
946
947 for (pri = NUMPRI; pri--; )
948 if (pendingcnt [pri])
949 return 1;
950
951 return 0;
952} 1192}
953 1193
954static void 1194void inline_speed
955call_pending (EV_P) 1195call_pending (EV_P)
956{ 1196{
957 int pri; 1197 int pri;
958 1198
959 for (pri = NUMPRI; pri--; ) 1199 for (pri = NUMPRI; pri--; )
960 while (pendingcnt [pri]) 1200 while (pendingcnt [pri])
961 { 1201 {
962 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1202 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
963 1203
964 if (p->w) 1204 if (expect_true (p->w))
965 { 1205 {
1206 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1207
966 p->w->pending = 0; 1208 p->w->pending = 0;
967 EV_CB_INVOKE (p->w, p->events); 1209 EV_CB_INVOKE (p->w, p->events);
968 } 1210 }
969 } 1211 }
970} 1212}
971 1213
972static void 1214void inline_size
973timers_reify (EV_P) 1215timers_reify (EV_P)
974{ 1216{
975 while (timercnt && ((WT)timers [0])->at <= mn_now) 1217 while (timercnt && ((WT)timers [0])->at <= mn_now)
976 { 1218 {
977 struct ev_timer *w = timers [0]; 1219 ev_timer *w = (ev_timer *)timers [0];
978 1220
979 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1221 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
980 1222
981 /* first reschedule or stop timer */ 1223 /* first reschedule or stop timer */
982 if (w->repeat) 1224 if (w->repeat)
983 { 1225 {
984 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1226 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1227
985 ((WT)w)->at = mn_now + w->repeat; 1228 ((WT)w)->at += w->repeat;
1229 if (((WT)w)->at < mn_now)
1230 ((WT)w)->at = mn_now;
1231
986 downheap ((WT *)timers, timercnt, 0); 1232 downheap (timers, timercnt, 0);
987 } 1233 }
988 else 1234 else
989 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1235 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
990 1236
991 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1237 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
992 } 1238 }
993} 1239}
994 1240
995static void 1241#if EV_PERIODIC_ENABLE
1242void inline_size
996periodics_reify (EV_P) 1243periodics_reify (EV_P)
997{ 1244{
998 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1245 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
999 { 1246 {
1000 struct ev_periodic *w = periodics [0]; 1247 ev_periodic *w = (ev_periodic *)periodics [0];
1001 1248
1002 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1249 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1003 1250
1004 /* first reschedule or stop timer */ 1251 /* first reschedule or stop timer */
1005 if (w->reschedule_cb) 1252 if (w->reschedule_cb)
1006 { 1253 {
1007 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1254 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1008
1009 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1255 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1010 downheap ((WT *)periodics, periodiccnt, 0); 1256 downheap (periodics, periodiccnt, 0);
1011 } 1257 }
1012 else if (w->interval) 1258 else if (w->interval)
1013 { 1259 {
1014 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1260 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1261 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1015 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1262 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1016 downheap ((WT *)periodics, periodiccnt, 0); 1263 downheap (periodics, periodiccnt, 0);
1017 } 1264 }
1018 else 1265 else
1019 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1266 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1020 1267
1021 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1268 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1022 } 1269 }
1023} 1270}
1024 1271
1025static void 1272static void noinline
1026periodics_reschedule (EV_P) 1273periodics_reschedule (EV_P)
1027{ 1274{
1028 int i; 1275 int i;
1029 1276
1030 /* adjust periodics after time jump */ 1277 /* adjust periodics after time jump */
1031 for (i = 0; i < periodiccnt; ++i) 1278 for (i = 0; i < periodiccnt; ++i)
1032 { 1279 {
1033 struct ev_periodic *w = periodics [i]; 1280 ev_periodic *w = (ev_periodic *)periodics [i];
1034 1281
1035 if (w->reschedule_cb) 1282 if (w->reschedule_cb)
1036 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1283 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1037 else if (w->interval) 1284 else if (w->interval)
1038 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1285 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1039 } 1286 }
1040 1287
1041 /* now rebuild the heap */ 1288 /* now rebuild the heap */
1042 for (i = periodiccnt >> 1; i--; ) 1289 for (i = periodiccnt >> 1; i--; )
1043 downheap ((WT *)periodics, periodiccnt, i); 1290 downheap (periodics, periodiccnt, i);
1044} 1291}
1292#endif
1045 1293
1046inline int 1294#if EV_IDLE_ENABLE
1047time_update_monotonic (EV_P) 1295void inline_size
1296idle_reify (EV_P)
1048{ 1297{
1298 if (expect_false (idleall))
1299 {
1300 int pri;
1301
1302 for (pri = NUMPRI; pri--; )
1303 {
1304 if (pendingcnt [pri])
1305 break;
1306
1307 if (idlecnt [pri])
1308 {
1309 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1310 break;
1311 }
1312 }
1313 }
1314}
1315#endif
1316
1317void inline_speed
1318time_update (EV_P_ ev_tstamp max_block)
1319{
1320 int i;
1321
1322#if EV_USE_MONOTONIC
1323 if (expect_true (have_monotonic))
1324 {
1325 ev_tstamp odiff = rtmn_diff;
1326
1049 mn_now = get_clock (); 1327 mn_now = get_clock ();
1050 1328
1329 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1330 /* interpolate in the meantime */
1051 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1331 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1052 { 1332 {
1053 ev_rt_now = rtmn_diff + mn_now; 1333 ev_rt_now = rtmn_diff + mn_now;
1054 return 0; 1334 return;
1055 } 1335 }
1056 else 1336
1057 {
1058 now_floor = mn_now; 1337 now_floor = mn_now;
1059 ev_rt_now = ev_time (); 1338 ev_rt_now = ev_time ();
1060 return 1;
1061 }
1062}
1063 1339
1064static void 1340 /* loop a few times, before making important decisions.
1065time_update (EV_P) 1341 * on the choice of "4": one iteration isn't enough,
1066{ 1342 * in case we get preempted during the calls to
1067 int i; 1343 * ev_time and get_clock. a second call is almost guaranteed
1068 1344 * to succeed in that case, though. and looping a few more times
1069#if EV_USE_MONOTONIC 1345 * doesn't hurt either as we only do this on time-jumps or
1070 if (expect_true (have_monotonic)) 1346 * in the unlikely event of having been preempted here.
1071 { 1347 */
1072 if (time_update_monotonic (EV_A)) 1348 for (i = 4; --i; )
1073 { 1349 {
1074 ev_tstamp odiff = rtmn_diff;
1075
1076 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1077 {
1078 rtmn_diff = ev_rt_now - mn_now; 1350 rtmn_diff = ev_rt_now - mn_now;
1079 1351
1080 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1352 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1081 return; /* all is well */ 1353 return; /* all is well */
1082 1354
1083 ev_rt_now = ev_time (); 1355 ev_rt_now = ev_time ();
1084 mn_now = get_clock (); 1356 mn_now = get_clock ();
1085 now_floor = mn_now; 1357 now_floor = mn_now;
1086 } 1358 }
1087 1359
1360# if EV_PERIODIC_ENABLE
1361 periodics_reschedule (EV_A);
1362# endif
1363 /* no timer adjustment, as the monotonic clock doesn't jump */
1364 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1365 }
1366 else
1367#endif
1368 {
1369 ev_rt_now = ev_time ();
1370
1371 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 {
1373#if EV_PERIODIC_ENABLE
1088 periodics_reschedule (EV_A); 1374 periodics_reschedule (EV_A);
1089 /* no timer adjustment, as the monotonic clock doesn't jump */
1090 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1091 }
1092 }
1093 else
1094#endif 1375#endif
1095 {
1096 ev_rt_now = ev_time ();
1097
1098 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1099 {
1100 periodics_reschedule (EV_A);
1101
1102 /* adjust timers. this is easy, as the offset is the same for all */ 1376 /* adjust timers. this is easy, as the offset is the same for all of them */
1103 for (i = 0; i < timercnt; ++i) 1377 for (i = 0; i < timercnt; ++i)
1104 ((WT)timers [i])->at += ev_rt_now - mn_now; 1378 ((WT)timers [i])->at += ev_rt_now - mn_now;
1105 } 1379 }
1106 1380
1107 mn_now = ev_rt_now; 1381 mn_now = ev_rt_now;
1123static int loop_done; 1397static int loop_done;
1124 1398
1125void 1399void
1126ev_loop (EV_P_ int flags) 1400ev_loop (EV_P_ int flags)
1127{ 1401{
1128 double block;
1129 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1402 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1403 ? EVUNLOOP_ONE
1404 : EVUNLOOP_CANCEL;
1405
1406 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1130 1407
1131 do 1408 do
1132 { 1409 {
1410#ifndef _WIN32
1411 if (expect_false (curpid)) /* penalise the forking check even more */
1412 if (expect_false (getpid () != curpid))
1413 {
1414 curpid = getpid ();
1415 postfork = 1;
1416 }
1417#endif
1418
1419#if EV_FORK_ENABLE
1420 /* we might have forked, so queue fork handlers */
1421 if (expect_false (postfork))
1422 if (forkcnt)
1423 {
1424 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1425 call_pending (EV_A);
1426 }
1427#endif
1428
1133 /* queue check watchers (and execute them) */ 1429 /* queue prepare watchers (and execute them) */
1134 if (expect_false (preparecnt)) 1430 if (expect_false (preparecnt))
1135 { 1431 {
1136 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1432 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1137 call_pending (EV_A); 1433 call_pending (EV_A);
1138 } 1434 }
1139 1435
1436 if (expect_false (!activecnt))
1437 break;
1438
1140 /* we might have forked, so reify kernel state if necessary */ 1439 /* we might have forked, so reify kernel state if necessary */
1141 if (expect_false (postfork)) 1440 if (expect_false (postfork))
1142 loop_fork (EV_A); 1441 loop_fork (EV_A);
1143 1442
1144 /* update fd-related kernel structures */ 1443 /* update fd-related kernel structures */
1145 fd_reify (EV_A); 1444 fd_reify (EV_A);
1146 1445
1147 /* calculate blocking time */ 1446 /* calculate blocking time */
1447 {
1448 ev_tstamp block;
1148 1449
1149 /* we only need this for !monotonic clock or timers, but as we basically 1450 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1150 always have timers, we just calculate it always */ 1451 block = 0.; /* do not block at all */
1151#if EV_USE_MONOTONIC
1152 if (expect_true (have_monotonic))
1153 time_update_monotonic (EV_A);
1154 else 1452 else
1155#endif
1156 { 1453 {
1157 ev_rt_now = ev_time (); 1454 /* update time to cancel out callback processing overhead */
1158 mn_now = ev_rt_now; 1455 time_update (EV_A_ 1e100);
1159 }
1160 1456
1161 if (flags & EVLOOP_NONBLOCK || idlecnt)
1162 block = 0.;
1163 else
1164 {
1165 block = MAX_BLOCKTIME; 1457 block = MAX_BLOCKTIME;
1166 1458
1167 if (timercnt) 1459 if (timercnt)
1168 { 1460 {
1169 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1461 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1170 if (block > to) block = to; 1462 if (block > to) block = to;
1171 } 1463 }
1172 1464
1465#if EV_PERIODIC_ENABLE
1173 if (periodiccnt) 1466 if (periodiccnt)
1174 { 1467 {
1175 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1468 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1176 if (block > to) block = to; 1469 if (block > to) block = to;
1177 } 1470 }
1471#endif
1178 1472
1179 if (block < 0.) block = 0.; 1473 if (expect_false (block < 0.)) block = 0.;
1180 } 1474 }
1181 1475
1476 ++loop_count;
1182 method_poll (EV_A_ block); 1477 backend_poll (EV_A_ block);
1183 1478
1184 /* update ev_rt_now, do magic */ 1479 /* update ev_rt_now, do magic */
1185 time_update (EV_A); 1480 time_update (EV_A_ block);
1481 }
1186 1482
1187 /* queue pending timers and reschedule them */ 1483 /* queue pending timers and reschedule them */
1188 timers_reify (EV_A); /* relative timers called last */ 1484 timers_reify (EV_A); /* relative timers called last */
1485#if EV_PERIODIC_ENABLE
1189 periodics_reify (EV_A); /* absolute timers called first */ 1486 periodics_reify (EV_A); /* absolute timers called first */
1487#endif
1190 1488
1489#if EV_IDLE_ENABLE
1191 /* queue idle watchers unless io or timers are pending */ 1490 /* queue idle watchers unless other events are pending */
1192 if (idlecnt && !any_pending (EV_A)) 1491 idle_reify (EV_A);
1193 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1492#endif
1194 1493
1195 /* queue check watchers, to be executed first */ 1494 /* queue check watchers, to be executed first */
1196 if (checkcnt) 1495 if (expect_false (checkcnt))
1197 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1496 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1198 1497
1199 call_pending (EV_A); 1498 call_pending (EV_A);
1499
1200 } 1500 }
1201 while (activecnt && !loop_done); 1501 while (expect_true (activecnt && !loop_done));
1202 1502
1203 if (loop_done != 2) 1503 if (loop_done == EVUNLOOP_ONE)
1204 loop_done = 0; 1504 loop_done = EVUNLOOP_CANCEL;
1205} 1505}
1206 1506
1207void 1507void
1208ev_unloop (EV_P_ int how) 1508ev_unloop (EV_P_ int how)
1209{ 1509{
1210 loop_done = how; 1510 loop_done = how;
1211} 1511}
1212 1512
1213/*****************************************************************************/ 1513/*****************************************************************************/
1214 1514
1215inline void 1515void inline_size
1216wlist_add (WL *head, WL elem) 1516wlist_add (WL *head, WL elem)
1217{ 1517{
1218 elem->next = *head; 1518 elem->next = *head;
1219 *head = elem; 1519 *head = elem;
1220} 1520}
1221 1521
1222inline void 1522void inline_size
1223wlist_del (WL *head, WL elem) 1523wlist_del (WL *head, WL elem)
1224{ 1524{
1225 while (*head) 1525 while (*head)
1226 { 1526 {
1227 if (*head == elem) 1527 if (*head == elem)
1232 1532
1233 head = &(*head)->next; 1533 head = &(*head)->next;
1234 } 1534 }
1235} 1535}
1236 1536
1237inline void 1537void inline_speed
1238ev_clear_pending (EV_P_ W w) 1538clear_pending (EV_P_ W w)
1239{ 1539{
1240 if (w->pending) 1540 if (w->pending)
1241 { 1541 {
1242 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1542 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1243 w->pending = 0; 1543 w->pending = 0;
1244 } 1544 }
1245} 1545}
1246 1546
1247inline void 1547int
1548ev_clear_pending (EV_P_ void *w)
1549{
1550 W w_ = (W)w;
1551 int pending = w_->pending;
1552
1553 if (expect_true (pending))
1554 {
1555 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1556 w_->pending = 0;
1557 p->w = 0;
1558 return p->events;
1559 }
1560 else
1561 return 0;
1562}
1563
1564void inline_size
1565pri_adjust (EV_P_ W w)
1566{
1567 int pri = w->priority;
1568 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1569 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1570 w->priority = pri;
1571}
1572
1573void inline_speed
1248ev_start (EV_P_ W w, int active) 1574ev_start (EV_P_ W w, int active)
1249{ 1575{
1250 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1576 pri_adjust (EV_A_ w);
1251 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1252
1253 w->active = active; 1577 w->active = active;
1254 ev_ref (EV_A); 1578 ev_ref (EV_A);
1255} 1579}
1256 1580
1257inline void 1581void inline_size
1258ev_stop (EV_P_ W w) 1582ev_stop (EV_P_ W w)
1259{ 1583{
1260 ev_unref (EV_A); 1584 ev_unref (EV_A);
1261 w->active = 0; 1585 w->active = 0;
1262} 1586}
1263 1587
1264/*****************************************************************************/ 1588/*****************************************************************************/
1265 1589
1266void 1590void noinline
1267ev_io_start (EV_P_ struct ev_io *w) 1591ev_io_start (EV_P_ ev_io *w)
1268{ 1592{
1269 int fd = w->fd; 1593 int fd = w->fd;
1270 1594
1271 if (ev_is_active (w)) 1595 if (expect_false (ev_is_active (w)))
1272 return; 1596 return;
1273 1597
1274 assert (("ev_io_start called with negative fd", fd >= 0)); 1598 assert (("ev_io_start called with negative fd", fd >= 0));
1275 1599
1276 ev_start (EV_A_ (W)w, 1); 1600 ev_start (EV_A_ (W)w, 1);
1277 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1601 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1278 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1602 wlist_add (&anfds[fd].head, (WL)w);
1279 1603
1280 fd_change (EV_A_ fd); 1604 fd_change (EV_A_ fd);
1281} 1605}
1282 1606
1283void 1607void noinline
1284ev_io_stop (EV_P_ struct ev_io *w) 1608ev_io_stop (EV_P_ ev_io *w)
1285{ 1609{
1286 ev_clear_pending (EV_A_ (W)w); 1610 clear_pending (EV_A_ (W)w);
1287 if (!ev_is_active (w)) 1611 if (expect_false (!ev_is_active (w)))
1288 return; 1612 return;
1289 1613
1614 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1615
1290 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1616 wlist_del (&anfds[w->fd].head, (WL)w);
1291 ev_stop (EV_A_ (W)w); 1617 ev_stop (EV_A_ (W)w);
1292 1618
1293 fd_change (EV_A_ w->fd); 1619 fd_change (EV_A_ w->fd);
1294} 1620}
1295 1621
1296void 1622void noinline
1297ev_timer_start (EV_P_ struct ev_timer *w) 1623ev_timer_start (EV_P_ ev_timer *w)
1624{
1625 if (expect_false (ev_is_active (w)))
1626 return;
1627
1628 ((WT)w)->at += mn_now;
1629
1630 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1631
1632 ev_start (EV_A_ (W)w, ++timercnt);
1633 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1634 timers [timercnt - 1] = (WT)w;
1635 upheap (timers, timercnt - 1);
1636
1637 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1638}
1639
1640void noinline
1641ev_timer_stop (EV_P_ ev_timer *w)
1642{
1643 clear_pending (EV_A_ (W)w);
1644 if (expect_false (!ev_is_active (w)))
1645 return;
1646
1647 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1648
1649 {
1650 int active = ((W)w)->active;
1651
1652 if (expect_true (--active < --timercnt))
1653 {
1654 timers [active] = timers [timercnt];
1655 adjustheap (timers, timercnt, active);
1656 }
1657 }
1658
1659 ((WT)w)->at -= mn_now;
1660
1661 ev_stop (EV_A_ (W)w);
1662}
1663
1664void noinline
1665ev_timer_again (EV_P_ ev_timer *w)
1298{ 1666{
1299 if (ev_is_active (w)) 1667 if (ev_is_active (w))
1300 return;
1301
1302 ((WT)w)->at += mn_now;
1303
1304 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1305
1306 ev_start (EV_A_ (W)w, ++timercnt);
1307 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1308 timers [timercnt - 1] = w;
1309 upheap ((WT *)timers, timercnt - 1);
1310
1311 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1312}
1313
1314void
1315ev_timer_stop (EV_P_ struct ev_timer *w)
1316{
1317 ev_clear_pending (EV_A_ (W)w);
1318 if (!ev_is_active (w))
1319 return;
1320
1321 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1322
1323 if (((W)w)->active < timercnt--)
1324 {
1325 timers [((W)w)->active - 1] = timers [timercnt];
1326 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1327 }
1328
1329 ((WT)w)->at = w->repeat;
1330
1331 ev_stop (EV_A_ (W)w);
1332}
1333
1334void
1335ev_timer_again (EV_P_ struct ev_timer *w)
1336{
1337 if (ev_is_active (w))
1338 { 1668 {
1339 if (w->repeat) 1669 if (w->repeat)
1670 {
1671 ((WT)w)->at = mn_now + w->repeat;
1340 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat); 1672 adjustheap (timers, timercnt, ((W)w)->active - 1);
1673 }
1341 else 1674 else
1342 ev_timer_stop (EV_A_ w); 1675 ev_timer_stop (EV_A_ w);
1343 } 1676 }
1344 else if (w->repeat) 1677 else if (w->repeat)
1678 {
1679 w->at = w->repeat;
1345 ev_timer_start (EV_A_ w); 1680 ev_timer_start (EV_A_ w);
1681 }
1346} 1682}
1347 1683
1348void 1684#if EV_PERIODIC_ENABLE
1685void noinline
1349ev_periodic_start (EV_P_ struct ev_periodic *w) 1686ev_periodic_start (EV_P_ ev_periodic *w)
1350{ 1687{
1351 if (ev_is_active (w)) 1688 if (expect_false (ev_is_active (w)))
1352 return; 1689 return;
1353 1690
1354 if (w->reschedule_cb) 1691 if (w->reschedule_cb)
1355 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1692 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1356 else if (w->interval) 1693 else if (w->interval)
1357 { 1694 {
1358 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1695 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1359 /* this formula differs from the one in periodic_reify because we do not always round up */ 1696 /* this formula differs from the one in periodic_reify because we do not always round up */
1360 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1697 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1361 } 1698 }
1699 else
1700 ((WT)w)->at = w->offset;
1362 1701
1363 ev_start (EV_A_ (W)w, ++periodiccnt); 1702 ev_start (EV_A_ (W)w, ++periodiccnt);
1364 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1703 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1365 periodics [periodiccnt - 1] = w; 1704 periodics [periodiccnt - 1] = (WT)w;
1366 upheap ((WT *)periodics, periodiccnt - 1); 1705 upheap (periodics, periodiccnt - 1);
1367 1706
1368 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1707 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1369} 1708}
1370 1709
1371void 1710void noinline
1372ev_periodic_stop (EV_P_ struct ev_periodic *w) 1711ev_periodic_stop (EV_P_ ev_periodic *w)
1373{ 1712{
1374 ev_clear_pending (EV_A_ (W)w); 1713 clear_pending (EV_A_ (W)w);
1375 if (!ev_is_active (w)) 1714 if (expect_false (!ev_is_active (w)))
1376 return; 1715 return;
1377 1716
1378 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1717 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1379 1718
1380 if (((W)w)->active < periodiccnt--) 1719 {
1720 int active = ((W)w)->active;
1721
1722 if (expect_true (--active < --periodiccnt))
1381 { 1723 {
1382 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1724 periodics [active] = periodics [periodiccnt];
1383 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1725 adjustheap (periodics, periodiccnt, active);
1384 } 1726 }
1727 }
1385 1728
1386 ev_stop (EV_A_ (W)w); 1729 ev_stop (EV_A_ (W)w);
1387} 1730}
1388 1731
1389void 1732void noinline
1390ev_periodic_again (EV_P_ struct ev_periodic *w) 1733ev_periodic_again (EV_P_ ev_periodic *w)
1391{ 1734{
1392 /* TODO: use adjustheap and recalculation */ 1735 /* TODO: use adjustheap and recalculation */
1393 ev_periodic_stop (EV_A_ w); 1736 ev_periodic_stop (EV_A_ w);
1394 ev_periodic_start (EV_A_ w); 1737 ev_periodic_start (EV_A_ w);
1395} 1738}
1396 1739#endif
1397void
1398ev_idle_start (EV_P_ struct ev_idle *w)
1399{
1400 if (ev_is_active (w))
1401 return;
1402
1403 ev_start (EV_A_ (W)w, ++idlecnt);
1404 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1405 idles [idlecnt - 1] = w;
1406}
1407
1408void
1409ev_idle_stop (EV_P_ struct ev_idle *w)
1410{
1411 ev_clear_pending (EV_A_ (W)w);
1412 if (ev_is_active (w))
1413 return;
1414
1415 idles [((W)w)->active - 1] = idles [--idlecnt];
1416 ev_stop (EV_A_ (W)w);
1417}
1418
1419void
1420ev_prepare_start (EV_P_ struct ev_prepare *w)
1421{
1422 if (ev_is_active (w))
1423 return;
1424
1425 ev_start (EV_A_ (W)w, ++preparecnt);
1426 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1427 prepares [preparecnt - 1] = w;
1428}
1429
1430void
1431ev_prepare_stop (EV_P_ struct ev_prepare *w)
1432{
1433 ev_clear_pending (EV_A_ (W)w);
1434 if (ev_is_active (w))
1435 return;
1436
1437 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1438 ev_stop (EV_A_ (W)w);
1439}
1440
1441void
1442ev_check_start (EV_P_ struct ev_check *w)
1443{
1444 if (ev_is_active (w))
1445 return;
1446
1447 ev_start (EV_A_ (W)w, ++checkcnt);
1448 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1449 checks [checkcnt - 1] = w;
1450}
1451
1452void
1453ev_check_stop (EV_P_ struct ev_check *w)
1454{
1455 ev_clear_pending (EV_A_ (W)w);
1456 if (ev_is_active (w))
1457 return;
1458
1459 checks [((W)w)->active - 1] = checks [--checkcnt];
1460 ev_stop (EV_A_ (W)w);
1461}
1462 1740
1463#ifndef SA_RESTART 1741#ifndef SA_RESTART
1464# define SA_RESTART 0 1742# define SA_RESTART 0
1465#endif 1743#endif
1466 1744
1467void 1745void noinline
1468ev_signal_start (EV_P_ struct ev_signal *w) 1746ev_signal_start (EV_P_ ev_signal *w)
1469{ 1747{
1470#if EV_MULTIPLICITY 1748#if EV_MULTIPLICITY
1471 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1749 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1472#endif 1750#endif
1473 if (ev_is_active (w)) 1751 if (expect_false (ev_is_active (w)))
1474 return; 1752 return;
1475 1753
1476 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1754 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1477 1755
1756 {
1757#ifndef _WIN32
1758 sigset_t full, prev;
1759 sigfillset (&full);
1760 sigprocmask (SIG_SETMASK, &full, &prev);
1761#endif
1762
1763 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1764
1765#ifndef _WIN32
1766 sigprocmask (SIG_SETMASK, &prev, 0);
1767#endif
1768 }
1769
1478 ev_start (EV_A_ (W)w, 1); 1770 ev_start (EV_A_ (W)w, 1);
1479 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1480 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1771 wlist_add (&signals [w->signum - 1].head, (WL)w);
1481 1772
1482 if (!((WL)w)->next) 1773 if (!((WL)w)->next)
1483 { 1774 {
1484#if WIN32 1775#if _WIN32
1485 signal (w->signum, sighandler); 1776 signal (w->signum, sighandler);
1486#else 1777#else
1487 struct sigaction sa; 1778 struct sigaction sa;
1488 sa.sa_handler = sighandler; 1779 sa.sa_handler = sighandler;
1489 sigfillset (&sa.sa_mask); 1780 sigfillset (&sa.sa_mask);
1491 sigaction (w->signum, &sa, 0); 1782 sigaction (w->signum, &sa, 0);
1492#endif 1783#endif
1493 } 1784 }
1494} 1785}
1495 1786
1496void 1787void noinline
1497ev_signal_stop (EV_P_ struct ev_signal *w) 1788ev_signal_stop (EV_P_ ev_signal *w)
1498{ 1789{
1499 ev_clear_pending (EV_A_ (W)w); 1790 clear_pending (EV_A_ (W)w);
1500 if (!ev_is_active (w)) 1791 if (expect_false (!ev_is_active (w)))
1501 return; 1792 return;
1502 1793
1503 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1794 wlist_del (&signals [w->signum - 1].head, (WL)w);
1504 ev_stop (EV_A_ (W)w); 1795 ev_stop (EV_A_ (W)w);
1505 1796
1506 if (!signals [w->signum - 1].head) 1797 if (!signals [w->signum - 1].head)
1507 signal (w->signum, SIG_DFL); 1798 signal (w->signum, SIG_DFL);
1508} 1799}
1509 1800
1510void 1801void
1511ev_child_start (EV_P_ struct ev_child *w) 1802ev_child_start (EV_P_ ev_child *w)
1512{ 1803{
1513#if EV_MULTIPLICITY 1804#if EV_MULTIPLICITY
1514 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1805 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1515#endif 1806#endif
1516 if (ev_is_active (w)) 1807 if (expect_false (ev_is_active (w)))
1517 return; 1808 return;
1518 1809
1519 ev_start (EV_A_ (W)w, 1); 1810 ev_start (EV_A_ (W)w, 1);
1520 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1811 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1521} 1812}
1522 1813
1523void 1814void
1524ev_child_stop (EV_P_ struct ev_child *w) 1815ev_child_stop (EV_P_ ev_child *w)
1525{ 1816{
1526 ev_clear_pending (EV_A_ (W)w); 1817 clear_pending (EV_A_ (W)w);
1527 if (ev_is_active (w)) 1818 if (expect_false (!ev_is_active (w)))
1528 return; 1819 return;
1529 1820
1530 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1821 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1531 ev_stop (EV_A_ (W)w); 1822 ev_stop (EV_A_ (W)w);
1532} 1823}
1533 1824
1825#if EV_STAT_ENABLE
1826
1827# ifdef _WIN32
1828# undef lstat
1829# define lstat(a,b) _stati64 (a,b)
1830# endif
1831
1832#define DEF_STAT_INTERVAL 5.0074891
1833#define MIN_STAT_INTERVAL 0.1074891
1834
1835static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1836
1837#if EV_USE_INOTIFY
1838# define EV_INOTIFY_BUFSIZE 8192
1839
1840static void noinline
1841infy_add (EV_P_ ev_stat *w)
1842{
1843 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1844
1845 if (w->wd < 0)
1846 {
1847 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1848
1849 /* monitor some parent directory for speedup hints */
1850 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1851 {
1852 char path [4096];
1853 strcpy (path, w->path);
1854
1855 do
1856 {
1857 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1858 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1859
1860 char *pend = strrchr (path, '/');
1861
1862 if (!pend)
1863 break; /* whoops, no '/', complain to your admin */
1864
1865 *pend = 0;
1866 w->wd = inotify_add_watch (fs_fd, path, mask);
1867 }
1868 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1869 }
1870 }
1871 else
1872 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1873
1874 if (w->wd >= 0)
1875 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1876}
1877
1878static void noinline
1879infy_del (EV_P_ ev_stat *w)
1880{
1881 int slot;
1882 int wd = w->wd;
1883
1884 if (wd < 0)
1885 return;
1886
1887 w->wd = -2;
1888 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1889 wlist_del (&fs_hash [slot].head, (WL)w);
1890
1891 /* remove this watcher, if others are watching it, they will rearm */
1892 inotify_rm_watch (fs_fd, wd);
1893}
1894
1895static void noinline
1896infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1897{
1898 if (slot < 0)
1899 /* overflow, need to check for all hahs slots */
1900 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1901 infy_wd (EV_A_ slot, wd, ev);
1902 else
1903 {
1904 WL w_;
1905
1906 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1907 {
1908 ev_stat *w = (ev_stat *)w_;
1909 w_ = w_->next; /* lets us remove this watcher and all before it */
1910
1911 if (w->wd == wd || wd == -1)
1912 {
1913 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1914 {
1915 w->wd = -1;
1916 infy_add (EV_A_ w); /* re-add, no matter what */
1917 }
1918
1919 stat_timer_cb (EV_A_ &w->timer, 0);
1920 }
1921 }
1922 }
1923}
1924
1925static void
1926infy_cb (EV_P_ ev_io *w, int revents)
1927{
1928 char buf [EV_INOTIFY_BUFSIZE];
1929 struct inotify_event *ev = (struct inotify_event *)buf;
1930 int ofs;
1931 int len = read (fs_fd, buf, sizeof (buf));
1932
1933 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1934 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1935}
1936
1937void inline_size
1938infy_init (EV_P)
1939{
1940 if (fs_fd != -2)
1941 return;
1942
1943 fs_fd = inotify_init ();
1944
1945 if (fs_fd >= 0)
1946 {
1947 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1948 ev_set_priority (&fs_w, EV_MAXPRI);
1949 ev_io_start (EV_A_ &fs_w);
1950 }
1951}
1952
1953void inline_size
1954infy_fork (EV_P)
1955{
1956 int slot;
1957
1958 if (fs_fd < 0)
1959 return;
1960
1961 close (fs_fd);
1962 fs_fd = inotify_init ();
1963
1964 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1965 {
1966 WL w_ = fs_hash [slot].head;
1967 fs_hash [slot].head = 0;
1968
1969 while (w_)
1970 {
1971 ev_stat *w = (ev_stat *)w_;
1972 w_ = w_->next; /* lets us add this watcher */
1973
1974 w->wd = -1;
1975
1976 if (fs_fd >= 0)
1977 infy_add (EV_A_ w); /* re-add, no matter what */
1978 else
1979 ev_timer_start (EV_A_ &w->timer);
1980 }
1981
1982 }
1983}
1984
1985#endif
1986
1987void
1988ev_stat_stat (EV_P_ ev_stat *w)
1989{
1990 if (lstat (w->path, &w->attr) < 0)
1991 w->attr.st_nlink = 0;
1992 else if (!w->attr.st_nlink)
1993 w->attr.st_nlink = 1;
1994}
1995
1996static void noinline
1997stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1998{
1999 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2000
2001 /* we copy this here each the time so that */
2002 /* prev has the old value when the callback gets invoked */
2003 w->prev = w->attr;
2004 ev_stat_stat (EV_A_ w);
2005
2006 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2007 if (
2008 w->prev.st_dev != w->attr.st_dev
2009 || w->prev.st_ino != w->attr.st_ino
2010 || w->prev.st_mode != w->attr.st_mode
2011 || w->prev.st_nlink != w->attr.st_nlink
2012 || w->prev.st_uid != w->attr.st_uid
2013 || w->prev.st_gid != w->attr.st_gid
2014 || w->prev.st_rdev != w->attr.st_rdev
2015 || w->prev.st_size != w->attr.st_size
2016 || w->prev.st_atime != w->attr.st_atime
2017 || w->prev.st_mtime != w->attr.st_mtime
2018 || w->prev.st_ctime != w->attr.st_ctime
2019 ) {
2020 #if EV_USE_INOTIFY
2021 infy_del (EV_A_ w);
2022 infy_add (EV_A_ w);
2023 ev_stat_stat (EV_A_ w); /* avoid race... */
2024 #endif
2025
2026 ev_feed_event (EV_A_ w, EV_STAT);
2027 }
2028}
2029
2030void
2031ev_stat_start (EV_P_ ev_stat *w)
2032{
2033 if (expect_false (ev_is_active (w)))
2034 return;
2035
2036 /* since we use memcmp, we need to clear any padding data etc. */
2037 memset (&w->prev, 0, sizeof (ev_statdata));
2038 memset (&w->attr, 0, sizeof (ev_statdata));
2039
2040 ev_stat_stat (EV_A_ w);
2041
2042 if (w->interval < MIN_STAT_INTERVAL)
2043 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2044
2045 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2046 ev_set_priority (&w->timer, ev_priority (w));
2047
2048#if EV_USE_INOTIFY
2049 infy_init (EV_A);
2050
2051 if (fs_fd >= 0)
2052 infy_add (EV_A_ w);
2053 else
2054#endif
2055 ev_timer_start (EV_A_ &w->timer);
2056
2057 ev_start (EV_A_ (W)w, 1);
2058}
2059
2060void
2061ev_stat_stop (EV_P_ ev_stat *w)
2062{
2063 clear_pending (EV_A_ (W)w);
2064 if (expect_false (!ev_is_active (w)))
2065 return;
2066
2067#if EV_USE_INOTIFY
2068 infy_del (EV_A_ w);
2069#endif
2070 ev_timer_stop (EV_A_ &w->timer);
2071
2072 ev_stop (EV_A_ (W)w);
2073}
2074#endif
2075
2076#if EV_IDLE_ENABLE
2077void
2078ev_idle_start (EV_P_ ev_idle *w)
2079{
2080 if (expect_false (ev_is_active (w)))
2081 return;
2082
2083 pri_adjust (EV_A_ (W)w);
2084
2085 {
2086 int active = ++idlecnt [ABSPRI (w)];
2087
2088 ++idleall;
2089 ev_start (EV_A_ (W)w, active);
2090
2091 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2092 idles [ABSPRI (w)][active - 1] = w;
2093 }
2094}
2095
2096void
2097ev_idle_stop (EV_P_ ev_idle *w)
2098{
2099 clear_pending (EV_A_ (W)w);
2100 if (expect_false (!ev_is_active (w)))
2101 return;
2102
2103 {
2104 int active = ((W)w)->active;
2105
2106 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2107 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2108
2109 ev_stop (EV_A_ (W)w);
2110 --idleall;
2111 }
2112}
2113#endif
2114
2115void
2116ev_prepare_start (EV_P_ ev_prepare *w)
2117{
2118 if (expect_false (ev_is_active (w)))
2119 return;
2120
2121 ev_start (EV_A_ (W)w, ++preparecnt);
2122 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2123 prepares [preparecnt - 1] = w;
2124}
2125
2126void
2127ev_prepare_stop (EV_P_ ev_prepare *w)
2128{
2129 clear_pending (EV_A_ (W)w);
2130 if (expect_false (!ev_is_active (w)))
2131 return;
2132
2133 {
2134 int active = ((W)w)->active;
2135 prepares [active - 1] = prepares [--preparecnt];
2136 ((W)prepares [active - 1])->active = active;
2137 }
2138
2139 ev_stop (EV_A_ (W)w);
2140}
2141
2142void
2143ev_check_start (EV_P_ ev_check *w)
2144{
2145 if (expect_false (ev_is_active (w)))
2146 return;
2147
2148 ev_start (EV_A_ (W)w, ++checkcnt);
2149 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2150 checks [checkcnt - 1] = w;
2151}
2152
2153void
2154ev_check_stop (EV_P_ ev_check *w)
2155{
2156 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w)))
2158 return;
2159
2160 {
2161 int active = ((W)w)->active;
2162 checks [active - 1] = checks [--checkcnt];
2163 ((W)checks [active - 1])->active = active;
2164 }
2165
2166 ev_stop (EV_A_ (W)w);
2167}
2168
2169#if EV_EMBED_ENABLE
2170void noinline
2171ev_embed_sweep (EV_P_ ev_embed *w)
2172{
2173 ev_loop (w->loop, EVLOOP_NONBLOCK);
2174}
2175
2176static void
2177embed_cb (EV_P_ ev_io *io, int revents)
2178{
2179 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2180
2181 if (ev_cb (w))
2182 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2183 else
2184 ev_embed_sweep (loop, w);
2185}
2186
2187void
2188ev_embed_start (EV_P_ ev_embed *w)
2189{
2190 if (expect_false (ev_is_active (w)))
2191 return;
2192
2193 {
2194 struct ev_loop *loop = w->loop;
2195 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2196 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2197 }
2198
2199 ev_set_priority (&w->io, ev_priority (w));
2200 ev_io_start (EV_A_ &w->io);
2201
2202 ev_start (EV_A_ (W)w, 1);
2203}
2204
2205void
2206ev_embed_stop (EV_P_ ev_embed *w)
2207{
2208 clear_pending (EV_A_ (W)w);
2209 if (expect_false (!ev_is_active (w)))
2210 return;
2211
2212 ev_io_stop (EV_A_ &w->io);
2213
2214 ev_stop (EV_A_ (W)w);
2215}
2216#endif
2217
2218#if EV_FORK_ENABLE
2219void
2220ev_fork_start (EV_P_ ev_fork *w)
2221{
2222 if (expect_false (ev_is_active (w)))
2223 return;
2224
2225 ev_start (EV_A_ (W)w, ++forkcnt);
2226 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2227 forks [forkcnt - 1] = w;
2228}
2229
2230void
2231ev_fork_stop (EV_P_ ev_fork *w)
2232{
2233 clear_pending (EV_A_ (W)w);
2234 if (expect_false (!ev_is_active (w)))
2235 return;
2236
2237 {
2238 int active = ((W)w)->active;
2239 forks [active - 1] = forks [--forkcnt];
2240 ((W)forks [active - 1])->active = active;
2241 }
2242
2243 ev_stop (EV_A_ (W)w);
2244}
2245#endif
2246
1534/*****************************************************************************/ 2247/*****************************************************************************/
1535 2248
1536struct ev_once 2249struct ev_once
1537{ 2250{
1538 struct ev_io io; 2251 ev_io io;
1539 struct ev_timer to; 2252 ev_timer to;
1540 void (*cb)(int revents, void *arg); 2253 void (*cb)(int revents, void *arg);
1541 void *arg; 2254 void *arg;
1542}; 2255};
1543 2256
1544static void 2257static void
1553 2266
1554 cb (revents, arg); 2267 cb (revents, arg);
1555} 2268}
1556 2269
1557static void 2270static void
1558once_cb_io (EV_P_ struct ev_io *w, int revents) 2271once_cb_io (EV_P_ ev_io *w, int revents)
1559{ 2272{
1560 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2273 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1561} 2274}
1562 2275
1563static void 2276static void
1564once_cb_to (EV_P_ struct ev_timer *w, int revents) 2277once_cb_to (EV_P_ ev_timer *w, int revents)
1565{ 2278{
1566 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2279 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1567} 2280}
1568 2281
1569void 2282void
1570ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2283ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1571{ 2284{
1572 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2285 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1573 2286
1574 if (!once) 2287 if (expect_false (!once))
2288 {
1575 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2289 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1576 else 2290 return;
1577 { 2291 }
2292
1578 once->cb = cb; 2293 once->cb = cb;
1579 once->arg = arg; 2294 once->arg = arg;
1580 2295
1581 ev_init (&once->io, once_cb_io); 2296 ev_init (&once->io, once_cb_io);
1582 if (fd >= 0) 2297 if (fd >= 0)
1583 { 2298 {
1584 ev_io_set (&once->io, fd, events); 2299 ev_io_set (&once->io, fd, events);
1585 ev_io_start (EV_A_ &once->io); 2300 ev_io_start (EV_A_ &once->io);
1586 } 2301 }
1587 2302
1588 ev_init (&once->to, once_cb_to); 2303 ev_init (&once->to, once_cb_to);
1589 if (timeout >= 0.) 2304 if (timeout >= 0.)
1590 { 2305 {
1591 ev_timer_set (&once->to, timeout, 0.); 2306 ev_timer_set (&once->to, timeout, 0.);
1592 ev_timer_start (EV_A_ &once->to); 2307 ev_timer_start (EV_A_ &once->to);
1593 }
1594 } 2308 }
1595} 2309}
1596 2310
2311#ifdef __cplusplus
2312}
2313#endif
2314

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines