ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.85 by root, Sat Nov 10 03:13:50 2007 UTC vs.
Revision 1.236 by root, Wed May 7 14:46:22 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
33 51
34# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
37# endif 66# endif
38 67
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
41# endif 74# endif
42 75
43# if HAVE_POLL && HAVE_POLL_H 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
45# endif 82# endif
46 83
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
49# endif 90# endif
50 91
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
53# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
54 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
55#endif 132#endif
56 133
57#include <math.h> 134#include <math.h>
58#include <stdlib.h> 135#include <stdlib.h>
59#include <fcntl.h> 136#include <fcntl.h>
66#include <sys/types.h> 143#include <sys/types.h>
67#include <time.h> 144#include <time.h>
68 145
69#include <signal.h> 146#include <signal.h>
70 147
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
76/**/
77
78#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1
80#endif
81
82#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1
84#endif
85
86#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88#endif
89
90#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0
92#endif
93
94#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME
109# define EV_USE_REALTIME 1
110#endif
111
112/**/
113
114#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0
117#endif
118
119#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0
122#endif
123
124/**/
125
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130
131#ifdef EV_H 148#ifdef EV_H
132# include EV_H 149# include EV_H
133#else 150#else
134# include "ev.h" 151# include "ev.h"
135#endif 152#endif
136 153
154#ifndef _WIN32
155# include <sys/time.h>
156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
163# endif
164#endif
165
166/* this block tries to deduce configuration from header-defined symbols and defaults */
167
168#ifndef EV_USE_MONOTONIC
169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
178#endif
179
180#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1
182#endif
183
184#ifndef EV_USE_POLL
185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
189# endif
190#endif
191
192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
196# define EV_USE_EPOLL 0
197# endif
198#endif
199
200#ifndef EV_USE_KQUEUE
201# define EV_USE_KQUEUE 0
202#endif
203
204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241
242#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0
245#endif
246
247#ifndef CLOCK_REALTIME
248# undef EV_USE_REALTIME
249# define EV_USE_REALTIME 0
250#endif
251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif
270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298
137#if __GNUC__ >= 3 299#if __GNUC__ >= 4
138# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
139# define inline inline 301# define noinline __attribute__ ((noinline))
140#else 302#else
141# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
142# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
143#endif 308#endif
144 309
145#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
146#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
147 319
148#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
149#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
150 322
323#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */
325
151typedef struct ev_watcher *W; 326typedef ev_watcher *W;
152typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
153typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
154 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
156 338
339#ifdef _WIN32
157#include "ev_win32.c" 340# include "ev_win32.c"
341#endif
158 342
159/*****************************************************************************/ 343/*****************************************************************************/
160 344
161static void (*syserr_cb)(const char *msg); 345static void (*syserr_cb)(const char *msg);
162 346
347void
163void ev_set_syserr_cb (void (*cb)(const char *msg)) 348ev_set_syserr_cb (void (*cb)(const char *msg))
164{ 349{
165 syserr_cb = cb; 350 syserr_cb = cb;
166} 351}
167 352
168static void 353static void noinline
169syserr (const char *msg) 354syserr (const char *msg)
170{ 355{
171 if (!msg) 356 if (!msg)
172 msg = "(libev) system error"; 357 msg = "(libev) system error";
173 358
178 perror (msg); 363 perror (msg);
179 abort (); 364 abort ();
180 } 365 }
181} 366}
182 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
183static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
184 384
385void
185void ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
186{ 387{
187 alloc = cb; 388 alloc = cb;
188} 389}
189 390
190static void * 391inline_speed void *
191ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
192{ 393{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
194 395
195 if (!ptr && size) 396 if (!ptr && size)
196 { 397 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort (); 399 abort ();
209typedef struct 410typedef struct
210{ 411{
211 WL head; 412 WL head;
212 unsigned char events; 413 unsigned char events;
213 unsigned char reify; 414 unsigned char reify;
415#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle;
417#endif
214} ANFD; 418} ANFD;
215 419
216typedef struct 420typedef struct
217{ 421{
218 W w; 422 W w;
219 int events; 423 int events;
220} ANPENDING; 424} ANPENDING;
221 425
426#if EV_USE_INOTIFY
427typedef struct
428{
429 WL head;
430} ANFS;
431#endif
432
222#if EV_MULTIPLICITY 433#if EV_MULTIPLICITY
223 434
224 struct ev_loop 435 struct ev_loop
225 { 436 {
437 ev_tstamp ev_rt_now;
438 #define ev_rt_now ((loop)->ev_rt_now)
226 #define VAR(name,decl) decl; 439 #define VAR(name,decl) decl;
227 #include "ev_vars.h" 440 #include "ev_vars.h"
228 #undef VAR 441 #undef VAR
229 }; 442 };
230 #include "ev_wrap.h" 443 #include "ev_wrap.h"
231 444
232 struct ev_loop default_loop_struct; 445 static struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop; 446 struct ev_loop *ev_default_loop_ptr;
234 447
235#else 448#else
236 449
450 ev_tstamp ev_rt_now;
237 #define VAR(name,decl) static decl; 451 #define VAR(name,decl) static decl;
238 #include "ev_vars.h" 452 #include "ev_vars.h"
239 #undef VAR 453 #undef VAR
240 454
241 static int default_loop; 455 static int ev_default_loop_ptr;
242 456
243#endif 457#endif
244 458
245/*****************************************************************************/ 459/*****************************************************************************/
246 460
247inline ev_tstamp 461ev_tstamp
248ev_time (void) 462ev_time (void)
249{ 463{
250#if EV_USE_REALTIME 464#if EV_USE_REALTIME
251 struct timespec ts; 465 struct timespec ts;
252 clock_gettime (CLOCK_REALTIME, &ts); 466 clock_gettime (CLOCK_REALTIME, &ts);
256 gettimeofday (&tv, 0); 470 gettimeofday (&tv, 0);
257 return tv.tv_sec + tv.tv_usec * 1e-6; 471 return tv.tv_sec + tv.tv_usec * 1e-6;
258#endif 472#endif
259} 473}
260 474
261inline ev_tstamp 475ev_tstamp inline_size
262get_clock (void) 476get_clock (void)
263{ 477{
264#if EV_USE_MONOTONIC 478#if EV_USE_MONOTONIC
265 if (expect_true (have_monotonic)) 479 if (expect_true (have_monotonic))
266 { 480 {
279{ 493{
280 return ev_rt_now; 494 return ev_rt_now;
281} 495}
282#endif 496#endif
283 497
284#define array_roundsize(type,n) ((n) | 4 & ~3) 498void
499ev_sleep (ev_tstamp delay)
500{
501 if (delay > 0.)
502 {
503#if EV_USE_NANOSLEEP
504 struct timespec ts;
505
506 ts.tv_sec = (time_t)delay;
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0);
510#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3));
512#else
513 struct timeval tv;
514
515 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517
518 select (0, 0, 0, 0, &tv);
519#endif
520 }
521}
522
523/*****************************************************************************/
524
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526
527int inline_size
528array_nextsize (int elem, int cur, int cnt)
529{
530 int ncur = cur + 1;
531
532 do
533 ncur <<= 1;
534 while (cnt > ncur);
535
536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
538 {
539 ncur *= elem;
540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
541 ncur = ncur - sizeof (void *) * 4;
542 ncur /= elem;
543 }
544
545 return ncur;
546}
547
548static noinline void *
549array_realloc (int elem, void *base, int *cur, int cnt)
550{
551 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur);
553}
285 554
286#define array_needsize(type,base,cur,cnt,init) \ 555#define array_needsize(type,base,cur,cnt,init) \
287 if (expect_false ((cnt) > cur)) \ 556 if (expect_false ((cnt) > (cur))) \
288 { \ 557 { \
289 int newcnt = cur; \ 558 int ocur_ = (cur); \
290 do \ 559 (base) = (type *)array_realloc \
291 { \ 560 (sizeof (type), (base), &(cur), (cnt)); \
292 newcnt = array_roundsize (type, newcnt << 1); \ 561 init ((base) + (ocur_), (cur) - ocur_); \
293 } \
294 while ((cnt) > newcnt); \
295 \
296 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
297 init (base + cur, newcnt - cur); \
298 cur = newcnt; \
299 } 562 }
300 563
564#if 0
301#define array_slim(type,stem) \ 565#define array_slim(type,stem) \
302 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 566 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
303 { \ 567 { \
304 stem ## max = array_roundsize (stem ## cnt >> 1); \ 568 stem ## max = array_roundsize (stem ## cnt >> 1); \
305 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 569 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
306 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
307 } 571 }
308 572#endif
309/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
310/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
311#define array_free_microshit(stem) \
312 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
313 573
314#define array_free(stem, idx) \ 574#define array_free(stem, idx) \
315 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
316 576
317/*****************************************************************************/ 577/*****************************************************************************/
318 578
319static void 579void noinline
580ev_feed_event (EV_P_ void *w, int revents)
581{
582 W w_ = (W)w;
583 int pri = ABSPRI (w_);
584
585 if (expect_false (w_->pending))
586 pendings [pri][w_->pending - 1].events |= revents;
587 else
588 {
589 w_->pending = ++pendingcnt [pri];
590 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
591 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents;
593 }
594}
595
596void inline_speed
597queue_events (EV_P_ W *events, int eventcnt, int type)
598{
599 int i;
600
601 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type);
603}
604
605/*****************************************************************************/
606
607void inline_size
320anfds_init (ANFD *base, int count) 608anfds_init (ANFD *base, int count)
321{ 609{
322 while (count--) 610 while (count--)
323 { 611 {
324 base->head = 0; 612 base->head = 0;
327 615
328 ++base; 616 ++base;
329 } 617 }
330} 618}
331 619
332void 620void inline_speed
333ev_feed_event (EV_P_ void *w, int revents)
334{
335 W w_ = (W)w;
336
337 if (w_->pending)
338 {
339 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
340 return;
341 }
342
343 w_->pending = ++pendingcnt [ABSPRI (w_)];
344 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
345 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
346 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
347}
348
349static void
350queue_events (EV_P_ W *events, int eventcnt, int type)
351{
352 int i;
353
354 for (i = 0; i < eventcnt; ++i)
355 ev_feed_event (EV_A_ events [i], type);
356}
357
358inline void
359fd_event (EV_P_ int fd, int revents) 621fd_event (EV_P_ int fd, int revents)
360{ 622{
361 ANFD *anfd = anfds + fd; 623 ANFD *anfd = anfds + fd;
362 struct ev_io *w; 624 ev_io *w;
363 625
364 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
365 { 627 {
366 int ev = w->events & revents; 628 int ev = w->events & revents;
367 629
368 if (ev) 630 if (ev)
369 ev_feed_event (EV_A_ (W)w, ev); 631 ev_feed_event (EV_A_ (W)w, ev);
371} 633}
372 634
373void 635void
374ev_feed_fd_event (EV_P_ int fd, int revents) 636ev_feed_fd_event (EV_P_ int fd, int revents)
375{ 637{
638 if (fd >= 0 && fd < anfdmax)
376 fd_event (EV_A_ fd, revents); 639 fd_event (EV_A_ fd, revents);
377} 640}
378 641
379/*****************************************************************************/ 642void inline_size
380
381static void
382fd_reify (EV_P) 643fd_reify (EV_P)
383{ 644{
384 int i; 645 int i;
385 646
386 for (i = 0; i < fdchangecnt; ++i) 647 for (i = 0; i < fdchangecnt; ++i)
387 { 648 {
388 int fd = fdchanges [i]; 649 int fd = fdchanges [i];
389 ANFD *anfd = anfds + fd; 650 ANFD *anfd = anfds + fd;
390 struct ev_io *w; 651 ev_io *w;
391 652
392 int events = 0; 653 unsigned char events = 0;
393 654
394 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 655 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
395 events |= w->events; 656 events |= (unsigned char)w->events;
396 657
658#if EV_SELECT_IS_WINSOCKET
659 if (events)
660 {
661 unsigned long argp;
662 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else
665 anfd->handle = _get_osfhandle (fd);
666 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
668 }
669#endif
670
671 {
672 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify;
674
397 anfd->reify = 0; 675 anfd->reify = 0;
398
399 method_modify (EV_A_ fd, anfd->events, events);
400 anfd->events = events; 676 anfd->events = events;
677
678 if (o_events != events || o_reify & EV_IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events);
680 }
401 } 681 }
402 682
403 fdchangecnt = 0; 683 fdchangecnt = 0;
404} 684}
405 685
406static void 686void inline_size
407fd_change (EV_P_ int fd) 687fd_change (EV_P_ int fd, int flags)
408{ 688{
409 if (anfds [fd].reify) 689 unsigned char reify = anfds [fd].reify;
410 return;
411
412 anfds [fd].reify = 1; 690 anfds [fd].reify |= flags;
413 691
692 if (expect_true (!reify))
693 {
414 ++fdchangecnt; 694 ++fdchangecnt;
415 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
416 fdchanges [fdchangecnt - 1] = fd; 696 fdchanges [fdchangecnt - 1] = fd;
697 }
417} 698}
418 699
419static void 700void inline_speed
420fd_kill (EV_P_ int fd) 701fd_kill (EV_P_ int fd)
421{ 702{
422 struct ev_io *w; 703 ev_io *w;
423 704
424 while ((w = (struct ev_io *)anfds [fd].head)) 705 while ((w = (ev_io *)anfds [fd].head))
425 { 706 {
426 ev_io_stop (EV_A_ w); 707 ev_io_stop (EV_A_ w);
427 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
428 } 709 }
429} 710}
430 711
431static int 712int inline_size
432fd_valid (int fd) 713fd_valid (int fd)
433{ 714{
434#ifdef WIN32 715#ifdef _WIN32
435 return !!win32_get_osfhandle (fd); 716 return _get_osfhandle (fd) != -1;
436#else 717#else
437 return fcntl (fd, F_GETFD) != -1; 718 return fcntl (fd, F_GETFD) != -1;
438#endif 719#endif
439} 720}
440 721
441/* called on EBADF to verify fds */ 722/* called on EBADF to verify fds */
442static void 723static void noinline
443fd_ebadf (EV_P) 724fd_ebadf (EV_P)
444{ 725{
445 int fd; 726 int fd;
446 727
447 for (fd = 0; fd < anfdmax; ++fd) 728 for (fd = 0; fd < anfdmax; ++fd)
449 if (!fd_valid (fd) == -1 && errno == EBADF) 730 if (!fd_valid (fd) == -1 && errno == EBADF)
450 fd_kill (EV_A_ fd); 731 fd_kill (EV_A_ fd);
451} 732}
452 733
453/* called on ENOMEM in select/poll to kill some fds and retry */ 734/* called on ENOMEM in select/poll to kill some fds and retry */
454static void 735static void noinline
455fd_enomem (EV_P) 736fd_enomem (EV_P)
456{ 737{
457 int fd; 738 int fd;
458 739
459 for (fd = anfdmax; fd--; ) 740 for (fd = anfdmax; fd--; )
462 fd_kill (EV_A_ fd); 743 fd_kill (EV_A_ fd);
463 return; 744 return;
464 } 745 }
465} 746}
466 747
467/* usually called after fork if method needs to re-arm all fds from scratch */ 748/* usually called after fork if backend needs to re-arm all fds from scratch */
468static void 749static void noinline
469fd_rearm_all (EV_P) 750fd_rearm_all (EV_P)
470{ 751{
471 int fd; 752 int fd;
472 753
473 /* this should be highly optimised to not do anything but set a flag */
474 for (fd = 0; fd < anfdmax; ++fd) 754 for (fd = 0; fd < anfdmax; ++fd)
475 if (anfds [fd].events) 755 if (anfds [fd].events)
476 { 756 {
477 anfds [fd].events = 0; 757 anfds [fd].events = 0;
478 fd_change (EV_A_ fd); 758 fd_change (EV_A_ fd, EV_IOFDSET | 1);
479 } 759 }
480} 760}
481 761
482/*****************************************************************************/ 762/*****************************************************************************/
483 763
484static void 764/*
765 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers.
769 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP
772
773#define HEAP0 3 /* index of first element in heap */
774
775/* towards the root */
776void inline_speed
485upheap (WT *heap, int k) 777upheap (WT *heap, int k)
486{ 778{
487 WT w = heap [k]; 779 WT w = heap [k];
488 780
489 while (k && heap [k >> 1]->at > w->at) 781 for (;;)
490 { 782 {
783 int p = ((k - HEAP0 - 1) / 4) + HEAP0;
784
785 if (p >= HEAP0 || heap [p]->at <= w->at)
786 break;
787
491 heap [k] = heap [k >> 1]; 788 heap [k] = heap [p];
492 ((W)heap [k])->active = k + 1; 789 ev_active (heap [k]) = k;
493 k >>= 1; 790 k = p;
494 } 791 }
495 792
496 heap [k] = w; 793 heap [k] = w;
497 ((W)heap [k])->active = k + 1; 794 ev_active (heap [k]) = k;
498
499} 795}
500 796
501static void 797/* away from the root */
798void inline_speed
502downheap (WT *heap, int N, int k) 799downheap (WT *heap, int N, int k)
503{ 800{
504 WT w = heap [k]; 801 WT w = heap [k];
802 WT *E = heap + N + HEAP0;
505 803
506 while (k < (N >> 1)) 804 for (;;)
507 { 805 {
508 int j = k << 1; 806 ev_tstamp minat;
807 WT *minpos;
808 WT *pos = heap + 4 * (k - HEAP0) + HEAP0;
509 809
510 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 810 // find minimum child
811 if (expect_true (pos +3 < E))
511 ++j; 812 {
813 /* fast path */
814 (minpos = pos + 0), (minat = (*minpos)->at);
815 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
816 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
817 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
818 }
819 else
820 {
821 /* slow path */
822 if (pos >= E)
823 break;
824 (minpos = pos + 0), (minat = (*minpos)->at);
825 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
826 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
827 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
828 }
512 829
513 if (w->at <= heap [j]->at) 830 if (w->at <= minat)
514 break; 831 break;
515 832
516 heap [k] = heap [j]; 833 ev_active (*minpos) = k;
517 ((W)heap [k])->active = k + 1; 834 heap [k] = *minpos;
518 k = j; 835
836 k = minpos - heap;
519 } 837 }
520 838
521 heap [k] = w; 839 heap [k] = w;
840 ev_active (heap [k]) = k;
841}
842
843#else // 4HEAP
844
845#define HEAP0 1
846
847/* towards the root */
848void inline_speed
849upheap (WT *heap, int k)
850{
851 WT w = heap [k];
852
853 for (;;)
854 {
855 int p = k >> 1;
856
857 /* maybe we could use a dummy element at heap [0]? */
858 if (!p || heap [p]->at <= w->at)
859 break;
860
861 heap [k] = heap [p];
862 ev_active (heap [k]) = k;
863 k = p;
864 }
865
866 heap [k] = w;
867 ev_active (heap [k]) = k;
868}
869
870/* away from the root */
871void inline_speed
872downheap (WT *heap, int N, int k)
873{
874 WT w = heap [k];
875
876 for (;;)
877 {
878 int c = k << 1;
879
880 if (c > N)
881 break;
882
883 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
884 ? 1 : 0;
885
886 if (w->at <= heap [c]->at)
887 break;
888
889 heap [k] = heap [c];
522 ((W)heap [k])->active = k + 1; 890 ((W)heap [k])->active = k;
523} 891
892 k = c;
893 }
524 894
525inline void 895 heap [k] = w;
896 ev_active (heap [k]) = k;
897}
898#endif
899
900void inline_size
526adjustheap (WT *heap, int N, int k, ev_tstamp at) 901adjustheap (WT *heap, int N, int k)
527{ 902{
528 ev_tstamp old_at = heap [k]->at; 903 upheap (heap, k);
529 heap [k]->at = at;
530
531 if (old_at < at)
532 downheap (heap, N, k); 904 downheap (heap, N, k);
533 else
534 upheap (heap, k);
535} 905}
536 906
537/*****************************************************************************/ 907/*****************************************************************************/
538 908
539typedef struct 909typedef struct
540{ 910{
541 WL head; 911 WL head;
542 sig_atomic_t volatile gotsig; 912 EV_ATOMIC_T gotsig;
543} ANSIG; 913} ANSIG;
544 914
545static ANSIG *signals; 915static ANSIG *signals;
546static int signalmax; 916static int signalmax;
547 917
548static int sigpipe [2]; 918static EV_ATOMIC_T gotsig;
549static sig_atomic_t volatile gotsig;
550static struct ev_io sigev;
551 919
552static void 920void inline_size
553signals_init (ANSIG *base, int count) 921signals_init (ANSIG *base, int count)
554{ 922{
555 while (count--) 923 while (count--)
556 { 924 {
557 base->head = 0; 925 base->head = 0;
559 927
560 ++base; 928 ++base;
561 } 929 }
562} 930}
563 931
932/*****************************************************************************/
933
934void inline_speed
935fd_intern (int fd)
936{
937#ifdef _WIN32
938 int arg = 1;
939 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
940#else
941 fcntl (fd, F_SETFD, FD_CLOEXEC);
942 fcntl (fd, F_SETFL, O_NONBLOCK);
943#endif
944}
945
946static void noinline
947evpipe_init (EV_P)
948{
949 if (!ev_is_active (&pipeev))
950 {
951#if EV_USE_EVENTFD
952 if ((evfd = eventfd (0, 0)) >= 0)
953 {
954 evpipe [0] = -1;
955 fd_intern (evfd);
956 ev_io_set (&pipeev, evfd, EV_READ);
957 }
958 else
959#endif
960 {
961 while (pipe (evpipe))
962 syserr ("(libev) error creating signal/async pipe");
963
964 fd_intern (evpipe [0]);
965 fd_intern (evpipe [1]);
966 ev_io_set (&pipeev, evpipe [0], EV_READ);
967 }
968
969 ev_io_start (EV_A_ &pipeev);
970 ev_unref (EV_A); /* watcher should not keep loop alive */
971 }
972}
973
974void inline_size
975evpipe_write (EV_P_ EV_ATOMIC_T *flag)
976{
977 if (!*flag)
978 {
979 int old_errno = errno; /* save errno because write might clobber it */
980
981 *flag = 1;
982
983#if EV_USE_EVENTFD
984 if (evfd >= 0)
985 {
986 uint64_t counter = 1;
987 write (evfd, &counter, sizeof (uint64_t));
988 }
989 else
990#endif
991 write (evpipe [1], &old_errno, 1);
992
993 errno = old_errno;
994 }
995}
996
564static void 997static void
998pipecb (EV_P_ ev_io *iow, int revents)
999{
1000#if EV_USE_EVENTFD
1001 if (evfd >= 0)
1002 {
1003 uint64_t counter;
1004 read (evfd, &counter, sizeof (uint64_t));
1005 }
1006 else
1007#endif
1008 {
1009 char dummy;
1010 read (evpipe [0], &dummy, 1);
1011 }
1012
1013 if (gotsig && ev_is_default_loop (EV_A))
1014 {
1015 int signum;
1016 gotsig = 0;
1017
1018 for (signum = signalmax; signum--; )
1019 if (signals [signum].gotsig)
1020 ev_feed_signal_event (EV_A_ signum + 1);
1021 }
1022
1023#if EV_ASYNC_ENABLE
1024 if (gotasync)
1025 {
1026 int i;
1027 gotasync = 0;
1028
1029 for (i = asynccnt; i--; )
1030 if (asyncs [i]->sent)
1031 {
1032 asyncs [i]->sent = 0;
1033 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1034 }
1035 }
1036#endif
1037}
1038
1039/*****************************************************************************/
1040
1041static void
565sighandler (int signum) 1042ev_sighandler (int signum)
566{ 1043{
1044#if EV_MULTIPLICITY
1045 struct ev_loop *loop = &default_loop_struct;
1046#endif
1047
567#if WIN32 1048#if _WIN32
568 signal (signum, sighandler); 1049 signal (signum, ev_sighandler);
569#endif 1050#endif
570 1051
571 signals [signum - 1].gotsig = 1; 1052 signals [signum - 1].gotsig = 1;
572 1053 evpipe_write (EV_A_ &gotsig);
573 if (!gotsig)
574 {
575 int old_errno = errno;
576 gotsig = 1;
577#ifdef WIN32
578 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
579#else
580 write (sigpipe [1], &signum, 1);
581#endif
582 errno = old_errno;
583 }
584} 1054}
585 1055
586void 1056void noinline
587ev_feed_signal_event (EV_P_ int signum) 1057ev_feed_signal_event (EV_P_ int signum)
588{ 1058{
589 WL w; 1059 WL w;
590 1060
591#if EV_MULTIPLICITY 1061#if EV_MULTIPLICITY
592 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 1062 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
593#endif 1063#endif
594 1064
595 --signum; 1065 --signum;
596 1066
597 if (signum < 0 || signum >= signalmax) 1067 if (signum < 0 || signum >= signalmax)
601 1071
602 for (w = signals [signum].head; w; w = w->next) 1072 for (w = signals [signum].head; w; w = w->next)
603 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1073 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
604} 1074}
605 1075
606static void
607sigcb (EV_P_ struct ev_io *iow, int revents)
608{
609 int signum;
610
611#ifdef WIN32
612 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
613#else
614 read (sigpipe [0], &revents, 1);
615#endif
616 gotsig = 0;
617
618 for (signum = signalmax; signum--; )
619 if (signals [signum].gotsig)
620 ev_feed_signal_event (EV_A_ signum + 1);
621}
622
623static void
624siginit (EV_P)
625{
626#ifndef WIN32
627 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
628 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
629
630 /* rather than sort out wether we really need nb, set it */
631 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
632 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
633#endif
634
635 ev_io_set (&sigev, sigpipe [0], EV_READ);
636 ev_io_start (EV_A_ &sigev);
637 ev_unref (EV_A); /* child watcher should not keep loop alive */
638}
639
640/*****************************************************************************/ 1076/*****************************************************************************/
641 1077
642static struct ev_child *childs [PID_HASHSIZE]; 1078static WL childs [EV_PID_HASHSIZE];
643 1079
644#ifndef WIN32 1080#ifndef _WIN32
645 1081
646static struct ev_signal childev; 1082static ev_signal childev;
1083
1084#ifndef WIFCONTINUED
1085# define WIFCONTINUED(status) 0
1086#endif
1087
1088void inline_speed
1089child_reap (EV_P_ int chain, int pid, int status)
1090{
1091 ev_child *w;
1092 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1093
1094 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1095 {
1096 if ((w->pid == pid || !w->pid)
1097 && (!traced || (w->flags & 1)))
1098 {
1099 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1100 w->rpid = pid;
1101 w->rstatus = status;
1102 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1103 }
1104 }
1105}
647 1106
648#ifndef WCONTINUED 1107#ifndef WCONTINUED
649# define WCONTINUED 0 1108# define WCONTINUED 0
650#endif 1109#endif
651 1110
652static void 1111static void
653child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
654{
655 struct ev_child *w;
656
657 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
658 if (w->pid == pid || !w->pid)
659 {
660 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
661 w->rpid = pid;
662 w->rstatus = status;
663 ev_feed_event (EV_A_ (W)w, EV_CHILD);
664 }
665}
666
667static void
668childcb (EV_P_ struct ev_signal *sw, int revents) 1112childcb (EV_P_ ev_signal *sw, int revents)
669{ 1113{
670 int pid, status; 1114 int pid, status;
671 1115
1116 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
672 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1117 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
673 { 1118 if (!WCONTINUED
1119 || errno != EINVAL
1120 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1121 return;
1122
674 /* make sure we are called again until all childs have been reaped */ 1123 /* make sure we are called again until all children have been reaped */
1124 /* we need to do it this way so that the callback gets called before we continue */
675 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1125 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
676 1126
677 child_reap (EV_A_ sw, pid, pid, status); 1127 child_reap (EV_A_ pid, pid, status);
1128 if (EV_PID_HASHSIZE > 1)
678 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1129 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
679 }
680} 1130}
681 1131
682#endif 1132#endif
683 1133
684/*****************************************************************************/ 1134/*****************************************************************************/
685 1135
1136#if EV_USE_PORT
1137# include "ev_port.c"
1138#endif
686#if EV_USE_KQUEUE 1139#if EV_USE_KQUEUE
687# include "ev_kqueue.c" 1140# include "ev_kqueue.c"
688#endif 1141#endif
689#if EV_USE_EPOLL 1142#if EV_USE_EPOLL
690# include "ev_epoll.c" 1143# include "ev_epoll.c"
707{ 1160{
708 return EV_VERSION_MINOR; 1161 return EV_VERSION_MINOR;
709} 1162}
710 1163
711/* return true if we are running with elevated privileges and should ignore env variables */ 1164/* return true if we are running with elevated privileges and should ignore env variables */
712static int 1165int inline_size
713enable_secure (void) 1166enable_secure (void)
714{ 1167{
715#ifdef WIN32 1168#ifdef _WIN32
716 return 0; 1169 return 0;
717#else 1170#else
718 return getuid () != geteuid () 1171 return getuid () != geteuid ()
719 || getgid () != getegid (); 1172 || getgid () != getegid ();
720#endif 1173#endif
721} 1174}
722 1175
723int 1176unsigned int
724ev_method (EV_P) 1177ev_supported_backends (void)
725{ 1178{
726 return method; 1179 unsigned int flags = 0;
727}
728 1180
729static void 1181 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
730loop_init (EV_P_ int methods) 1182 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1183 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1184 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1185 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1186
1187 return flags;
1188}
1189
1190unsigned int
1191ev_recommended_backends (void)
731{ 1192{
732 if (!method) 1193 unsigned int flags = ev_supported_backends ();
1194
1195#ifndef __NetBSD__
1196 /* kqueue is borked on everything but netbsd apparently */
1197 /* it usually doesn't work correctly on anything but sockets and pipes */
1198 flags &= ~EVBACKEND_KQUEUE;
1199#endif
1200#ifdef __APPLE__
1201 // flags &= ~EVBACKEND_KQUEUE; for documentation
1202 flags &= ~EVBACKEND_POLL;
1203#endif
1204
1205 return flags;
1206}
1207
1208unsigned int
1209ev_embeddable_backends (void)
1210{
1211 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1212
1213 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1214 /* please fix it and tell me how to detect the fix */
1215 flags &= ~EVBACKEND_EPOLL;
1216
1217 return flags;
1218}
1219
1220unsigned int
1221ev_backend (EV_P)
1222{
1223 return backend;
1224}
1225
1226unsigned int
1227ev_loop_count (EV_P)
1228{
1229 return loop_count;
1230}
1231
1232void
1233ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1234{
1235 io_blocktime = interval;
1236}
1237
1238void
1239ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1240{
1241 timeout_blocktime = interval;
1242}
1243
1244static void noinline
1245loop_init (EV_P_ unsigned int flags)
1246{
1247 if (!backend)
733 { 1248 {
734#if EV_USE_MONOTONIC 1249#if EV_USE_MONOTONIC
735 { 1250 {
736 struct timespec ts; 1251 struct timespec ts;
737 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1252 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
738 have_monotonic = 1; 1253 have_monotonic = 1;
739 } 1254 }
740#endif 1255#endif
741 1256
742 ev_rt_now = ev_time (); 1257 ev_rt_now = ev_time ();
743 mn_now = get_clock (); 1258 mn_now = get_clock ();
744 now_floor = mn_now; 1259 now_floor = mn_now;
745 rtmn_diff = ev_rt_now - mn_now; 1260 rtmn_diff = ev_rt_now - mn_now;
746 1261
747 if (methods == EVMETHOD_AUTO) 1262 io_blocktime = 0.;
748 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1263 timeout_blocktime = 0.;
1264 backend = 0;
1265 backend_fd = -1;
1266 gotasync = 0;
1267#if EV_USE_INOTIFY
1268 fs_fd = -2;
1269#endif
1270
1271 /* pid check not overridable via env */
1272#ifndef _WIN32
1273 if (flags & EVFLAG_FORKCHECK)
1274 curpid = getpid ();
1275#endif
1276
1277 if (!(flags & EVFLAG_NOENV)
1278 && !enable_secure ()
1279 && getenv ("LIBEV_FLAGS"))
749 methods = atoi (getenv ("LIBEV_METHODS")); 1280 flags = atoi (getenv ("LIBEV_FLAGS"));
750 else
751 methods = EVMETHOD_ANY;
752 1281
753 method = 0; 1282 if (!(flags & 0x0000ffffU))
754#if EV_USE_WIN32 1283 flags |= ev_recommended_backends ();
755 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1284
1285#if EV_USE_PORT
1286 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
756#endif 1287#endif
757#if EV_USE_KQUEUE 1288#if EV_USE_KQUEUE
758 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1289 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
759#endif 1290#endif
760#if EV_USE_EPOLL 1291#if EV_USE_EPOLL
761 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1292 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
762#endif 1293#endif
763#if EV_USE_POLL 1294#if EV_USE_POLL
764 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1295 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
765#endif 1296#endif
766#if EV_USE_SELECT 1297#if EV_USE_SELECT
767 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1298 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
768#endif 1299#endif
769 1300
770 ev_init (&sigev, sigcb); 1301 ev_init (&pipeev, pipecb);
771 ev_set_priority (&sigev, EV_MAXPRI); 1302 ev_set_priority (&pipeev, EV_MAXPRI);
772 } 1303 }
773} 1304}
774 1305
775void 1306static void noinline
776loop_destroy (EV_P) 1307loop_destroy (EV_P)
777{ 1308{
778 int i; 1309 int i;
779 1310
1311 if (ev_is_active (&pipeev))
1312 {
1313 ev_ref (EV_A); /* signal watcher */
1314 ev_io_stop (EV_A_ &pipeev);
1315
1316#if EV_USE_EVENTFD
1317 if (evfd >= 0)
1318 close (evfd);
1319#endif
1320
1321 if (evpipe [0] >= 0)
1322 {
1323 close (evpipe [0]);
1324 close (evpipe [1]);
1325 }
1326 }
1327
780#if EV_USE_WIN32 1328#if EV_USE_INOTIFY
781 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1329 if (fs_fd >= 0)
1330 close (fs_fd);
1331#endif
1332
1333 if (backend_fd >= 0)
1334 close (backend_fd);
1335
1336#if EV_USE_PORT
1337 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
782#endif 1338#endif
783#if EV_USE_KQUEUE 1339#if EV_USE_KQUEUE
784 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1340 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
785#endif 1341#endif
786#if EV_USE_EPOLL 1342#if EV_USE_EPOLL
787 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1343 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
788#endif 1344#endif
789#if EV_USE_POLL 1345#if EV_USE_POLL
790 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1346 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
791#endif 1347#endif
792#if EV_USE_SELECT 1348#if EV_USE_SELECT
793 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1349 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
794#endif 1350#endif
795 1351
796 for (i = NUMPRI; i--; ) 1352 for (i = NUMPRI; i--; )
1353 {
797 array_free (pending, [i]); 1354 array_free (pending, [i]);
1355#if EV_IDLE_ENABLE
1356 array_free (idle, [i]);
1357#endif
1358 }
1359
1360 ev_free (anfds); anfdmax = 0;
798 1361
799 /* have to use the microsoft-never-gets-it-right macro */ 1362 /* have to use the microsoft-never-gets-it-right macro */
800 array_free_microshit (fdchange); 1363 array_free (fdchange, EMPTY);
801 array_free_microshit (timer); 1364 array_free (timer, EMPTY);
802 array_free_microshit (periodic); 1365#if EV_PERIODIC_ENABLE
803 array_free_microshit (idle); 1366 array_free (periodic, EMPTY);
804 array_free_microshit (prepare); 1367#endif
805 array_free_microshit (check); 1368#if EV_FORK_ENABLE
1369 array_free (fork, EMPTY);
1370#endif
1371 array_free (prepare, EMPTY);
1372 array_free (check, EMPTY);
1373#if EV_ASYNC_ENABLE
1374 array_free (async, EMPTY);
1375#endif
806 1376
807 method = 0; 1377 backend = 0;
808} 1378}
809 1379
810static void 1380#if EV_USE_INOTIFY
1381void inline_size infy_fork (EV_P);
1382#endif
1383
1384void inline_size
811loop_fork (EV_P) 1385loop_fork (EV_P)
812{ 1386{
1387#if EV_USE_PORT
1388 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1389#endif
1390#if EV_USE_KQUEUE
1391 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1392#endif
813#if EV_USE_EPOLL 1393#if EV_USE_EPOLL
814 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1394 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
815#endif 1395#endif
816#if EV_USE_KQUEUE 1396#if EV_USE_INOTIFY
817 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1397 infy_fork (EV_A);
818#endif 1398#endif
819 1399
820 if (ev_is_active (&sigev)) 1400 if (ev_is_active (&pipeev))
821 { 1401 {
822 /* default loop */ 1402 /* this "locks" the handlers against writing to the pipe */
1403 /* while we modify the fd vars */
1404 gotsig = 1;
1405#if EV_ASYNC_ENABLE
1406 gotasync = 1;
1407#endif
823 1408
824 ev_ref (EV_A); 1409 ev_ref (EV_A);
825 ev_io_stop (EV_A_ &sigev); 1410 ev_io_stop (EV_A_ &pipeev);
1411
1412#if EV_USE_EVENTFD
1413 if (evfd >= 0)
1414 close (evfd);
1415#endif
1416
1417 if (evpipe [0] >= 0)
1418 {
826 close (sigpipe [0]); 1419 close (evpipe [0]);
827 close (sigpipe [1]); 1420 close (evpipe [1]);
1421 }
828 1422
829 while (pipe (sigpipe))
830 syserr ("(libev) error creating pipe");
831
832 siginit (EV_A); 1423 evpipe_init (EV_A);
1424 /* now iterate over everything, in case we missed something */
1425 pipecb (EV_A_ &pipeev, EV_READ);
833 } 1426 }
834 1427
835 postfork = 0; 1428 postfork = 0;
836} 1429}
837 1430
838#if EV_MULTIPLICITY 1431#if EV_MULTIPLICITY
839struct ev_loop * 1432struct ev_loop *
840ev_loop_new (int methods) 1433ev_loop_new (unsigned int flags)
841{ 1434{
842 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1435 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
843 1436
844 memset (loop, 0, sizeof (struct ev_loop)); 1437 memset (loop, 0, sizeof (struct ev_loop));
845 1438
846 loop_init (EV_A_ methods); 1439 loop_init (EV_A_ flags);
847 1440
848 if (ev_method (EV_A)) 1441 if (ev_backend (EV_A))
849 return loop; 1442 return loop;
850 1443
851 return 0; 1444 return 0;
852} 1445}
853 1446
859} 1452}
860 1453
861void 1454void
862ev_loop_fork (EV_P) 1455ev_loop_fork (EV_P)
863{ 1456{
864 postfork = 1; 1457 postfork = 1; /* must be in line with ev_default_fork */
865} 1458}
866
867#endif 1459#endif
868 1460
869#if EV_MULTIPLICITY 1461#if EV_MULTIPLICITY
870struct ev_loop * 1462struct ev_loop *
1463ev_default_loop_init (unsigned int flags)
871#else 1464#else
872int 1465int
1466ev_default_loop (unsigned int flags)
873#endif 1467#endif
874ev_default_loop (int methods)
875{ 1468{
876 if (sigpipe [0] == sigpipe [1])
877 if (pipe (sigpipe))
878 return 0;
879
880 if (!default_loop) 1469 if (!ev_default_loop_ptr)
881 { 1470 {
882#if EV_MULTIPLICITY 1471#if EV_MULTIPLICITY
883 struct ev_loop *loop = default_loop = &default_loop_struct; 1472 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
884#else 1473#else
885 default_loop = 1; 1474 ev_default_loop_ptr = 1;
886#endif 1475#endif
887 1476
888 loop_init (EV_A_ methods); 1477 loop_init (EV_A_ flags);
889 1478
890 if (ev_method (EV_A)) 1479 if (ev_backend (EV_A))
891 { 1480 {
892 siginit (EV_A);
893
894#ifndef WIN32 1481#ifndef _WIN32
895 ev_signal_init (&childev, childcb, SIGCHLD); 1482 ev_signal_init (&childev, childcb, SIGCHLD);
896 ev_set_priority (&childev, EV_MAXPRI); 1483 ev_set_priority (&childev, EV_MAXPRI);
897 ev_signal_start (EV_A_ &childev); 1484 ev_signal_start (EV_A_ &childev);
898 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1485 ev_unref (EV_A); /* child watcher should not keep loop alive */
899#endif 1486#endif
900 } 1487 }
901 else 1488 else
902 default_loop = 0; 1489 ev_default_loop_ptr = 0;
903 } 1490 }
904 1491
905 return default_loop; 1492 return ev_default_loop_ptr;
906} 1493}
907 1494
908void 1495void
909ev_default_destroy (void) 1496ev_default_destroy (void)
910{ 1497{
911#if EV_MULTIPLICITY 1498#if EV_MULTIPLICITY
912 struct ev_loop *loop = default_loop; 1499 struct ev_loop *loop = ev_default_loop_ptr;
913#endif 1500#endif
914 1501
915#ifndef WIN32 1502#ifndef _WIN32
916 ev_ref (EV_A); /* child watcher */ 1503 ev_ref (EV_A); /* child watcher */
917 ev_signal_stop (EV_A_ &childev); 1504 ev_signal_stop (EV_A_ &childev);
918#endif 1505#endif
919 1506
920 ev_ref (EV_A); /* signal watcher */
921 ev_io_stop (EV_A_ &sigev);
922
923 close (sigpipe [0]); sigpipe [0] = 0;
924 close (sigpipe [1]); sigpipe [1] = 0;
925
926 loop_destroy (EV_A); 1507 loop_destroy (EV_A);
927} 1508}
928 1509
929void 1510void
930ev_default_fork (void) 1511ev_default_fork (void)
931{ 1512{
932#if EV_MULTIPLICITY 1513#if EV_MULTIPLICITY
933 struct ev_loop *loop = default_loop; 1514 struct ev_loop *loop = ev_default_loop_ptr;
934#endif 1515#endif
935 1516
936 if (method) 1517 if (backend)
937 postfork = 1; 1518 postfork = 1; /* must be in line with ev_loop_fork */
938} 1519}
939 1520
940/*****************************************************************************/ 1521/*****************************************************************************/
941 1522
942static int 1523void
943any_pending (EV_P) 1524ev_invoke (EV_P_ void *w, int revents)
944{ 1525{
945 int pri; 1526 EV_CB_INVOKE ((W)w, revents);
946
947 for (pri = NUMPRI; pri--; )
948 if (pendingcnt [pri])
949 return 1;
950
951 return 0;
952} 1527}
953 1528
954static void 1529void inline_speed
955call_pending (EV_P) 1530call_pending (EV_P)
956{ 1531{
957 int pri; 1532 int pri;
958 1533
959 for (pri = NUMPRI; pri--; ) 1534 for (pri = NUMPRI; pri--; )
960 while (pendingcnt [pri]) 1535 while (pendingcnt [pri])
961 { 1536 {
962 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1537 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
963 1538
964 if (p->w) 1539 if (expect_true (p->w))
965 { 1540 {
1541 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1542
966 p->w->pending = 0; 1543 p->w->pending = 0;
967 EV_CB_INVOKE (p->w, p->events); 1544 EV_CB_INVOKE (p->w, p->events);
968 } 1545 }
969 } 1546 }
970} 1547}
971 1548
972static void 1549#if EV_IDLE_ENABLE
1550void inline_size
1551idle_reify (EV_P)
1552{
1553 if (expect_false (idleall))
1554 {
1555 int pri;
1556
1557 for (pri = NUMPRI; pri--; )
1558 {
1559 if (pendingcnt [pri])
1560 break;
1561
1562 if (idlecnt [pri])
1563 {
1564 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1565 break;
1566 }
1567 }
1568 }
1569}
1570#endif
1571
1572void inline_size
973timers_reify (EV_P) 1573timers_reify (EV_P)
974{ 1574{
975 while (timercnt && ((WT)timers [0])->at <= mn_now) 1575 while (timercnt && ev_at (timers [HEAP0]) <= mn_now)
976 { 1576 {
977 struct ev_timer *w = timers [0]; 1577 ev_timer *w = (ev_timer *)timers [HEAP0];
978 1578
979 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1579 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
980 1580
981 /* first reschedule or stop timer */ 1581 /* first reschedule or stop timer */
982 if (w->repeat) 1582 if (w->repeat)
983 { 1583 {
984 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1584 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
985 ((WT)w)->at = mn_now + w->repeat; 1585
1586 ev_at (w) += w->repeat;
1587 if (ev_at (w) < mn_now)
1588 ev_at (w) = mn_now;
1589
986 downheap ((WT *)timers, timercnt, 0); 1590 downheap (timers, timercnt, HEAP0);
987 } 1591 }
988 else 1592 else
989 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1593 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
990 1594
991 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1595 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
992 } 1596 }
993} 1597}
994 1598
995static void 1599#if EV_PERIODIC_ENABLE
1600void inline_size
996periodics_reify (EV_P) 1601periodics_reify (EV_P)
997{ 1602{
998 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1603 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now)
999 { 1604 {
1000 struct ev_periodic *w = periodics [0]; 1605 ev_periodic *w = (ev_periodic *)periodics [HEAP0];
1001 1606
1002 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1607 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1003 1608
1004 /* first reschedule or stop timer */ 1609 /* first reschedule or stop timer */
1005 if (w->reschedule_cb) 1610 if (w->reschedule_cb)
1006 { 1611 {
1007 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1612 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1008
1009 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1613 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1010 downheap ((WT *)periodics, periodiccnt, 0); 1614 downheap (periodics, periodiccnt, 1);
1011 } 1615 }
1012 else if (w->interval) 1616 else if (w->interval)
1013 { 1617 {
1014 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1618 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1619 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1015 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1620 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1016 downheap ((WT *)periodics, periodiccnt, 0); 1621 downheap (periodics, periodiccnt, HEAP0);
1017 } 1622 }
1018 else 1623 else
1019 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1624 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1020 1625
1021 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1626 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1022 } 1627 }
1023} 1628}
1024 1629
1025static void 1630static void noinline
1026periodics_reschedule (EV_P) 1631periodics_reschedule (EV_P)
1027{ 1632{
1028 int i; 1633 int i;
1029 1634
1030 /* adjust periodics after time jump */ 1635 /* adjust periodics after time jump */
1031 for (i = 0; i < periodiccnt; ++i) 1636 for (i = 1; i <= periodiccnt; ++i)
1032 { 1637 {
1033 struct ev_periodic *w = periodics [i]; 1638 ev_periodic *w = (ev_periodic *)periodics [i];
1034 1639
1035 if (w->reschedule_cb) 1640 if (w->reschedule_cb)
1036 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1641 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1037 else if (w->interval) 1642 else if (w->interval)
1038 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1643 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1039 } 1644 }
1040 1645
1041 /* now rebuild the heap */ 1646 /* now rebuild the heap */
1042 for (i = periodiccnt >> 1; i--; ) 1647 for (i = periodiccnt >> 1; --i; )
1043 downheap ((WT *)periodics, periodiccnt, i); 1648 downheap (periodics, periodiccnt, i + HEAP0);
1044} 1649}
1650#endif
1045 1651
1046inline int 1652void inline_speed
1047time_update_monotonic (EV_P) 1653time_update (EV_P_ ev_tstamp max_block)
1048{ 1654{
1655 int i;
1656
1657#if EV_USE_MONOTONIC
1658 if (expect_true (have_monotonic))
1659 {
1660 ev_tstamp odiff = rtmn_diff;
1661
1049 mn_now = get_clock (); 1662 mn_now = get_clock ();
1050 1663
1664 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1665 /* interpolate in the meantime */
1051 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1666 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1052 { 1667 {
1053 ev_rt_now = rtmn_diff + mn_now; 1668 ev_rt_now = rtmn_diff + mn_now;
1054 return 0; 1669 return;
1055 } 1670 }
1056 else 1671
1057 {
1058 now_floor = mn_now; 1672 now_floor = mn_now;
1059 ev_rt_now = ev_time (); 1673 ev_rt_now = ev_time ();
1060 return 1;
1061 }
1062}
1063 1674
1064static void 1675 /* loop a few times, before making important decisions.
1065time_update (EV_P) 1676 * on the choice of "4": one iteration isn't enough,
1066{ 1677 * in case we get preempted during the calls to
1067 int i; 1678 * ev_time and get_clock. a second call is almost guaranteed
1068 1679 * to succeed in that case, though. and looping a few more times
1069#if EV_USE_MONOTONIC 1680 * doesn't hurt either as we only do this on time-jumps or
1070 if (expect_true (have_monotonic)) 1681 * in the unlikely event of having been preempted here.
1071 { 1682 */
1072 if (time_update_monotonic (EV_A)) 1683 for (i = 4; --i; )
1073 { 1684 {
1074 ev_tstamp odiff = rtmn_diff;
1075
1076 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1077 {
1078 rtmn_diff = ev_rt_now - mn_now; 1685 rtmn_diff = ev_rt_now - mn_now;
1079 1686
1080 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1687 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1081 return; /* all is well */ 1688 return; /* all is well */
1082 1689
1083 ev_rt_now = ev_time (); 1690 ev_rt_now = ev_time ();
1084 mn_now = get_clock (); 1691 mn_now = get_clock ();
1085 now_floor = mn_now; 1692 now_floor = mn_now;
1086 } 1693 }
1087 1694
1695# if EV_PERIODIC_ENABLE
1696 periodics_reschedule (EV_A);
1697# endif
1698 /* no timer adjustment, as the monotonic clock doesn't jump */
1699 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1700 }
1701 else
1702#endif
1703 {
1704 ev_rt_now = ev_time ();
1705
1706 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1707 {
1708#if EV_PERIODIC_ENABLE
1088 periodics_reschedule (EV_A); 1709 periodics_reschedule (EV_A);
1089 /* no timer adjustment, as the monotonic clock doesn't jump */ 1710#endif
1090 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1711 /* adjust timers. this is easy, as the offset is the same for all of them */
1712 for (i = 1; i <= timercnt; ++i)
1713 ev_at (timers [i]) += ev_rt_now - mn_now;
1091 } 1714 }
1092 }
1093 else
1094#endif
1095 {
1096 ev_rt_now = ev_time ();
1097
1098 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1099 {
1100 periodics_reschedule (EV_A);
1101
1102 /* adjust timers. this is easy, as the offset is the same for all */
1103 for (i = 0; i < timercnt; ++i)
1104 ((WT)timers [i])->at += ev_rt_now - mn_now;
1105 }
1106 1715
1107 mn_now = ev_rt_now; 1716 mn_now = ev_rt_now;
1108 } 1717 }
1109} 1718}
1110 1719
1123static int loop_done; 1732static int loop_done;
1124 1733
1125void 1734void
1126ev_loop (EV_P_ int flags) 1735ev_loop (EV_P_ int flags)
1127{ 1736{
1128 double block; 1737 loop_done = EVUNLOOP_CANCEL;
1129 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1738
1739 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1130 1740
1131 do 1741 do
1132 { 1742 {
1743#ifndef _WIN32
1744 if (expect_false (curpid)) /* penalise the forking check even more */
1745 if (expect_false (getpid () != curpid))
1746 {
1747 curpid = getpid ();
1748 postfork = 1;
1749 }
1750#endif
1751
1752#if EV_FORK_ENABLE
1753 /* we might have forked, so queue fork handlers */
1754 if (expect_false (postfork))
1755 if (forkcnt)
1756 {
1757 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1758 call_pending (EV_A);
1759 }
1760#endif
1761
1133 /* queue check watchers (and execute them) */ 1762 /* queue prepare watchers (and execute them) */
1134 if (expect_false (preparecnt)) 1763 if (expect_false (preparecnt))
1135 { 1764 {
1136 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1765 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1137 call_pending (EV_A); 1766 call_pending (EV_A);
1138 } 1767 }
1139 1768
1769 if (expect_false (!activecnt))
1770 break;
1771
1140 /* we might have forked, so reify kernel state if necessary */ 1772 /* we might have forked, so reify kernel state if necessary */
1141 if (expect_false (postfork)) 1773 if (expect_false (postfork))
1142 loop_fork (EV_A); 1774 loop_fork (EV_A);
1143 1775
1144 /* update fd-related kernel structures */ 1776 /* update fd-related kernel structures */
1145 fd_reify (EV_A); 1777 fd_reify (EV_A);
1146 1778
1147 /* calculate blocking time */ 1779 /* calculate blocking time */
1780 {
1781 ev_tstamp waittime = 0.;
1782 ev_tstamp sleeptime = 0.;
1148 1783
1149 /* we only need this for !monotonic clock or timers, but as we basically 1784 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1150 always have timers, we just calculate it always */
1151#if EV_USE_MONOTONIC
1152 if (expect_true (have_monotonic))
1153 time_update_monotonic (EV_A);
1154 else
1155#endif
1156 { 1785 {
1157 ev_rt_now = ev_time (); 1786 /* update time to cancel out callback processing overhead */
1158 mn_now = ev_rt_now; 1787 time_update (EV_A_ 1e100);
1159 }
1160 1788
1161 if (flags & EVLOOP_NONBLOCK || idlecnt)
1162 block = 0.;
1163 else
1164 {
1165 block = MAX_BLOCKTIME; 1789 waittime = MAX_BLOCKTIME;
1166 1790
1167 if (timercnt) 1791 if (timercnt)
1168 { 1792 {
1169 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1793 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge;
1170 if (block > to) block = to; 1794 if (waittime > to) waittime = to;
1171 } 1795 }
1172 1796
1797#if EV_PERIODIC_ENABLE
1173 if (periodiccnt) 1798 if (periodiccnt)
1174 { 1799 {
1175 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1800 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1176 if (block > to) block = to; 1801 if (waittime > to) waittime = to;
1177 } 1802 }
1803#endif
1178 1804
1179 if (block < 0.) block = 0.; 1805 if (expect_false (waittime < timeout_blocktime))
1806 waittime = timeout_blocktime;
1807
1808 sleeptime = waittime - backend_fudge;
1809
1810 if (expect_true (sleeptime > io_blocktime))
1811 sleeptime = io_blocktime;
1812
1813 if (sleeptime)
1814 {
1815 ev_sleep (sleeptime);
1816 waittime -= sleeptime;
1817 }
1180 } 1818 }
1181 1819
1182 method_poll (EV_A_ block); 1820 ++loop_count;
1821 backend_poll (EV_A_ waittime);
1183 1822
1184 /* update ev_rt_now, do magic */ 1823 /* update ev_rt_now, do magic */
1185 time_update (EV_A); 1824 time_update (EV_A_ waittime + sleeptime);
1825 }
1186 1826
1187 /* queue pending timers and reschedule them */ 1827 /* queue pending timers and reschedule them */
1188 timers_reify (EV_A); /* relative timers called last */ 1828 timers_reify (EV_A); /* relative timers called last */
1829#if EV_PERIODIC_ENABLE
1189 periodics_reify (EV_A); /* absolute timers called first */ 1830 periodics_reify (EV_A); /* absolute timers called first */
1831#endif
1190 1832
1833#if EV_IDLE_ENABLE
1191 /* queue idle watchers unless io or timers are pending */ 1834 /* queue idle watchers unless other events are pending */
1192 if (idlecnt && !any_pending (EV_A)) 1835 idle_reify (EV_A);
1193 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1836#endif
1194 1837
1195 /* queue check watchers, to be executed first */ 1838 /* queue check watchers, to be executed first */
1196 if (checkcnt) 1839 if (expect_false (checkcnt))
1197 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1840 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1198 1841
1199 call_pending (EV_A); 1842 call_pending (EV_A);
1200 } 1843 }
1201 while (activecnt && !loop_done); 1844 while (expect_true (
1845 activecnt
1846 && !loop_done
1847 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1848 ));
1202 1849
1203 if (loop_done != 2) 1850 if (loop_done == EVUNLOOP_ONE)
1204 loop_done = 0; 1851 loop_done = EVUNLOOP_CANCEL;
1205} 1852}
1206 1853
1207void 1854void
1208ev_unloop (EV_P_ int how) 1855ev_unloop (EV_P_ int how)
1209{ 1856{
1210 loop_done = how; 1857 loop_done = how;
1211} 1858}
1212 1859
1213/*****************************************************************************/ 1860/*****************************************************************************/
1214 1861
1215inline void 1862void inline_size
1216wlist_add (WL *head, WL elem) 1863wlist_add (WL *head, WL elem)
1217{ 1864{
1218 elem->next = *head; 1865 elem->next = *head;
1219 *head = elem; 1866 *head = elem;
1220} 1867}
1221 1868
1222inline void 1869void inline_size
1223wlist_del (WL *head, WL elem) 1870wlist_del (WL *head, WL elem)
1224{ 1871{
1225 while (*head) 1872 while (*head)
1226 { 1873 {
1227 if (*head == elem) 1874 if (*head == elem)
1232 1879
1233 head = &(*head)->next; 1880 head = &(*head)->next;
1234 } 1881 }
1235} 1882}
1236 1883
1237inline void 1884void inline_speed
1238ev_clear_pending (EV_P_ W w) 1885clear_pending (EV_P_ W w)
1239{ 1886{
1240 if (w->pending) 1887 if (w->pending)
1241 { 1888 {
1242 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1889 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1243 w->pending = 0; 1890 w->pending = 0;
1244 } 1891 }
1245} 1892}
1246 1893
1247inline void 1894int
1895ev_clear_pending (EV_P_ void *w)
1896{
1897 W w_ = (W)w;
1898 int pending = w_->pending;
1899
1900 if (expect_true (pending))
1901 {
1902 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1903 w_->pending = 0;
1904 p->w = 0;
1905 return p->events;
1906 }
1907 else
1908 return 0;
1909}
1910
1911void inline_size
1912pri_adjust (EV_P_ W w)
1913{
1914 int pri = w->priority;
1915 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1916 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1917 w->priority = pri;
1918}
1919
1920void inline_speed
1248ev_start (EV_P_ W w, int active) 1921ev_start (EV_P_ W w, int active)
1249{ 1922{
1250 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1923 pri_adjust (EV_A_ w);
1251 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1252
1253 w->active = active; 1924 w->active = active;
1254 ev_ref (EV_A); 1925 ev_ref (EV_A);
1255} 1926}
1256 1927
1257inline void 1928void inline_size
1258ev_stop (EV_P_ W w) 1929ev_stop (EV_P_ W w)
1259{ 1930{
1260 ev_unref (EV_A); 1931 ev_unref (EV_A);
1261 w->active = 0; 1932 w->active = 0;
1262} 1933}
1263 1934
1264/*****************************************************************************/ 1935/*****************************************************************************/
1265 1936
1266void 1937void noinline
1267ev_io_start (EV_P_ struct ev_io *w) 1938ev_io_start (EV_P_ ev_io *w)
1268{ 1939{
1269 int fd = w->fd; 1940 int fd = w->fd;
1270 1941
1271 if (ev_is_active (w)) 1942 if (expect_false (ev_is_active (w)))
1272 return; 1943 return;
1273 1944
1274 assert (("ev_io_start called with negative fd", fd >= 0)); 1945 assert (("ev_io_start called with negative fd", fd >= 0));
1275 1946
1276 ev_start (EV_A_ (W)w, 1); 1947 ev_start (EV_A_ (W)w, 1);
1277 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1948 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1278 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1949 wlist_add (&anfds[fd].head, (WL)w);
1279 1950
1280 fd_change (EV_A_ fd); 1951 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1952 w->events &= ~EV_IOFDSET;
1281} 1953}
1282 1954
1283void 1955void noinline
1284ev_io_stop (EV_P_ struct ev_io *w) 1956ev_io_stop (EV_P_ ev_io *w)
1285{ 1957{
1286 ev_clear_pending (EV_A_ (W)w); 1958 clear_pending (EV_A_ (W)w);
1287 if (!ev_is_active (w)) 1959 if (expect_false (!ev_is_active (w)))
1288 return; 1960 return;
1289 1961
1962 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1963
1290 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1964 wlist_del (&anfds[w->fd].head, (WL)w);
1291 ev_stop (EV_A_ (W)w); 1965 ev_stop (EV_A_ (W)w);
1292 1966
1293 fd_change (EV_A_ w->fd); 1967 fd_change (EV_A_ w->fd, 1);
1294} 1968}
1295 1969
1296void 1970void noinline
1297ev_timer_start (EV_P_ struct ev_timer *w) 1971ev_timer_start (EV_P_ ev_timer *w)
1972{
1973 if (expect_false (ev_is_active (w)))
1974 return;
1975
1976 ev_at (w) += mn_now;
1977
1978 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1979
1980 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1981 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2);
1982 timers [ev_active (w)] = (WT)w;
1983 upheap (timers, ev_active (w));
1984
1985 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1986}
1987
1988void noinline
1989ev_timer_stop (EV_P_ ev_timer *w)
1990{
1991 clear_pending (EV_A_ (W)w);
1992 if (expect_false (!ev_is_active (w)))
1993 return;
1994
1995 {
1996 int active = ev_active (w);
1997
1998 assert (("internal timer heap corruption", timers [active] == (WT)w));
1999
2000 if (expect_true (active < timercnt + HEAP0 - 1))
2001 {
2002 timers [active] = timers [timercnt + HEAP0 - 1];
2003 adjustheap (timers, timercnt, active);
2004 }
2005
2006 --timercnt;
2007 }
2008
2009 ev_at (w) -= mn_now;
2010
2011 ev_stop (EV_A_ (W)w);
2012}
2013
2014void noinline
2015ev_timer_again (EV_P_ ev_timer *w)
1298{ 2016{
1299 if (ev_is_active (w)) 2017 if (ev_is_active (w))
1300 return;
1301
1302 ((WT)w)->at += mn_now;
1303
1304 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1305
1306 ev_start (EV_A_ (W)w, ++timercnt);
1307 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1308 timers [timercnt - 1] = w;
1309 upheap ((WT *)timers, timercnt - 1);
1310
1311 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1312}
1313
1314void
1315ev_timer_stop (EV_P_ struct ev_timer *w)
1316{
1317 ev_clear_pending (EV_A_ (W)w);
1318 if (!ev_is_active (w))
1319 return;
1320
1321 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1322
1323 if (((W)w)->active < timercnt--)
1324 {
1325 timers [((W)w)->active - 1] = timers [timercnt];
1326 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1327 }
1328
1329 ((WT)w)->at = w->repeat;
1330
1331 ev_stop (EV_A_ (W)w);
1332}
1333
1334void
1335ev_timer_again (EV_P_ struct ev_timer *w)
1336{
1337 if (ev_is_active (w))
1338 { 2018 {
1339 if (w->repeat) 2019 if (w->repeat)
1340 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat); 2020 {
2021 ev_at (w) = mn_now + w->repeat;
2022 adjustheap (timers, timercnt, ev_active (w));
2023 }
1341 else 2024 else
1342 ev_timer_stop (EV_A_ w); 2025 ev_timer_stop (EV_A_ w);
1343 } 2026 }
1344 else if (w->repeat) 2027 else if (w->repeat)
2028 {
2029 ev_at (w) = w->repeat;
1345 ev_timer_start (EV_A_ w); 2030 ev_timer_start (EV_A_ w);
2031 }
1346} 2032}
1347 2033
1348void 2034#if EV_PERIODIC_ENABLE
2035void noinline
1349ev_periodic_start (EV_P_ struct ev_periodic *w) 2036ev_periodic_start (EV_P_ ev_periodic *w)
1350{ 2037{
1351 if (ev_is_active (w)) 2038 if (expect_false (ev_is_active (w)))
1352 return; 2039 return;
1353 2040
1354 if (w->reschedule_cb) 2041 if (w->reschedule_cb)
1355 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2042 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1356 else if (w->interval) 2043 else if (w->interval)
1357 { 2044 {
1358 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2045 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1359 /* this formula differs from the one in periodic_reify because we do not always round up */ 2046 /* this formula differs from the one in periodic_reify because we do not always round up */
1360 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2047 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1361 } 2048 }
2049 else
2050 ev_at (w) = w->offset;
1362 2051
1363 ev_start (EV_A_ (W)w, ++periodiccnt); 2052 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1364 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2053 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2);
1365 periodics [periodiccnt - 1] = w; 2054 periodics [ev_active (w)] = (WT)w;
1366 upheap ((WT *)periodics, periodiccnt - 1); 2055 upheap (periodics, ev_active (w));
1367 2056
1368 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2057 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/
1369} 2058}
1370 2059
1371void 2060void noinline
1372ev_periodic_stop (EV_P_ struct ev_periodic *w) 2061ev_periodic_stop (EV_P_ ev_periodic *w)
1373{ 2062{
1374 ev_clear_pending (EV_A_ (W)w); 2063 clear_pending (EV_A_ (W)w);
1375 if (!ev_is_active (w)) 2064 if (expect_false (!ev_is_active (w)))
1376 return; 2065 return;
1377 2066
2067 {
2068 int active = ev_active (w);
2069
1378 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2070 assert (("internal periodic heap corruption", periodics [active] == (WT)w));
1379 2071
1380 if (((W)w)->active < periodiccnt--) 2072 if (expect_true (active < periodiccnt + HEAP0 - 1))
1381 { 2073 {
1382 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2074 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1383 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2075 adjustheap (periodics, periodiccnt, active);
1384 } 2076 }
2077
2078 --periodiccnt;
2079 }
1385 2080
1386 ev_stop (EV_A_ (W)w); 2081 ev_stop (EV_A_ (W)w);
1387} 2082}
1388 2083
1389void 2084void noinline
1390ev_periodic_again (EV_P_ struct ev_periodic *w) 2085ev_periodic_again (EV_P_ ev_periodic *w)
1391{ 2086{
1392 /* TODO: use adjustheap and recalculation */ 2087 /* TODO: use adjustheap and recalculation */
1393 ev_periodic_stop (EV_A_ w); 2088 ev_periodic_stop (EV_A_ w);
1394 ev_periodic_start (EV_A_ w); 2089 ev_periodic_start (EV_A_ w);
1395} 2090}
1396 2091#endif
1397void
1398ev_idle_start (EV_P_ struct ev_idle *w)
1399{
1400 if (ev_is_active (w))
1401 return;
1402
1403 ev_start (EV_A_ (W)w, ++idlecnt);
1404 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1405 idles [idlecnt - 1] = w;
1406}
1407
1408void
1409ev_idle_stop (EV_P_ struct ev_idle *w)
1410{
1411 ev_clear_pending (EV_A_ (W)w);
1412 if (ev_is_active (w))
1413 return;
1414
1415 idles [((W)w)->active - 1] = idles [--idlecnt];
1416 ev_stop (EV_A_ (W)w);
1417}
1418
1419void
1420ev_prepare_start (EV_P_ struct ev_prepare *w)
1421{
1422 if (ev_is_active (w))
1423 return;
1424
1425 ev_start (EV_A_ (W)w, ++preparecnt);
1426 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1427 prepares [preparecnt - 1] = w;
1428}
1429
1430void
1431ev_prepare_stop (EV_P_ struct ev_prepare *w)
1432{
1433 ev_clear_pending (EV_A_ (W)w);
1434 if (ev_is_active (w))
1435 return;
1436
1437 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1438 ev_stop (EV_A_ (W)w);
1439}
1440
1441void
1442ev_check_start (EV_P_ struct ev_check *w)
1443{
1444 if (ev_is_active (w))
1445 return;
1446
1447 ev_start (EV_A_ (W)w, ++checkcnt);
1448 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1449 checks [checkcnt - 1] = w;
1450}
1451
1452void
1453ev_check_stop (EV_P_ struct ev_check *w)
1454{
1455 ev_clear_pending (EV_A_ (W)w);
1456 if (ev_is_active (w))
1457 return;
1458
1459 checks [((W)w)->active - 1] = checks [--checkcnt];
1460 ev_stop (EV_A_ (W)w);
1461}
1462 2092
1463#ifndef SA_RESTART 2093#ifndef SA_RESTART
1464# define SA_RESTART 0 2094# define SA_RESTART 0
1465#endif 2095#endif
1466 2096
1467void 2097void noinline
1468ev_signal_start (EV_P_ struct ev_signal *w) 2098ev_signal_start (EV_P_ ev_signal *w)
1469{ 2099{
1470#if EV_MULTIPLICITY 2100#if EV_MULTIPLICITY
1471 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2101 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1472#endif 2102#endif
1473 if (ev_is_active (w)) 2103 if (expect_false (ev_is_active (w)))
1474 return; 2104 return;
1475 2105
1476 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2106 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1477 2107
2108 evpipe_init (EV_A);
2109
2110 {
2111#ifndef _WIN32
2112 sigset_t full, prev;
2113 sigfillset (&full);
2114 sigprocmask (SIG_SETMASK, &full, &prev);
2115#endif
2116
2117 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2118
2119#ifndef _WIN32
2120 sigprocmask (SIG_SETMASK, &prev, 0);
2121#endif
2122 }
2123
1478 ev_start (EV_A_ (W)w, 1); 2124 ev_start (EV_A_ (W)w, 1);
1479 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1480 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2125 wlist_add (&signals [w->signum - 1].head, (WL)w);
1481 2126
1482 if (!((WL)w)->next) 2127 if (!((WL)w)->next)
1483 { 2128 {
1484#if WIN32 2129#if _WIN32
1485 signal (w->signum, sighandler); 2130 signal (w->signum, ev_sighandler);
1486#else 2131#else
1487 struct sigaction sa; 2132 struct sigaction sa;
1488 sa.sa_handler = sighandler; 2133 sa.sa_handler = ev_sighandler;
1489 sigfillset (&sa.sa_mask); 2134 sigfillset (&sa.sa_mask);
1490 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2135 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1491 sigaction (w->signum, &sa, 0); 2136 sigaction (w->signum, &sa, 0);
1492#endif 2137#endif
1493 } 2138 }
1494} 2139}
1495 2140
1496void 2141void noinline
1497ev_signal_stop (EV_P_ struct ev_signal *w) 2142ev_signal_stop (EV_P_ ev_signal *w)
1498{ 2143{
1499 ev_clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1500 if (!ev_is_active (w)) 2145 if (expect_false (!ev_is_active (w)))
1501 return; 2146 return;
1502 2147
1503 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2148 wlist_del (&signals [w->signum - 1].head, (WL)w);
1504 ev_stop (EV_A_ (W)w); 2149 ev_stop (EV_A_ (W)w);
1505 2150
1506 if (!signals [w->signum - 1].head) 2151 if (!signals [w->signum - 1].head)
1507 signal (w->signum, SIG_DFL); 2152 signal (w->signum, SIG_DFL);
1508} 2153}
1509 2154
1510void 2155void
1511ev_child_start (EV_P_ struct ev_child *w) 2156ev_child_start (EV_P_ ev_child *w)
1512{ 2157{
1513#if EV_MULTIPLICITY 2158#if EV_MULTIPLICITY
1514 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2159 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1515#endif 2160#endif
1516 if (ev_is_active (w)) 2161 if (expect_false (ev_is_active (w)))
1517 return; 2162 return;
1518 2163
1519 ev_start (EV_A_ (W)w, 1); 2164 ev_start (EV_A_ (W)w, 1);
1520 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2165 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1521} 2166}
1522 2167
1523void 2168void
1524ev_child_stop (EV_P_ struct ev_child *w) 2169ev_child_stop (EV_P_ ev_child *w)
1525{ 2170{
1526 ev_clear_pending (EV_A_ (W)w); 2171 clear_pending (EV_A_ (W)w);
1527 if (ev_is_active (w)) 2172 if (expect_false (!ev_is_active (w)))
1528 return; 2173 return;
1529 2174
1530 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2175 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1531 ev_stop (EV_A_ (W)w); 2176 ev_stop (EV_A_ (W)w);
1532} 2177}
1533 2178
2179#if EV_STAT_ENABLE
2180
2181# ifdef _WIN32
2182# undef lstat
2183# define lstat(a,b) _stati64 (a,b)
2184# endif
2185
2186#define DEF_STAT_INTERVAL 5.0074891
2187#define MIN_STAT_INTERVAL 0.1074891
2188
2189static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2190
2191#if EV_USE_INOTIFY
2192# define EV_INOTIFY_BUFSIZE 8192
2193
2194static void noinline
2195infy_add (EV_P_ ev_stat *w)
2196{
2197 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2198
2199 if (w->wd < 0)
2200 {
2201 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2202
2203 /* monitor some parent directory for speedup hints */
2204 /* note that exceeding the hardcoded limit is not a correctness issue, */
2205 /* but an efficiency issue only */
2206 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2207 {
2208 char path [4096];
2209 strcpy (path, w->path);
2210
2211 do
2212 {
2213 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2214 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2215
2216 char *pend = strrchr (path, '/');
2217
2218 if (!pend)
2219 break; /* whoops, no '/', complain to your admin */
2220
2221 *pend = 0;
2222 w->wd = inotify_add_watch (fs_fd, path, mask);
2223 }
2224 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2225 }
2226 }
2227 else
2228 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2229
2230 if (w->wd >= 0)
2231 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2232}
2233
2234static void noinline
2235infy_del (EV_P_ ev_stat *w)
2236{
2237 int slot;
2238 int wd = w->wd;
2239
2240 if (wd < 0)
2241 return;
2242
2243 w->wd = -2;
2244 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2245 wlist_del (&fs_hash [slot].head, (WL)w);
2246
2247 /* remove this watcher, if others are watching it, they will rearm */
2248 inotify_rm_watch (fs_fd, wd);
2249}
2250
2251static void noinline
2252infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2253{
2254 if (slot < 0)
2255 /* overflow, need to check for all hahs slots */
2256 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2257 infy_wd (EV_A_ slot, wd, ev);
2258 else
2259 {
2260 WL w_;
2261
2262 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2263 {
2264 ev_stat *w = (ev_stat *)w_;
2265 w_ = w_->next; /* lets us remove this watcher and all before it */
2266
2267 if (w->wd == wd || wd == -1)
2268 {
2269 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2270 {
2271 w->wd = -1;
2272 infy_add (EV_A_ w); /* re-add, no matter what */
2273 }
2274
2275 stat_timer_cb (EV_A_ &w->timer, 0);
2276 }
2277 }
2278 }
2279}
2280
2281static void
2282infy_cb (EV_P_ ev_io *w, int revents)
2283{
2284 char buf [EV_INOTIFY_BUFSIZE];
2285 struct inotify_event *ev = (struct inotify_event *)buf;
2286 int ofs;
2287 int len = read (fs_fd, buf, sizeof (buf));
2288
2289 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2290 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2291}
2292
2293void inline_size
2294infy_init (EV_P)
2295{
2296 if (fs_fd != -2)
2297 return;
2298
2299 fs_fd = inotify_init ();
2300
2301 if (fs_fd >= 0)
2302 {
2303 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2304 ev_set_priority (&fs_w, EV_MAXPRI);
2305 ev_io_start (EV_A_ &fs_w);
2306 }
2307}
2308
2309void inline_size
2310infy_fork (EV_P)
2311{
2312 int slot;
2313
2314 if (fs_fd < 0)
2315 return;
2316
2317 close (fs_fd);
2318 fs_fd = inotify_init ();
2319
2320 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2321 {
2322 WL w_ = fs_hash [slot].head;
2323 fs_hash [slot].head = 0;
2324
2325 while (w_)
2326 {
2327 ev_stat *w = (ev_stat *)w_;
2328 w_ = w_->next; /* lets us add this watcher */
2329
2330 w->wd = -1;
2331
2332 if (fs_fd >= 0)
2333 infy_add (EV_A_ w); /* re-add, no matter what */
2334 else
2335 ev_timer_start (EV_A_ &w->timer);
2336 }
2337
2338 }
2339}
2340
2341#endif
2342
2343void
2344ev_stat_stat (EV_P_ ev_stat *w)
2345{
2346 if (lstat (w->path, &w->attr) < 0)
2347 w->attr.st_nlink = 0;
2348 else if (!w->attr.st_nlink)
2349 w->attr.st_nlink = 1;
2350}
2351
2352static void noinline
2353stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2354{
2355 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2356
2357 /* we copy this here each the time so that */
2358 /* prev has the old value when the callback gets invoked */
2359 w->prev = w->attr;
2360 ev_stat_stat (EV_A_ w);
2361
2362 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2363 if (
2364 w->prev.st_dev != w->attr.st_dev
2365 || w->prev.st_ino != w->attr.st_ino
2366 || w->prev.st_mode != w->attr.st_mode
2367 || w->prev.st_nlink != w->attr.st_nlink
2368 || w->prev.st_uid != w->attr.st_uid
2369 || w->prev.st_gid != w->attr.st_gid
2370 || w->prev.st_rdev != w->attr.st_rdev
2371 || w->prev.st_size != w->attr.st_size
2372 || w->prev.st_atime != w->attr.st_atime
2373 || w->prev.st_mtime != w->attr.st_mtime
2374 || w->prev.st_ctime != w->attr.st_ctime
2375 ) {
2376 #if EV_USE_INOTIFY
2377 infy_del (EV_A_ w);
2378 infy_add (EV_A_ w);
2379 ev_stat_stat (EV_A_ w); /* avoid race... */
2380 #endif
2381
2382 ev_feed_event (EV_A_ w, EV_STAT);
2383 }
2384}
2385
2386void
2387ev_stat_start (EV_P_ ev_stat *w)
2388{
2389 if (expect_false (ev_is_active (w)))
2390 return;
2391
2392 /* since we use memcmp, we need to clear any padding data etc. */
2393 memset (&w->prev, 0, sizeof (ev_statdata));
2394 memset (&w->attr, 0, sizeof (ev_statdata));
2395
2396 ev_stat_stat (EV_A_ w);
2397
2398 if (w->interval < MIN_STAT_INTERVAL)
2399 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2400
2401 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2402 ev_set_priority (&w->timer, ev_priority (w));
2403
2404#if EV_USE_INOTIFY
2405 infy_init (EV_A);
2406
2407 if (fs_fd >= 0)
2408 infy_add (EV_A_ w);
2409 else
2410#endif
2411 ev_timer_start (EV_A_ &w->timer);
2412
2413 ev_start (EV_A_ (W)w, 1);
2414}
2415
2416void
2417ev_stat_stop (EV_P_ ev_stat *w)
2418{
2419 clear_pending (EV_A_ (W)w);
2420 if (expect_false (!ev_is_active (w)))
2421 return;
2422
2423#if EV_USE_INOTIFY
2424 infy_del (EV_A_ w);
2425#endif
2426 ev_timer_stop (EV_A_ &w->timer);
2427
2428 ev_stop (EV_A_ (W)w);
2429}
2430#endif
2431
2432#if EV_IDLE_ENABLE
2433void
2434ev_idle_start (EV_P_ ev_idle *w)
2435{
2436 if (expect_false (ev_is_active (w)))
2437 return;
2438
2439 pri_adjust (EV_A_ (W)w);
2440
2441 {
2442 int active = ++idlecnt [ABSPRI (w)];
2443
2444 ++idleall;
2445 ev_start (EV_A_ (W)w, active);
2446
2447 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2448 idles [ABSPRI (w)][active - 1] = w;
2449 }
2450}
2451
2452void
2453ev_idle_stop (EV_P_ ev_idle *w)
2454{
2455 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w)))
2457 return;
2458
2459 {
2460 int active = ev_active (w);
2461
2462 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2463 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2464
2465 ev_stop (EV_A_ (W)w);
2466 --idleall;
2467 }
2468}
2469#endif
2470
2471void
2472ev_prepare_start (EV_P_ ev_prepare *w)
2473{
2474 if (expect_false (ev_is_active (w)))
2475 return;
2476
2477 ev_start (EV_A_ (W)w, ++preparecnt);
2478 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2479 prepares [preparecnt - 1] = w;
2480}
2481
2482void
2483ev_prepare_stop (EV_P_ ev_prepare *w)
2484{
2485 clear_pending (EV_A_ (W)w);
2486 if (expect_false (!ev_is_active (w)))
2487 return;
2488
2489 {
2490 int active = ev_active (w);
2491
2492 prepares [active - 1] = prepares [--preparecnt];
2493 ev_active (prepares [active - 1]) = active;
2494 }
2495
2496 ev_stop (EV_A_ (W)w);
2497}
2498
2499void
2500ev_check_start (EV_P_ ev_check *w)
2501{
2502 if (expect_false (ev_is_active (w)))
2503 return;
2504
2505 ev_start (EV_A_ (W)w, ++checkcnt);
2506 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2507 checks [checkcnt - 1] = w;
2508}
2509
2510void
2511ev_check_stop (EV_P_ ev_check *w)
2512{
2513 clear_pending (EV_A_ (W)w);
2514 if (expect_false (!ev_is_active (w)))
2515 return;
2516
2517 {
2518 int active = ev_active (w);
2519
2520 checks [active - 1] = checks [--checkcnt];
2521 ev_active (checks [active - 1]) = active;
2522 }
2523
2524 ev_stop (EV_A_ (W)w);
2525}
2526
2527#if EV_EMBED_ENABLE
2528void noinline
2529ev_embed_sweep (EV_P_ ev_embed *w)
2530{
2531 ev_loop (w->other, EVLOOP_NONBLOCK);
2532}
2533
2534static void
2535embed_io_cb (EV_P_ ev_io *io, int revents)
2536{
2537 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2538
2539 if (ev_cb (w))
2540 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2541 else
2542 ev_loop (w->other, EVLOOP_NONBLOCK);
2543}
2544
2545static void
2546embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2547{
2548 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2549
2550 {
2551 struct ev_loop *loop = w->other;
2552
2553 while (fdchangecnt)
2554 {
2555 fd_reify (EV_A);
2556 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2557 }
2558 }
2559}
2560
2561#if 0
2562static void
2563embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2564{
2565 ev_idle_stop (EV_A_ idle);
2566}
2567#endif
2568
2569void
2570ev_embed_start (EV_P_ ev_embed *w)
2571{
2572 if (expect_false (ev_is_active (w)))
2573 return;
2574
2575 {
2576 struct ev_loop *loop = w->other;
2577 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2578 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2579 }
2580
2581 ev_set_priority (&w->io, ev_priority (w));
2582 ev_io_start (EV_A_ &w->io);
2583
2584 ev_prepare_init (&w->prepare, embed_prepare_cb);
2585 ev_set_priority (&w->prepare, EV_MINPRI);
2586 ev_prepare_start (EV_A_ &w->prepare);
2587
2588 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2589
2590 ev_start (EV_A_ (W)w, 1);
2591}
2592
2593void
2594ev_embed_stop (EV_P_ ev_embed *w)
2595{
2596 clear_pending (EV_A_ (W)w);
2597 if (expect_false (!ev_is_active (w)))
2598 return;
2599
2600 ev_io_stop (EV_A_ &w->io);
2601 ev_prepare_stop (EV_A_ &w->prepare);
2602
2603 ev_stop (EV_A_ (W)w);
2604}
2605#endif
2606
2607#if EV_FORK_ENABLE
2608void
2609ev_fork_start (EV_P_ ev_fork *w)
2610{
2611 if (expect_false (ev_is_active (w)))
2612 return;
2613
2614 ev_start (EV_A_ (W)w, ++forkcnt);
2615 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2616 forks [forkcnt - 1] = w;
2617}
2618
2619void
2620ev_fork_stop (EV_P_ ev_fork *w)
2621{
2622 clear_pending (EV_A_ (W)w);
2623 if (expect_false (!ev_is_active (w)))
2624 return;
2625
2626 {
2627 int active = ev_active (w);
2628
2629 forks [active - 1] = forks [--forkcnt];
2630 ev_active (forks [active - 1]) = active;
2631 }
2632
2633 ev_stop (EV_A_ (W)w);
2634}
2635#endif
2636
2637#if EV_ASYNC_ENABLE
2638void
2639ev_async_start (EV_P_ ev_async *w)
2640{
2641 if (expect_false (ev_is_active (w)))
2642 return;
2643
2644 evpipe_init (EV_A);
2645
2646 ev_start (EV_A_ (W)w, ++asynccnt);
2647 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2648 asyncs [asynccnt - 1] = w;
2649}
2650
2651void
2652ev_async_stop (EV_P_ ev_async *w)
2653{
2654 clear_pending (EV_A_ (W)w);
2655 if (expect_false (!ev_is_active (w)))
2656 return;
2657
2658 {
2659 int active = ev_active (w);
2660
2661 asyncs [active - 1] = asyncs [--asynccnt];
2662 ev_active (asyncs [active - 1]) = active;
2663 }
2664
2665 ev_stop (EV_A_ (W)w);
2666}
2667
2668void
2669ev_async_send (EV_P_ ev_async *w)
2670{
2671 w->sent = 1;
2672 evpipe_write (EV_A_ &gotasync);
2673}
2674#endif
2675
1534/*****************************************************************************/ 2676/*****************************************************************************/
1535 2677
1536struct ev_once 2678struct ev_once
1537{ 2679{
1538 struct ev_io io; 2680 ev_io io;
1539 struct ev_timer to; 2681 ev_timer to;
1540 void (*cb)(int revents, void *arg); 2682 void (*cb)(int revents, void *arg);
1541 void *arg; 2683 void *arg;
1542}; 2684};
1543 2685
1544static void 2686static void
1553 2695
1554 cb (revents, arg); 2696 cb (revents, arg);
1555} 2697}
1556 2698
1557static void 2699static void
1558once_cb_io (EV_P_ struct ev_io *w, int revents) 2700once_cb_io (EV_P_ ev_io *w, int revents)
1559{ 2701{
1560 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2702 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1561} 2703}
1562 2704
1563static void 2705static void
1564once_cb_to (EV_P_ struct ev_timer *w, int revents) 2706once_cb_to (EV_P_ ev_timer *w, int revents)
1565{ 2707{
1566 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2708 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1567} 2709}
1568 2710
1569void 2711void
1570ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2712ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1571{ 2713{
1572 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2714 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1573 2715
1574 if (!once) 2716 if (expect_false (!once))
2717 {
1575 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2718 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1576 else 2719 return;
1577 { 2720 }
2721
1578 once->cb = cb; 2722 once->cb = cb;
1579 once->arg = arg; 2723 once->arg = arg;
1580 2724
1581 ev_init (&once->io, once_cb_io); 2725 ev_init (&once->io, once_cb_io);
1582 if (fd >= 0) 2726 if (fd >= 0)
1583 { 2727 {
1584 ev_io_set (&once->io, fd, events); 2728 ev_io_set (&once->io, fd, events);
1585 ev_io_start (EV_A_ &once->io); 2729 ev_io_start (EV_A_ &once->io);
1586 } 2730 }
1587 2731
1588 ev_init (&once->to, once_cb_to); 2732 ev_init (&once->to, once_cb_to);
1589 if (timeout >= 0.) 2733 if (timeout >= 0.)
1590 { 2734 {
1591 ev_timer_set (&once->to, timeout, 0.); 2735 ev_timer_set (&once->to, timeout, 0.);
1592 ev_timer_start (EV_A_ &once->to); 2736 ev_timer_start (EV_A_ &once->to);
1593 }
1594 } 2737 }
1595} 2738}
1596 2739
2740#if EV_MULTIPLICITY
2741 #include "ev_wrap.h"
2742#endif
2743
2744#ifdef __cplusplus
2745}
2746#endif
2747

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines