ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.48 by root, Sat Nov 3 12:19:31 2007 UTC vs.
Revision 1.85 by root, Sat Nov 10 03:13:50 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#if EV_USE_CONFIG_H 31#ifndef EV_STANDALONE
32# include "config.h" 32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
33#endif 55#endif
34 56
35#include <math.h> 57#include <math.h>
36#include <stdlib.h> 58#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 59#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 60#include <stddef.h>
41 61
42#include <stdio.h> 62#include <stdio.h>
43 63
44#include <assert.h> 64#include <assert.h>
45#include <errno.h> 65#include <errno.h>
46#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
47#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
48# include <sys/wait.h> 74# include <sys/wait.h>
49#endif 75#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 76/**/
54 77
55#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
57#endif 80#endif
68# define EV_USE_EPOLL 0 91# define EV_USE_EPOLL 0
69#endif 92#endif
70 93
71#ifndef EV_USE_KQUEUE 94#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
73#endif 106#endif
74 107
75#ifndef EV_USE_REALTIME 108#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 109# define EV_USE_REALTIME 1
77#endif 110#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 130
131#ifdef EV_H
132# include EV_H
133#else
98#include "ev.h" 134# include "ev.h"
135#endif
99 136
100#if __GNUC__ >= 3 137#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value)) 138# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 139# define inline inline
103#else 140#else
113 150
114typedef struct ev_watcher *W; 151typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 152typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 153typedef struct ev_watcher_time *WT;
117 154
118static ev_tstamp now_floor, now, diff; /* monotonic clock */ 155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119ev_tstamp ev_now;
120int ev_method;
121 156
122static int have_monotonic; /* runtime */ 157#include "ev_win32.c"
123
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
125static void (*method_modify)(int fd, int oev, int nev);
126static void (*method_poll)(ev_tstamp timeout);
127 158
128/*****************************************************************************/ 159/*****************************************************************************/
129 160
130ev_tstamp 161static void (*syserr_cb)(const char *msg);
162
163void ev_set_syserr_cb (void (*cb)(const char *msg))
164{
165 syserr_cb = cb;
166}
167
168static void
169syserr (const char *msg)
170{
171 if (!msg)
172 msg = "(libev) system error";
173
174 if (syserr_cb)
175 syserr_cb (msg);
176 else
177 {
178 perror (msg);
179 abort ();
180 }
181}
182
183static void *(*alloc)(void *ptr, long size);
184
185void ev_set_allocator (void *(*cb)(void *ptr, long size))
186{
187 alloc = cb;
188}
189
190static void *
191ev_realloc (void *ptr, long size)
192{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194
195 if (!ptr && size)
196 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort ();
199 }
200
201 return ptr;
202}
203
204#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0)
206
207/*****************************************************************************/
208
209typedef struct
210{
211 WL head;
212 unsigned char events;
213 unsigned char reify;
214} ANFD;
215
216typedef struct
217{
218 W w;
219 int events;
220} ANPENDING;
221
222#if EV_MULTIPLICITY
223
224 struct ev_loop
225 {
226 #define VAR(name,decl) decl;
227 #include "ev_vars.h"
228 #undef VAR
229 };
230 #include "ev_wrap.h"
231
232 struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop;
234
235#else
236
237 #define VAR(name,decl) static decl;
238 #include "ev_vars.h"
239 #undef VAR
240
241 static int default_loop;
242
243#endif
244
245/*****************************************************************************/
246
247inline ev_tstamp
131ev_time (void) 248ev_time (void)
132{ 249{
133#if EV_USE_REALTIME 250#if EV_USE_REALTIME
134 struct timespec ts; 251 struct timespec ts;
135 clock_gettime (CLOCK_REALTIME, &ts); 252 clock_gettime (CLOCK_REALTIME, &ts);
139 gettimeofday (&tv, 0); 256 gettimeofday (&tv, 0);
140 return tv.tv_sec + tv.tv_usec * 1e-6; 257 return tv.tv_sec + tv.tv_usec * 1e-6;
141#endif 258#endif
142} 259}
143 260
144static ev_tstamp 261inline ev_tstamp
145get_clock (void) 262get_clock (void)
146{ 263{
147#if EV_USE_MONOTONIC 264#if EV_USE_MONOTONIC
148 if (expect_true (have_monotonic)) 265 if (expect_true (have_monotonic))
149 { 266 {
154#endif 271#endif
155 272
156 return ev_time (); 273 return ev_time ();
157} 274}
158 275
276#if EV_MULTIPLICITY
277ev_tstamp
278ev_now (EV_P)
279{
280 return ev_rt_now;
281}
282#endif
283
159#define array_roundsize(base,n) ((n) | 4 & ~3) 284#define array_roundsize(type,n) ((n) | 4 & ~3)
160 285
161#define array_needsize(base,cur,cnt,init) \ 286#define array_needsize(type,base,cur,cnt,init) \
162 if (expect_false ((cnt) > cur)) \ 287 if (expect_false ((cnt) > cur)) \
163 { \ 288 { \
164 int newcnt = cur; \ 289 int newcnt = cur; \
165 do \ 290 do \
166 { \ 291 { \
167 newcnt = array_roundsize (base, newcnt << 1); \ 292 newcnt = array_roundsize (type, newcnt << 1); \
168 } \ 293 } \
169 while ((cnt) > newcnt); \ 294 while ((cnt) > newcnt); \
170 \ 295 \
171 base = realloc (base, sizeof (*base) * (newcnt)); \ 296 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
172 init (base + cur, newcnt - cur); \ 297 init (base + cur, newcnt - cur); \
173 cur = newcnt; \ 298 cur = newcnt; \
174 } 299 }
300
301#define array_slim(type,stem) \
302 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
303 { \
304 stem ## max = array_roundsize (stem ## cnt >> 1); \
305 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
306 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
307 }
308
309/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
310/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
311#define array_free_microshit(stem) \
312 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
313
314#define array_free(stem, idx) \
315 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
175 316
176/*****************************************************************************/ 317/*****************************************************************************/
177
178typedef struct
179{
180 struct ev_io *head;
181 unsigned char events;
182 unsigned char reify;
183} ANFD;
184
185static ANFD *anfds;
186static int anfdmax;
187 318
188static void 319static void
189anfds_init (ANFD *base, int count) 320anfds_init (ANFD *base, int count)
190{ 321{
191 while (count--) 322 while (count--)
196 327
197 ++base; 328 ++base;
198 } 329 }
199} 330}
200 331
201typedef struct 332void
333ev_feed_event (EV_P_ void *w, int revents)
202{ 334{
203 W w; 335 W w_ = (W)w;
204 int events;
205} ANPENDING;
206 336
207static ANPENDING *pendings [NUMPRI];
208static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
209
210static void
211event (W w, int events)
212{
213 if (w->pending) 337 if (w_->pending)
214 { 338 {
215 pendings [ABSPRI (w)][w->pending - 1].events |= events; 339 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
216 return; 340 return;
217 } 341 }
218 342
219 w->pending = ++pendingcnt [ABSPRI (w)]; 343 w_->pending = ++pendingcnt [ABSPRI (w_)];
220 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 344 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
221 pendings [ABSPRI (w)][w->pending - 1].w = w; 345 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
222 pendings [ABSPRI (w)][w->pending - 1].events = events; 346 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
223} 347}
224 348
225static void 349static void
226queue_events (W *events, int eventcnt, int type) 350queue_events (EV_P_ W *events, int eventcnt, int type)
227{ 351{
228 int i; 352 int i;
229 353
230 for (i = 0; i < eventcnt; ++i) 354 for (i = 0; i < eventcnt; ++i)
231 event (events [i], type); 355 ev_feed_event (EV_A_ events [i], type);
232} 356}
233 357
234static void 358inline void
235fd_event (int fd, int events) 359fd_event (EV_P_ int fd, int revents)
236{ 360{
237 ANFD *anfd = anfds + fd; 361 ANFD *anfd = anfds + fd;
238 struct ev_io *w; 362 struct ev_io *w;
239 363
240 for (w = anfd->head; w; w = w->next) 364 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
241 { 365 {
242 int ev = w->events & events; 366 int ev = w->events & revents;
243 367
244 if (ev) 368 if (ev)
245 event ((W)w, ev); 369 ev_feed_event (EV_A_ (W)w, ev);
246 } 370 }
371}
372
373void
374ev_feed_fd_event (EV_P_ int fd, int revents)
375{
376 fd_event (EV_A_ fd, revents);
247} 377}
248 378
249/*****************************************************************************/ 379/*****************************************************************************/
250 380
251static int *fdchanges;
252static int fdchangemax, fdchangecnt;
253
254static void 381static void
255fd_reify (void) 382fd_reify (EV_P)
256{ 383{
257 int i; 384 int i;
258 385
259 for (i = 0; i < fdchangecnt; ++i) 386 for (i = 0; i < fdchangecnt; ++i)
260 { 387 {
262 ANFD *anfd = anfds + fd; 389 ANFD *anfd = anfds + fd;
263 struct ev_io *w; 390 struct ev_io *w;
264 391
265 int events = 0; 392 int events = 0;
266 393
267 for (w = anfd->head; w; w = w->next) 394 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
268 events |= w->events; 395 events |= w->events;
269 396
270 anfd->reify = 0; 397 anfd->reify = 0;
271 398
272 if (anfd->events != events)
273 {
274 method_modify (fd, anfd->events, events); 399 method_modify (EV_A_ fd, anfd->events, events);
275 anfd->events = events; 400 anfd->events = events;
276 }
277 } 401 }
278 402
279 fdchangecnt = 0; 403 fdchangecnt = 0;
280} 404}
281 405
282static void 406static void
283fd_change (int fd) 407fd_change (EV_P_ int fd)
284{ 408{
285 if (anfds [fd].reify || fdchangecnt < 0) 409 if (anfds [fd].reify)
286 return; 410 return;
287 411
288 anfds [fd].reify = 1; 412 anfds [fd].reify = 1;
289 413
290 ++fdchangecnt; 414 ++fdchangecnt;
291 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 415 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
292 fdchanges [fdchangecnt - 1] = fd; 416 fdchanges [fdchangecnt - 1] = fd;
293} 417}
294 418
295static void 419static void
296fd_kill (int fd) 420fd_kill (EV_P_ int fd)
297{ 421{
298 struct ev_io *w; 422 struct ev_io *w;
299 423
300 printf ("killing fd %d\n", fd);//D
301 while ((w = anfds [fd].head)) 424 while ((w = (struct ev_io *)anfds [fd].head))
302 { 425 {
303 ev_io_stop (w); 426 ev_io_stop (EV_A_ w);
304 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 427 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305 } 428 }
429}
430
431static int
432fd_valid (int fd)
433{
434#ifdef WIN32
435 return !!win32_get_osfhandle (fd);
436#else
437 return fcntl (fd, F_GETFD) != -1;
438#endif
306} 439}
307 440
308/* called on EBADF to verify fds */ 441/* called on EBADF to verify fds */
309static void 442static void
310fd_ebadf (void) 443fd_ebadf (EV_P)
311{ 444{
312 int fd; 445 int fd;
313 446
314 for (fd = 0; fd < anfdmax; ++fd) 447 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 448 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 449 if (!fd_valid (fd) == -1 && errno == EBADF)
317 fd_kill (fd); 450 fd_kill (EV_A_ fd);
318} 451}
319 452
320/* called on ENOMEM in select/poll to kill some fds and retry */ 453/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 454static void
322fd_enomem (void) 455fd_enomem (EV_P)
323{ 456{
324 int fd = anfdmax; 457 int fd;
325 458
326 while (fd--) 459 for (fd = anfdmax; fd--; )
327 if (anfds [fd].events) 460 if (anfds [fd].events)
328 { 461 {
329 close (fd);
330 fd_kill (fd); 462 fd_kill (EV_A_ fd);
331 return; 463 return;
332 } 464 }
333} 465}
334 466
467/* usually called after fork if method needs to re-arm all fds from scratch */
468static void
469fd_rearm_all (EV_P)
470{
471 int fd;
472
473 /* this should be highly optimised to not do anything but set a flag */
474 for (fd = 0; fd < anfdmax; ++fd)
475 if (anfds [fd].events)
476 {
477 anfds [fd].events = 0;
478 fd_change (EV_A_ fd);
479 }
480}
481
335/*****************************************************************************/ 482/*****************************************************************************/
336 483
337static struct ev_timer **timers;
338static int timermax, timercnt;
339
340static struct ev_periodic **periodics;
341static int periodicmax, periodiccnt;
342
343static void 484static void
344upheap (WT *timers, int k) 485upheap (WT *heap, int k)
345{ 486{
346 WT w = timers [k]; 487 WT w = heap [k];
347 488
348 while (k && timers [k >> 1]->at > w->at) 489 while (k && heap [k >> 1]->at > w->at)
349 { 490 {
350 timers [k] = timers [k >> 1]; 491 heap [k] = heap [k >> 1];
351 timers [k]->active = k + 1; 492 ((W)heap [k])->active = k + 1;
352 k >>= 1; 493 k >>= 1;
353 } 494 }
354 495
355 timers [k] = w; 496 heap [k] = w;
356 timers [k]->active = k + 1; 497 ((W)heap [k])->active = k + 1;
357 498
358} 499}
359 500
360static void 501static void
361downheap (WT *timers, int N, int k) 502downheap (WT *heap, int N, int k)
362{ 503{
363 WT w = timers [k]; 504 WT w = heap [k];
364 505
365 while (k < (N >> 1)) 506 while (k < (N >> 1))
366 { 507 {
367 int j = k << 1; 508 int j = k << 1;
368 509
369 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 510 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
370 ++j; 511 ++j;
371 512
372 if (w->at <= timers [j]->at) 513 if (w->at <= heap [j]->at)
373 break; 514 break;
374 515
375 timers [k] = timers [j]; 516 heap [k] = heap [j];
376 timers [k]->active = k + 1; 517 ((W)heap [k])->active = k + 1;
377 k = j; 518 k = j;
378 } 519 }
379 520
380 timers [k] = w; 521 heap [k] = w;
381 timers [k]->active = k + 1; 522 ((W)heap [k])->active = k + 1;
523}
524
525inline void
526adjustheap (WT *heap, int N, int k, ev_tstamp at)
527{
528 ev_tstamp old_at = heap [k]->at;
529 heap [k]->at = at;
530
531 if (old_at < at)
532 downheap (heap, N, k);
533 else
534 upheap (heap, k);
382} 535}
383 536
384/*****************************************************************************/ 537/*****************************************************************************/
385 538
386typedef struct 539typedef struct
387{ 540{
388 struct ev_signal *head; 541 WL head;
389 sig_atomic_t volatile gotsig; 542 sig_atomic_t volatile gotsig;
390} ANSIG; 543} ANSIG;
391 544
392static ANSIG *signals; 545static ANSIG *signals;
393static int signalmax; 546static int signalmax;
409} 562}
410 563
411static void 564static void
412sighandler (int signum) 565sighandler (int signum)
413{ 566{
567#if WIN32
568 signal (signum, sighandler);
569#endif
570
414 signals [signum - 1].gotsig = 1; 571 signals [signum - 1].gotsig = 1;
415 572
416 if (!gotsig) 573 if (!gotsig)
417 { 574 {
418 int old_errno = errno; 575 int old_errno = errno;
419 gotsig = 1; 576 gotsig = 1;
577#ifdef WIN32
578 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
579#else
420 write (sigpipe [1], &signum, 1); 580 write (sigpipe [1], &signum, 1);
581#endif
421 errno = old_errno; 582 errno = old_errno;
422 } 583 }
423} 584}
424 585
586void
587ev_feed_signal_event (EV_P_ int signum)
588{
589 WL w;
590
591#if EV_MULTIPLICITY
592 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
593#endif
594
595 --signum;
596
597 if (signum < 0 || signum >= signalmax)
598 return;
599
600 signals [signum].gotsig = 0;
601
602 for (w = signals [signum].head; w; w = w->next)
603 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
604}
605
425static void 606static void
426sigcb (struct ev_io *iow, int revents) 607sigcb (EV_P_ struct ev_io *iow, int revents)
427{ 608{
428 struct ev_signal *w;
429 int signum; 609 int signum;
430 610
611#ifdef WIN32
612 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
613#else
431 read (sigpipe [0], &revents, 1); 614 read (sigpipe [0], &revents, 1);
615#endif
432 gotsig = 0; 616 gotsig = 0;
433 617
434 for (signum = signalmax; signum--; ) 618 for (signum = signalmax; signum--; )
435 if (signals [signum].gotsig) 619 if (signals [signum].gotsig)
436 { 620 ev_feed_signal_event (EV_A_ signum + 1);
437 signals [signum].gotsig = 0;
438
439 for (w = signals [signum].head; w; w = w->next)
440 event ((W)w, EV_SIGNAL);
441 }
442} 621}
443 622
444static void 623static void
445siginit (void) 624siginit (EV_P)
446{ 625{
447#ifndef WIN32 626#ifndef WIN32
448 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 627 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
449 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 628 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
450 629
452 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 631 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
453 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 632 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
454#endif 633#endif
455 634
456 ev_io_set (&sigev, sigpipe [0], EV_READ); 635 ev_io_set (&sigev, sigpipe [0], EV_READ);
457 ev_io_start (&sigev); 636 ev_io_start (EV_A_ &sigev);
637 ev_unref (EV_A); /* child watcher should not keep loop alive */
458} 638}
459 639
460/*****************************************************************************/ 640/*****************************************************************************/
461 641
462static struct ev_idle **idles;
463static int idlemax, idlecnt;
464
465static struct ev_prepare **prepares;
466static int preparemax, preparecnt;
467
468static struct ev_check **checks;
469static int checkmax, checkcnt;
470
471/*****************************************************************************/
472
473static struct ev_child *childs [PID_HASHSIZE]; 642static struct ev_child *childs [PID_HASHSIZE];
643
644#ifndef WIN32
645
474static struct ev_signal childev; 646static struct ev_signal childev;
475
476#ifndef WIN32
477 647
478#ifndef WCONTINUED 648#ifndef WCONTINUED
479# define WCONTINUED 0 649# define WCONTINUED 0
480#endif 650#endif
481 651
482static void 652static void
483child_reap (struct ev_signal *sw, int chain, int pid, int status) 653child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
484{ 654{
485 struct ev_child *w; 655 struct ev_child *w;
486 656
487 for (w = childs [chain & (PID_HASHSIZE - 1)]; w; w = w->next) 657 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
488 if (w->pid == pid || !w->pid) 658 if (w->pid == pid || !w->pid)
489 { 659 {
490 w->priority = sw->priority; /* need to do it *now* */ 660 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
491 w->rpid = pid; 661 w->rpid = pid;
492 w->rstatus = status; 662 w->rstatus = status;
493 printf ("rpid %p %d %d\n", w, pid, w->pid);//D
494 event ((W)w, EV_CHILD); 663 ev_feed_event (EV_A_ (W)w, EV_CHILD);
495 } 664 }
496} 665}
497 666
498static void 667static void
499childcb (struct ev_signal *sw, int revents) 668childcb (EV_P_ struct ev_signal *sw, int revents)
500{ 669{
501 int pid, status; 670 int pid, status;
502 671
503 printf ("chld %x\n", revents);//D
504 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 672 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
505 { 673 {
506 /* make sure we are called again until all childs have been reaped */ 674 /* make sure we are called again until all childs have been reaped */
507 event ((W)sw, EV_SIGNAL); 675 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
508 676
509 child_reap (sw, pid, pid, status); 677 child_reap (EV_A_ sw, pid, pid, status);
510 child_reap (sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 678 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
511 } 679 }
512} 680}
513 681
514#endif 682#endif
515 683
538ev_version_minor (void) 706ev_version_minor (void)
539{ 707{
540 return EV_VERSION_MINOR; 708 return EV_VERSION_MINOR;
541} 709}
542 710
543/* return true if we are running with elevated privileges and ignore env variables */ 711/* return true if we are running with elevated privileges and should ignore env variables */
544static int 712static int
545enable_secure () 713enable_secure (void)
546{ 714{
715#ifdef WIN32
716 return 0;
717#else
547 return getuid () != geteuid () 718 return getuid () != geteuid ()
548 || getgid () != getegid (); 719 || getgid () != getegid ();
720#endif
549} 721}
550 722
551int ev_init (int methods) 723int
724ev_method (EV_P)
552{ 725{
726 return method;
727}
728
729static void
730loop_init (EV_P_ int methods)
731{
553 if (!ev_method) 732 if (!method)
554 { 733 {
555#if EV_USE_MONOTONIC 734#if EV_USE_MONOTONIC
556 { 735 {
557 struct timespec ts; 736 struct timespec ts;
558 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 737 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
559 have_monotonic = 1; 738 have_monotonic = 1;
560 } 739 }
561#endif 740#endif
562 741
563 ev_now = ev_time (); 742 ev_rt_now = ev_time ();
564 now = get_clock (); 743 mn_now = get_clock ();
565 now_floor = now; 744 now_floor = mn_now;
566 diff = ev_now - now; 745 rtmn_diff = ev_rt_now - mn_now;
567
568 if (pipe (sigpipe))
569 return 0;
570 746
571 if (methods == EVMETHOD_AUTO) 747 if (methods == EVMETHOD_AUTO)
572 if (!enable_secure () && getenv ("LIBEV_METHODS")) 748 if (!enable_secure () && getenv ("LIBEV_METHODS"))
573 methods = atoi (getenv ("LIBEV_METHODS")); 749 methods = atoi (getenv ("LIBEV_METHODS"));
574 else 750 else
575 methods = EVMETHOD_ANY; 751 methods = EVMETHOD_ANY;
576 752
577 ev_method = 0; 753 method = 0;
754#if EV_USE_WIN32
755 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
756#endif
578#if EV_USE_KQUEUE 757#if EV_USE_KQUEUE
579 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 758 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
580#endif 759#endif
581#if EV_USE_EPOLL 760#if EV_USE_EPOLL
582 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 761 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
583#endif 762#endif
584#if EV_USE_POLL 763#if EV_USE_POLL
585 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 764 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
586#endif 765#endif
587#if EV_USE_SELECT 766#if EV_USE_SELECT
588 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 767 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
589#endif 768#endif
590 769
770 ev_init (&sigev, sigcb);
771 ev_set_priority (&sigev, EV_MAXPRI);
772 }
773}
774
775void
776loop_destroy (EV_P)
777{
778 int i;
779
780#if EV_USE_WIN32
781 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
782#endif
783#if EV_USE_KQUEUE
784 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
785#endif
786#if EV_USE_EPOLL
787 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
788#endif
789#if EV_USE_POLL
790 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
791#endif
792#if EV_USE_SELECT
793 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
794#endif
795
796 for (i = NUMPRI; i--; )
797 array_free (pending, [i]);
798
799 /* have to use the microsoft-never-gets-it-right macro */
800 array_free_microshit (fdchange);
801 array_free_microshit (timer);
802 array_free_microshit (periodic);
803 array_free_microshit (idle);
804 array_free_microshit (prepare);
805 array_free_microshit (check);
806
807 method = 0;
808}
809
810static void
811loop_fork (EV_P)
812{
813#if EV_USE_EPOLL
814 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
815#endif
816#if EV_USE_KQUEUE
817 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
818#endif
819
820 if (ev_is_active (&sigev))
821 {
822 /* default loop */
823
824 ev_ref (EV_A);
825 ev_io_stop (EV_A_ &sigev);
826 close (sigpipe [0]);
827 close (sigpipe [1]);
828
829 while (pipe (sigpipe))
830 syserr ("(libev) error creating pipe");
831
832 siginit (EV_A);
833 }
834
835 postfork = 0;
836}
837
838#if EV_MULTIPLICITY
839struct ev_loop *
840ev_loop_new (int methods)
841{
842 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
843
844 memset (loop, 0, sizeof (struct ev_loop));
845
846 loop_init (EV_A_ methods);
847
848 if (ev_method (EV_A))
849 return loop;
850
851 return 0;
852}
853
854void
855ev_loop_destroy (EV_P)
856{
857 loop_destroy (EV_A);
858 ev_free (loop);
859}
860
861void
862ev_loop_fork (EV_P)
863{
864 postfork = 1;
865}
866
867#endif
868
869#if EV_MULTIPLICITY
870struct ev_loop *
871#else
872int
873#endif
874ev_default_loop (int methods)
875{
876 if (sigpipe [0] == sigpipe [1])
877 if (pipe (sigpipe))
878 return 0;
879
880 if (!default_loop)
881 {
882#if EV_MULTIPLICITY
883 struct ev_loop *loop = default_loop = &default_loop_struct;
884#else
885 default_loop = 1;
886#endif
887
888 loop_init (EV_A_ methods);
889
591 if (ev_method) 890 if (ev_method (EV_A))
592 { 891 {
593 ev_watcher_init (&sigev, sigcb);
594 ev_set_priority (&sigev, EV_MAXPRI);
595 siginit (); 892 siginit (EV_A);
596 893
597#ifndef WIN32 894#ifndef WIN32
598 ev_signal_init (&childev, childcb, SIGCHLD); 895 ev_signal_init (&childev, childcb, SIGCHLD);
599 ev_set_priority (&childev, EV_MAXPRI); 896 ev_set_priority (&childev, EV_MAXPRI);
600 ev_signal_start (&childev); 897 ev_signal_start (EV_A_ &childev);
898 ev_unref (EV_A); /* child watcher should not keep loop alive */
601#endif 899#endif
602 } 900 }
901 else
902 default_loop = 0;
603 } 903 }
604 904
605 return ev_method; 905 return default_loop;
906}
907
908void
909ev_default_destroy (void)
910{
911#if EV_MULTIPLICITY
912 struct ev_loop *loop = default_loop;
913#endif
914
915#ifndef WIN32
916 ev_ref (EV_A); /* child watcher */
917 ev_signal_stop (EV_A_ &childev);
918#endif
919
920 ev_ref (EV_A); /* signal watcher */
921 ev_io_stop (EV_A_ &sigev);
922
923 close (sigpipe [0]); sigpipe [0] = 0;
924 close (sigpipe [1]); sigpipe [1] = 0;
925
926 loop_destroy (EV_A);
927}
928
929void
930ev_default_fork (void)
931{
932#if EV_MULTIPLICITY
933 struct ev_loop *loop = default_loop;
934#endif
935
936 if (method)
937 postfork = 1;
606} 938}
607 939
608/*****************************************************************************/ 940/*****************************************************************************/
609 941
610void
611ev_fork_prepare (void)
612{
613 /* nop */
614}
615
616void
617ev_fork_parent (void)
618{
619 /* nop */
620}
621
622void
623ev_fork_child (void)
624{
625#if EV_USE_EPOLL
626 if (ev_method == EVMETHOD_EPOLL)
627 epoll_postfork_child ();
628#endif
629
630 ev_io_stop (&sigev);
631 close (sigpipe [0]);
632 close (sigpipe [1]);
633 pipe (sigpipe);
634 siginit ();
635}
636
637/*****************************************************************************/
638
639static void 942static int
943any_pending (EV_P)
944{
945 int pri;
946
947 for (pri = NUMPRI; pri--; )
948 if (pendingcnt [pri])
949 return 1;
950
951 return 0;
952}
953
954static void
640call_pending (void) 955call_pending (EV_P)
641{ 956{
642 int pri; 957 int pri;
643 958
644 for (pri = NUMPRI; pri--; ) 959 for (pri = NUMPRI; pri--; )
645 while (pendingcnt [pri]) 960 while (pendingcnt [pri])
647 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 962 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
648 963
649 if (p->w) 964 if (p->w)
650 { 965 {
651 p->w->pending = 0; 966 p->w->pending = 0;
652 p->w->cb (p->w, p->events); 967 EV_CB_INVOKE (p->w, p->events);
653 } 968 }
654 } 969 }
655} 970}
656 971
657static void 972static void
658timers_reify (void) 973timers_reify (EV_P)
659{ 974{
660 while (timercnt && timers [0]->at <= now) 975 while (timercnt && ((WT)timers [0])->at <= mn_now)
661 { 976 {
662 struct ev_timer *w = timers [0]; 977 struct ev_timer *w = timers [0];
978
979 assert (("inactive timer on timer heap detected", ev_is_active (w)));
663 980
664 /* first reschedule or stop timer */ 981 /* first reschedule or stop timer */
665 if (w->repeat) 982 if (w->repeat)
666 { 983 {
667 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 984 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
668 w->at = now + w->repeat; 985 ((WT)w)->at = mn_now + w->repeat;
669 downheap ((WT *)timers, timercnt, 0); 986 downheap ((WT *)timers, timercnt, 0);
670 } 987 }
671 else 988 else
672 ev_timer_stop (w); /* nonrepeating: stop timer */ 989 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
673 990
674 event ((W)w, EV_TIMEOUT); 991 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
675 } 992 }
676} 993}
677 994
678static void 995static void
679periodics_reify (void) 996periodics_reify (EV_P)
680{ 997{
681 while (periodiccnt && periodics [0]->at <= ev_now) 998 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
682 { 999 {
683 struct ev_periodic *w = periodics [0]; 1000 struct ev_periodic *w = periodics [0];
684 1001
1002 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1003
685 /* first reschedule or stop timer */ 1004 /* first reschedule or stop timer */
686 if (w->interval) 1005 if (w->reschedule_cb)
687 { 1006 {
1007 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1008
1009 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1010 downheap ((WT *)periodics, periodiccnt, 0);
1011 }
1012 else if (w->interval)
1013 {
688 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1014 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
689 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 1015 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
690 downheap ((WT *)periodics, periodiccnt, 0); 1016 downheap ((WT *)periodics, periodiccnt, 0);
691 } 1017 }
692 else 1018 else
693 ev_periodic_stop (w); /* nonrepeating: stop timer */ 1019 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
694 1020
695 event ((W)w, EV_PERIODIC); 1021 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
696 } 1022 }
697} 1023}
698 1024
699static void 1025static void
700periodics_reschedule (ev_tstamp diff) 1026periodics_reschedule (EV_P)
701{ 1027{
702 int i; 1028 int i;
703 1029
704 /* adjust periodics after time jump */ 1030 /* adjust periodics after time jump */
705 for (i = 0; i < periodiccnt; ++i) 1031 for (i = 0; i < periodiccnt; ++i)
706 { 1032 {
707 struct ev_periodic *w = periodics [i]; 1033 struct ev_periodic *w = periodics [i];
708 1034
1035 if (w->reschedule_cb)
1036 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
709 if (w->interval) 1037 else if (w->interval)
710 {
711 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1038 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
712
713 if (fabs (diff) >= 1e-4)
714 {
715 ev_periodic_stop (w);
716 ev_periodic_start (w);
717
718 i = 0; /* restart loop, inefficient, but time jumps should be rare */
719 }
720 }
721 } 1039 }
722}
723 1040
724static int 1041 /* now rebuild the heap */
1042 for (i = periodiccnt >> 1; i--; )
1043 downheap ((WT *)periodics, periodiccnt, i);
1044}
1045
1046inline int
725time_update_monotonic (void) 1047time_update_monotonic (EV_P)
726{ 1048{
727 now = get_clock (); 1049 mn_now = get_clock ();
728 1050
729 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5)) 1051 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
730 { 1052 {
731 ev_now = now + diff; 1053 ev_rt_now = rtmn_diff + mn_now;
732 return 0; 1054 return 0;
733 } 1055 }
734 else 1056 else
735 { 1057 {
736 now_floor = now; 1058 now_floor = mn_now;
737 ev_now = ev_time (); 1059 ev_rt_now = ev_time ();
738 return 1; 1060 return 1;
739 } 1061 }
740} 1062}
741 1063
742static void 1064static void
743time_update (void) 1065time_update (EV_P)
744{ 1066{
745 int i; 1067 int i;
746 1068
747#if EV_USE_MONOTONIC 1069#if EV_USE_MONOTONIC
748 if (expect_true (have_monotonic)) 1070 if (expect_true (have_monotonic))
749 { 1071 {
750 if (time_update_monotonic ()) 1072 if (time_update_monotonic (EV_A))
751 { 1073 {
752 ev_tstamp odiff = diff; 1074 ev_tstamp odiff = rtmn_diff;
753 1075
754 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1076 for (i = 4; --i; ) /* loop a few times, before making important decisions */
755 { 1077 {
756 diff = ev_now - now; 1078 rtmn_diff = ev_rt_now - mn_now;
757 1079
758 if (fabs (odiff - diff) < MIN_TIMEJUMP) 1080 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
759 return; /* all is well */ 1081 return; /* all is well */
760 1082
761 ev_now = ev_time (); 1083 ev_rt_now = ev_time ();
762 now = get_clock (); 1084 mn_now = get_clock ();
763 now_floor = now; 1085 now_floor = mn_now;
764 } 1086 }
765 1087
766 periodics_reschedule (diff - odiff); 1088 periodics_reschedule (EV_A);
767 /* no timer adjustment, as the monotonic clock doesn't jump */ 1089 /* no timer adjustment, as the monotonic clock doesn't jump */
1090 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
768 } 1091 }
769 } 1092 }
770 else 1093 else
771#endif 1094#endif
772 { 1095 {
773 ev_now = ev_time (); 1096 ev_rt_now = ev_time ();
774 1097
775 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1098 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
776 { 1099 {
777 periodics_reschedule (ev_now - now); 1100 periodics_reschedule (EV_A);
778 1101
779 /* adjust timers. this is easy, as the offset is the same for all */ 1102 /* adjust timers. this is easy, as the offset is the same for all */
780 for (i = 0; i < timercnt; ++i) 1103 for (i = 0; i < timercnt; ++i)
781 timers [i]->at += diff; 1104 ((WT)timers [i])->at += ev_rt_now - mn_now;
782 } 1105 }
783 1106
784 now = ev_now; 1107 mn_now = ev_rt_now;
785 } 1108 }
786} 1109}
787 1110
788int ev_loop_done; 1111void
1112ev_ref (EV_P)
1113{
1114 ++activecnt;
1115}
789 1116
1117void
1118ev_unref (EV_P)
1119{
1120 --activecnt;
1121}
1122
1123static int loop_done;
1124
1125void
790void ev_loop (int flags) 1126ev_loop (EV_P_ int flags)
791{ 1127{
792 double block; 1128 double block;
793 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1129 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
794 1130
795 do 1131 do
796 { 1132 {
797 /* queue check watchers (and execute them) */ 1133 /* queue check watchers (and execute them) */
798 if (expect_false (preparecnt)) 1134 if (expect_false (preparecnt))
799 { 1135 {
800 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1136 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
801 call_pending (); 1137 call_pending (EV_A);
802 } 1138 }
803 1139
1140 /* we might have forked, so reify kernel state if necessary */
1141 if (expect_false (postfork))
1142 loop_fork (EV_A);
1143
804 /* update fd-related kernel structures */ 1144 /* update fd-related kernel structures */
805 fd_reify (); 1145 fd_reify (EV_A);
806 1146
807 /* calculate blocking time */ 1147 /* calculate blocking time */
808 1148
809 /* we only need this for !monotonic clockor timers, but as we basically 1149 /* we only need this for !monotonic clock or timers, but as we basically
810 always have timers, we just calculate it always */ 1150 always have timers, we just calculate it always */
811#if EV_USE_MONOTONIC 1151#if EV_USE_MONOTONIC
812 if (expect_true (have_monotonic)) 1152 if (expect_true (have_monotonic))
813 time_update_monotonic (); 1153 time_update_monotonic (EV_A);
814 else 1154 else
815#endif 1155#endif
816 { 1156 {
817 ev_now = ev_time (); 1157 ev_rt_now = ev_time ();
818 now = ev_now; 1158 mn_now = ev_rt_now;
819 } 1159 }
820 1160
821 if (flags & EVLOOP_NONBLOCK || idlecnt) 1161 if (flags & EVLOOP_NONBLOCK || idlecnt)
822 block = 0.; 1162 block = 0.;
823 else 1163 else
824 { 1164 {
825 block = MAX_BLOCKTIME; 1165 block = MAX_BLOCKTIME;
826 1166
827 if (timercnt) 1167 if (timercnt)
828 { 1168 {
829 ev_tstamp to = timers [0]->at - now + method_fudge; 1169 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
830 if (block > to) block = to; 1170 if (block > to) block = to;
831 } 1171 }
832 1172
833 if (periodiccnt) 1173 if (periodiccnt)
834 { 1174 {
835 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1175 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
836 if (block > to) block = to; 1176 if (block > to) block = to;
837 } 1177 }
838 1178
839 if (block < 0.) block = 0.; 1179 if (block < 0.) block = 0.;
840 } 1180 }
841 1181
842 method_poll (block); 1182 method_poll (EV_A_ block);
843 1183
844 /* update ev_now, do magic */ 1184 /* update ev_rt_now, do magic */
845 time_update (); 1185 time_update (EV_A);
846 1186
847 /* queue pending timers and reschedule them */ 1187 /* queue pending timers and reschedule them */
848 timers_reify (); /* relative timers called last */ 1188 timers_reify (EV_A); /* relative timers called last */
849 periodics_reify (); /* absolute timers called first */ 1189 periodics_reify (EV_A); /* absolute timers called first */
850 1190
851 /* queue idle watchers unless io or timers are pending */ 1191 /* queue idle watchers unless io or timers are pending */
852 if (!pendingcnt) 1192 if (idlecnt && !any_pending (EV_A))
853 queue_events ((W *)idles, idlecnt, EV_IDLE); 1193 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
854 1194
855 /* queue check watchers, to be executed first */ 1195 /* queue check watchers, to be executed first */
856 if (checkcnt) 1196 if (checkcnt)
857 queue_events ((W *)checks, checkcnt, EV_CHECK); 1197 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
858 1198
859 call_pending (); 1199 call_pending (EV_A);
860 } 1200 }
861 while (!ev_loop_done); 1201 while (activecnt && !loop_done);
862 1202
863 if (ev_loop_done != 2) 1203 if (loop_done != 2)
864 ev_loop_done = 0; 1204 loop_done = 0;
1205}
1206
1207void
1208ev_unloop (EV_P_ int how)
1209{
1210 loop_done = how;
865} 1211}
866 1212
867/*****************************************************************************/ 1213/*****************************************************************************/
868 1214
869static void 1215inline void
870wlist_add (WL *head, WL elem) 1216wlist_add (WL *head, WL elem)
871{ 1217{
872 elem->next = *head; 1218 elem->next = *head;
873 *head = elem; 1219 *head = elem;
874} 1220}
875 1221
876static void 1222inline void
877wlist_del (WL *head, WL elem) 1223wlist_del (WL *head, WL elem)
878{ 1224{
879 while (*head) 1225 while (*head)
880 { 1226 {
881 if (*head == elem) 1227 if (*head == elem)
886 1232
887 head = &(*head)->next; 1233 head = &(*head)->next;
888 } 1234 }
889} 1235}
890 1236
891static void 1237inline void
892ev_clear_pending (W w) 1238ev_clear_pending (EV_P_ W w)
893{ 1239{
894 if (w->pending) 1240 if (w->pending)
895 { 1241 {
896 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1242 pendings [ABSPRI (w)][w->pending - 1].w = 0;
897 w->pending = 0; 1243 w->pending = 0;
898 } 1244 }
899} 1245}
900 1246
901static void 1247inline void
902ev_start (W w, int active) 1248ev_start (EV_P_ W w, int active)
903{ 1249{
904 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1250 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
905 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1251 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
906 1252
907 w->active = active; 1253 w->active = active;
1254 ev_ref (EV_A);
908} 1255}
909 1256
910static void 1257inline void
911ev_stop (W w) 1258ev_stop (EV_P_ W w)
912{ 1259{
1260 ev_unref (EV_A);
913 w->active = 0; 1261 w->active = 0;
914} 1262}
915 1263
916/*****************************************************************************/ 1264/*****************************************************************************/
917 1265
918void 1266void
919ev_io_start (struct ev_io *w) 1267ev_io_start (EV_P_ struct ev_io *w)
920{ 1268{
921 int fd = w->fd; 1269 int fd = w->fd;
922 1270
923 if (ev_is_active (w)) 1271 if (ev_is_active (w))
924 return; 1272 return;
925 1273
926 assert (("ev_io_start called with negative fd", fd >= 0)); 1274 assert (("ev_io_start called with negative fd", fd >= 0));
927 1275
928 ev_start ((W)w, 1); 1276 ev_start (EV_A_ (W)w, 1);
929 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1277 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
930 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1278 wlist_add ((WL *)&anfds[fd].head, (WL)w);
931 1279
932 fd_change (fd); 1280 fd_change (EV_A_ fd);
933} 1281}
934 1282
935void 1283void
936ev_io_stop (struct ev_io *w) 1284ev_io_stop (EV_P_ struct ev_io *w)
937{ 1285{
938 ev_clear_pending ((W)w); 1286 ev_clear_pending (EV_A_ (W)w);
939 if (!ev_is_active (w)) 1287 if (!ev_is_active (w))
940 return; 1288 return;
941 1289
942 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1290 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
943 ev_stop ((W)w); 1291 ev_stop (EV_A_ (W)w);
944 1292
945 fd_change (w->fd); 1293 fd_change (EV_A_ w->fd);
946} 1294}
947 1295
948void 1296void
949ev_timer_start (struct ev_timer *w) 1297ev_timer_start (EV_P_ struct ev_timer *w)
950{ 1298{
951 if (ev_is_active (w)) 1299 if (ev_is_active (w))
952 return; 1300 return;
953 1301
954 w->at += now; 1302 ((WT)w)->at += mn_now;
955 1303
956 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1304 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
957 1305
958 ev_start ((W)w, ++timercnt); 1306 ev_start (EV_A_ (W)w, ++timercnt);
959 array_needsize (timers, timermax, timercnt, ); 1307 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
960 timers [timercnt - 1] = w; 1308 timers [timercnt - 1] = w;
961 upheap ((WT *)timers, timercnt - 1); 1309 upheap ((WT *)timers, timercnt - 1);
962}
963 1310
1311 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1312}
1313
964void 1314void
965ev_timer_stop (struct ev_timer *w) 1315ev_timer_stop (EV_P_ struct ev_timer *w)
966{ 1316{
967 ev_clear_pending ((W)w); 1317 ev_clear_pending (EV_A_ (W)w);
968 if (!ev_is_active (w)) 1318 if (!ev_is_active (w))
969 return; 1319 return;
970 1320
1321 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1322
971 if (w->active < timercnt--) 1323 if (((W)w)->active < timercnt--)
972 { 1324 {
973 timers [w->active - 1] = timers [timercnt]; 1325 timers [((W)w)->active - 1] = timers [timercnt];
974 downheap ((WT *)timers, timercnt, w->active - 1); 1326 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
975 } 1327 }
976 1328
977 w->at = w->repeat; 1329 ((WT)w)->at = w->repeat;
978 1330
979 ev_stop ((W)w); 1331 ev_stop (EV_A_ (W)w);
980} 1332}
981 1333
982void 1334void
983ev_timer_again (struct ev_timer *w) 1335ev_timer_again (EV_P_ struct ev_timer *w)
984{ 1336{
985 if (ev_is_active (w)) 1337 if (ev_is_active (w))
986 { 1338 {
987 if (w->repeat) 1339 if (w->repeat)
988 {
989 w->at = now + w->repeat;
990 downheap ((WT *)timers, timercnt, w->active - 1); 1340 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
991 }
992 else 1341 else
993 ev_timer_stop (w); 1342 ev_timer_stop (EV_A_ w);
994 } 1343 }
995 else if (w->repeat) 1344 else if (w->repeat)
996 ev_timer_start (w); 1345 ev_timer_start (EV_A_ w);
997} 1346}
998 1347
999void 1348void
1000ev_periodic_start (struct ev_periodic *w) 1349ev_periodic_start (EV_P_ struct ev_periodic *w)
1001{ 1350{
1002 if (ev_is_active (w)) 1351 if (ev_is_active (w))
1003 return; 1352 return;
1004 1353
1354 if (w->reschedule_cb)
1355 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1356 else if (w->interval)
1357 {
1005 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1358 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1006
1007 /* this formula differs from the one in periodic_reify because we do not always round up */ 1359 /* this formula differs from the one in periodic_reify because we do not always round up */
1008 if (w->interval)
1009 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1360 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1361 }
1010 1362
1011 ev_start ((W)w, ++periodiccnt); 1363 ev_start (EV_A_ (W)w, ++periodiccnt);
1012 array_needsize (periodics, periodicmax, periodiccnt, ); 1364 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1013 periodics [periodiccnt - 1] = w; 1365 periodics [periodiccnt - 1] = w;
1014 upheap ((WT *)periodics, periodiccnt - 1); 1366 upheap ((WT *)periodics, periodiccnt - 1);
1015}
1016 1367
1368 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1369}
1370
1017void 1371void
1018ev_periodic_stop (struct ev_periodic *w) 1372ev_periodic_stop (EV_P_ struct ev_periodic *w)
1019{ 1373{
1020 ev_clear_pending ((W)w); 1374 ev_clear_pending (EV_A_ (W)w);
1021 if (!ev_is_active (w)) 1375 if (!ev_is_active (w))
1022 return; 1376 return;
1023 1377
1378 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1379
1024 if (w->active < periodiccnt--) 1380 if (((W)w)->active < periodiccnt--)
1025 { 1381 {
1026 periodics [w->active - 1] = periodics [periodiccnt]; 1382 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1027 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1383 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1028 } 1384 }
1029 1385
1030 ev_stop ((W)w); 1386 ev_stop (EV_A_ (W)w);
1387}
1388
1389void
1390ev_periodic_again (EV_P_ struct ev_periodic *w)
1391{
1392 /* TODO: use adjustheap and recalculation */
1393 ev_periodic_stop (EV_A_ w);
1394 ev_periodic_start (EV_A_ w);
1395}
1396
1397void
1398ev_idle_start (EV_P_ struct ev_idle *w)
1399{
1400 if (ev_is_active (w))
1401 return;
1402
1403 ev_start (EV_A_ (W)w, ++idlecnt);
1404 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1405 idles [idlecnt - 1] = w;
1406}
1407
1408void
1409ev_idle_stop (EV_P_ struct ev_idle *w)
1410{
1411 ev_clear_pending (EV_A_ (W)w);
1412 if (ev_is_active (w))
1413 return;
1414
1415 idles [((W)w)->active - 1] = idles [--idlecnt];
1416 ev_stop (EV_A_ (W)w);
1417}
1418
1419void
1420ev_prepare_start (EV_P_ struct ev_prepare *w)
1421{
1422 if (ev_is_active (w))
1423 return;
1424
1425 ev_start (EV_A_ (W)w, ++preparecnt);
1426 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1427 prepares [preparecnt - 1] = w;
1428}
1429
1430void
1431ev_prepare_stop (EV_P_ struct ev_prepare *w)
1432{
1433 ev_clear_pending (EV_A_ (W)w);
1434 if (ev_is_active (w))
1435 return;
1436
1437 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1438 ev_stop (EV_A_ (W)w);
1439}
1440
1441void
1442ev_check_start (EV_P_ struct ev_check *w)
1443{
1444 if (ev_is_active (w))
1445 return;
1446
1447 ev_start (EV_A_ (W)w, ++checkcnt);
1448 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1449 checks [checkcnt - 1] = w;
1450}
1451
1452void
1453ev_check_stop (EV_P_ struct ev_check *w)
1454{
1455 ev_clear_pending (EV_A_ (W)w);
1456 if (ev_is_active (w))
1457 return;
1458
1459 checks [((W)w)->active - 1] = checks [--checkcnt];
1460 ev_stop (EV_A_ (W)w);
1031} 1461}
1032 1462
1033#ifndef SA_RESTART 1463#ifndef SA_RESTART
1034# define SA_RESTART 0 1464# define SA_RESTART 0
1035#endif 1465#endif
1036 1466
1037void 1467void
1038ev_signal_start (struct ev_signal *w) 1468ev_signal_start (EV_P_ struct ev_signal *w)
1039{ 1469{
1470#if EV_MULTIPLICITY
1471 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1472#endif
1040 if (ev_is_active (w)) 1473 if (ev_is_active (w))
1041 return; 1474 return;
1042 1475
1043 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1476 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1044 1477
1045 ev_start ((W)w, 1); 1478 ev_start (EV_A_ (W)w, 1);
1046 array_needsize (signals, signalmax, w->signum, signals_init); 1479 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1047 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1480 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1048 1481
1049 if (!w->next) 1482 if (!((WL)w)->next)
1050 { 1483 {
1484#if WIN32
1485 signal (w->signum, sighandler);
1486#else
1051 struct sigaction sa; 1487 struct sigaction sa;
1052 sa.sa_handler = sighandler; 1488 sa.sa_handler = sighandler;
1053 sigfillset (&sa.sa_mask); 1489 sigfillset (&sa.sa_mask);
1054 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1490 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1055 sigaction (w->signum, &sa, 0); 1491 sigaction (w->signum, &sa, 0);
1492#endif
1056 } 1493 }
1057} 1494}
1058 1495
1059void 1496void
1060ev_signal_stop (struct ev_signal *w) 1497ev_signal_stop (EV_P_ struct ev_signal *w)
1061{ 1498{
1062 ev_clear_pending ((W)w); 1499 ev_clear_pending (EV_A_ (W)w);
1063 if (!ev_is_active (w)) 1500 if (!ev_is_active (w))
1064 return; 1501 return;
1065 1502
1066 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1503 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1067 ev_stop ((W)w); 1504 ev_stop (EV_A_ (W)w);
1068 1505
1069 if (!signals [w->signum - 1].head) 1506 if (!signals [w->signum - 1].head)
1070 signal (w->signum, SIG_DFL); 1507 signal (w->signum, SIG_DFL);
1071} 1508}
1072 1509
1073void 1510void
1074ev_idle_start (struct ev_idle *w) 1511ev_child_start (EV_P_ struct ev_child *w)
1075{ 1512{
1513#if EV_MULTIPLICITY
1514 assert (("child watchers are only supported in the default loop", loop == default_loop));
1515#endif
1076 if (ev_is_active (w)) 1516 if (ev_is_active (w))
1077 return; 1517 return;
1078 1518
1079 ev_start ((W)w, ++idlecnt); 1519 ev_start (EV_A_ (W)w, 1);
1080 array_needsize (idles, idlemax, idlecnt, ); 1520 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1081 idles [idlecnt - 1] = w;
1082} 1521}
1083 1522
1084void 1523void
1085ev_idle_stop (struct ev_idle *w) 1524ev_child_stop (EV_P_ struct ev_child *w)
1086{ 1525{
1087 ev_clear_pending ((W)w); 1526 ev_clear_pending (EV_A_ (W)w);
1088 if (ev_is_active (w)) 1527 if (ev_is_active (w))
1089 return; 1528 return;
1090 1529
1091 idles [w->active - 1] = idles [--idlecnt];
1092 ev_stop ((W)w);
1093}
1094
1095void
1096ev_prepare_start (struct ev_prepare *w)
1097{
1098 if (ev_is_active (w))
1099 return;
1100
1101 ev_start ((W)w, ++preparecnt);
1102 array_needsize (prepares, preparemax, preparecnt, );
1103 prepares [preparecnt - 1] = w;
1104}
1105
1106void
1107ev_prepare_stop (struct ev_prepare *w)
1108{
1109 ev_clear_pending ((W)w);
1110 if (ev_is_active (w))
1111 return;
1112
1113 prepares [w->active - 1] = prepares [--preparecnt];
1114 ev_stop ((W)w);
1115}
1116
1117void
1118ev_check_start (struct ev_check *w)
1119{
1120 if (ev_is_active (w))
1121 return;
1122
1123 ev_start ((W)w, ++checkcnt);
1124 array_needsize (checks, checkmax, checkcnt, );
1125 checks [checkcnt - 1] = w;
1126}
1127
1128void
1129ev_check_stop (struct ev_check *w)
1130{
1131 ev_clear_pending ((W)w);
1132 if (ev_is_active (w))
1133 return;
1134
1135 checks [w->active - 1] = checks [--checkcnt];
1136 ev_stop ((W)w);
1137}
1138
1139void
1140ev_child_start (struct ev_child *w)
1141{
1142 if (ev_is_active (w))
1143 return;
1144
1145 ev_start ((W)w, 1);
1146 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1147}
1148
1149void
1150ev_child_stop (struct ev_child *w)
1151{
1152 ev_clear_pending ((W)w);
1153 if (ev_is_active (w))
1154 return;
1155
1156 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1530 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1157 ev_stop ((W)w); 1531 ev_stop (EV_A_ (W)w);
1158} 1532}
1159 1533
1160/*****************************************************************************/ 1534/*****************************************************************************/
1161 1535
1162struct ev_once 1536struct ev_once
1166 void (*cb)(int revents, void *arg); 1540 void (*cb)(int revents, void *arg);
1167 void *arg; 1541 void *arg;
1168}; 1542};
1169 1543
1170static void 1544static void
1171once_cb (struct ev_once *once, int revents) 1545once_cb (EV_P_ struct ev_once *once, int revents)
1172{ 1546{
1173 void (*cb)(int revents, void *arg) = once->cb; 1547 void (*cb)(int revents, void *arg) = once->cb;
1174 void *arg = once->arg; 1548 void *arg = once->arg;
1175 1549
1176 ev_io_stop (&once->io); 1550 ev_io_stop (EV_A_ &once->io);
1177 ev_timer_stop (&once->to); 1551 ev_timer_stop (EV_A_ &once->to);
1178 free (once); 1552 ev_free (once);
1179 1553
1180 cb (revents, arg); 1554 cb (revents, arg);
1181} 1555}
1182 1556
1183static void 1557static void
1184once_cb_io (struct ev_io *w, int revents) 1558once_cb_io (EV_P_ struct ev_io *w, int revents)
1185{ 1559{
1186 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1560 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1187} 1561}
1188 1562
1189static void 1563static void
1190once_cb_to (struct ev_timer *w, int revents) 1564once_cb_to (EV_P_ struct ev_timer *w, int revents)
1191{ 1565{
1192 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1566 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1193} 1567}
1194 1568
1195void 1569void
1196ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1570ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1197{ 1571{
1198 struct ev_once *once = malloc (sizeof (struct ev_once)); 1572 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1199 1573
1200 if (!once) 1574 if (!once)
1201 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1575 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1202 else 1576 else
1203 { 1577 {
1204 once->cb = cb; 1578 once->cb = cb;
1205 once->arg = arg; 1579 once->arg = arg;
1206 1580
1207 ev_watcher_init (&once->io, once_cb_io); 1581 ev_init (&once->io, once_cb_io);
1208 if (fd >= 0) 1582 if (fd >= 0)
1209 { 1583 {
1210 ev_io_set (&once->io, fd, events); 1584 ev_io_set (&once->io, fd, events);
1211 ev_io_start (&once->io); 1585 ev_io_start (EV_A_ &once->io);
1212 } 1586 }
1213 1587
1214 ev_watcher_init (&once->to, once_cb_to); 1588 ev_init (&once->to, once_cb_to);
1215 if (timeout >= 0.) 1589 if (timeout >= 0.)
1216 { 1590 {
1217 ev_timer_set (&once->to, timeout, 0.); 1591 ev_timer_set (&once->to, timeout, 0.);
1218 ev_timer_start (&once->to); 1592 ev_timer_start (EV_A_ &once->to);
1219 } 1593 }
1220 } 1594 }
1221} 1595}
1222 1596
1223/*****************************************************************************/
1224
1225#if 0
1226
1227struct ev_io wio;
1228
1229static void
1230sin_cb (struct ev_io *w, int revents)
1231{
1232 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1233}
1234
1235static void
1236ocb (struct ev_timer *w, int revents)
1237{
1238 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1239 ev_timer_stop (w);
1240 ev_timer_start (w);
1241}
1242
1243static void
1244scb (struct ev_signal *w, int revents)
1245{
1246 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1247 ev_io_stop (&wio);
1248 ev_io_start (&wio);
1249}
1250
1251static void
1252gcb (struct ev_signal *w, int revents)
1253{
1254 fprintf (stderr, "generic %x\n", revents);
1255
1256}
1257
1258int main (void)
1259{
1260 ev_init (0);
1261
1262 ev_io_init (&wio, sin_cb, 0, EV_READ);
1263 ev_io_start (&wio);
1264
1265 struct ev_timer t[10000];
1266
1267#if 0
1268 int i;
1269 for (i = 0; i < 10000; ++i)
1270 {
1271 struct ev_timer *w = t + i;
1272 ev_watcher_init (w, ocb, i);
1273 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1274 ev_timer_start (w);
1275 if (drand48 () < 0.5)
1276 ev_timer_stop (w);
1277 }
1278#endif
1279
1280 struct ev_timer t1;
1281 ev_timer_init (&t1, ocb, 5, 10);
1282 ev_timer_start (&t1);
1283
1284 struct ev_signal sig;
1285 ev_signal_init (&sig, scb, SIGQUIT);
1286 ev_signal_start (&sig);
1287
1288 struct ev_check cw;
1289 ev_check_init (&cw, gcb);
1290 ev_check_start (&cw);
1291
1292 struct ev_idle iw;
1293 ev_idle_init (&iw, gcb);
1294 ev_idle_start (&iw);
1295
1296 ev_loop (0);
1297
1298 return 0;
1299}
1300
1301#endif
1302
1303
1304
1305

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines