ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.62 by root, Sun Nov 4 20:38:07 2007 UTC vs.
Revision 1.85 by root, Sat Nov 10 03:13:50 2007 UTC

54 54
55#endif 55#endif
56 56
57#include <math.h> 57#include <math.h>
58#include <stdlib.h> 58#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 59#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 60#include <stddef.h>
63 61
64#include <stdio.h> 62#include <stdio.h>
65 63
66#include <assert.h> 64#include <assert.h>
67#include <errno.h> 65#include <errno.h>
68#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
69#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
70# include <sys/wait.h> 74# include <sys/wait.h>
71#endif 75#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 76/**/
76 77
77#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
79#endif 80#endif
94# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
95#endif 96#endif
96 97
97#ifndef EV_USE_WIN32 98#ifndef EV_USE_WIN32
98# ifdef WIN32 99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
99# define EV_USE_WIN32 1 102# define EV_USE_SELECT 1
100# else 103# else
101# define EV_USE_WIN32 0 104# define EV_USE_WIN32 0
102# endif 105# endif
103#endif 106#endif
104 107
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 130
131#ifdef EV_H
132# include EV_H
133#else
128#include "ev.h" 134# include "ev.h"
135#endif
129 136
130#if __GNUC__ >= 3 137#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 138# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 139# define inline inline
133#else 140#else
145typedef struct ev_watcher_list *WL; 152typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 153typedef struct ev_watcher_time *WT;
147 154
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 156
157#include "ev_win32.c"
158
150/*****************************************************************************/ 159/*****************************************************************************/
151 160
161static void (*syserr_cb)(const char *msg);
162
163void ev_set_syserr_cb (void (*cb)(const char *msg))
164{
165 syserr_cb = cb;
166}
167
168static void
169syserr (const char *msg)
170{
171 if (!msg)
172 msg = "(libev) system error";
173
174 if (syserr_cb)
175 syserr_cb (msg);
176 else
177 {
178 perror (msg);
179 abort ();
180 }
181}
182
183static void *(*alloc)(void *ptr, long size);
184
185void ev_set_allocator (void *(*cb)(void *ptr, long size))
186{
187 alloc = cb;
188}
189
190static void *
191ev_realloc (void *ptr, long size)
192{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194
195 if (!ptr && size)
196 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort ();
199 }
200
201 return ptr;
202}
203
204#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0)
206
207/*****************************************************************************/
208
152typedef struct 209typedef struct
153{ 210{
154 struct ev_watcher_list *head; 211 WL head;
155 unsigned char events; 212 unsigned char events;
156 unsigned char reify; 213 unsigned char reify;
157} ANFD; 214} ANFD;
158 215
159typedef struct 216typedef struct
162 int events; 219 int events;
163} ANPENDING; 220} ANPENDING;
164 221
165#if EV_MULTIPLICITY 222#if EV_MULTIPLICITY
166 223
167struct ev_loop 224 struct ev_loop
168{ 225 {
169# define VAR(name,decl) decl; 226 #define VAR(name,decl) decl;
170# include "ev_vars.h" 227 #include "ev_vars.h"
171};
172# undef VAR 228 #undef VAR
229 };
173# include "ev_wrap.h" 230 #include "ev_wrap.h"
231
232 struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop;
174 234
175#else 235#else
176 236
177# define VAR(name,decl) static decl; 237 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 238 #include "ev_vars.h"
179# undef VAR 239 #undef VAR
240
241 static int default_loop;
180 242
181#endif 243#endif
182 244
183/*****************************************************************************/ 245/*****************************************************************************/
184 246
209#endif 271#endif
210 272
211 return ev_time (); 273 return ev_time ();
212} 274}
213 275
276#if EV_MULTIPLICITY
214ev_tstamp 277ev_tstamp
215ev_now (EV_P) 278ev_now (EV_P)
216{ 279{
217 return rt_now; 280 return ev_rt_now;
218} 281}
282#endif
219 283
220#define array_roundsize(base,n) ((n) | 4 & ~3) 284#define array_roundsize(type,n) ((n) | 4 & ~3)
221 285
222#define array_needsize(base,cur,cnt,init) \ 286#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 287 if (expect_false ((cnt) > cur)) \
224 { \ 288 { \
225 int newcnt = cur; \ 289 int newcnt = cur; \
226 do \ 290 do \
227 { \ 291 { \
228 newcnt = array_roundsize (base, newcnt << 1); \ 292 newcnt = array_roundsize (type, newcnt << 1); \
229 } \ 293 } \
230 while ((cnt) > newcnt); \ 294 while ((cnt) > newcnt); \
231 \ 295 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 296 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
233 init (base + cur, newcnt - cur); \ 297 init (base + cur, newcnt - cur); \
234 cur = newcnt; \ 298 cur = newcnt; \
235 } 299 }
300
301#define array_slim(type,stem) \
302 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
303 { \
304 stem ## max = array_roundsize (stem ## cnt >> 1); \
305 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
306 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
307 }
308
309/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
310/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
311#define array_free_microshit(stem) \
312 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
313
314#define array_free(stem, idx) \
315 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
236 316
237/*****************************************************************************/ 317/*****************************************************************************/
238 318
239static void 319static void
240anfds_init (ANFD *base, int count) 320anfds_init (ANFD *base, int count)
247 327
248 ++base; 328 ++base;
249 } 329 }
250} 330}
251 331
252static void 332void
253event (EV_P_ W w, int events) 333ev_feed_event (EV_P_ void *w, int revents)
254{ 334{
335 W w_ = (W)w;
336
255 if (w->pending) 337 if (w_->pending)
256 { 338 {
257 pendings [ABSPRI (w)][w->pending - 1].events |= events; 339 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
258 return; 340 return;
259 } 341 }
260 342
261 w->pending = ++pendingcnt [ABSPRI (w)]; 343 w_->pending = ++pendingcnt [ABSPRI (w_)];
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 344 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
263 pendings [ABSPRI (w)][w->pending - 1].w = w; 345 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
264 pendings [ABSPRI (w)][w->pending - 1].events = events; 346 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
265} 347}
266 348
267static void 349static void
268queue_events (EV_P_ W *events, int eventcnt, int type) 350queue_events (EV_P_ W *events, int eventcnt, int type)
269{ 351{
270 int i; 352 int i;
271 353
272 for (i = 0; i < eventcnt; ++i) 354 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type); 355 ev_feed_event (EV_A_ events [i], type);
274} 356}
275 357
276static void 358inline void
277fd_event (EV_P_ int fd, int events) 359fd_event (EV_P_ int fd, int revents)
278{ 360{
279 ANFD *anfd = anfds + fd; 361 ANFD *anfd = anfds + fd;
280 struct ev_io *w; 362 struct ev_io *w;
281 363
282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 364 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
283 { 365 {
284 int ev = w->events & events; 366 int ev = w->events & revents;
285 367
286 if (ev) 368 if (ev)
287 event (EV_A_ (W)w, ev); 369 ev_feed_event (EV_A_ (W)w, ev);
288 } 370 }
371}
372
373void
374ev_feed_fd_event (EV_P_ int fd, int revents)
375{
376 fd_event (EV_A_ fd, revents);
289} 377}
290 378
291/*****************************************************************************/ 379/*****************************************************************************/
292 380
293static void 381static void
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 394 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
307 events |= w->events; 395 events |= w->events;
308 396
309 anfd->reify = 0; 397 anfd->reify = 0;
310 398
311 if (anfd->events != events)
312 {
313 method_modify (EV_A_ fd, anfd->events, events); 399 method_modify (EV_A_ fd, anfd->events, events);
314 anfd->events = events; 400 anfd->events = events;
315 }
316 } 401 }
317 402
318 fdchangecnt = 0; 403 fdchangecnt = 0;
319} 404}
320 405
321static void 406static void
322fd_change (EV_P_ int fd) 407fd_change (EV_P_ int fd)
323{ 408{
324 if (anfds [fd].reify || fdchangecnt < 0) 409 if (anfds [fd].reify)
325 return; 410 return;
326 411
327 anfds [fd].reify = 1; 412 anfds [fd].reify = 1;
328 413
329 ++fdchangecnt; 414 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 415 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
331 fdchanges [fdchangecnt - 1] = fd; 416 fdchanges [fdchangecnt - 1] = fd;
332} 417}
333 418
334static void 419static void
335fd_kill (EV_P_ int fd) 420fd_kill (EV_P_ int fd)
337 struct ev_io *w; 422 struct ev_io *w;
338 423
339 while ((w = (struct ev_io *)anfds [fd].head)) 424 while ((w = (struct ev_io *)anfds [fd].head))
340 { 425 {
341 ev_io_stop (EV_A_ w); 426 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 427 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 428 }
429}
430
431static int
432fd_valid (int fd)
433{
434#ifdef WIN32
435 return !!win32_get_osfhandle (fd);
436#else
437 return fcntl (fd, F_GETFD) != -1;
438#endif
344} 439}
345 440
346/* called on EBADF to verify fds */ 441/* called on EBADF to verify fds */
347static void 442static void
348fd_ebadf (EV_P) 443fd_ebadf (EV_P)
349{ 444{
350 int fd; 445 int fd;
351 446
352 for (fd = 0; fd < anfdmax; ++fd) 447 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 448 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 449 if (!fd_valid (fd) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd); 450 fd_kill (EV_A_ fd);
356} 451}
357 452
358/* called on ENOMEM in select/poll to kill some fds and retry */ 453/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 454static void
362 int fd; 457 int fd;
363 458
364 for (fd = anfdmax; fd--; ) 459 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 460 if (anfds [fd].events)
366 { 461 {
367 close (fd);
368 fd_kill (EV_A_ fd); 462 fd_kill (EV_A_ fd);
369 return; 463 return;
370 } 464 }
371} 465}
372 466
373/* susually called after fork if method needs to re-arm all fds from scratch */ 467/* usually called after fork if method needs to re-arm all fds from scratch */
374static void 468static void
375fd_rearm_all (EV_P) 469fd_rearm_all (EV_P)
376{ 470{
377 int fd; 471 int fd;
378 472
426 520
427 heap [k] = w; 521 heap [k] = w;
428 ((W)heap [k])->active = k + 1; 522 ((W)heap [k])->active = k + 1;
429} 523}
430 524
525inline void
526adjustheap (WT *heap, int N, int k, ev_tstamp at)
527{
528 ev_tstamp old_at = heap [k]->at;
529 heap [k]->at = at;
530
531 if (old_at < at)
532 downheap (heap, N, k);
533 else
534 upheap (heap, k);
535}
536
431/*****************************************************************************/ 537/*****************************************************************************/
432 538
433typedef struct 539typedef struct
434{ 540{
435 struct ev_watcher_list *head; 541 WL head;
436 sig_atomic_t volatile gotsig; 542 sig_atomic_t volatile gotsig;
437} ANSIG; 543} ANSIG;
438 544
439static ANSIG *signals; 545static ANSIG *signals;
440static int signalmax; 546static int signalmax;
456} 562}
457 563
458static void 564static void
459sighandler (int signum) 565sighandler (int signum)
460{ 566{
567#if WIN32
568 signal (signum, sighandler);
569#endif
570
461 signals [signum - 1].gotsig = 1; 571 signals [signum - 1].gotsig = 1;
462 572
463 if (!gotsig) 573 if (!gotsig)
464 { 574 {
465 int old_errno = errno; 575 int old_errno = errno;
466 gotsig = 1; 576 gotsig = 1;
577#ifdef WIN32
578 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
579#else
467 write (sigpipe [1], &signum, 1); 580 write (sigpipe [1], &signum, 1);
581#endif
468 errno = old_errno; 582 errno = old_errno;
469 } 583 }
470} 584}
471 585
586void
587ev_feed_signal_event (EV_P_ int signum)
588{
589 WL w;
590
591#if EV_MULTIPLICITY
592 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
593#endif
594
595 --signum;
596
597 if (signum < 0 || signum >= signalmax)
598 return;
599
600 signals [signum].gotsig = 0;
601
602 for (w = signals [signum].head; w; w = w->next)
603 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
604}
605
472static void 606static void
473sigcb (EV_P_ struct ev_io *iow, int revents) 607sigcb (EV_P_ struct ev_io *iow, int revents)
474{ 608{
475 struct ev_watcher_list *w;
476 int signum; 609 int signum;
477 610
611#ifdef WIN32
612 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
613#else
478 read (sigpipe [0], &revents, 1); 614 read (sigpipe [0], &revents, 1);
615#endif
479 gotsig = 0; 616 gotsig = 0;
480 617
481 for (signum = signalmax; signum--; ) 618 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig) 619 if (signals [signum].gotsig)
483 { 620 ev_feed_signal_event (EV_A_ signum + 1);
484 signals [signum].gotsig = 0;
485
486 for (w = signals [signum].head; w; w = w->next)
487 event (EV_A_ (W)w, EV_SIGNAL);
488 }
489} 621}
490 622
491static void 623static void
492siginit (EV_P) 624siginit (EV_P)
493{ 625{
505 ev_unref (EV_A); /* child watcher should not keep loop alive */ 637 ev_unref (EV_A); /* child watcher should not keep loop alive */
506} 638}
507 639
508/*****************************************************************************/ 640/*****************************************************************************/
509 641
642static struct ev_child *childs [PID_HASHSIZE];
643
510#ifndef WIN32 644#ifndef WIN32
511 645
512static struct ev_child *childs [PID_HASHSIZE];
513static struct ev_signal childev; 646static struct ev_signal childev;
514 647
515#ifndef WCONTINUED 648#ifndef WCONTINUED
516# define WCONTINUED 0 649# define WCONTINUED 0
517#endif 650#endif
522 struct ev_child *w; 655 struct ev_child *w;
523 656
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 657 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid) 658 if (w->pid == pid || !w->pid)
526 { 659 {
527 w->priority = sw->priority; /* need to do it *now* */ 660 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid; 661 w->rpid = pid;
529 w->rstatus = status; 662 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD); 663 ev_feed_event (EV_A_ (W)w, EV_CHILD);
531 } 664 }
532} 665}
533 666
534static void 667static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 668childcb (EV_P_ struct ev_signal *sw, int revents)
537 int pid, status; 670 int pid, status;
538 671
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 672 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 673 {
541 /* make sure we are called again until all childs have been reaped */ 674 /* make sure we are called again until all childs have been reaped */
542 event (EV_A_ (W)sw, EV_SIGNAL); 675 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 676
544 child_reap (EV_A_ sw, pid, pid, status); 677 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 678 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 } 679 }
547} 680}
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 737 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605 have_monotonic = 1; 738 have_monotonic = 1;
606 } 739 }
607#endif 740#endif
608 741
609 rt_now = ev_time (); 742 ev_rt_now = ev_time ();
610 mn_now = get_clock (); 743 mn_now = get_clock ();
611 now_floor = mn_now; 744 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now; 745 rtmn_diff = ev_rt_now - mn_now;
613 746
614 if (methods == EVMETHOD_AUTO) 747 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBEV_METHODS")) 748 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS")); 749 methods = atoi (getenv ("LIBEV_METHODS"));
617 else 750 else
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 764 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632#endif 765#endif
633#if EV_USE_SELECT 766#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 767 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635#endif 768#endif
769
770 ev_init (&sigev, sigcb);
771 ev_set_priority (&sigev, EV_MAXPRI);
636 } 772 }
637} 773}
638 774
639void 775void
640loop_destroy (EV_P) 776loop_destroy (EV_P)
641{ 777{
778 int i;
779
642#if EV_USE_WIN32 780#if EV_USE_WIN32
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 781 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
644#endif 782#endif
645#if EV_USE_KQUEUE 783#if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 784 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
653#endif 791#endif
654#if EV_USE_SELECT 792#if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 793 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
656#endif 794#endif
657 795
796 for (i = NUMPRI; i--; )
797 array_free (pending, [i]);
798
799 /* have to use the microsoft-never-gets-it-right macro */
800 array_free_microshit (fdchange);
801 array_free_microshit (timer);
802 array_free_microshit (periodic);
803 array_free_microshit (idle);
804 array_free_microshit (prepare);
805 array_free_microshit (check);
806
658 method = 0; 807 method = 0;
659 /*TODO*/
660} 808}
661 809
662void 810static void
663loop_fork (EV_P) 811loop_fork (EV_P)
664{ 812{
665 /*TODO*/
666#if EV_USE_EPOLL 813#if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 814 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
668#endif 815#endif
669#if EV_USE_KQUEUE 816#if EV_USE_KQUEUE
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 817 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
671#endif 818#endif
819
820 if (ev_is_active (&sigev))
821 {
822 /* default loop */
823
824 ev_ref (EV_A);
825 ev_io_stop (EV_A_ &sigev);
826 close (sigpipe [0]);
827 close (sigpipe [1]);
828
829 while (pipe (sigpipe))
830 syserr ("(libev) error creating pipe");
831
832 siginit (EV_A);
833 }
834
835 postfork = 0;
672} 836}
673 837
674#if EV_MULTIPLICITY 838#if EV_MULTIPLICITY
675struct ev_loop * 839struct ev_loop *
676ev_loop_new (int methods) 840ev_loop_new (int methods)
677{ 841{
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 842 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
843
844 memset (loop, 0, sizeof (struct ev_loop));
679 845
680 loop_init (EV_A_ methods); 846 loop_init (EV_A_ methods);
681 847
682 if (ev_method (EV_A)) 848 if (ev_method (EV_A))
683 return loop; 849 return loop;
687 853
688void 854void
689ev_loop_destroy (EV_P) 855ev_loop_destroy (EV_P)
690{ 856{
691 loop_destroy (EV_A); 857 loop_destroy (EV_A);
692 free (loop); 858 ev_free (loop);
693} 859}
694 860
695void 861void
696ev_loop_fork (EV_P) 862ev_loop_fork (EV_P)
697{ 863{
698 loop_fork (EV_A); 864 postfork = 1;
699} 865}
700 866
701#endif 867#endif
702 868
703#if EV_MULTIPLICITY 869#if EV_MULTIPLICITY
704struct ev_loop default_loop_struct;
705static struct ev_loop *default_loop;
706
707struct ev_loop * 870struct ev_loop *
708#else 871#else
709static int default_loop;
710
711int 872int
712#endif 873#endif
713ev_default_loop (int methods) 874ev_default_loop (int methods)
714{ 875{
715 if (sigpipe [0] == sigpipe [1]) 876 if (sigpipe [0] == sigpipe [1])
726 887
727 loop_init (EV_A_ methods); 888 loop_init (EV_A_ methods);
728 889
729 if (ev_method (EV_A)) 890 if (ev_method (EV_A))
730 { 891 {
731 ev_watcher_init (&sigev, sigcb);
732 ev_set_priority (&sigev, EV_MAXPRI);
733 siginit (EV_A); 892 siginit (EV_A);
734 893
735#ifndef WIN32 894#ifndef WIN32
736 ev_signal_init (&childev, childcb, SIGCHLD); 895 ev_signal_init (&childev, childcb, SIGCHLD);
737 ev_set_priority (&childev, EV_MAXPRI); 896 ev_set_priority (&childev, EV_MAXPRI);
751{ 910{
752#if EV_MULTIPLICITY 911#if EV_MULTIPLICITY
753 struct ev_loop *loop = default_loop; 912 struct ev_loop *loop = default_loop;
754#endif 913#endif
755 914
915#ifndef WIN32
756 ev_ref (EV_A); /* child watcher */ 916 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev); 917 ev_signal_stop (EV_A_ &childev);
918#endif
758 919
759 ev_ref (EV_A); /* signal watcher */ 920 ev_ref (EV_A); /* signal watcher */
760 ev_io_stop (EV_A_ &sigev); 921 ev_io_stop (EV_A_ &sigev);
761 922
762 close (sigpipe [0]); sigpipe [0] = 0; 923 close (sigpipe [0]); sigpipe [0] = 0;
770{ 931{
771#if EV_MULTIPLICITY 932#if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop; 933 struct ev_loop *loop = default_loop;
773#endif 934#endif
774 935
775 loop_fork (EV_A); 936 if (method)
776 937 postfork = 1;
777 ev_io_stop (EV_A_ &sigev);
778 close (sigpipe [0]);
779 close (sigpipe [1]);
780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
783 siginit (EV_A);
784} 938}
785 939
786/*****************************************************************************/ 940/*****************************************************************************/
941
942static int
943any_pending (EV_P)
944{
945 int pri;
946
947 for (pri = NUMPRI; pri--; )
948 if (pendingcnt [pri])
949 return 1;
950
951 return 0;
952}
787 953
788static void 954static void
789call_pending (EV_P) 955call_pending (EV_P)
790{ 956{
791 int pri; 957 int pri;
796 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 962 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
797 963
798 if (p->w) 964 if (p->w)
799 { 965 {
800 p->w->pending = 0; 966 p->w->pending = 0;
801 p->w->cb (EV_A_ p->w, p->events); 967 EV_CB_INVOKE (p->w, p->events);
802 } 968 }
803 } 969 }
804} 970}
805 971
806static void 972static void
807timers_reify (EV_P) 973timers_reify (EV_P)
808{ 974{
809 while (timercnt && timers [0]->at <= mn_now) 975 while (timercnt && ((WT)timers [0])->at <= mn_now)
810 { 976 {
811 struct ev_timer *w = timers [0]; 977 struct ev_timer *w = timers [0];
812 978
813 assert (("inactive timer on timer heap detected", ev_is_active (w))); 979 assert (("inactive timer on timer heap detected", ev_is_active (w)));
814 980
815 /* first reschedule or stop timer */ 981 /* first reschedule or stop timer */
816 if (w->repeat) 982 if (w->repeat)
817 { 983 {
818 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 984 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
819 w->at = mn_now + w->repeat; 985 ((WT)w)->at = mn_now + w->repeat;
820 downheap ((WT *)timers, timercnt, 0); 986 downheap ((WT *)timers, timercnt, 0);
821 } 987 }
822 else 988 else
823 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 989 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
824 990
825 event (EV_A_ (W)w, EV_TIMEOUT); 991 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
826 } 992 }
827} 993}
828 994
829static void 995static void
830periodics_reify (EV_P) 996periodics_reify (EV_P)
831{ 997{
832 while (periodiccnt && periodics [0]->at <= rt_now) 998 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
833 { 999 {
834 struct ev_periodic *w = periodics [0]; 1000 struct ev_periodic *w = periodics [0];
835 1001
836 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1002 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
837 1003
838 /* first reschedule or stop timer */ 1004 /* first reschedule or stop timer */
839 if (w->interval) 1005 if (w->reschedule_cb)
840 { 1006 {
1007 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1008
1009 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1010 downheap ((WT *)periodics, periodiccnt, 0);
1011 }
1012 else if (w->interval)
1013 {
841 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1014 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
842 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1015 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
843 downheap ((WT *)periodics, periodiccnt, 0); 1016 downheap ((WT *)periodics, periodiccnt, 0);
844 } 1017 }
845 else 1018 else
846 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1019 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
847 1020
848 event (EV_A_ (W)w, EV_PERIODIC); 1021 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
849 } 1022 }
850} 1023}
851 1024
852static void 1025static void
853periodics_reschedule (EV_P) 1026periodics_reschedule (EV_P)
857 /* adjust periodics after time jump */ 1030 /* adjust periodics after time jump */
858 for (i = 0; i < periodiccnt; ++i) 1031 for (i = 0; i < periodiccnt; ++i)
859 { 1032 {
860 struct ev_periodic *w = periodics [i]; 1033 struct ev_periodic *w = periodics [i];
861 1034
1035 if (w->reschedule_cb)
1036 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
862 if (w->interval) 1037 else if (w->interval)
863 {
864 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1038 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
865
866 if (fabs (diff) >= 1e-4)
867 {
868 ev_periodic_stop (EV_A_ w);
869 ev_periodic_start (EV_A_ w);
870
871 i = 0; /* restart loop, inefficient, but time jumps should be rare */
872 }
873 }
874 } 1039 }
1040
1041 /* now rebuild the heap */
1042 for (i = periodiccnt >> 1; i--; )
1043 downheap ((WT *)periodics, periodiccnt, i);
875} 1044}
876 1045
877inline int 1046inline int
878time_update_monotonic (EV_P) 1047time_update_monotonic (EV_P)
879{ 1048{
880 mn_now = get_clock (); 1049 mn_now = get_clock ();
881 1050
882 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1051 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
883 { 1052 {
884 rt_now = rtmn_diff + mn_now; 1053 ev_rt_now = rtmn_diff + mn_now;
885 return 0; 1054 return 0;
886 } 1055 }
887 else 1056 else
888 { 1057 {
889 now_floor = mn_now; 1058 now_floor = mn_now;
890 rt_now = ev_time (); 1059 ev_rt_now = ev_time ();
891 return 1; 1060 return 1;
892 } 1061 }
893} 1062}
894 1063
895static void 1064static void
904 { 1073 {
905 ev_tstamp odiff = rtmn_diff; 1074 ev_tstamp odiff = rtmn_diff;
906 1075
907 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1076 for (i = 4; --i; ) /* loop a few times, before making important decisions */
908 { 1077 {
909 rtmn_diff = rt_now - mn_now; 1078 rtmn_diff = ev_rt_now - mn_now;
910 1079
911 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1080 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
912 return; /* all is well */ 1081 return; /* all is well */
913 1082
914 rt_now = ev_time (); 1083 ev_rt_now = ev_time ();
915 mn_now = get_clock (); 1084 mn_now = get_clock ();
916 now_floor = mn_now; 1085 now_floor = mn_now;
917 } 1086 }
918 1087
919 periodics_reschedule (EV_A); 1088 periodics_reschedule (EV_A);
922 } 1091 }
923 } 1092 }
924 else 1093 else
925#endif 1094#endif
926 { 1095 {
927 rt_now = ev_time (); 1096 ev_rt_now = ev_time ();
928 1097
929 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1098 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
930 { 1099 {
931 periodics_reschedule (EV_A); 1100 periodics_reschedule (EV_A);
932 1101
933 /* adjust timers. this is easy, as the offset is the same for all */ 1102 /* adjust timers. this is easy, as the offset is the same for all */
934 for (i = 0; i < timercnt; ++i) 1103 for (i = 0; i < timercnt; ++i)
935 timers [i]->at += rt_now - mn_now; 1104 ((WT)timers [i])->at += ev_rt_now - mn_now;
936 } 1105 }
937 1106
938 mn_now = rt_now; 1107 mn_now = ev_rt_now;
939 } 1108 }
940} 1109}
941 1110
942void 1111void
943ev_ref (EV_P) 1112ev_ref (EV_P)
966 { 1135 {
967 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1136 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
968 call_pending (EV_A); 1137 call_pending (EV_A);
969 } 1138 }
970 1139
1140 /* we might have forked, so reify kernel state if necessary */
1141 if (expect_false (postfork))
1142 loop_fork (EV_A);
1143
971 /* update fd-related kernel structures */ 1144 /* update fd-related kernel structures */
972 fd_reify (EV_A); 1145 fd_reify (EV_A);
973 1146
974 /* calculate blocking time */ 1147 /* calculate blocking time */
975 1148
976 /* we only need this for !monotonic clockor timers, but as we basically 1149 /* we only need this for !monotonic clock or timers, but as we basically
977 always have timers, we just calculate it always */ 1150 always have timers, we just calculate it always */
978#if EV_USE_MONOTONIC 1151#if EV_USE_MONOTONIC
979 if (expect_true (have_monotonic)) 1152 if (expect_true (have_monotonic))
980 time_update_monotonic (EV_A); 1153 time_update_monotonic (EV_A);
981 else 1154 else
982#endif 1155#endif
983 { 1156 {
984 rt_now = ev_time (); 1157 ev_rt_now = ev_time ();
985 mn_now = rt_now; 1158 mn_now = ev_rt_now;
986 } 1159 }
987 1160
988 if (flags & EVLOOP_NONBLOCK || idlecnt) 1161 if (flags & EVLOOP_NONBLOCK || idlecnt)
989 block = 0.; 1162 block = 0.;
990 else 1163 else
991 { 1164 {
992 block = MAX_BLOCKTIME; 1165 block = MAX_BLOCKTIME;
993 1166
994 if (timercnt) 1167 if (timercnt)
995 { 1168 {
996 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1169 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
997 if (block > to) block = to; 1170 if (block > to) block = to;
998 } 1171 }
999 1172
1000 if (periodiccnt) 1173 if (periodiccnt)
1001 { 1174 {
1002 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1175 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1003 if (block > to) block = to; 1176 if (block > to) block = to;
1004 } 1177 }
1005 1178
1006 if (block < 0.) block = 0.; 1179 if (block < 0.) block = 0.;
1007 } 1180 }
1008 1181
1009 method_poll (EV_A_ block); 1182 method_poll (EV_A_ block);
1010 1183
1011 /* update rt_now, do magic */ 1184 /* update ev_rt_now, do magic */
1012 time_update (EV_A); 1185 time_update (EV_A);
1013 1186
1014 /* queue pending timers and reschedule them */ 1187 /* queue pending timers and reschedule them */
1015 timers_reify (EV_A); /* relative timers called last */ 1188 timers_reify (EV_A); /* relative timers called last */
1016 periodics_reify (EV_A); /* absolute timers called first */ 1189 periodics_reify (EV_A); /* absolute timers called first */
1017 1190
1018 /* queue idle watchers unless io or timers are pending */ 1191 /* queue idle watchers unless io or timers are pending */
1019 if (!pendingcnt) 1192 if (idlecnt && !any_pending (EV_A))
1020 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1193 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1021 1194
1022 /* queue check watchers, to be executed first */ 1195 /* queue check watchers, to be executed first */
1023 if (checkcnt) 1196 if (checkcnt)
1024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1197 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1099 return; 1272 return;
1100 1273
1101 assert (("ev_io_start called with negative fd", fd >= 0)); 1274 assert (("ev_io_start called with negative fd", fd >= 0));
1102 1275
1103 ev_start (EV_A_ (W)w, 1); 1276 ev_start (EV_A_ (W)w, 1);
1104 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1277 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1105 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1278 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1106 1279
1107 fd_change (EV_A_ fd); 1280 fd_change (EV_A_ fd);
1108} 1281}
1109 1282
1124ev_timer_start (EV_P_ struct ev_timer *w) 1297ev_timer_start (EV_P_ struct ev_timer *w)
1125{ 1298{
1126 if (ev_is_active (w)) 1299 if (ev_is_active (w))
1127 return; 1300 return;
1128 1301
1129 w->at += mn_now; 1302 ((WT)w)->at += mn_now;
1130 1303
1131 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1304 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1132 1305
1133 ev_start (EV_A_ (W)w, ++timercnt); 1306 ev_start (EV_A_ (W)w, ++timercnt);
1134 array_needsize (timers, timermax, timercnt, ); 1307 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1135 timers [timercnt - 1] = w; 1308 timers [timercnt - 1] = w;
1136 upheap ((WT *)timers, timercnt - 1); 1309 upheap ((WT *)timers, timercnt - 1);
1137 1310
1138 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1311 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1139} 1312}
1151 { 1324 {
1152 timers [((W)w)->active - 1] = timers [timercnt]; 1325 timers [((W)w)->active - 1] = timers [timercnt];
1153 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1326 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1154 } 1327 }
1155 1328
1156 w->at = w->repeat; 1329 ((WT)w)->at = w->repeat;
1157 1330
1158 ev_stop (EV_A_ (W)w); 1331 ev_stop (EV_A_ (W)w);
1159} 1332}
1160 1333
1161void 1334void
1162ev_timer_again (EV_P_ struct ev_timer *w) 1335ev_timer_again (EV_P_ struct ev_timer *w)
1163{ 1336{
1164 if (ev_is_active (w)) 1337 if (ev_is_active (w))
1165 { 1338 {
1166 if (w->repeat) 1339 if (w->repeat)
1167 {
1168 w->at = mn_now + w->repeat;
1169 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1340 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1170 }
1171 else 1341 else
1172 ev_timer_stop (EV_A_ w); 1342 ev_timer_stop (EV_A_ w);
1173 } 1343 }
1174 else if (w->repeat) 1344 else if (w->repeat)
1175 ev_timer_start (EV_A_ w); 1345 ev_timer_start (EV_A_ w);
1179ev_periodic_start (EV_P_ struct ev_periodic *w) 1349ev_periodic_start (EV_P_ struct ev_periodic *w)
1180{ 1350{
1181 if (ev_is_active (w)) 1351 if (ev_is_active (w))
1182 return; 1352 return;
1183 1353
1354 if (w->reschedule_cb)
1355 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1356 else if (w->interval)
1357 {
1184 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1358 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1185
1186 /* this formula differs from the one in periodic_reify because we do not always round up */ 1359 /* this formula differs from the one in periodic_reify because we do not always round up */
1187 if (w->interval)
1188 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1360 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1361 }
1189 1362
1190 ev_start (EV_A_ (W)w, ++periodiccnt); 1363 ev_start (EV_A_ (W)w, ++periodiccnt);
1191 array_needsize (periodics, periodicmax, periodiccnt, ); 1364 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1192 periodics [periodiccnt - 1] = w; 1365 periodics [periodiccnt - 1] = w;
1193 upheap ((WT *)periodics, periodiccnt - 1); 1366 upheap ((WT *)periodics, periodiccnt - 1);
1194 1367
1195 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1368 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1196} 1369}
1212 1385
1213 ev_stop (EV_A_ (W)w); 1386 ev_stop (EV_A_ (W)w);
1214} 1387}
1215 1388
1216void 1389void
1390ev_periodic_again (EV_P_ struct ev_periodic *w)
1391{
1392 /* TODO: use adjustheap and recalculation */
1393 ev_periodic_stop (EV_A_ w);
1394 ev_periodic_start (EV_A_ w);
1395}
1396
1397void
1217ev_idle_start (EV_P_ struct ev_idle *w) 1398ev_idle_start (EV_P_ struct ev_idle *w)
1218{ 1399{
1219 if (ev_is_active (w)) 1400 if (ev_is_active (w))
1220 return; 1401 return;
1221 1402
1222 ev_start (EV_A_ (W)w, ++idlecnt); 1403 ev_start (EV_A_ (W)w, ++idlecnt);
1223 array_needsize (idles, idlemax, idlecnt, ); 1404 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1224 idles [idlecnt - 1] = w; 1405 idles [idlecnt - 1] = w;
1225} 1406}
1226 1407
1227void 1408void
1228ev_idle_stop (EV_P_ struct ev_idle *w) 1409ev_idle_stop (EV_P_ struct ev_idle *w)
1240{ 1421{
1241 if (ev_is_active (w)) 1422 if (ev_is_active (w))
1242 return; 1423 return;
1243 1424
1244 ev_start (EV_A_ (W)w, ++preparecnt); 1425 ev_start (EV_A_ (W)w, ++preparecnt);
1245 array_needsize (prepares, preparemax, preparecnt, ); 1426 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1246 prepares [preparecnt - 1] = w; 1427 prepares [preparecnt - 1] = w;
1247} 1428}
1248 1429
1249void 1430void
1250ev_prepare_stop (EV_P_ struct ev_prepare *w) 1431ev_prepare_stop (EV_P_ struct ev_prepare *w)
1262{ 1443{
1263 if (ev_is_active (w)) 1444 if (ev_is_active (w))
1264 return; 1445 return;
1265 1446
1266 ev_start (EV_A_ (W)w, ++checkcnt); 1447 ev_start (EV_A_ (W)w, ++checkcnt);
1267 array_needsize (checks, checkmax, checkcnt, ); 1448 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1268 checks [checkcnt - 1] = w; 1449 checks [checkcnt - 1] = w;
1269} 1450}
1270 1451
1271void 1452void
1272ev_check_stop (EV_P_ struct ev_check *w) 1453ev_check_stop (EV_P_ struct ev_check *w)
1293 return; 1474 return;
1294 1475
1295 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1476 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1296 1477
1297 ev_start (EV_A_ (W)w, 1); 1478 ev_start (EV_A_ (W)w, 1);
1298 array_needsize (signals, signalmax, w->signum, signals_init); 1479 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1299 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1480 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1300 1481
1301 if (!w->next) 1482 if (!((WL)w)->next)
1302 { 1483 {
1484#if WIN32
1485 signal (w->signum, sighandler);
1486#else
1303 struct sigaction sa; 1487 struct sigaction sa;
1304 sa.sa_handler = sighandler; 1488 sa.sa_handler = sighandler;
1305 sigfillset (&sa.sa_mask); 1489 sigfillset (&sa.sa_mask);
1306 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1490 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1307 sigaction (w->signum, &sa, 0); 1491 sigaction (w->signum, &sa, 0);
1492#endif
1308 } 1493 }
1309} 1494}
1310 1495
1311void 1496void
1312ev_signal_stop (EV_P_ struct ev_signal *w) 1497ev_signal_stop (EV_P_ struct ev_signal *w)
1362 void (*cb)(int revents, void *arg) = once->cb; 1547 void (*cb)(int revents, void *arg) = once->cb;
1363 void *arg = once->arg; 1548 void *arg = once->arg;
1364 1549
1365 ev_io_stop (EV_A_ &once->io); 1550 ev_io_stop (EV_A_ &once->io);
1366 ev_timer_stop (EV_A_ &once->to); 1551 ev_timer_stop (EV_A_ &once->to);
1367 free (once); 1552 ev_free (once);
1368 1553
1369 cb (revents, arg); 1554 cb (revents, arg);
1370} 1555}
1371 1556
1372static void 1557static void
1382} 1567}
1383 1568
1384void 1569void
1385ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1570ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1386{ 1571{
1387 struct ev_once *once = malloc (sizeof (struct ev_once)); 1572 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1388 1573
1389 if (!once) 1574 if (!once)
1390 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1575 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1391 else 1576 else
1392 { 1577 {
1393 once->cb = cb; 1578 once->cb = cb;
1394 once->arg = arg; 1579 once->arg = arg;
1395 1580
1396 ev_watcher_init (&once->io, once_cb_io); 1581 ev_init (&once->io, once_cb_io);
1397 if (fd >= 0) 1582 if (fd >= 0)
1398 { 1583 {
1399 ev_io_set (&once->io, fd, events); 1584 ev_io_set (&once->io, fd, events);
1400 ev_io_start (EV_A_ &once->io); 1585 ev_io_start (EV_A_ &once->io);
1401 } 1586 }
1402 1587
1403 ev_watcher_init (&once->to, once_cb_to); 1588 ev_init (&once->to, once_cb_to);
1404 if (timeout >= 0.) 1589 if (timeout >= 0.)
1405 { 1590 {
1406 ev_timer_set (&once->to, timeout, 0.); 1591 ev_timer_set (&once->to, timeout, 0.);
1407 ev_timer_start (EV_A_ &once->to); 1592 ev_timer_start (EV_A_ &once->to);
1408 } 1593 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines