ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.67 by root, Mon Nov 5 16:42:15 2007 UTC vs.
Revision 1.85 by root, Sat Nov 10 03:13:50 2007 UTC

54 54
55#endif 55#endif
56 56
57#include <math.h> 57#include <math.h>
58#include <stdlib.h> 58#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 59#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 60#include <stddef.h>
63 61
64#include <stdio.h> 62#include <stdio.h>
65 63
66#include <assert.h> 64#include <assert.h>
67#include <errno.h> 65#include <errno.h>
68#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
69#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
70# include <sys/wait.h> 74# include <sys/wait.h>
71#endif 75#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 76/**/
76 77
77#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
79#endif 80#endif
94# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
95#endif 96#endif
96 97
97#ifndef EV_USE_WIN32 98#ifndef EV_USE_WIN32
98# ifdef WIN32 99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
99# define EV_USE_WIN32 1 102# define EV_USE_SELECT 1
100# else 103# else
101# define EV_USE_WIN32 0 104# define EV_USE_WIN32 0
102# endif 105# endif
103#endif 106#endif
104 107
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 130
131#ifdef EV_H
132# include EV_H
133#else
128#include "ev.h" 134# include "ev.h"
135#endif
129 136
130#if __GNUC__ >= 3 137#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 138# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 139# define inline inline
133#else 140#else
145typedef struct ev_watcher_list *WL; 152typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 153typedef struct ev_watcher_time *WT;
147 154
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 156
150#if WIN32 157#include "ev_win32.c"
151/* note: the comment below could not be substantiated, but what would I care */
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif
155 158
156/*****************************************************************************/ 159/*****************************************************************************/
157 160
161static void (*syserr_cb)(const char *msg);
162
163void ev_set_syserr_cb (void (*cb)(const char *msg))
164{
165 syserr_cb = cb;
166}
167
168static void
169syserr (const char *msg)
170{
171 if (!msg)
172 msg = "(libev) system error";
173
174 if (syserr_cb)
175 syserr_cb (msg);
176 else
177 {
178 perror (msg);
179 abort ();
180 }
181}
182
183static void *(*alloc)(void *ptr, long size);
184
185void ev_set_allocator (void *(*cb)(void *ptr, long size))
186{
187 alloc = cb;
188}
189
190static void *
191ev_realloc (void *ptr, long size)
192{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194
195 if (!ptr && size)
196 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort ();
199 }
200
201 return ptr;
202}
203
204#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0)
206
207/*****************************************************************************/
208
158typedef struct 209typedef struct
159{ 210{
160 struct ev_watcher_list *head; 211 WL head;
161 unsigned char events; 212 unsigned char events;
162 unsigned char reify; 213 unsigned char reify;
163} ANFD; 214} ANFD;
164 215
165typedef struct 216typedef struct
168 int events; 219 int events;
169} ANPENDING; 220} ANPENDING;
170 221
171#if EV_MULTIPLICITY 222#if EV_MULTIPLICITY
172 223
173struct ev_loop 224 struct ev_loop
174{ 225 {
175# define VAR(name,decl) decl; 226 #define VAR(name,decl) decl;
176# include "ev_vars.h" 227 #include "ev_vars.h"
177};
178# undef VAR 228 #undef VAR
229 };
179# include "ev_wrap.h" 230 #include "ev_wrap.h"
231
232 struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop;
180 234
181#else 235#else
182 236
183# define VAR(name,decl) static decl; 237 #define VAR(name,decl) static decl;
184# include "ev_vars.h" 238 #include "ev_vars.h"
185# undef VAR 239 #undef VAR
240
241 static int default_loop;
186 242
187#endif 243#endif
188 244
189/*****************************************************************************/ 245/*****************************************************************************/
190 246
215#endif 271#endif
216 272
217 return ev_time (); 273 return ev_time ();
218} 274}
219 275
276#if EV_MULTIPLICITY
220ev_tstamp 277ev_tstamp
221ev_now (EV_P) 278ev_now (EV_P)
222{ 279{
223 return rt_now; 280 return ev_rt_now;
224} 281}
282#endif
225 283
226#define array_roundsize(base,n) ((n) | 4 & ~3) 284#define array_roundsize(type,n) ((n) | 4 & ~3)
227 285
228#define array_needsize(base,cur,cnt,init) \ 286#define array_needsize(type,base,cur,cnt,init) \
229 if (expect_false ((cnt) > cur)) \ 287 if (expect_false ((cnt) > cur)) \
230 { \ 288 { \
231 int newcnt = cur; \ 289 int newcnt = cur; \
232 do \ 290 do \
233 { \ 291 { \
234 newcnt = array_roundsize (base, newcnt << 1); \ 292 newcnt = array_roundsize (type, newcnt << 1); \
235 } \ 293 } \
236 while ((cnt) > newcnt); \ 294 while ((cnt) > newcnt); \
237 \ 295 \
238 base = realloc (base, sizeof (*base) * (newcnt)); \ 296 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
239 init (base + cur, newcnt - cur); \ 297 init (base + cur, newcnt - cur); \
240 cur = newcnt; \ 298 cur = newcnt; \
241 } 299 }
242 300
243#define array_slim(stem) \ 301#define array_slim(type,stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 302 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \ 303 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \ 304 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \ 305 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 306 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 } 307 }
250 308
309/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
310/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
311#define array_free_microshit(stem) \
312 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
313
251#define array_free(stem, idx) \ 314#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 315 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253 316
254/*****************************************************************************/ 317/*****************************************************************************/
255 318
256static void 319static void
257anfds_init (ANFD *base, int count) 320anfds_init (ANFD *base, int count)
264 327
265 ++base; 328 ++base;
266 } 329 }
267} 330}
268 331
269static void 332void
270event (EV_P_ W w, int events) 333ev_feed_event (EV_P_ void *w, int revents)
271{ 334{
335 W w_ = (W)w;
336
272 if (w->pending) 337 if (w_->pending)
273 { 338 {
274 pendings [ABSPRI (w)][w->pending - 1].events |= events; 339 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
275 return; 340 return;
276 } 341 }
277 342
278 w->pending = ++pendingcnt [ABSPRI (w)]; 343 w_->pending = ++pendingcnt [ABSPRI (w_)];
279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 344 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
280 pendings [ABSPRI (w)][w->pending - 1].w = w; 345 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
281 pendings [ABSPRI (w)][w->pending - 1].events = events; 346 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
282} 347}
283 348
284static void 349static void
285queue_events (EV_P_ W *events, int eventcnt, int type) 350queue_events (EV_P_ W *events, int eventcnt, int type)
286{ 351{
287 int i; 352 int i;
288 353
289 for (i = 0; i < eventcnt; ++i) 354 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type); 355 ev_feed_event (EV_A_ events [i], type);
291} 356}
292 357
293static void 358inline void
294fd_event (EV_P_ int fd, int events) 359fd_event (EV_P_ int fd, int revents)
295{ 360{
296 ANFD *anfd = anfds + fd; 361 ANFD *anfd = anfds + fd;
297 struct ev_io *w; 362 struct ev_io *w;
298 363
299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 364 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
300 { 365 {
301 int ev = w->events & events; 366 int ev = w->events & revents;
302 367
303 if (ev) 368 if (ev)
304 event (EV_A_ (W)w, ev); 369 ev_feed_event (EV_A_ (W)w, ev);
305 } 370 }
371}
372
373void
374ev_feed_fd_event (EV_P_ int fd, int revents)
375{
376 fd_event (EV_A_ fd, revents);
306} 377}
307 378
308/*****************************************************************************/ 379/*****************************************************************************/
309 380
310static void 381static void
333} 404}
334 405
335static void 406static void
336fd_change (EV_P_ int fd) 407fd_change (EV_P_ int fd)
337{ 408{
338 if (anfds [fd].reify || fdchangecnt < 0) 409 if (anfds [fd].reify)
339 return; 410 return;
340 411
341 anfds [fd].reify = 1; 412 anfds [fd].reify = 1;
342 413
343 ++fdchangecnt; 414 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 415 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
345 fdchanges [fdchangecnt - 1] = fd; 416 fdchanges [fdchangecnt - 1] = fd;
346} 417}
347 418
348static void 419static void
349fd_kill (EV_P_ int fd) 420fd_kill (EV_P_ int fd)
351 struct ev_io *w; 422 struct ev_io *w;
352 423
353 while ((w = (struct ev_io *)anfds [fd].head)) 424 while ((w = (struct ev_io *)anfds [fd].head))
354 { 425 {
355 ev_io_stop (EV_A_ w); 426 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 427 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 } 428 }
429}
430
431static int
432fd_valid (int fd)
433{
434#ifdef WIN32
435 return !!win32_get_osfhandle (fd);
436#else
437 return fcntl (fd, F_GETFD) != -1;
438#endif
358} 439}
359 440
360/* called on EBADF to verify fds */ 441/* called on EBADF to verify fds */
361static void 442static void
362fd_ebadf (EV_P) 443fd_ebadf (EV_P)
363{ 444{
364 int fd; 445 int fd;
365 446
366 for (fd = 0; fd < anfdmax; ++fd) 447 for (fd = 0; fd < anfdmax; ++fd)
367 if (anfds [fd].events) 448 if (anfds [fd].events)
368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 449 if (!fd_valid (fd) == -1 && errno == EBADF)
369 fd_kill (EV_A_ fd); 450 fd_kill (EV_A_ fd);
370} 451}
371 452
372/* called on ENOMEM in select/poll to kill some fds and retry */ 453/* called on ENOMEM in select/poll to kill some fds and retry */
373static void 454static void
376 int fd; 457 int fd;
377 458
378 for (fd = anfdmax; fd--; ) 459 for (fd = anfdmax; fd--; )
379 if (anfds [fd].events) 460 if (anfds [fd].events)
380 { 461 {
381 close (fd);
382 fd_kill (EV_A_ fd); 462 fd_kill (EV_A_ fd);
383 return; 463 return;
384 } 464 }
385} 465}
386 466
387/* susually called after fork if method needs to re-arm all fds from scratch */ 467/* usually called after fork if method needs to re-arm all fds from scratch */
388static void 468static void
389fd_rearm_all (EV_P) 469fd_rearm_all (EV_P)
390{ 470{
391 int fd; 471 int fd;
392 472
440 520
441 heap [k] = w; 521 heap [k] = w;
442 ((W)heap [k])->active = k + 1; 522 ((W)heap [k])->active = k + 1;
443} 523}
444 524
525inline void
526adjustheap (WT *heap, int N, int k, ev_tstamp at)
527{
528 ev_tstamp old_at = heap [k]->at;
529 heap [k]->at = at;
530
531 if (old_at < at)
532 downheap (heap, N, k);
533 else
534 upheap (heap, k);
535}
536
445/*****************************************************************************/ 537/*****************************************************************************/
446 538
447typedef struct 539typedef struct
448{ 540{
449 struct ev_watcher_list *head; 541 WL head;
450 sig_atomic_t volatile gotsig; 542 sig_atomic_t volatile gotsig;
451} ANSIG; 543} ANSIG;
452 544
453static ANSIG *signals; 545static ANSIG *signals;
454static int signalmax; 546static int signalmax;
480 572
481 if (!gotsig) 573 if (!gotsig)
482 { 574 {
483 int old_errno = errno; 575 int old_errno = errno;
484 gotsig = 1; 576 gotsig = 1;
577#ifdef WIN32
578 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
579#else
485 write (sigpipe [1], &signum, 1); 580 write (sigpipe [1], &signum, 1);
581#endif
486 errno = old_errno; 582 errno = old_errno;
487 } 583 }
488} 584}
489 585
586void
587ev_feed_signal_event (EV_P_ int signum)
588{
589 WL w;
590
591#if EV_MULTIPLICITY
592 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
593#endif
594
595 --signum;
596
597 if (signum < 0 || signum >= signalmax)
598 return;
599
600 signals [signum].gotsig = 0;
601
602 for (w = signals [signum].head; w; w = w->next)
603 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
604}
605
490static void 606static void
491sigcb (EV_P_ struct ev_io *iow, int revents) 607sigcb (EV_P_ struct ev_io *iow, int revents)
492{ 608{
493 struct ev_watcher_list *w;
494 int signum; 609 int signum;
495 610
611#ifdef WIN32
612 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
613#else
496 read (sigpipe [0], &revents, 1); 614 read (sigpipe [0], &revents, 1);
615#endif
497 gotsig = 0; 616 gotsig = 0;
498 617
499 for (signum = signalmax; signum--; ) 618 for (signum = signalmax; signum--; )
500 if (signals [signum].gotsig) 619 if (signals [signum].gotsig)
501 { 620 ev_feed_signal_event (EV_A_ signum + 1);
502 signals [signum].gotsig = 0;
503
504 for (w = signals [signum].head; w; w = w->next)
505 event (EV_A_ (W)w, EV_SIGNAL);
506 }
507} 621}
508 622
509static void 623static void
510siginit (EV_P) 624siginit (EV_P)
511{ 625{
523 ev_unref (EV_A); /* child watcher should not keep loop alive */ 637 ev_unref (EV_A); /* child watcher should not keep loop alive */
524} 638}
525 639
526/*****************************************************************************/ 640/*****************************************************************************/
527 641
642static struct ev_child *childs [PID_HASHSIZE];
643
528#ifndef WIN32 644#ifndef WIN32
529 645
530static struct ev_child *childs [PID_HASHSIZE];
531static struct ev_signal childev; 646static struct ev_signal childev;
532 647
533#ifndef WCONTINUED 648#ifndef WCONTINUED
534# define WCONTINUED 0 649# define WCONTINUED 0
535#endif 650#endif
543 if (w->pid == pid || !w->pid) 658 if (w->pid == pid || !w->pid)
544 { 659 {
545 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 660 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
546 w->rpid = pid; 661 w->rpid = pid;
547 w->rstatus = status; 662 w->rstatus = status;
548 event (EV_A_ (W)w, EV_CHILD); 663 ev_feed_event (EV_A_ (W)w, EV_CHILD);
549 } 664 }
550} 665}
551 666
552static void 667static void
553childcb (EV_P_ struct ev_signal *sw, int revents) 668childcb (EV_P_ struct ev_signal *sw, int revents)
555 int pid, status; 670 int pid, status;
556 671
557 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 672 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
558 { 673 {
559 /* make sure we are called again until all childs have been reaped */ 674 /* make sure we are called again until all childs have been reaped */
560 event (EV_A_ (W)sw, EV_SIGNAL); 675 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
561 676
562 child_reap (EV_A_ sw, pid, pid, status); 677 child_reap (EV_A_ sw, pid, pid, status);
563 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 678 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
564 } 679 }
565} 680}
622 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 737 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
623 have_monotonic = 1; 738 have_monotonic = 1;
624 } 739 }
625#endif 740#endif
626 741
627 rt_now = ev_time (); 742 ev_rt_now = ev_time ();
628 mn_now = get_clock (); 743 mn_now = get_clock ();
629 now_floor = mn_now; 744 now_floor = mn_now;
630 rtmn_diff = rt_now - mn_now; 745 rtmn_diff = ev_rt_now - mn_now;
631 746
632 if (methods == EVMETHOD_AUTO) 747 if (methods == EVMETHOD_AUTO)
633 if (!enable_secure () && getenv ("LIBEV_METHODS")) 748 if (!enable_secure () && getenv ("LIBEV_METHODS"))
634 methods = atoi (getenv ("LIBEV_METHODS")); 749 methods = atoi (getenv ("LIBEV_METHODS"));
635 else 750 else
649 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 764 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
650#endif 765#endif
651#if EV_USE_SELECT 766#if EV_USE_SELECT
652 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 767 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
653#endif 768#endif
769
770 ev_init (&sigev, sigcb);
771 ev_set_priority (&sigev, EV_MAXPRI);
654 } 772 }
655} 773}
656 774
657void 775void
658loop_destroy (EV_P) 776loop_destroy (EV_P)
676#endif 794#endif
677 795
678 for (i = NUMPRI; i--; ) 796 for (i = NUMPRI; i--; )
679 array_free (pending, [i]); 797 array_free (pending, [i]);
680 798
799 /* have to use the microsoft-never-gets-it-right macro */
681 array_free (fdchange, ); 800 array_free_microshit (fdchange);
682 array_free (timer, ); 801 array_free_microshit (timer);
683 array_free (periodic, ); 802 array_free_microshit (periodic);
684 array_free (idle, ); 803 array_free_microshit (idle);
685 array_free (prepare, ); 804 array_free_microshit (prepare);
686 array_free (check, ); 805 array_free_microshit (check);
687 806
688 method = 0; 807 method = 0;
689 /*TODO*/
690} 808}
691 809
692void 810static void
693loop_fork (EV_P) 811loop_fork (EV_P)
694{ 812{
695 /*TODO*/
696#if EV_USE_EPOLL 813#if EV_USE_EPOLL
697 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 814 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
698#endif 815#endif
699#if EV_USE_KQUEUE 816#if EV_USE_KQUEUE
700 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 817 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
701#endif 818#endif
819
820 if (ev_is_active (&sigev))
821 {
822 /* default loop */
823
824 ev_ref (EV_A);
825 ev_io_stop (EV_A_ &sigev);
826 close (sigpipe [0]);
827 close (sigpipe [1]);
828
829 while (pipe (sigpipe))
830 syserr ("(libev) error creating pipe");
831
832 siginit (EV_A);
833 }
834
835 postfork = 0;
702} 836}
703 837
704#if EV_MULTIPLICITY 838#if EV_MULTIPLICITY
705struct ev_loop * 839struct ev_loop *
706ev_loop_new (int methods) 840ev_loop_new (int methods)
707{ 841{
708 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 842 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
843
844 memset (loop, 0, sizeof (struct ev_loop));
709 845
710 loop_init (EV_A_ methods); 846 loop_init (EV_A_ methods);
711 847
712 if (ev_method (EV_A)) 848 if (ev_method (EV_A))
713 return loop; 849 return loop;
717 853
718void 854void
719ev_loop_destroy (EV_P) 855ev_loop_destroy (EV_P)
720{ 856{
721 loop_destroy (EV_A); 857 loop_destroy (EV_A);
722 free (loop); 858 ev_free (loop);
723} 859}
724 860
725void 861void
726ev_loop_fork (EV_P) 862ev_loop_fork (EV_P)
727{ 863{
728 loop_fork (EV_A); 864 postfork = 1;
729} 865}
730 866
731#endif 867#endif
732 868
733#if EV_MULTIPLICITY 869#if EV_MULTIPLICITY
734struct ev_loop default_loop_struct;
735static struct ev_loop *default_loop;
736
737struct ev_loop * 870struct ev_loop *
738#else 871#else
739static int default_loop;
740
741int 872int
742#endif 873#endif
743ev_default_loop (int methods) 874ev_default_loop (int methods)
744{ 875{
745 if (sigpipe [0] == sigpipe [1]) 876 if (sigpipe [0] == sigpipe [1])
756 887
757 loop_init (EV_A_ methods); 888 loop_init (EV_A_ methods);
758 889
759 if (ev_method (EV_A)) 890 if (ev_method (EV_A))
760 { 891 {
761 ev_watcher_init (&sigev, sigcb);
762 ev_set_priority (&sigev, EV_MAXPRI);
763 siginit (EV_A); 892 siginit (EV_A);
764 893
765#ifndef WIN32 894#ifndef WIN32
766 ev_signal_init (&childev, childcb, SIGCHLD); 895 ev_signal_init (&childev, childcb, SIGCHLD);
767 ev_set_priority (&childev, EV_MAXPRI); 896 ev_set_priority (&childev, EV_MAXPRI);
781{ 910{
782#if EV_MULTIPLICITY 911#if EV_MULTIPLICITY
783 struct ev_loop *loop = default_loop; 912 struct ev_loop *loop = default_loop;
784#endif 913#endif
785 914
915#ifndef WIN32
786 ev_ref (EV_A); /* child watcher */ 916 ev_ref (EV_A); /* child watcher */
787 ev_signal_stop (EV_A_ &childev); 917 ev_signal_stop (EV_A_ &childev);
918#endif
788 919
789 ev_ref (EV_A); /* signal watcher */ 920 ev_ref (EV_A); /* signal watcher */
790 ev_io_stop (EV_A_ &sigev); 921 ev_io_stop (EV_A_ &sigev);
791 922
792 close (sigpipe [0]); sigpipe [0] = 0; 923 close (sigpipe [0]); sigpipe [0] = 0;
800{ 931{
801#if EV_MULTIPLICITY 932#if EV_MULTIPLICITY
802 struct ev_loop *loop = default_loop; 933 struct ev_loop *loop = default_loop;
803#endif 934#endif
804 935
805 loop_fork (EV_A); 936 if (method)
806 937 postfork = 1;
807 ev_io_stop (EV_A_ &sigev);
808 close (sigpipe [0]);
809 close (sigpipe [1]);
810 pipe (sigpipe);
811
812 ev_ref (EV_A); /* signal watcher */
813 siginit (EV_A);
814} 938}
815 939
816/*****************************************************************************/ 940/*****************************************************************************/
941
942static int
943any_pending (EV_P)
944{
945 int pri;
946
947 for (pri = NUMPRI; pri--; )
948 if (pendingcnt [pri])
949 return 1;
950
951 return 0;
952}
817 953
818static void 954static void
819call_pending (EV_P) 955call_pending (EV_P)
820{ 956{
821 int pri; 957 int pri;
826 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 962 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
827 963
828 if (p->w) 964 if (p->w)
829 { 965 {
830 p->w->pending = 0; 966 p->w->pending = 0;
831 p->w->cb (EV_A_ p->w, p->events); 967 EV_CB_INVOKE (p->w, p->events);
832 } 968 }
833 } 969 }
834} 970}
835 971
836static void 972static void
850 downheap ((WT *)timers, timercnt, 0); 986 downheap ((WT *)timers, timercnt, 0);
851 } 987 }
852 else 988 else
853 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 989 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
854 990
855 event (EV_A_ (W)w, EV_TIMEOUT); 991 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
856 } 992 }
857} 993}
858 994
859static void 995static void
860periodics_reify (EV_P) 996periodics_reify (EV_P)
861{ 997{
862 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 998 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
863 { 999 {
864 struct ev_periodic *w = periodics [0]; 1000 struct ev_periodic *w = periodics [0];
865 1001
866 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1002 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
867 1003
868 /* first reschedule or stop timer */ 1004 /* first reschedule or stop timer */
869 if (w->interval) 1005 if (w->reschedule_cb)
870 { 1006 {
1007 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1008
1009 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1010 downheap ((WT *)periodics, periodiccnt, 0);
1011 }
1012 else if (w->interval)
1013 {
871 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1014 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
872 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1015 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
873 downheap ((WT *)periodics, periodiccnt, 0); 1016 downheap ((WT *)periodics, periodiccnt, 0);
874 } 1017 }
875 else 1018 else
876 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1019 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
877 1020
878 event (EV_A_ (W)w, EV_PERIODIC); 1021 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
879 } 1022 }
880} 1023}
881 1024
882static void 1025static void
883periodics_reschedule (EV_P) 1026periodics_reschedule (EV_P)
887 /* adjust periodics after time jump */ 1030 /* adjust periodics after time jump */
888 for (i = 0; i < periodiccnt; ++i) 1031 for (i = 0; i < periodiccnt; ++i)
889 { 1032 {
890 struct ev_periodic *w = periodics [i]; 1033 struct ev_periodic *w = periodics [i];
891 1034
1035 if (w->reschedule_cb)
1036 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
892 if (w->interval) 1037 else if (w->interval)
893 {
894 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1038 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
895
896 if (fabs (diff) >= 1e-4)
897 {
898 ev_periodic_stop (EV_A_ w);
899 ev_periodic_start (EV_A_ w);
900
901 i = 0; /* restart loop, inefficient, but time jumps should be rare */
902 }
903 }
904 } 1039 }
1040
1041 /* now rebuild the heap */
1042 for (i = periodiccnt >> 1; i--; )
1043 downheap ((WT *)periodics, periodiccnt, i);
905} 1044}
906 1045
907inline int 1046inline int
908time_update_monotonic (EV_P) 1047time_update_monotonic (EV_P)
909{ 1048{
910 mn_now = get_clock (); 1049 mn_now = get_clock ();
911 1050
912 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1051 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
913 { 1052 {
914 rt_now = rtmn_diff + mn_now; 1053 ev_rt_now = rtmn_diff + mn_now;
915 return 0; 1054 return 0;
916 } 1055 }
917 else 1056 else
918 { 1057 {
919 now_floor = mn_now; 1058 now_floor = mn_now;
920 rt_now = ev_time (); 1059 ev_rt_now = ev_time ();
921 return 1; 1060 return 1;
922 } 1061 }
923} 1062}
924 1063
925static void 1064static void
934 { 1073 {
935 ev_tstamp odiff = rtmn_diff; 1074 ev_tstamp odiff = rtmn_diff;
936 1075
937 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1076 for (i = 4; --i; ) /* loop a few times, before making important decisions */
938 { 1077 {
939 rtmn_diff = rt_now - mn_now; 1078 rtmn_diff = ev_rt_now - mn_now;
940 1079
941 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1080 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
942 return; /* all is well */ 1081 return; /* all is well */
943 1082
944 rt_now = ev_time (); 1083 ev_rt_now = ev_time ();
945 mn_now = get_clock (); 1084 mn_now = get_clock ();
946 now_floor = mn_now; 1085 now_floor = mn_now;
947 } 1086 }
948 1087
949 periodics_reschedule (EV_A); 1088 periodics_reschedule (EV_A);
952 } 1091 }
953 } 1092 }
954 else 1093 else
955#endif 1094#endif
956 { 1095 {
957 rt_now = ev_time (); 1096 ev_rt_now = ev_time ();
958 1097
959 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1098 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
960 { 1099 {
961 periodics_reschedule (EV_A); 1100 periodics_reschedule (EV_A);
962 1101
963 /* adjust timers. this is easy, as the offset is the same for all */ 1102 /* adjust timers. this is easy, as the offset is the same for all */
964 for (i = 0; i < timercnt; ++i) 1103 for (i = 0; i < timercnt; ++i)
965 ((WT)timers [i])->at += rt_now - mn_now; 1104 ((WT)timers [i])->at += ev_rt_now - mn_now;
966 } 1105 }
967 1106
968 mn_now = rt_now; 1107 mn_now = ev_rt_now;
969 } 1108 }
970} 1109}
971 1110
972void 1111void
973ev_ref (EV_P) 1112ev_ref (EV_P)
996 { 1135 {
997 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1136 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
998 call_pending (EV_A); 1137 call_pending (EV_A);
999 } 1138 }
1000 1139
1140 /* we might have forked, so reify kernel state if necessary */
1141 if (expect_false (postfork))
1142 loop_fork (EV_A);
1143
1001 /* update fd-related kernel structures */ 1144 /* update fd-related kernel structures */
1002 fd_reify (EV_A); 1145 fd_reify (EV_A);
1003 1146
1004 /* calculate blocking time */ 1147 /* calculate blocking time */
1005 1148
1006 /* we only need this for !monotonic clockor timers, but as we basically 1149 /* we only need this for !monotonic clock or timers, but as we basically
1007 always have timers, we just calculate it always */ 1150 always have timers, we just calculate it always */
1008#if EV_USE_MONOTONIC 1151#if EV_USE_MONOTONIC
1009 if (expect_true (have_monotonic)) 1152 if (expect_true (have_monotonic))
1010 time_update_monotonic (EV_A); 1153 time_update_monotonic (EV_A);
1011 else 1154 else
1012#endif 1155#endif
1013 { 1156 {
1014 rt_now = ev_time (); 1157 ev_rt_now = ev_time ();
1015 mn_now = rt_now; 1158 mn_now = ev_rt_now;
1016 } 1159 }
1017 1160
1018 if (flags & EVLOOP_NONBLOCK || idlecnt) 1161 if (flags & EVLOOP_NONBLOCK || idlecnt)
1019 block = 0.; 1162 block = 0.;
1020 else 1163 else
1027 if (block > to) block = to; 1170 if (block > to) block = to;
1028 } 1171 }
1029 1172
1030 if (periodiccnt) 1173 if (periodiccnt)
1031 { 1174 {
1032 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1175 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1033 if (block > to) block = to; 1176 if (block > to) block = to;
1034 } 1177 }
1035 1178
1036 if (block < 0.) block = 0.; 1179 if (block < 0.) block = 0.;
1037 } 1180 }
1038 1181
1039 method_poll (EV_A_ block); 1182 method_poll (EV_A_ block);
1040 1183
1041 /* update rt_now, do magic */ 1184 /* update ev_rt_now, do magic */
1042 time_update (EV_A); 1185 time_update (EV_A);
1043 1186
1044 /* queue pending timers and reschedule them */ 1187 /* queue pending timers and reschedule them */
1045 timers_reify (EV_A); /* relative timers called last */ 1188 timers_reify (EV_A); /* relative timers called last */
1046 periodics_reify (EV_A); /* absolute timers called first */ 1189 periodics_reify (EV_A); /* absolute timers called first */
1047 1190
1048 /* queue idle watchers unless io or timers are pending */ 1191 /* queue idle watchers unless io or timers are pending */
1049 if (!pendingcnt) 1192 if (idlecnt && !any_pending (EV_A))
1050 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1193 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1051 1194
1052 /* queue check watchers, to be executed first */ 1195 /* queue check watchers, to be executed first */
1053 if (checkcnt) 1196 if (checkcnt)
1054 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1197 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1129 return; 1272 return;
1130 1273
1131 assert (("ev_io_start called with negative fd", fd >= 0)); 1274 assert (("ev_io_start called with negative fd", fd >= 0));
1132 1275
1133 ev_start (EV_A_ (W)w, 1); 1276 ev_start (EV_A_ (W)w, 1);
1134 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1277 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1135 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1278 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1136 1279
1137 fd_change (EV_A_ fd); 1280 fd_change (EV_A_ fd);
1138} 1281}
1139 1282
1159 ((WT)w)->at += mn_now; 1302 ((WT)w)->at += mn_now;
1160 1303
1161 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1304 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1162 1305
1163 ev_start (EV_A_ (W)w, ++timercnt); 1306 ev_start (EV_A_ (W)w, ++timercnt);
1164 array_needsize (timers, timermax, timercnt, ); 1307 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1165 timers [timercnt - 1] = w; 1308 timers [timercnt - 1] = w;
1166 upheap ((WT *)timers, timercnt - 1); 1309 upheap ((WT *)timers, timercnt - 1);
1167 1310
1168 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1311 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1169} 1312}
1192ev_timer_again (EV_P_ struct ev_timer *w) 1335ev_timer_again (EV_P_ struct ev_timer *w)
1193{ 1336{
1194 if (ev_is_active (w)) 1337 if (ev_is_active (w))
1195 { 1338 {
1196 if (w->repeat) 1339 if (w->repeat)
1197 {
1198 ((WT)w)->at = mn_now + w->repeat;
1199 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1340 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1200 }
1201 else 1341 else
1202 ev_timer_stop (EV_A_ w); 1342 ev_timer_stop (EV_A_ w);
1203 } 1343 }
1204 else if (w->repeat) 1344 else if (w->repeat)
1205 ev_timer_start (EV_A_ w); 1345 ev_timer_start (EV_A_ w);
1209ev_periodic_start (EV_P_ struct ev_periodic *w) 1349ev_periodic_start (EV_P_ struct ev_periodic *w)
1210{ 1350{
1211 if (ev_is_active (w)) 1351 if (ev_is_active (w))
1212 return; 1352 return;
1213 1353
1354 if (w->reschedule_cb)
1355 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1356 else if (w->interval)
1357 {
1214 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1358 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1215
1216 /* this formula differs from the one in periodic_reify because we do not always round up */ 1359 /* this formula differs from the one in periodic_reify because we do not always round up */
1217 if (w->interval)
1218 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1360 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1361 }
1219 1362
1220 ev_start (EV_A_ (W)w, ++periodiccnt); 1363 ev_start (EV_A_ (W)w, ++periodiccnt);
1221 array_needsize (periodics, periodicmax, periodiccnt, ); 1364 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1222 periodics [periodiccnt - 1] = w; 1365 periodics [periodiccnt - 1] = w;
1223 upheap ((WT *)periodics, periodiccnt - 1); 1366 upheap ((WT *)periodics, periodiccnt - 1);
1224 1367
1225 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1368 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1226} 1369}
1242 1385
1243 ev_stop (EV_A_ (W)w); 1386 ev_stop (EV_A_ (W)w);
1244} 1387}
1245 1388
1246void 1389void
1390ev_periodic_again (EV_P_ struct ev_periodic *w)
1391{
1392 /* TODO: use adjustheap and recalculation */
1393 ev_periodic_stop (EV_A_ w);
1394 ev_periodic_start (EV_A_ w);
1395}
1396
1397void
1247ev_idle_start (EV_P_ struct ev_idle *w) 1398ev_idle_start (EV_P_ struct ev_idle *w)
1248{ 1399{
1249 if (ev_is_active (w)) 1400 if (ev_is_active (w))
1250 return; 1401 return;
1251 1402
1252 ev_start (EV_A_ (W)w, ++idlecnt); 1403 ev_start (EV_A_ (W)w, ++idlecnt);
1253 array_needsize (idles, idlemax, idlecnt, ); 1404 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1254 idles [idlecnt - 1] = w; 1405 idles [idlecnt - 1] = w;
1255} 1406}
1256 1407
1257void 1408void
1258ev_idle_stop (EV_P_ struct ev_idle *w) 1409ev_idle_stop (EV_P_ struct ev_idle *w)
1270{ 1421{
1271 if (ev_is_active (w)) 1422 if (ev_is_active (w))
1272 return; 1423 return;
1273 1424
1274 ev_start (EV_A_ (W)w, ++preparecnt); 1425 ev_start (EV_A_ (W)w, ++preparecnt);
1275 array_needsize (prepares, preparemax, preparecnt, ); 1426 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1276 prepares [preparecnt - 1] = w; 1427 prepares [preparecnt - 1] = w;
1277} 1428}
1278 1429
1279void 1430void
1280ev_prepare_stop (EV_P_ struct ev_prepare *w) 1431ev_prepare_stop (EV_P_ struct ev_prepare *w)
1292{ 1443{
1293 if (ev_is_active (w)) 1444 if (ev_is_active (w))
1294 return; 1445 return;
1295 1446
1296 ev_start (EV_A_ (W)w, ++checkcnt); 1447 ev_start (EV_A_ (W)w, ++checkcnt);
1297 array_needsize (checks, checkmax, checkcnt, ); 1448 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1298 checks [checkcnt - 1] = w; 1449 checks [checkcnt - 1] = w;
1299} 1450}
1300 1451
1301void 1452void
1302ev_check_stop (EV_P_ struct ev_check *w) 1453ev_check_stop (EV_P_ struct ev_check *w)
1323 return; 1474 return;
1324 1475
1325 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1476 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1326 1477
1327 ev_start (EV_A_ (W)w, 1); 1478 ev_start (EV_A_ (W)w, 1);
1328 array_needsize (signals, signalmax, w->signum, signals_init); 1479 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1329 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1480 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1330 1481
1331 if (!((WL)w)->next) 1482 if (!((WL)w)->next)
1332 { 1483 {
1333#if WIN32 1484#if WIN32
1396 void (*cb)(int revents, void *arg) = once->cb; 1547 void (*cb)(int revents, void *arg) = once->cb;
1397 void *arg = once->arg; 1548 void *arg = once->arg;
1398 1549
1399 ev_io_stop (EV_A_ &once->io); 1550 ev_io_stop (EV_A_ &once->io);
1400 ev_timer_stop (EV_A_ &once->to); 1551 ev_timer_stop (EV_A_ &once->to);
1401 free (once); 1552 ev_free (once);
1402 1553
1403 cb (revents, arg); 1554 cb (revents, arg);
1404} 1555}
1405 1556
1406static void 1557static void
1416} 1567}
1417 1568
1418void 1569void
1419ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1570ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1420{ 1571{
1421 struct ev_once *once = malloc (sizeof (struct ev_once)); 1572 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1422 1573
1423 if (!once) 1574 if (!once)
1424 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1575 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1425 else 1576 else
1426 { 1577 {
1427 once->cb = cb; 1578 once->cb = cb;
1428 once->arg = arg; 1579 once->arg = arg;
1429 1580
1430 ev_watcher_init (&once->io, once_cb_io); 1581 ev_init (&once->io, once_cb_io);
1431 if (fd >= 0) 1582 if (fd >= 0)
1432 { 1583 {
1433 ev_io_set (&once->io, fd, events); 1584 ev_io_set (&once->io, fd, events);
1434 ev_io_start (EV_A_ &once->io); 1585 ev_io_start (EV_A_ &once->io);
1435 } 1586 }
1436 1587
1437 ev_watcher_init (&once->to, once_cb_to); 1588 ev_init (&once->to, once_cb_to);
1438 if (timeout >= 0.) 1589 if (timeout >= 0.)
1439 { 1590 {
1440 ev_timer_set (&once->to, timeout, 0.); 1591 ev_timer_set (&once->to, timeout, 0.);
1441 ev_timer_start (EV_A_ &once->to); 1592 ev_timer_start (EV_A_ &once->to);
1442 } 1593 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines