ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.69 by root, Tue Nov 6 00:10:04 2007 UTC vs.
Revision 1.85 by root, Sat Nov 10 03:13:50 2007 UTC

54 54
55#endif 55#endif
56 56
57#include <math.h> 57#include <math.h>
58#include <stdlib.h> 58#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 59#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 60#include <stddef.h>
63 61
64#include <stdio.h> 62#include <stdio.h>
65 63
66#include <assert.h> 64#include <assert.h>
67#include <errno.h> 65#include <errno.h>
68#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
69#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
70# include <sys/wait.h> 74# include <sys/wait.h>
71#endif 75#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 76/**/
76 77
77#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
79#endif 80#endif
94# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
95#endif 96#endif
96 97
97#ifndef EV_USE_WIN32 98#ifndef EV_USE_WIN32
98# ifdef WIN32 99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
99# define EV_USE_WIN32 1 102# define EV_USE_SELECT 1
100# else 103# else
101# define EV_USE_WIN32 0 104# define EV_USE_WIN32 0
102# endif 105# endif
103#endif 106#endif
104 107
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 130
131#ifdef EV_H
132# include EV_H
133#else
128#include "ev.h" 134# include "ev.h"
135#endif
129 136
130#if __GNUC__ >= 3 137#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 138# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 139# define inline inline
133#else 140#else
145typedef struct ev_watcher_list *WL; 152typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 153typedef struct ev_watcher_time *WT;
147 154
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 156
150#if WIN32 157#include "ev_win32.c"
151/* note: the comment below could not be substantiated, but what would I care */
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif
155 158
156/*****************************************************************************/ 159/*****************************************************************************/
157 160
158static void (*syserr_cb)(void); 161static void (*syserr_cb)(const char *msg);
159 162
160void ev_set_syserr_cb (void (*cb)(void)) 163void ev_set_syserr_cb (void (*cb)(const char *msg))
161{ 164{
162 syserr_cb = cb; 165 syserr_cb = cb;
163} 166}
164 167
165static void 168static void
166syserr (void) 169syserr (const char *msg)
167{ 170{
171 if (!msg)
172 msg = "(libev) system error";
173
168 if (syserr_cb) 174 if (syserr_cb)
169 syserr_cb (); 175 syserr_cb (msg);
170 else 176 else
171 { 177 {
172 perror ("libev"); 178 perror (msg);
173 abort (); 179 abort ();
174 } 180 }
175} 181}
176 182
177static void *(*alloc)(void *ptr, long size); 183static void *(*alloc)(void *ptr, long size);
213 int events; 219 int events;
214} ANPENDING; 220} ANPENDING;
215 221
216#if EV_MULTIPLICITY 222#if EV_MULTIPLICITY
217 223
218struct ev_loop 224 struct ev_loop
219{ 225 {
220# define VAR(name,decl) decl; 226 #define VAR(name,decl) decl;
221# include "ev_vars.h" 227 #include "ev_vars.h"
222};
223# undef VAR 228 #undef VAR
229 };
224# include "ev_wrap.h" 230 #include "ev_wrap.h"
231
232 struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop;
225 234
226#else 235#else
227 236
228# define VAR(name,decl) static decl; 237 #define VAR(name,decl) static decl;
229# include "ev_vars.h" 238 #include "ev_vars.h"
230# undef VAR 239 #undef VAR
240
241 static int default_loop;
231 242
232#endif 243#endif
233 244
234/*****************************************************************************/ 245/*****************************************************************************/
235 246
260#endif 271#endif
261 272
262 return ev_time (); 273 return ev_time ();
263} 274}
264 275
276#if EV_MULTIPLICITY
265ev_tstamp 277ev_tstamp
266ev_now (EV_P) 278ev_now (EV_P)
267{ 279{
268 return rt_now; 280 return ev_rt_now;
269} 281}
282#endif
270 283
271#define array_roundsize(base,n) ((n) | 4 & ~3) 284#define array_roundsize(type,n) ((n) | 4 & ~3)
272 285
273#define array_needsize(base,cur,cnt,init) \ 286#define array_needsize(type,base,cur,cnt,init) \
274 if (expect_false ((cnt) > cur)) \ 287 if (expect_false ((cnt) > cur)) \
275 { \ 288 { \
276 int newcnt = cur; \ 289 int newcnt = cur; \
277 do \ 290 do \
278 { \ 291 { \
279 newcnt = array_roundsize (base, newcnt << 1); \ 292 newcnt = array_roundsize (type, newcnt << 1); \
280 } \ 293 } \
281 while ((cnt) > newcnt); \ 294 while ((cnt) > newcnt); \
282 \ 295 \
283 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 296 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
284 init (base + cur, newcnt - cur); \ 297 init (base + cur, newcnt - cur); \
285 cur = newcnt; \ 298 cur = newcnt; \
286 } 299 }
287 300
288#define array_slim(stem) \ 301#define array_slim(type,stem) \
289 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 302 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
290 { \ 303 { \
291 stem ## max = array_roundsize (stem ## cnt >> 1); \ 304 stem ## max = array_roundsize (stem ## cnt >> 1); \
292 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 305 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
293 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 306 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
294 } 307 }
308
309/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
310/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
311#define array_free_microshit(stem) \
312 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
295 313
296#define array_free(stem, idx) \ 314#define array_free(stem, idx) \
297 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 315 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
298 316
299/*****************************************************************************/ 317/*****************************************************************************/
309 327
310 ++base; 328 ++base;
311 } 329 }
312} 330}
313 331
314static void 332void
315event (EV_P_ W w, int events) 333ev_feed_event (EV_P_ void *w, int revents)
316{ 334{
335 W w_ = (W)w;
336
317 if (w->pending) 337 if (w_->pending)
318 { 338 {
319 pendings [ABSPRI (w)][w->pending - 1].events |= events; 339 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
320 return; 340 return;
321 } 341 }
322 342
323 w->pending = ++pendingcnt [ABSPRI (w)]; 343 w_->pending = ++pendingcnt [ABSPRI (w_)];
324 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 344 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
325 pendings [ABSPRI (w)][w->pending - 1].w = w; 345 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
326 pendings [ABSPRI (w)][w->pending - 1].events = events; 346 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
327} 347}
328 348
329static void 349static void
330queue_events (EV_P_ W *events, int eventcnt, int type) 350queue_events (EV_P_ W *events, int eventcnt, int type)
331{ 351{
332 int i; 352 int i;
333 353
334 for (i = 0; i < eventcnt; ++i) 354 for (i = 0; i < eventcnt; ++i)
335 event (EV_A_ events [i], type); 355 ev_feed_event (EV_A_ events [i], type);
336} 356}
337 357
338static void 358inline void
339fd_event (EV_P_ int fd, int events) 359fd_event (EV_P_ int fd, int revents)
340{ 360{
341 ANFD *anfd = anfds + fd; 361 ANFD *anfd = anfds + fd;
342 struct ev_io *w; 362 struct ev_io *w;
343 363
344 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 364 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
345 { 365 {
346 int ev = w->events & events; 366 int ev = w->events & revents;
347 367
348 if (ev) 368 if (ev)
349 event (EV_A_ (W)w, ev); 369 ev_feed_event (EV_A_ (W)w, ev);
350 } 370 }
371}
372
373void
374ev_feed_fd_event (EV_P_ int fd, int revents)
375{
376 fd_event (EV_A_ fd, revents);
351} 377}
352 378
353/*****************************************************************************/ 379/*****************************************************************************/
354 380
355static void 381static void
378} 404}
379 405
380static void 406static void
381fd_change (EV_P_ int fd) 407fd_change (EV_P_ int fd)
382{ 408{
383 if (anfds [fd].reify || fdchangecnt < 0) 409 if (anfds [fd].reify)
384 return; 410 return;
385 411
386 anfds [fd].reify = 1; 412 anfds [fd].reify = 1;
387 413
388 ++fdchangecnt; 414 ++fdchangecnt;
389 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 415 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
390 fdchanges [fdchangecnt - 1] = fd; 416 fdchanges [fdchangecnt - 1] = fd;
391} 417}
392 418
393static void 419static void
394fd_kill (EV_P_ int fd) 420fd_kill (EV_P_ int fd)
396 struct ev_io *w; 422 struct ev_io *w;
397 423
398 while ((w = (struct ev_io *)anfds [fd].head)) 424 while ((w = (struct ev_io *)anfds [fd].head))
399 { 425 {
400 ev_io_stop (EV_A_ w); 426 ev_io_stop (EV_A_ w);
401 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 427 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
402 } 428 }
429}
430
431static int
432fd_valid (int fd)
433{
434#ifdef WIN32
435 return !!win32_get_osfhandle (fd);
436#else
437 return fcntl (fd, F_GETFD) != -1;
438#endif
403} 439}
404 440
405/* called on EBADF to verify fds */ 441/* called on EBADF to verify fds */
406static void 442static void
407fd_ebadf (EV_P) 443fd_ebadf (EV_P)
408{ 444{
409 int fd; 445 int fd;
410 446
411 for (fd = 0; fd < anfdmax; ++fd) 447 for (fd = 0; fd < anfdmax; ++fd)
412 if (anfds [fd].events) 448 if (anfds [fd].events)
413 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 449 if (!fd_valid (fd) == -1 && errno == EBADF)
414 fd_kill (EV_A_ fd); 450 fd_kill (EV_A_ fd);
415} 451}
416 452
417/* called on ENOMEM in select/poll to kill some fds and retry */ 453/* called on ENOMEM in select/poll to kill some fds and retry */
418static void 454static void
426 fd_kill (EV_A_ fd); 462 fd_kill (EV_A_ fd);
427 return; 463 return;
428 } 464 }
429} 465}
430 466
431/* susually called after fork if method needs to re-arm all fds from scratch */ 467/* usually called after fork if method needs to re-arm all fds from scratch */
432static void 468static void
433fd_rearm_all (EV_P) 469fd_rearm_all (EV_P)
434{ 470{
435 int fd; 471 int fd;
436 472
484 520
485 heap [k] = w; 521 heap [k] = w;
486 ((W)heap [k])->active = k + 1; 522 ((W)heap [k])->active = k + 1;
487} 523}
488 524
525inline void
526adjustheap (WT *heap, int N, int k, ev_tstamp at)
527{
528 ev_tstamp old_at = heap [k]->at;
529 heap [k]->at = at;
530
531 if (old_at < at)
532 downheap (heap, N, k);
533 else
534 upheap (heap, k);
535}
536
489/*****************************************************************************/ 537/*****************************************************************************/
490 538
491typedef struct 539typedef struct
492{ 540{
493 WL head; 541 WL head;
524 572
525 if (!gotsig) 573 if (!gotsig)
526 { 574 {
527 int old_errno = errno; 575 int old_errno = errno;
528 gotsig = 1; 576 gotsig = 1;
577#ifdef WIN32
578 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
579#else
529 write (sigpipe [1], &signum, 1); 580 write (sigpipe [1], &signum, 1);
581#endif
530 errno = old_errno; 582 errno = old_errno;
531 } 583 }
532} 584}
533 585
586void
587ev_feed_signal_event (EV_P_ int signum)
588{
589 WL w;
590
591#if EV_MULTIPLICITY
592 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
593#endif
594
595 --signum;
596
597 if (signum < 0 || signum >= signalmax)
598 return;
599
600 signals [signum].gotsig = 0;
601
602 for (w = signals [signum].head; w; w = w->next)
603 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
604}
605
534static void 606static void
535sigcb (EV_P_ struct ev_io *iow, int revents) 607sigcb (EV_P_ struct ev_io *iow, int revents)
536{ 608{
537 WL w;
538 int signum; 609 int signum;
539 610
611#ifdef WIN32
612 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
613#else
540 read (sigpipe [0], &revents, 1); 614 read (sigpipe [0], &revents, 1);
615#endif
541 gotsig = 0; 616 gotsig = 0;
542 617
543 for (signum = signalmax; signum--; ) 618 for (signum = signalmax; signum--; )
544 if (signals [signum].gotsig) 619 if (signals [signum].gotsig)
545 { 620 ev_feed_signal_event (EV_A_ signum + 1);
546 signals [signum].gotsig = 0;
547
548 for (w = signals [signum].head; w; w = w->next)
549 event (EV_A_ (W)w, EV_SIGNAL);
550 }
551} 621}
552 622
553static void 623static void
554siginit (EV_P) 624siginit (EV_P)
555{ 625{
567 ev_unref (EV_A); /* child watcher should not keep loop alive */ 637 ev_unref (EV_A); /* child watcher should not keep loop alive */
568} 638}
569 639
570/*****************************************************************************/ 640/*****************************************************************************/
571 641
642static struct ev_child *childs [PID_HASHSIZE];
643
572#ifndef WIN32 644#ifndef WIN32
573 645
574static struct ev_child *childs [PID_HASHSIZE];
575static struct ev_signal childev; 646static struct ev_signal childev;
576 647
577#ifndef WCONTINUED 648#ifndef WCONTINUED
578# define WCONTINUED 0 649# define WCONTINUED 0
579#endif 650#endif
587 if (w->pid == pid || !w->pid) 658 if (w->pid == pid || !w->pid)
588 { 659 {
589 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 660 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
590 w->rpid = pid; 661 w->rpid = pid;
591 w->rstatus = status; 662 w->rstatus = status;
592 event (EV_A_ (W)w, EV_CHILD); 663 ev_feed_event (EV_A_ (W)w, EV_CHILD);
593 } 664 }
594} 665}
595 666
596static void 667static void
597childcb (EV_P_ struct ev_signal *sw, int revents) 668childcb (EV_P_ struct ev_signal *sw, int revents)
599 int pid, status; 670 int pid, status;
600 671
601 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 672 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
602 { 673 {
603 /* make sure we are called again until all childs have been reaped */ 674 /* make sure we are called again until all childs have been reaped */
604 event (EV_A_ (W)sw, EV_SIGNAL); 675 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
605 676
606 child_reap (EV_A_ sw, pid, pid, status); 677 child_reap (EV_A_ sw, pid, pid, status);
607 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 678 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
608 } 679 }
609} 680}
666 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 737 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
667 have_monotonic = 1; 738 have_monotonic = 1;
668 } 739 }
669#endif 740#endif
670 741
671 rt_now = ev_time (); 742 ev_rt_now = ev_time ();
672 mn_now = get_clock (); 743 mn_now = get_clock ();
673 now_floor = mn_now; 744 now_floor = mn_now;
674 rtmn_diff = rt_now - mn_now; 745 rtmn_diff = ev_rt_now - mn_now;
675 746
676 if (methods == EVMETHOD_AUTO) 747 if (methods == EVMETHOD_AUTO)
677 if (!enable_secure () && getenv ("LIBEV_METHODS")) 748 if (!enable_secure () && getenv ("LIBEV_METHODS"))
678 methods = atoi (getenv ("LIBEV_METHODS")); 749 methods = atoi (getenv ("LIBEV_METHODS"));
679 else 750 else
693 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 764 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
694#endif 765#endif
695#if EV_USE_SELECT 766#if EV_USE_SELECT
696 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 767 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
697#endif 768#endif
769
770 ev_init (&sigev, sigcb);
771 ev_set_priority (&sigev, EV_MAXPRI);
698 } 772 }
699} 773}
700 774
701void 775void
702loop_destroy (EV_P) 776loop_destroy (EV_P)
720#endif 794#endif
721 795
722 for (i = NUMPRI; i--; ) 796 for (i = NUMPRI; i--; )
723 array_free (pending, [i]); 797 array_free (pending, [i]);
724 798
799 /* have to use the microsoft-never-gets-it-right macro */
725 array_free (fdchange, ); 800 array_free_microshit (fdchange);
726 array_free (timer, ); 801 array_free_microshit (timer);
727 array_free (periodic, ); 802 array_free_microshit (periodic);
728 array_free (idle, ); 803 array_free_microshit (idle);
729 array_free (prepare, ); 804 array_free_microshit (prepare);
730 array_free (check, ); 805 array_free_microshit (check);
731 806
732 method = 0; 807 method = 0;
733 /*TODO*/
734} 808}
735 809
736void 810static void
737loop_fork (EV_P) 811loop_fork (EV_P)
738{ 812{
739 /*TODO*/
740#if EV_USE_EPOLL 813#if EV_USE_EPOLL
741 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 814 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
742#endif 815#endif
743#if EV_USE_KQUEUE 816#if EV_USE_KQUEUE
744 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 817 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
745#endif 818#endif
819
820 if (ev_is_active (&sigev))
821 {
822 /* default loop */
823
824 ev_ref (EV_A);
825 ev_io_stop (EV_A_ &sigev);
826 close (sigpipe [0]);
827 close (sigpipe [1]);
828
829 while (pipe (sigpipe))
830 syserr ("(libev) error creating pipe");
831
832 siginit (EV_A);
833 }
834
835 postfork = 0;
746} 836}
747 837
748#if EV_MULTIPLICITY 838#if EV_MULTIPLICITY
749struct ev_loop * 839struct ev_loop *
750ev_loop_new (int methods) 840ev_loop_new (int methods)
769} 859}
770 860
771void 861void
772ev_loop_fork (EV_P) 862ev_loop_fork (EV_P)
773{ 863{
774 loop_fork (EV_A); 864 postfork = 1;
775} 865}
776 866
777#endif 867#endif
778 868
779#if EV_MULTIPLICITY 869#if EV_MULTIPLICITY
780struct ev_loop default_loop_struct;
781static struct ev_loop *default_loop;
782
783struct ev_loop * 870struct ev_loop *
784#else 871#else
785static int default_loop;
786
787int 872int
788#endif 873#endif
789ev_default_loop (int methods) 874ev_default_loop (int methods)
790{ 875{
791 if (sigpipe [0] == sigpipe [1]) 876 if (sigpipe [0] == sigpipe [1])
802 887
803 loop_init (EV_A_ methods); 888 loop_init (EV_A_ methods);
804 889
805 if (ev_method (EV_A)) 890 if (ev_method (EV_A))
806 { 891 {
807 ev_watcher_init (&sigev, sigcb);
808 ev_set_priority (&sigev, EV_MAXPRI);
809 siginit (EV_A); 892 siginit (EV_A);
810 893
811#ifndef WIN32 894#ifndef WIN32
812 ev_signal_init (&childev, childcb, SIGCHLD); 895 ev_signal_init (&childev, childcb, SIGCHLD);
813 ev_set_priority (&childev, EV_MAXPRI); 896 ev_set_priority (&childev, EV_MAXPRI);
827{ 910{
828#if EV_MULTIPLICITY 911#if EV_MULTIPLICITY
829 struct ev_loop *loop = default_loop; 912 struct ev_loop *loop = default_loop;
830#endif 913#endif
831 914
915#ifndef WIN32
832 ev_ref (EV_A); /* child watcher */ 916 ev_ref (EV_A); /* child watcher */
833 ev_signal_stop (EV_A_ &childev); 917 ev_signal_stop (EV_A_ &childev);
918#endif
834 919
835 ev_ref (EV_A); /* signal watcher */ 920 ev_ref (EV_A); /* signal watcher */
836 ev_io_stop (EV_A_ &sigev); 921 ev_io_stop (EV_A_ &sigev);
837 922
838 close (sigpipe [0]); sigpipe [0] = 0; 923 close (sigpipe [0]); sigpipe [0] = 0;
846{ 931{
847#if EV_MULTIPLICITY 932#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop; 933 struct ev_loop *loop = default_loop;
849#endif 934#endif
850 935
851 loop_fork (EV_A); 936 if (method)
852 937 postfork = 1;
853 ev_io_stop (EV_A_ &sigev);
854 close (sigpipe [0]);
855 close (sigpipe [1]);
856 pipe (sigpipe);
857
858 ev_ref (EV_A); /* signal watcher */
859 siginit (EV_A);
860} 938}
861 939
862/*****************************************************************************/ 940/*****************************************************************************/
941
942static int
943any_pending (EV_P)
944{
945 int pri;
946
947 for (pri = NUMPRI; pri--; )
948 if (pendingcnt [pri])
949 return 1;
950
951 return 0;
952}
863 953
864static void 954static void
865call_pending (EV_P) 955call_pending (EV_P)
866{ 956{
867 int pri; 957 int pri;
872 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 962 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
873 963
874 if (p->w) 964 if (p->w)
875 { 965 {
876 p->w->pending = 0; 966 p->w->pending = 0;
877 p->w->cb (EV_A_ p->w, p->events); 967 EV_CB_INVOKE (p->w, p->events);
878 } 968 }
879 } 969 }
880} 970}
881 971
882static void 972static void
896 downheap ((WT *)timers, timercnt, 0); 986 downheap ((WT *)timers, timercnt, 0);
897 } 987 }
898 else 988 else
899 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 989 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
900 990
901 event (EV_A_ (W)w, EV_TIMEOUT); 991 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
902 } 992 }
903} 993}
904 994
905static void 995static void
906periodics_reify (EV_P) 996periodics_reify (EV_P)
907{ 997{
908 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 998 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
909 { 999 {
910 struct ev_periodic *w = periodics [0]; 1000 struct ev_periodic *w = periodics [0];
911 1001
912 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1002 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
913 1003
914 /* first reschedule or stop timer */ 1004 /* first reschedule or stop timer */
915 if (w->interval) 1005 if (w->reschedule_cb)
916 { 1006 {
1007 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1008
1009 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1010 downheap ((WT *)periodics, periodiccnt, 0);
1011 }
1012 else if (w->interval)
1013 {
917 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1014 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
918 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1015 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
919 downheap ((WT *)periodics, periodiccnt, 0); 1016 downheap ((WT *)periodics, periodiccnt, 0);
920 } 1017 }
921 else 1018 else
922 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1019 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
923 1020
924 event (EV_A_ (W)w, EV_PERIODIC); 1021 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
925 } 1022 }
926} 1023}
927 1024
928static void 1025static void
929periodics_reschedule (EV_P) 1026periodics_reschedule (EV_P)
933 /* adjust periodics after time jump */ 1030 /* adjust periodics after time jump */
934 for (i = 0; i < periodiccnt; ++i) 1031 for (i = 0; i < periodiccnt; ++i)
935 { 1032 {
936 struct ev_periodic *w = periodics [i]; 1033 struct ev_periodic *w = periodics [i];
937 1034
1035 if (w->reschedule_cb)
1036 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
938 if (w->interval) 1037 else if (w->interval)
939 {
940 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1038 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
941
942 if (fabs (diff) >= 1e-4)
943 {
944 ev_periodic_stop (EV_A_ w);
945 ev_periodic_start (EV_A_ w);
946
947 i = 0; /* restart loop, inefficient, but time jumps should be rare */
948 }
949 }
950 } 1039 }
1040
1041 /* now rebuild the heap */
1042 for (i = periodiccnt >> 1; i--; )
1043 downheap ((WT *)periodics, periodiccnt, i);
951} 1044}
952 1045
953inline int 1046inline int
954time_update_monotonic (EV_P) 1047time_update_monotonic (EV_P)
955{ 1048{
956 mn_now = get_clock (); 1049 mn_now = get_clock ();
957 1050
958 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1051 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
959 { 1052 {
960 rt_now = rtmn_diff + mn_now; 1053 ev_rt_now = rtmn_diff + mn_now;
961 return 0; 1054 return 0;
962 } 1055 }
963 else 1056 else
964 { 1057 {
965 now_floor = mn_now; 1058 now_floor = mn_now;
966 rt_now = ev_time (); 1059 ev_rt_now = ev_time ();
967 return 1; 1060 return 1;
968 } 1061 }
969} 1062}
970 1063
971static void 1064static void
980 { 1073 {
981 ev_tstamp odiff = rtmn_diff; 1074 ev_tstamp odiff = rtmn_diff;
982 1075
983 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1076 for (i = 4; --i; ) /* loop a few times, before making important decisions */
984 { 1077 {
985 rtmn_diff = rt_now - mn_now; 1078 rtmn_diff = ev_rt_now - mn_now;
986 1079
987 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1080 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
988 return; /* all is well */ 1081 return; /* all is well */
989 1082
990 rt_now = ev_time (); 1083 ev_rt_now = ev_time ();
991 mn_now = get_clock (); 1084 mn_now = get_clock ();
992 now_floor = mn_now; 1085 now_floor = mn_now;
993 } 1086 }
994 1087
995 periodics_reschedule (EV_A); 1088 periodics_reschedule (EV_A);
998 } 1091 }
999 } 1092 }
1000 else 1093 else
1001#endif 1094#endif
1002 { 1095 {
1003 rt_now = ev_time (); 1096 ev_rt_now = ev_time ();
1004 1097
1005 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1098 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1006 { 1099 {
1007 periodics_reschedule (EV_A); 1100 periodics_reschedule (EV_A);
1008 1101
1009 /* adjust timers. this is easy, as the offset is the same for all */ 1102 /* adjust timers. this is easy, as the offset is the same for all */
1010 for (i = 0; i < timercnt; ++i) 1103 for (i = 0; i < timercnt; ++i)
1011 ((WT)timers [i])->at += rt_now - mn_now; 1104 ((WT)timers [i])->at += ev_rt_now - mn_now;
1012 } 1105 }
1013 1106
1014 mn_now = rt_now; 1107 mn_now = ev_rt_now;
1015 } 1108 }
1016} 1109}
1017 1110
1018void 1111void
1019ev_ref (EV_P) 1112ev_ref (EV_P)
1042 { 1135 {
1043 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1136 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1044 call_pending (EV_A); 1137 call_pending (EV_A);
1045 } 1138 }
1046 1139
1140 /* we might have forked, so reify kernel state if necessary */
1141 if (expect_false (postfork))
1142 loop_fork (EV_A);
1143
1047 /* update fd-related kernel structures */ 1144 /* update fd-related kernel structures */
1048 fd_reify (EV_A); 1145 fd_reify (EV_A);
1049 1146
1050 /* calculate blocking time */ 1147 /* calculate blocking time */
1051 1148
1052 /* we only need this for !monotonic clockor timers, but as we basically 1149 /* we only need this for !monotonic clock or timers, but as we basically
1053 always have timers, we just calculate it always */ 1150 always have timers, we just calculate it always */
1054#if EV_USE_MONOTONIC 1151#if EV_USE_MONOTONIC
1055 if (expect_true (have_monotonic)) 1152 if (expect_true (have_monotonic))
1056 time_update_monotonic (EV_A); 1153 time_update_monotonic (EV_A);
1057 else 1154 else
1058#endif 1155#endif
1059 { 1156 {
1060 rt_now = ev_time (); 1157 ev_rt_now = ev_time ();
1061 mn_now = rt_now; 1158 mn_now = ev_rt_now;
1062 } 1159 }
1063 1160
1064 if (flags & EVLOOP_NONBLOCK || idlecnt) 1161 if (flags & EVLOOP_NONBLOCK || idlecnt)
1065 block = 0.; 1162 block = 0.;
1066 else 1163 else
1073 if (block > to) block = to; 1170 if (block > to) block = to;
1074 } 1171 }
1075 1172
1076 if (periodiccnt) 1173 if (periodiccnt)
1077 { 1174 {
1078 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1175 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1079 if (block > to) block = to; 1176 if (block > to) block = to;
1080 } 1177 }
1081 1178
1082 if (block < 0.) block = 0.; 1179 if (block < 0.) block = 0.;
1083 } 1180 }
1084 1181
1085 method_poll (EV_A_ block); 1182 method_poll (EV_A_ block);
1086 1183
1087 /* update rt_now, do magic */ 1184 /* update ev_rt_now, do magic */
1088 time_update (EV_A); 1185 time_update (EV_A);
1089 1186
1090 /* queue pending timers and reschedule them */ 1187 /* queue pending timers and reschedule them */
1091 timers_reify (EV_A); /* relative timers called last */ 1188 timers_reify (EV_A); /* relative timers called last */
1092 periodics_reify (EV_A); /* absolute timers called first */ 1189 periodics_reify (EV_A); /* absolute timers called first */
1093 1190
1094 /* queue idle watchers unless io or timers are pending */ 1191 /* queue idle watchers unless io or timers are pending */
1095 if (!pendingcnt) 1192 if (idlecnt && !any_pending (EV_A))
1096 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1193 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1097 1194
1098 /* queue check watchers, to be executed first */ 1195 /* queue check watchers, to be executed first */
1099 if (checkcnt) 1196 if (checkcnt)
1100 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1197 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1175 return; 1272 return;
1176 1273
1177 assert (("ev_io_start called with negative fd", fd >= 0)); 1274 assert (("ev_io_start called with negative fd", fd >= 0));
1178 1275
1179 ev_start (EV_A_ (W)w, 1); 1276 ev_start (EV_A_ (W)w, 1);
1180 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1277 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1181 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1278 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1182 1279
1183 fd_change (EV_A_ fd); 1280 fd_change (EV_A_ fd);
1184} 1281}
1185 1282
1205 ((WT)w)->at += mn_now; 1302 ((WT)w)->at += mn_now;
1206 1303
1207 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1304 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1208 1305
1209 ev_start (EV_A_ (W)w, ++timercnt); 1306 ev_start (EV_A_ (W)w, ++timercnt);
1210 array_needsize (timers, timermax, timercnt, ); 1307 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1211 timers [timercnt - 1] = w; 1308 timers [timercnt - 1] = w;
1212 upheap ((WT *)timers, timercnt - 1); 1309 upheap ((WT *)timers, timercnt - 1);
1213 1310
1214 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1311 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1215} 1312}
1238ev_timer_again (EV_P_ struct ev_timer *w) 1335ev_timer_again (EV_P_ struct ev_timer *w)
1239{ 1336{
1240 if (ev_is_active (w)) 1337 if (ev_is_active (w))
1241 { 1338 {
1242 if (w->repeat) 1339 if (w->repeat)
1243 {
1244 ((WT)w)->at = mn_now + w->repeat;
1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1340 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1246 }
1247 else 1341 else
1248 ev_timer_stop (EV_A_ w); 1342 ev_timer_stop (EV_A_ w);
1249 } 1343 }
1250 else if (w->repeat) 1344 else if (w->repeat)
1251 ev_timer_start (EV_A_ w); 1345 ev_timer_start (EV_A_ w);
1255ev_periodic_start (EV_P_ struct ev_periodic *w) 1349ev_periodic_start (EV_P_ struct ev_periodic *w)
1256{ 1350{
1257 if (ev_is_active (w)) 1351 if (ev_is_active (w))
1258 return; 1352 return;
1259 1353
1354 if (w->reschedule_cb)
1355 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1356 else if (w->interval)
1357 {
1260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1358 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1261
1262 /* this formula differs from the one in periodic_reify because we do not always round up */ 1359 /* this formula differs from the one in periodic_reify because we do not always round up */
1263 if (w->interval)
1264 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1360 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1361 }
1265 1362
1266 ev_start (EV_A_ (W)w, ++periodiccnt); 1363 ev_start (EV_A_ (W)w, ++periodiccnt);
1267 array_needsize (periodics, periodicmax, periodiccnt, ); 1364 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1268 periodics [periodiccnt - 1] = w; 1365 periodics [periodiccnt - 1] = w;
1269 upheap ((WT *)periodics, periodiccnt - 1); 1366 upheap ((WT *)periodics, periodiccnt - 1);
1270 1367
1271 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1368 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1272} 1369}
1288 1385
1289 ev_stop (EV_A_ (W)w); 1386 ev_stop (EV_A_ (W)w);
1290} 1387}
1291 1388
1292void 1389void
1390ev_periodic_again (EV_P_ struct ev_periodic *w)
1391{
1392 /* TODO: use adjustheap and recalculation */
1393 ev_periodic_stop (EV_A_ w);
1394 ev_periodic_start (EV_A_ w);
1395}
1396
1397void
1293ev_idle_start (EV_P_ struct ev_idle *w) 1398ev_idle_start (EV_P_ struct ev_idle *w)
1294{ 1399{
1295 if (ev_is_active (w)) 1400 if (ev_is_active (w))
1296 return; 1401 return;
1297 1402
1298 ev_start (EV_A_ (W)w, ++idlecnt); 1403 ev_start (EV_A_ (W)w, ++idlecnt);
1299 array_needsize (idles, idlemax, idlecnt, ); 1404 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1300 idles [idlecnt - 1] = w; 1405 idles [idlecnt - 1] = w;
1301} 1406}
1302 1407
1303void 1408void
1304ev_idle_stop (EV_P_ struct ev_idle *w) 1409ev_idle_stop (EV_P_ struct ev_idle *w)
1316{ 1421{
1317 if (ev_is_active (w)) 1422 if (ev_is_active (w))
1318 return; 1423 return;
1319 1424
1320 ev_start (EV_A_ (W)w, ++preparecnt); 1425 ev_start (EV_A_ (W)w, ++preparecnt);
1321 array_needsize (prepares, preparemax, preparecnt, ); 1426 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1322 prepares [preparecnt - 1] = w; 1427 prepares [preparecnt - 1] = w;
1323} 1428}
1324 1429
1325void 1430void
1326ev_prepare_stop (EV_P_ struct ev_prepare *w) 1431ev_prepare_stop (EV_P_ struct ev_prepare *w)
1338{ 1443{
1339 if (ev_is_active (w)) 1444 if (ev_is_active (w))
1340 return; 1445 return;
1341 1446
1342 ev_start (EV_A_ (W)w, ++checkcnt); 1447 ev_start (EV_A_ (W)w, ++checkcnt);
1343 array_needsize (checks, checkmax, checkcnt, ); 1448 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1344 checks [checkcnt - 1] = w; 1449 checks [checkcnt - 1] = w;
1345} 1450}
1346 1451
1347void 1452void
1348ev_check_stop (EV_P_ struct ev_check *w) 1453ev_check_stop (EV_P_ struct ev_check *w)
1369 return; 1474 return;
1370 1475
1371 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1476 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1372 1477
1373 ev_start (EV_A_ (W)w, 1); 1478 ev_start (EV_A_ (W)w, 1);
1374 array_needsize (signals, signalmax, w->signum, signals_init); 1479 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1375 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1480 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1376 1481
1377 if (!((WL)w)->next) 1482 if (!((WL)w)->next)
1378 { 1483 {
1379#if WIN32 1484#if WIN32
1462} 1567}
1463 1568
1464void 1569void
1465ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1570ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1466{ 1571{
1467 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1572 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1468 1573
1469 if (!once) 1574 if (!once)
1470 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1575 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1471 else 1576 else
1472 { 1577 {
1473 once->cb = cb; 1578 once->cb = cb;
1474 once->arg = arg; 1579 once->arg = arg;
1475 1580
1476 ev_watcher_init (&once->io, once_cb_io); 1581 ev_init (&once->io, once_cb_io);
1477 if (fd >= 0) 1582 if (fd >= 0)
1478 { 1583 {
1479 ev_io_set (&once->io, fd, events); 1584 ev_io_set (&once->io, fd, events);
1480 ev_io_start (EV_A_ &once->io); 1585 ev_io_start (EV_A_ &once->io);
1481 } 1586 }
1482 1587
1483 ev_watcher_init (&once->to, once_cb_to); 1588 ev_init (&once->to, once_cb_to);
1484 if (timeout >= 0.) 1589 if (timeout >= 0.)
1485 { 1590 {
1486 ev_timer_set (&once->to, timeout, 0.); 1591 ev_timer_set (&once->to, timeout, 0.);
1487 ev_timer_start (EV_A_ &once->to); 1592 ev_timer_start (EV_A_ &once->to);
1488 } 1593 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines