ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.75 by root, Tue Nov 6 19:29:20 2007 UTC vs.
Revision 1.85 by root, Sat Nov 10 03:13:50 2007 UTC

126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 130
131#ifdef EV_H
132# include EV_H
133#else
131#include "ev.h" 134# include "ev.h"
135#endif
132 136
133#if __GNUC__ >= 3 137#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value)) 138# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 139# define inline inline
136#else 140#else
215 int events; 219 int events;
216} ANPENDING; 220} ANPENDING;
217 221
218#if EV_MULTIPLICITY 222#if EV_MULTIPLICITY
219 223
220struct ev_loop 224 struct ev_loop
221{ 225 {
222# define VAR(name,decl) decl; 226 #define VAR(name,decl) decl;
223# include "ev_vars.h" 227 #include "ev_vars.h"
224};
225# undef VAR 228 #undef VAR
229 };
226# include "ev_wrap.h" 230 #include "ev_wrap.h"
231
232 struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop;
227 234
228#else 235#else
229 236
230# define VAR(name,decl) static decl; 237 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 238 #include "ev_vars.h"
232# undef VAR 239 #undef VAR
240
241 static int default_loop;
233 242
234#endif 243#endif
235 244
236/*****************************************************************************/ 245/*****************************************************************************/
237 246
262#endif 271#endif
263 272
264 return ev_time (); 273 return ev_time ();
265} 274}
266 275
276#if EV_MULTIPLICITY
267ev_tstamp 277ev_tstamp
268ev_now (EV_P) 278ev_now (EV_P)
269{ 279{
270 return rt_now; 280 return ev_rt_now;
271} 281}
282#endif
272 283
273#define array_roundsize(type,n) ((n) | 4 & ~3) 284#define array_roundsize(type,n) ((n) | 4 & ~3)
274 285
275#define array_needsize(type,base,cur,cnt,init) \ 286#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 287 if (expect_false ((cnt) > cur)) \
316 327
317 ++base; 328 ++base;
318 } 329 }
319} 330}
320 331
321static void 332void
322event (EV_P_ W w, int events) 333ev_feed_event (EV_P_ void *w, int revents)
323{ 334{
335 W w_ = (W)w;
336
324 if (w->pending) 337 if (w_->pending)
325 { 338 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events; 339 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
327 return; 340 return;
328 } 341 }
329 342
330 w->pending = ++pendingcnt [ABSPRI (w)]; 343 w_->pending = ++pendingcnt [ABSPRI (w_)];
331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 344 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
332 pendings [ABSPRI (w)][w->pending - 1].w = w; 345 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
333 pendings [ABSPRI (w)][w->pending - 1].events = events; 346 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
334} 347}
335 348
336static void 349static void
337queue_events (EV_P_ W *events, int eventcnt, int type) 350queue_events (EV_P_ W *events, int eventcnt, int type)
338{ 351{
339 int i; 352 int i;
340 353
341 for (i = 0; i < eventcnt; ++i) 354 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type); 355 ev_feed_event (EV_A_ events [i], type);
343} 356}
344 357
345static void 358inline void
346fd_event (EV_P_ int fd, int events) 359fd_event (EV_P_ int fd, int revents)
347{ 360{
348 ANFD *anfd = anfds + fd; 361 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 362 struct ev_io *w;
350 363
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 364 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
352 { 365 {
353 int ev = w->events & events; 366 int ev = w->events & revents;
354 367
355 if (ev) 368 if (ev)
356 event (EV_A_ (W)w, ev); 369 ev_feed_event (EV_A_ (W)w, ev);
357 } 370 }
371}
372
373void
374ev_feed_fd_event (EV_P_ int fd, int revents)
375{
376 fd_event (EV_A_ fd, revents);
358} 377}
359 378
360/*****************************************************************************/ 379/*****************************************************************************/
361 380
362static void 381static void
403 struct ev_io *w; 422 struct ev_io *w;
404 423
405 while ((w = (struct ev_io *)anfds [fd].head)) 424 while ((w = (struct ev_io *)anfds [fd].head))
406 { 425 {
407 ev_io_stop (EV_A_ w); 426 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 427 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 428 }
410} 429}
411 430
412static int 431static int
413fd_valid (int fd) 432fd_valid (int fd)
501 520
502 heap [k] = w; 521 heap [k] = w;
503 ((W)heap [k])->active = k + 1; 522 ((W)heap [k])->active = k + 1;
504} 523}
505 524
525inline void
526adjustheap (WT *heap, int N, int k, ev_tstamp at)
527{
528 ev_tstamp old_at = heap [k]->at;
529 heap [k]->at = at;
530
531 if (old_at < at)
532 downheap (heap, N, k);
533 else
534 upheap (heap, k);
535}
536
506/*****************************************************************************/ 537/*****************************************************************************/
507 538
508typedef struct 539typedef struct
509{ 540{
510 WL head; 541 WL head;
550#endif 581#endif
551 errno = old_errno; 582 errno = old_errno;
552 } 583 }
553} 584}
554 585
586void
587ev_feed_signal_event (EV_P_ int signum)
588{
589 WL w;
590
591#if EV_MULTIPLICITY
592 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
593#endif
594
595 --signum;
596
597 if (signum < 0 || signum >= signalmax)
598 return;
599
600 signals [signum].gotsig = 0;
601
602 for (w = signals [signum].head; w; w = w->next)
603 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
604}
605
555static void 606static void
556sigcb (EV_P_ struct ev_io *iow, int revents) 607sigcb (EV_P_ struct ev_io *iow, int revents)
557{ 608{
558 WL w;
559 int signum; 609 int signum;
560 610
561#ifdef WIN32 611#ifdef WIN32
562 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 612 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
563#else 613#else
565#endif 615#endif
566 gotsig = 0; 616 gotsig = 0;
567 617
568 for (signum = signalmax; signum--; ) 618 for (signum = signalmax; signum--; )
569 if (signals [signum].gotsig) 619 if (signals [signum].gotsig)
570 { 620 ev_feed_signal_event (EV_A_ signum + 1);
571 signals [signum].gotsig = 0;
572
573 for (w = signals [signum].head; w; w = w->next)
574 event (EV_A_ (W)w, EV_SIGNAL);
575 }
576} 621}
577 622
578static void 623static void
579siginit (EV_P) 624siginit (EV_P)
580{ 625{
613 if (w->pid == pid || !w->pid) 658 if (w->pid == pid || !w->pid)
614 { 659 {
615 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 660 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
616 w->rpid = pid; 661 w->rpid = pid;
617 w->rstatus = status; 662 w->rstatus = status;
618 event (EV_A_ (W)w, EV_CHILD); 663 ev_feed_event (EV_A_ (W)w, EV_CHILD);
619 } 664 }
620} 665}
621 666
622static void 667static void
623childcb (EV_P_ struct ev_signal *sw, int revents) 668childcb (EV_P_ struct ev_signal *sw, int revents)
625 int pid, status; 670 int pid, status;
626 671
627 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 672 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
628 { 673 {
629 /* make sure we are called again until all childs have been reaped */ 674 /* make sure we are called again until all childs have been reaped */
630 event (EV_A_ (W)sw, EV_SIGNAL); 675 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
631 676
632 child_reap (EV_A_ sw, pid, pid, status); 677 child_reap (EV_A_ sw, pid, pid, status);
633 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 678 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
634 } 679 }
635} 680}
692 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 737 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
693 have_monotonic = 1; 738 have_monotonic = 1;
694 } 739 }
695#endif 740#endif
696 741
697 rt_now = ev_time (); 742 ev_rt_now = ev_time ();
698 mn_now = get_clock (); 743 mn_now = get_clock ();
699 now_floor = mn_now; 744 now_floor = mn_now;
700 rtmn_diff = rt_now - mn_now; 745 rtmn_diff = ev_rt_now - mn_now;
701 746
702 if (methods == EVMETHOD_AUTO) 747 if (methods == EVMETHOD_AUTO)
703 if (!enable_secure () && getenv ("LIBEV_METHODS")) 748 if (!enable_secure () && getenv ("LIBEV_METHODS"))
704 methods = atoi (getenv ("LIBEV_METHODS")); 749 methods = atoi (getenv ("LIBEV_METHODS"));
705 else 750 else
720#endif 765#endif
721#if EV_USE_SELECT 766#if EV_USE_SELECT
722 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 767 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
723#endif 768#endif
724 769
725 ev_watcher_init (&sigev, sigcb); 770 ev_init (&sigev, sigcb);
726 ev_set_priority (&sigev, EV_MAXPRI); 771 ev_set_priority (&sigev, EV_MAXPRI);
727 } 772 }
728} 773}
729 774
730void 775void
820} 865}
821 866
822#endif 867#endif
823 868
824#if EV_MULTIPLICITY 869#if EV_MULTIPLICITY
825struct ev_loop default_loop_struct;
826static struct ev_loop *default_loop;
827
828struct ev_loop * 870struct ev_loop *
829#else 871#else
830static int default_loop;
831
832int 872int
833#endif 873#endif
834ev_default_loop (int methods) 874ev_default_loop (int methods)
835{ 875{
836 if (sigpipe [0] == sigpipe [1]) 876 if (sigpipe [0] == sigpipe [1])
897 postfork = 1; 937 postfork = 1;
898} 938}
899 939
900/*****************************************************************************/ 940/*****************************************************************************/
901 941
942static int
943any_pending (EV_P)
944{
945 int pri;
946
947 for (pri = NUMPRI; pri--; )
948 if (pendingcnt [pri])
949 return 1;
950
951 return 0;
952}
953
902static void 954static void
903call_pending (EV_P) 955call_pending (EV_P)
904{ 956{
905 int pri; 957 int pri;
906 958
910 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 962 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
911 963
912 if (p->w) 964 if (p->w)
913 { 965 {
914 p->w->pending = 0; 966 p->w->pending = 0;
915 p->w->cb (EV_A_ p->w, p->events); 967 EV_CB_INVOKE (p->w, p->events);
916 } 968 }
917 } 969 }
918} 970}
919 971
920static void 972static void
934 downheap ((WT *)timers, timercnt, 0); 986 downheap ((WT *)timers, timercnt, 0);
935 } 987 }
936 else 988 else
937 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 989 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
938 990
939 event (EV_A_ (W)w, EV_TIMEOUT); 991 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
940 } 992 }
941} 993}
942 994
943static void 995static void
944periodics_reify (EV_P) 996periodics_reify (EV_P)
945{ 997{
946 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 998 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
947 { 999 {
948 struct ev_periodic *w = periodics [0]; 1000 struct ev_periodic *w = periodics [0];
949 1001
950 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1002 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
951 1003
952 /* first reschedule or stop timer */ 1004 /* first reschedule or stop timer */
953 if (w->interval) 1005 if (w->reschedule_cb)
954 { 1006 {
1007 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1008
1009 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1010 downheap ((WT *)periodics, periodiccnt, 0);
1011 }
1012 else if (w->interval)
1013 {
955 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1014 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
956 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1015 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
957 downheap ((WT *)periodics, periodiccnt, 0); 1016 downheap ((WT *)periodics, periodiccnt, 0);
958 } 1017 }
959 else 1018 else
960 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1019 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
961 1020
962 event (EV_A_ (W)w, EV_PERIODIC); 1021 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
963 } 1022 }
964} 1023}
965 1024
966static void 1025static void
967periodics_reschedule (EV_P) 1026periodics_reschedule (EV_P)
971 /* adjust periodics after time jump */ 1030 /* adjust periodics after time jump */
972 for (i = 0; i < periodiccnt; ++i) 1031 for (i = 0; i < periodiccnt; ++i)
973 { 1032 {
974 struct ev_periodic *w = periodics [i]; 1033 struct ev_periodic *w = periodics [i];
975 1034
1035 if (w->reschedule_cb)
1036 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
976 if (w->interval) 1037 else if (w->interval)
977 {
978 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1038 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
979
980 if (fabs (diff) >= 1e-4)
981 {
982 ev_periodic_stop (EV_A_ w);
983 ev_periodic_start (EV_A_ w);
984
985 i = 0; /* restart loop, inefficient, but time jumps should be rare */
986 }
987 }
988 } 1039 }
1040
1041 /* now rebuild the heap */
1042 for (i = periodiccnt >> 1; i--; )
1043 downheap ((WT *)periodics, periodiccnt, i);
989} 1044}
990 1045
991inline int 1046inline int
992time_update_monotonic (EV_P) 1047time_update_monotonic (EV_P)
993{ 1048{
994 mn_now = get_clock (); 1049 mn_now = get_clock ();
995 1050
996 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1051 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
997 { 1052 {
998 rt_now = rtmn_diff + mn_now; 1053 ev_rt_now = rtmn_diff + mn_now;
999 return 0; 1054 return 0;
1000 } 1055 }
1001 else 1056 else
1002 { 1057 {
1003 now_floor = mn_now; 1058 now_floor = mn_now;
1004 rt_now = ev_time (); 1059 ev_rt_now = ev_time ();
1005 return 1; 1060 return 1;
1006 } 1061 }
1007} 1062}
1008 1063
1009static void 1064static void
1018 { 1073 {
1019 ev_tstamp odiff = rtmn_diff; 1074 ev_tstamp odiff = rtmn_diff;
1020 1075
1021 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1076 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1022 { 1077 {
1023 rtmn_diff = rt_now - mn_now; 1078 rtmn_diff = ev_rt_now - mn_now;
1024 1079
1025 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1080 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1026 return; /* all is well */ 1081 return; /* all is well */
1027 1082
1028 rt_now = ev_time (); 1083 ev_rt_now = ev_time ();
1029 mn_now = get_clock (); 1084 mn_now = get_clock ();
1030 now_floor = mn_now; 1085 now_floor = mn_now;
1031 } 1086 }
1032 1087
1033 periodics_reschedule (EV_A); 1088 periodics_reschedule (EV_A);
1036 } 1091 }
1037 } 1092 }
1038 else 1093 else
1039#endif 1094#endif
1040 { 1095 {
1041 rt_now = ev_time (); 1096 ev_rt_now = ev_time ();
1042 1097
1043 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1098 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1044 { 1099 {
1045 periodics_reschedule (EV_A); 1100 periodics_reschedule (EV_A);
1046 1101
1047 /* adjust timers. this is easy, as the offset is the same for all */ 1102 /* adjust timers. this is easy, as the offset is the same for all */
1048 for (i = 0; i < timercnt; ++i) 1103 for (i = 0; i < timercnt; ++i)
1049 ((WT)timers [i])->at += rt_now - mn_now; 1104 ((WT)timers [i])->at += ev_rt_now - mn_now;
1050 } 1105 }
1051 1106
1052 mn_now = rt_now; 1107 mn_now = ev_rt_now;
1053 } 1108 }
1054} 1109}
1055 1110
1056void 1111void
1057ev_ref (EV_P) 1112ev_ref (EV_P)
1089 /* update fd-related kernel structures */ 1144 /* update fd-related kernel structures */
1090 fd_reify (EV_A); 1145 fd_reify (EV_A);
1091 1146
1092 /* calculate blocking time */ 1147 /* calculate blocking time */
1093 1148
1094 /* we only need this for !monotonic clockor timers, but as we basically 1149 /* we only need this for !monotonic clock or timers, but as we basically
1095 always have timers, we just calculate it always */ 1150 always have timers, we just calculate it always */
1096#if EV_USE_MONOTONIC 1151#if EV_USE_MONOTONIC
1097 if (expect_true (have_monotonic)) 1152 if (expect_true (have_monotonic))
1098 time_update_monotonic (EV_A); 1153 time_update_monotonic (EV_A);
1099 else 1154 else
1100#endif 1155#endif
1101 { 1156 {
1102 rt_now = ev_time (); 1157 ev_rt_now = ev_time ();
1103 mn_now = rt_now; 1158 mn_now = ev_rt_now;
1104 } 1159 }
1105 1160
1106 if (flags & EVLOOP_NONBLOCK || idlecnt) 1161 if (flags & EVLOOP_NONBLOCK || idlecnt)
1107 block = 0.; 1162 block = 0.;
1108 else 1163 else
1115 if (block > to) block = to; 1170 if (block > to) block = to;
1116 } 1171 }
1117 1172
1118 if (periodiccnt) 1173 if (periodiccnt)
1119 { 1174 {
1120 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1175 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1121 if (block > to) block = to; 1176 if (block > to) block = to;
1122 } 1177 }
1123 1178
1124 if (block < 0.) block = 0.; 1179 if (block < 0.) block = 0.;
1125 } 1180 }
1126 1181
1127 method_poll (EV_A_ block); 1182 method_poll (EV_A_ block);
1128 1183
1129 /* update rt_now, do magic */ 1184 /* update ev_rt_now, do magic */
1130 time_update (EV_A); 1185 time_update (EV_A);
1131 1186
1132 /* queue pending timers and reschedule them */ 1187 /* queue pending timers and reschedule them */
1133 timers_reify (EV_A); /* relative timers called last */ 1188 timers_reify (EV_A); /* relative timers called last */
1134 periodics_reify (EV_A); /* absolute timers called first */ 1189 periodics_reify (EV_A); /* absolute timers called first */
1135 1190
1136 /* queue idle watchers unless io or timers are pending */ 1191 /* queue idle watchers unless io or timers are pending */
1137 if (!pendingcnt) 1192 if (idlecnt && !any_pending (EV_A))
1138 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1193 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1139 1194
1140 /* queue check watchers, to be executed first */ 1195 /* queue check watchers, to be executed first */
1141 if (checkcnt) 1196 if (checkcnt)
1142 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1197 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1280ev_timer_again (EV_P_ struct ev_timer *w) 1335ev_timer_again (EV_P_ struct ev_timer *w)
1281{ 1336{
1282 if (ev_is_active (w)) 1337 if (ev_is_active (w))
1283 { 1338 {
1284 if (w->repeat) 1339 if (w->repeat)
1285 {
1286 ((WT)w)->at = mn_now + w->repeat;
1287 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1340 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1288 }
1289 else 1341 else
1290 ev_timer_stop (EV_A_ w); 1342 ev_timer_stop (EV_A_ w);
1291 } 1343 }
1292 else if (w->repeat) 1344 else if (w->repeat)
1293 ev_timer_start (EV_A_ w); 1345 ev_timer_start (EV_A_ w);
1297ev_periodic_start (EV_P_ struct ev_periodic *w) 1349ev_periodic_start (EV_P_ struct ev_periodic *w)
1298{ 1350{
1299 if (ev_is_active (w)) 1351 if (ev_is_active (w))
1300 return; 1352 return;
1301 1353
1354 if (w->reschedule_cb)
1355 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1356 else if (w->interval)
1357 {
1302 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1358 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1303
1304 /* this formula differs from the one in periodic_reify because we do not always round up */ 1359 /* this formula differs from the one in periodic_reify because we do not always round up */
1305 if (w->interval)
1306 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1360 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1361 }
1307 1362
1308 ev_start (EV_A_ (W)w, ++periodiccnt); 1363 ev_start (EV_A_ (W)w, ++periodiccnt);
1309 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1364 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1310 periodics [periodiccnt - 1] = w; 1365 periodics [periodiccnt - 1] = w;
1311 upheap ((WT *)periodics, periodiccnt - 1); 1366 upheap ((WT *)periodics, periodiccnt - 1);
1327 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1382 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1328 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1383 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1329 } 1384 }
1330 1385
1331 ev_stop (EV_A_ (W)w); 1386 ev_stop (EV_A_ (W)w);
1387}
1388
1389void
1390ev_periodic_again (EV_P_ struct ev_periodic *w)
1391{
1392 /* TODO: use adjustheap and recalculation */
1393 ev_periodic_stop (EV_A_ w);
1394 ev_periodic_start (EV_A_ w);
1332} 1395}
1333 1396
1334void 1397void
1335ev_idle_start (EV_P_ struct ev_idle *w) 1398ev_idle_start (EV_P_ struct ev_idle *w)
1336{ 1399{
1513 else 1576 else
1514 { 1577 {
1515 once->cb = cb; 1578 once->cb = cb;
1516 once->arg = arg; 1579 once->arg = arg;
1517 1580
1518 ev_watcher_init (&once->io, once_cb_io); 1581 ev_init (&once->io, once_cb_io);
1519 if (fd >= 0) 1582 if (fd >= 0)
1520 { 1583 {
1521 ev_io_set (&once->io, fd, events); 1584 ev_io_set (&once->io, fd, events);
1522 ev_io_start (EV_A_ &once->io); 1585 ev_io_start (EV_A_ &once->io);
1523 } 1586 }
1524 1587
1525 ev_watcher_init (&once->to, once_cb_to); 1588 ev_init (&once->to, once_cb_to);
1526 if (timeout >= 0.) 1589 if (timeout >= 0.)
1527 { 1590 {
1528 ev_timer_set (&once->to, timeout, 0.); 1591 ev_timer_set (&once->to, timeout, 0.);
1529 ev_timer_start (EV_A_ &once->to); 1592 ev_timer_start (EV_A_ &once->to);
1530 } 1593 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines