ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.62 by root, Sun Nov 4 20:38:07 2007 UTC vs.
Revision 1.86 by root, Sat Nov 10 03:19:21 2007 UTC

54 54
55#endif 55#endif
56 56
57#include <math.h> 57#include <math.h>
58#include <stdlib.h> 58#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 59#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 60#include <stddef.h>
63 61
64#include <stdio.h> 62#include <stdio.h>
65 63
66#include <assert.h> 64#include <assert.h>
67#include <errno.h> 65#include <errno.h>
68#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
69#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
70# include <sys/wait.h> 74# include <sys/wait.h>
71#endif 75#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 76/**/
76 77
77#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
79#endif 80#endif
94# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
95#endif 96#endif
96 97
97#ifndef EV_USE_WIN32 98#ifndef EV_USE_WIN32
98# ifdef WIN32 99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
99# define EV_USE_WIN32 1 102# define EV_USE_SELECT 1
100# else 103# else
101# define EV_USE_WIN32 0 104# define EV_USE_WIN32 0
102# endif 105# endif
103#endif 106#endif
104 107
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 130
131#ifdef EV_H
132# include EV_H
133#else
128#include "ev.h" 134# include "ev.h"
135#endif
129 136
130#if __GNUC__ >= 3 137#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 138# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 139# define inline inline
133#else 140#else
145typedef struct ev_watcher_list *WL; 152typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 153typedef struct ev_watcher_time *WT;
147 154
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 156
157#include "ev_win32.c"
158
150/*****************************************************************************/ 159/*****************************************************************************/
151 160
161static void (*syserr_cb)(const char *msg);
162
163void ev_set_syserr_cb (void (*cb)(const char *msg))
164{
165 syserr_cb = cb;
166}
167
168static void
169syserr (const char *msg)
170{
171 if (!msg)
172 msg = "(libev) system error";
173
174 if (syserr_cb)
175 syserr_cb (msg);
176 else
177 {
178 perror (msg);
179 abort ();
180 }
181}
182
183static void *(*alloc)(void *ptr, long size);
184
185void ev_set_allocator (void *(*cb)(void *ptr, long size))
186{
187 alloc = cb;
188}
189
190static void *
191ev_realloc (void *ptr, long size)
192{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194
195 if (!ptr && size)
196 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort ();
199 }
200
201 return ptr;
202}
203
204#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0)
206
207/*****************************************************************************/
208
152typedef struct 209typedef struct
153{ 210{
154 struct ev_watcher_list *head; 211 WL head;
155 unsigned char events; 212 unsigned char events;
156 unsigned char reify; 213 unsigned char reify;
157} ANFD; 214} ANFD;
158 215
159typedef struct 216typedef struct
162 int events; 219 int events;
163} ANPENDING; 220} ANPENDING;
164 221
165#if EV_MULTIPLICITY 222#if EV_MULTIPLICITY
166 223
167struct ev_loop 224 struct ev_loop
168{ 225 {
226 ev_tstamp ev_rt_now;
169# define VAR(name,decl) decl; 227 #define VAR(name,decl) decl;
170# include "ev_vars.h" 228 #include "ev_vars.h"
171};
172# undef VAR 229 #undef VAR
230 };
173# include "ev_wrap.h" 231 #include "ev_wrap.h"
232
233 struct ev_loop default_loop_struct;
234 static struct ev_loop *default_loop;
174 235
175#else 236#else
176 237
238 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 239 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 240 #include "ev_vars.h"
179# undef VAR 241 #undef VAR
242
243 static int default_loop;
180 244
181#endif 245#endif
182 246
183/*****************************************************************************/ 247/*****************************************************************************/
184 248
209#endif 273#endif
210 274
211 return ev_time (); 275 return ev_time ();
212} 276}
213 277
278#if EV_MULTIPLICITY
214ev_tstamp 279ev_tstamp
215ev_now (EV_P) 280ev_now (EV_P)
216{ 281{
217 return rt_now; 282 return ev_rt_now;
218} 283}
284#endif
219 285
220#define array_roundsize(base,n) ((n) | 4 & ~3) 286#define array_roundsize(type,n) ((n) | 4 & ~3)
221 287
222#define array_needsize(base,cur,cnt,init) \ 288#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 289 if (expect_false ((cnt) > cur)) \
224 { \ 290 { \
225 int newcnt = cur; \ 291 int newcnt = cur; \
226 do \ 292 do \
227 { \ 293 { \
228 newcnt = array_roundsize (base, newcnt << 1); \ 294 newcnt = array_roundsize (type, newcnt << 1); \
229 } \ 295 } \
230 while ((cnt) > newcnt); \ 296 while ((cnt) > newcnt); \
231 \ 297 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 298 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
233 init (base + cur, newcnt - cur); \ 299 init (base + cur, newcnt - cur); \
234 cur = newcnt; \ 300 cur = newcnt; \
235 } 301 }
302
303#define array_slim(type,stem) \
304 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
305 { \
306 stem ## max = array_roundsize (stem ## cnt >> 1); \
307 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
308 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
309 }
310
311/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
312/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
313#define array_free_microshit(stem) \
314 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
315
316#define array_free(stem, idx) \
317 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
236 318
237/*****************************************************************************/ 319/*****************************************************************************/
238 320
239static void 321static void
240anfds_init (ANFD *base, int count) 322anfds_init (ANFD *base, int count)
247 329
248 ++base; 330 ++base;
249 } 331 }
250} 332}
251 333
252static void 334void
253event (EV_P_ W w, int events) 335ev_feed_event (EV_P_ void *w, int revents)
254{ 336{
337 W w_ = (W)w;
338
255 if (w->pending) 339 if (w_->pending)
256 { 340 {
257 pendings [ABSPRI (w)][w->pending - 1].events |= events; 341 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
258 return; 342 return;
259 } 343 }
260 344
261 w->pending = ++pendingcnt [ABSPRI (w)]; 345 w_->pending = ++pendingcnt [ABSPRI (w_)];
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 346 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
263 pendings [ABSPRI (w)][w->pending - 1].w = w; 347 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
264 pendings [ABSPRI (w)][w->pending - 1].events = events; 348 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
265} 349}
266 350
267static void 351static void
268queue_events (EV_P_ W *events, int eventcnt, int type) 352queue_events (EV_P_ W *events, int eventcnt, int type)
269{ 353{
270 int i; 354 int i;
271 355
272 for (i = 0; i < eventcnt; ++i) 356 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type); 357 ev_feed_event (EV_A_ events [i], type);
274} 358}
275 359
276static void 360inline void
277fd_event (EV_P_ int fd, int events) 361fd_event (EV_P_ int fd, int revents)
278{ 362{
279 ANFD *anfd = anfds + fd; 363 ANFD *anfd = anfds + fd;
280 struct ev_io *w; 364 struct ev_io *w;
281 365
282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 366 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
283 { 367 {
284 int ev = w->events & events; 368 int ev = w->events & revents;
285 369
286 if (ev) 370 if (ev)
287 event (EV_A_ (W)w, ev); 371 ev_feed_event (EV_A_ (W)w, ev);
288 } 372 }
373}
374
375void
376ev_feed_fd_event (EV_P_ int fd, int revents)
377{
378 fd_event (EV_A_ fd, revents);
289} 379}
290 380
291/*****************************************************************************/ 381/*****************************************************************************/
292 382
293static void 383static void
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 396 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
307 events |= w->events; 397 events |= w->events;
308 398
309 anfd->reify = 0; 399 anfd->reify = 0;
310 400
311 if (anfd->events != events)
312 {
313 method_modify (EV_A_ fd, anfd->events, events); 401 method_modify (EV_A_ fd, anfd->events, events);
314 anfd->events = events; 402 anfd->events = events;
315 }
316 } 403 }
317 404
318 fdchangecnt = 0; 405 fdchangecnt = 0;
319} 406}
320 407
321static void 408static void
322fd_change (EV_P_ int fd) 409fd_change (EV_P_ int fd)
323{ 410{
324 if (anfds [fd].reify || fdchangecnt < 0) 411 if (anfds [fd].reify)
325 return; 412 return;
326 413
327 anfds [fd].reify = 1; 414 anfds [fd].reify = 1;
328 415
329 ++fdchangecnt; 416 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 417 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
331 fdchanges [fdchangecnt - 1] = fd; 418 fdchanges [fdchangecnt - 1] = fd;
332} 419}
333 420
334static void 421static void
335fd_kill (EV_P_ int fd) 422fd_kill (EV_P_ int fd)
337 struct ev_io *w; 424 struct ev_io *w;
338 425
339 while ((w = (struct ev_io *)anfds [fd].head)) 426 while ((w = (struct ev_io *)anfds [fd].head))
340 { 427 {
341 ev_io_stop (EV_A_ w); 428 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 429 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 430 }
431}
432
433static int
434fd_valid (int fd)
435{
436#ifdef WIN32
437 return !!win32_get_osfhandle (fd);
438#else
439 return fcntl (fd, F_GETFD) != -1;
440#endif
344} 441}
345 442
346/* called on EBADF to verify fds */ 443/* called on EBADF to verify fds */
347static void 444static void
348fd_ebadf (EV_P) 445fd_ebadf (EV_P)
349{ 446{
350 int fd; 447 int fd;
351 448
352 for (fd = 0; fd < anfdmax; ++fd) 449 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 450 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 451 if (!fd_valid (fd) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd); 452 fd_kill (EV_A_ fd);
356} 453}
357 454
358/* called on ENOMEM in select/poll to kill some fds and retry */ 455/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 456static void
362 int fd; 459 int fd;
363 460
364 for (fd = anfdmax; fd--; ) 461 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 462 if (anfds [fd].events)
366 { 463 {
367 close (fd);
368 fd_kill (EV_A_ fd); 464 fd_kill (EV_A_ fd);
369 return; 465 return;
370 } 466 }
371} 467}
372 468
373/* susually called after fork if method needs to re-arm all fds from scratch */ 469/* usually called after fork if method needs to re-arm all fds from scratch */
374static void 470static void
375fd_rearm_all (EV_P) 471fd_rearm_all (EV_P)
376{ 472{
377 int fd; 473 int fd;
378 474
426 522
427 heap [k] = w; 523 heap [k] = w;
428 ((W)heap [k])->active = k + 1; 524 ((W)heap [k])->active = k + 1;
429} 525}
430 526
527inline void
528adjustheap (WT *heap, int N, int k, ev_tstamp at)
529{
530 ev_tstamp old_at = heap [k]->at;
531 heap [k]->at = at;
532
533 if (old_at < at)
534 downheap (heap, N, k);
535 else
536 upheap (heap, k);
537}
538
431/*****************************************************************************/ 539/*****************************************************************************/
432 540
433typedef struct 541typedef struct
434{ 542{
435 struct ev_watcher_list *head; 543 WL head;
436 sig_atomic_t volatile gotsig; 544 sig_atomic_t volatile gotsig;
437} ANSIG; 545} ANSIG;
438 546
439static ANSIG *signals; 547static ANSIG *signals;
440static int signalmax; 548static int signalmax;
456} 564}
457 565
458static void 566static void
459sighandler (int signum) 567sighandler (int signum)
460{ 568{
569#if WIN32
570 signal (signum, sighandler);
571#endif
572
461 signals [signum - 1].gotsig = 1; 573 signals [signum - 1].gotsig = 1;
462 574
463 if (!gotsig) 575 if (!gotsig)
464 { 576 {
465 int old_errno = errno; 577 int old_errno = errno;
466 gotsig = 1; 578 gotsig = 1;
579#ifdef WIN32
580 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
581#else
467 write (sigpipe [1], &signum, 1); 582 write (sigpipe [1], &signum, 1);
583#endif
468 errno = old_errno; 584 errno = old_errno;
469 } 585 }
470} 586}
471 587
588void
589ev_feed_signal_event (EV_P_ int signum)
590{
591 WL w;
592
593#if EV_MULTIPLICITY
594 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
595#endif
596
597 --signum;
598
599 if (signum < 0 || signum >= signalmax)
600 return;
601
602 signals [signum].gotsig = 0;
603
604 for (w = signals [signum].head; w; w = w->next)
605 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
606}
607
472static void 608static void
473sigcb (EV_P_ struct ev_io *iow, int revents) 609sigcb (EV_P_ struct ev_io *iow, int revents)
474{ 610{
475 struct ev_watcher_list *w;
476 int signum; 611 int signum;
477 612
613#ifdef WIN32
614 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
615#else
478 read (sigpipe [0], &revents, 1); 616 read (sigpipe [0], &revents, 1);
617#endif
479 gotsig = 0; 618 gotsig = 0;
480 619
481 for (signum = signalmax; signum--; ) 620 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig) 621 if (signals [signum].gotsig)
483 { 622 ev_feed_signal_event (EV_A_ signum + 1);
484 signals [signum].gotsig = 0;
485
486 for (w = signals [signum].head; w; w = w->next)
487 event (EV_A_ (W)w, EV_SIGNAL);
488 }
489} 623}
490 624
491static void 625static void
492siginit (EV_P) 626siginit (EV_P)
493{ 627{
505 ev_unref (EV_A); /* child watcher should not keep loop alive */ 639 ev_unref (EV_A); /* child watcher should not keep loop alive */
506} 640}
507 641
508/*****************************************************************************/ 642/*****************************************************************************/
509 643
644static struct ev_child *childs [PID_HASHSIZE];
645
510#ifndef WIN32 646#ifndef WIN32
511 647
512static struct ev_child *childs [PID_HASHSIZE];
513static struct ev_signal childev; 648static struct ev_signal childev;
514 649
515#ifndef WCONTINUED 650#ifndef WCONTINUED
516# define WCONTINUED 0 651# define WCONTINUED 0
517#endif 652#endif
522 struct ev_child *w; 657 struct ev_child *w;
523 658
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 659 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid) 660 if (w->pid == pid || !w->pid)
526 { 661 {
527 w->priority = sw->priority; /* need to do it *now* */ 662 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid; 663 w->rpid = pid;
529 w->rstatus = status; 664 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD); 665 ev_feed_event (EV_A_ (W)w, EV_CHILD);
531 } 666 }
532} 667}
533 668
534static void 669static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 670childcb (EV_P_ struct ev_signal *sw, int revents)
537 int pid, status; 672 int pid, status;
538 673
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 674 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 675 {
541 /* make sure we are called again until all childs have been reaped */ 676 /* make sure we are called again until all childs have been reaped */
542 event (EV_A_ (W)sw, EV_SIGNAL); 677 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 678
544 child_reap (EV_A_ sw, pid, pid, status); 679 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 680 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 } 681 }
547} 682}
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 739 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605 have_monotonic = 1; 740 have_monotonic = 1;
606 } 741 }
607#endif 742#endif
608 743
609 rt_now = ev_time (); 744 ev_rt_now = ev_time ();
610 mn_now = get_clock (); 745 mn_now = get_clock ();
611 now_floor = mn_now; 746 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now; 747 rtmn_diff = ev_rt_now - mn_now;
613 748
614 if (methods == EVMETHOD_AUTO) 749 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBEV_METHODS")) 750 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS")); 751 methods = atoi (getenv ("LIBEV_METHODS"));
617 else 752 else
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 766 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632#endif 767#endif
633#if EV_USE_SELECT 768#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 769 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635#endif 770#endif
771
772 ev_init (&sigev, sigcb);
773 ev_set_priority (&sigev, EV_MAXPRI);
636 } 774 }
637} 775}
638 776
639void 777void
640loop_destroy (EV_P) 778loop_destroy (EV_P)
641{ 779{
780 int i;
781
642#if EV_USE_WIN32 782#if EV_USE_WIN32
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 783 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
644#endif 784#endif
645#if EV_USE_KQUEUE 785#if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 786 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
653#endif 793#endif
654#if EV_USE_SELECT 794#if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 795 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
656#endif 796#endif
657 797
798 for (i = NUMPRI; i--; )
799 array_free (pending, [i]);
800
801 /* have to use the microsoft-never-gets-it-right macro */
802 array_free_microshit (fdchange);
803 array_free_microshit (timer);
804 array_free_microshit (periodic);
805 array_free_microshit (idle);
806 array_free_microshit (prepare);
807 array_free_microshit (check);
808
658 method = 0; 809 method = 0;
659 /*TODO*/
660} 810}
661 811
662void 812static void
663loop_fork (EV_P) 813loop_fork (EV_P)
664{ 814{
665 /*TODO*/
666#if EV_USE_EPOLL 815#if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 816 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
668#endif 817#endif
669#if EV_USE_KQUEUE 818#if EV_USE_KQUEUE
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 819 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
671#endif 820#endif
821
822 if (ev_is_active (&sigev))
823 {
824 /* default loop */
825
826 ev_ref (EV_A);
827 ev_io_stop (EV_A_ &sigev);
828 close (sigpipe [0]);
829 close (sigpipe [1]);
830
831 while (pipe (sigpipe))
832 syserr ("(libev) error creating pipe");
833
834 siginit (EV_A);
835 }
836
837 postfork = 0;
672} 838}
673 839
674#if EV_MULTIPLICITY 840#if EV_MULTIPLICITY
675struct ev_loop * 841struct ev_loop *
676ev_loop_new (int methods) 842ev_loop_new (int methods)
677{ 843{
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 844 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
845
846 memset (loop, 0, sizeof (struct ev_loop));
679 847
680 loop_init (EV_A_ methods); 848 loop_init (EV_A_ methods);
681 849
682 if (ev_method (EV_A)) 850 if (ev_method (EV_A))
683 return loop; 851 return loop;
687 855
688void 856void
689ev_loop_destroy (EV_P) 857ev_loop_destroy (EV_P)
690{ 858{
691 loop_destroy (EV_A); 859 loop_destroy (EV_A);
692 free (loop); 860 ev_free (loop);
693} 861}
694 862
695void 863void
696ev_loop_fork (EV_P) 864ev_loop_fork (EV_P)
697{ 865{
698 loop_fork (EV_A); 866 postfork = 1;
699} 867}
700 868
701#endif 869#endif
702 870
703#if EV_MULTIPLICITY 871#if EV_MULTIPLICITY
704struct ev_loop default_loop_struct;
705static struct ev_loop *default_loop;
706
707struct ev_loop * 872struct ev_loop *
708#else 873#else
709static int default_loop;
710
711int 874int
712#endif 875#endif
713ev_default_loop (int methods) 876ev_default_loop (int methods)
714{ 877{
715 if (sigpipe [0] == sigpipe [1]) 878 if (sigpipe [0] == sigpipe [1])
726 889
727 loop_init (EV_A_ methods); 890 loop_init (EV_A_ methods);
728 891
729 if (ev_method (EV_A)) 892 if (ev_method (EV_A))
730 { 893 {
731 ev_watcher_init (&sigev, sigcb);
732 ev_set_priority (&sigev, EV_MAXPRI);
733 siginit (EV_A); 894 siginit (EV_A);
734 895
735#ifndef WIN32 896#ifndef WIN32
736 ev_signal_init (&childev, childcb, SIGCHLD); 897 ev_signal_init (&childev, childcb, SIGCHLD);
737 ev_set_priority (&childev, EV_MAXPRI); 898 ev_set_priority (&childev, EV_MAXPRI);
751{ 912{
752#if EV_MULTIPLICITY 913#if EV_MULTIPLICITY
753 struct ev_loop *loop = default_loop; 914 struct ev_loop *loop = default_loop;
754#endif 915#endif
755 916
917#ifndef WIN32
756 ev_ref (EV_A); /* child watcher */ 918 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev); 919 ev_signal_stop (EV_A_ &childev);
920#endif
758 921
759 ev_ref (EV_A); /* signal watcher */ 922 ev_ref (EV_A); /* signal watcher */
760 ev_io_stop (EV_A_ &sigev); 923 ev_io_stop (EV_A_ &sigev);
761 924
762 close (sigpipe [0]); sigpipe [0] = 0; 925 close (sigpipe [0]); sigpipe [0] = 0;
770{ 933{
771#if EV_MULTIPLICITY 934#if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop; 935 struct ev_loop *loop = default_loop;
773#endif 936#endif
774 937
775 loop_fork (EV_A); 938 if (method)
776 939 postfork = 1;
777 ev_io_stop (EV_A_ &sigev);
778 close (sigpipe [0]);
779 close (sigpipe [1]);
780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
783 siginit (EV_A);
784} 940}
785 941
786/*****************************************************************************/ 942/*****************************************************************************/
943
944static int
945any_pending (EV_P)
946{
947 int pri;
948
949 for (pri = NUMPRI; pri--; )
950 if (pendingcnt [pri])
951 return 1;
952
953 return 0;
954}
787 955
788static void 956static void
789call_pending (EV_P) 957call_pending (EV_P)
790{ 958{
791 int pri; 959 int pri;
796 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 964 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
797 965
798 if (p->w) 966 if (p->w)
799 { 967 {
800 p->w->pending = 0; 968 p->w->pending = 0;
801 p->w->cb (EV_A_ p->w, p->events); 969 EV_CB_INVOKE (p->w, p->events);
802 } 970 }
803 } 971 }
804} 972}
805 973
806static void 974static void
807timers_reify (EV_P) 975timers_reify (EV_P)
808{ 976{
809 while (timercnt && timers [0]->at <= mn_now) 977 while (timercnt && ((WT)timers [0])->at <= mn_now)
810 { 978 {
811 struct ev_timer *w = timers [0]; 979 struct ev_timer *w = timers [0];
812 980
813 assert (("inactive timer on timer heap detected", ev_is_active (w))); 981 assert (("inactive timer on timer heap detected", ev_is_active (w)));
814 982
815 /* first reschedule or stop timer */ 983 /* first reschedule or stop timer */
816 if (w->repeat) 984 if (w->repeat)
817 { 985 {
818 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 986 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
819 w->at = mn_now + w->repeat; 987 ((WT)w)->at = mn_now + w->repeat;
820 downheap ((WT *)timers, timercnt, 0); 988 downheap ((WT *)timers, timercnt, 0);
821 } 989 }
822 else 990 else
823 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 991 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
824 992
825 event (EV_A_ (W)w, EV_TIMEOUT); 993 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
826 } 994 }
827} 995}
828 996
829static void 997static void
830periodics_reify (EV_P) 998periodics_reify (EV_P)
831{ 999{
832 while (periodiccnt && periodics [0]->at <= rt_now) 1000 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
833 { 1001 {
834 struct ev_periodic *w = periodics [0]; 1002 struct ev_periodic *w = periodics [0];
835 1003
836 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1004 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
837 1005
838 /* first reschedule or stop timer */ 1006 /* first reschedule or stop timer */
839 if (w->interval) 1007 if (w->reschedule_cb)
840 { 1008 {
1009 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1010
1011 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1012 downheap ((WT *)periodics, periodiccnt, 0);
1013 }
1014 else if (w->interval)
1015 {
841 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1016 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
842 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1017 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
843 downheap ((WT *)periodics, periodiccnt, 0); 1018 downheap ((WT *)periodics, periodiccnt, 0);
844 } 1019 }
845 else 1020 else
846 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1021 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
847 1022
848 event (EV_A_ (W)w, EV_PERIODIC); 1023 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
849 } 1024 }
850} 1025}
851 1026
852static void 1027static void
853periodics_reschedule (EV_P) 1028periodics_reschedule (EV_P)
857 /* adjust periodics after time jump */ 1032 /* adjust periodics after time jump */
858 for (i = 0; i < periodiccnt; ++i) 1033 for (i = 0; i < periodiccnt; ++i)
859 { 1034 {
860 struct ev_periodic *w = periodics [i]; 1035 struct ev_periodic *w = periodics [i];
861 1036
1037 if (w->reschedule_cb)
1038 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
862 if (w->interval) 1039 else if (w->interval)
863 {
864 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1040 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
865
866 if (fabs (diff) >= 1e-4)
867 {
868 ev_periodic_stop (EV_A_ w);
869 ev_periodic_start (EV_A_ w);
870
871 i = 0; /* restart loop, inefficient, but time jumps should be rare */
872 }
873 }
874 } 1041 }
1042
1043 /* now rebuild the heap */
1044 for (i = periodiccnt >> 1; i--; )
1045 downheap ((WT *)periodics, periodiccnt, i);
875} 1046}
876 1047
877inline int 1048inline int
878time_update_monotonic (EV_P) 1049time_update_monotonic (EV_P)
879{ 1050{
880 mn_now = get_clock (); 1051 mn_now = get_clock ();
881 1052
882 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1053 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
883 { 1054 {
884 rt_now = rtmn_diff + mn_now; 1055 ev_rt_now = rtmn_diff + mn_now;
885 return 0; 1056 return 0;
886 } 1057 }
887 else 1058 else
888 { 1059 {
889 now_floor = mn_now; 1060 now_floor = mn_now;
890 rt_now = ev_time (); 1061 ev_rt_now = ev_time ();
891 return 1; 1062 return 1;
892 } 1063 }
893} 1064}
894 1065
895static void 1066static void
904 { 1075 {
905 ev_tstamp odiff = rtmn_diff; 1076 ev_tstamp odiff = rtmn_diff;
906 1077
907 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1078 for (i = 4; --i; ) /* loop a few times, before making important decisions */
908 { 1079 {
909 rtmn_diff = rt_now - mn_now; 1080 rtmn_diff = ev_rt_now - mn_now;
910 1081
911 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1082 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
912 return; /* all is well */ 1083 return; /* all is well */
913 1084
914 rt_now = ev_time (); 1085 ev_rt_now = ev_time ();
915 mn_now = get_clock (); 1086 mn_now = get_clock ();
916 now_floor = mn_now; 1087 now_floor = mn_now;
917 } 1088 }
918 1089
919 periodics_reschedule (EV_A); 1090 periodics_reschedule (EV_A);
922 } 1093 }
923 } 1094 }
924 else 1095 else
925#endif 1096#endif
926 { 1097 {
927 rt_now = ev_time (); 1098 ev_rt_now = ev_time ();
928 1099
929 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1100 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
930 { 1101 {
931 periodics_reschedule (EV_A); 1102 periodics_reschedule (EV_A);
932 1103
933 /* adjust timers. this is easy, as the offset is the same for all */ 1104 /* adjust timers. this is easy, as the offset is the same for all */
934 for (i = 0; i < timercnt; ++i) 1105 for (i = 0; i < timercnt; ++i)
935 timers [i]->at += rt_now - mn_now; 1106 ((WT)timers [i])->at += ev_rt_now - mn_now;
936 } 1107 }
937 1108
938 mn_now = rt_now; 1109 mn_now = ev_rt_now;
939 } 1110 }
940} 1111}
941 1112
942void 1113void
943ev_ref (EV_P) 1114ev_ref (EV_P)
966 { 1137 {
967 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1138 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
968 call_pending (EV_A); 1139 call_pending (EV_A);
969 } 1140 }
970 1141
1142 /* we might have forked, so reify kernel state if necessary */
1143 if (expect_false (postfork))
1144 loop_fork (EV_A);
1145
971 /* update fd-related kernel structures */ 1146 /* update fd-related kernel structures */
972 fd_reify (EV_A); 1147 fd_reify (EV_A);
973 1148
974 /* calculate blocking time */ 1149 /* calculate blocking time */
975 1150
976 /* we only need this for !monotonic clockor timers, but as we basically 1151 /* we only need this for !monotonic clock or timers, but as we basically
977 always have timers, we just calculate it always */ 1152 always have timers, we just calculate it always */
978#if EV_USE_MONOTONIC 1153#if EV_USE_MONOTONIC
979 if (expect_true (have_monotonic)) 1154 if (expect_true (have_monotonic))
980 time_update_monotonic (EV_A); 1155 time_update_monotonic (EV_A);
981 else 1156 else
982#endif 1157#endif
983 { 1158 {
984 rt_now = ev_time (); 1159 ev_rt_now = ev_time ();
985 mn_now = rt_now; 1160 mn_now = ev_rt_now;
986 } 1161 }
987 1162
988 if (flags & EVLOOP_NONBLOCK || idlecnt) 1163 if (flags & EVLOOP_NONBLOCK || idlecnt)
989 block = 0.; 1164 block = 0.;
990 else 1165 else
991 { 1166 {
992 block = MAX_BLOCKTIME; 1167 block = MAX_BLOCKTIME;
993 1168
994 if (timercnt) 1169 if (timercnt)
995 { 1170 {
996 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1171 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
997 if (block > to) block = to; 1172 if (block > to) block = to;
998 } 1173 }
999 1174
1000 if (periodiccnt) 1175 if (periodiccnt)
1001 { 1176 {
1002 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1177 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1003 if (block > to) block = to; 1178 if (block > to) block = to;
1004 } 1179 }
1005 1180
1006 if (block < 0.) block = 0.; 1181 if (block < 0.) block = 0.;
1007 } 1182 }
1008 1183
1009 method_poll (EV_A_ block); 1184 method_poll (EV_A_ block);
1010 1185
1011 /* update rt_now, do magic */ 1186 /* update ev_rt_now, do magic */
1012 time_update (EV_A); 1187 time_update (EV_A);
1013 1188
1014 /* queue pending timers and reschedule them */ 1189 /* queue pending timers and reschedule them */
1015 timers_reify (EV_A); /* relative timers called last */ 1190 timers_reify (EV_A); /* relative timers called last */
1016 periodics_reify (EV_A); /* absolute timers called first */ 1191 periodics_reify (EV_A); /* absolute timers called first */
1017 1192
1018 /* queue idle watchers unless io or timers are pending */ 1193 /* queue idle watchers unless io or timers are pending */
1019 if (!pendingcnt) 1194 if (idlecnt && !any_pending (EV_A))
1020 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1195 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1021 1196
1022 /* queue check watchers, to be executed first */ 1197 /* queue check watchers, to be executed first */
1023 if (checkcnt) 1198 if (checkcnt)
1024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1199 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1099 return; 1274 return;
1100 1275
1101 assert (("ev_io_start called with negative fd", fd >= 0)); 1276 assert (("ev_io_start called with negative fd", fd >= 0));
1102 1277
1103 ev_start (EV_A_ (W)w, 1); 1278 ev_start (EV_A_ (W)w, 1);
1104 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1279 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1105 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1280 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1106 1281
1107 fd_change (EV_A_ fd); 1282 fd_change (EV_A_ fd);
1108} 1283}
1109 1284
1124ev_timer_start (EV_P_ struct ev_timer *w) 1299ev_timer_start (EV_P_ struct ev_timer *w)
1125{ 1300{
1126 if (ev_is_active (w)) 1301 if (ev_is_active (w))
1127 return; 1302 return;
1128 1303
1129 w->at += mn_now; 1304 ((WT)w)->at += mn_now;
1130 1305
1131 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1306 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1132 1307
1133 ev_start (EV_A_ (W)w, ++timercnt); 1308 ev_start (EV_A_ (W)w, ++timercnt);
1134 array_needsize (timers, timermax, timercnt, ); 1309 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1135 timers [timercnt - 1] = w; 1310 timers [timercnt - 1] = w;
1136 upheap ((WT *)timers, timercnt - 1); 1311 upheap ((WT *)timers, timercnt - 1);
1137 1312
1138 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1313 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1139} 1314}
1151 { 1326 {
1152 timers [((W)w)->active - 1] = timers [timercnt]; 1327 timers [((W)w)->active - 1] = timers [timercnt];
1153 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1328 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1154 } 1329 }
1155 1330
1156 w->at = w->repeat; 1331 ((WT)w)->at = w->repeat;
1157 1332
1158 ev_stop (EV_A_ (W)w); 1333 ev_stop (EV_A_ (W)w);
1159} 1334}
1160 1335
1161void 1336void
1162ev_timer_again (EV_P_ struct ev_timer *w) 1337ev_timer_again (EV_P_ struct ev_timer *w)
1163{ 1338{
1164 if (ev_is_active (w)) 1339 if (ev_is_active (w))
1165 { 1340 {
1166 if (w->repeat) 1341 if (w->repeat)
1167 {
1168 w->at = mn_now + w->repeat;
1169 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1342 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1170 }
1171 else 1343 else
1172 ev_timer_stop (EV_A_ w); 1344 ev_timer_stop (EV_A_ w);
1173 } 1345 }
1174 else if (w->repeat) 1346 else if (w->repeat)
1175 ev_timer_start (EV_A_ w); 1347 ev_timer_start (EV_A_ w);
1179ev_periodic_start (EV_P_ struct ev_periodic *w) 1351ev_periodic_start (EV_P_ struct ev_periodic *w)
1180{ 1352{
1181 if (ev_is_active (w)) 1353 if (ev_is_active (w))
1182 return; 1354 return;
1183 1355
1356 if (w->reschedule_cb)
1357 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1358 else if (w->interval)
1359 {
1184 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1360 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1185
1186 /* this formula differs from the one in periodic_reify because we do not always round up */ 1361 /* this formula differs from the one in periodic_reify because we do not always round up */
1187 if (w->interval)
1188 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1362 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1363 }
1189 1364
1190 ev_start (EV_A_ (W)w, ++periodiccnt); 1365 ev_start (EV_A_ (W)w, ++periodiccnt);
1191 array_needsize (periodics, periodicmax, periodiccnt, ); 1366 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1192 periodics [periodiccnt - 1] = w; 1367 periodics [periodiccnt - 1] = w;
1193 upheap ((WT *)periodics, periodiccnt - 1); 1368 upheap ((WT *)periodics, periodiccnt - 1);
1194 1369
1195 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1370 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1196} 1371}
1212 1387
1213 ev_stop (EV_A_ (W)w); 1388 ev_stop (EV_A_ (W)w);
1214} 1389}
1215 1390
1216void 1391void
1392ev_periodic_again (EV_P_ struct ev_periodic *w)
1393{
1394 /* TODO: use adjustheap and recalculation */
1395 ev_periodic_stop (EV_A_ w);
1396 ev_periodic_start (EV_A_ w);
1397}
1398
1399void
1217ev_idle_start (EV_P_ struct ev_idle *w) 1400ev_idle_start (EV_P_ struct ev_idle *w)
1218{ 1401{
1219 if (ev_is_active (w)) 1402 if (ev_is_active (w))
1220 return; 1403 return;
1221 1404
1222 ev_start (EV_A_ (W)w, ++idlecnt); 1405 ev_start (EV_A_ (W)w, ++idlecnt);
1223 array_needsize (idles, idlemax, idlecnt, ); 1406 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1224 idles [idlecnt - 1] = w; 1407 idles [idlecnt - 1] = w;
1225} 1408}
1226 1409
1227void 1410void
1228ev_idle_stop (EV_P_ struct ev_idle *w) 1411ev_idle_stop (EV_P_ struct ev_idle *w)
1240{ 1423{
1241 if (ev_is_active (w)) 1424 if (ev_is_active (w))
1242 return; 1425 return;
1243 1426
1244 ev_start (EV_A_ (W)w, ++preparecnt); 1427 ev_start (EV_A_ (W)w, ++preparecnt);
1245 array_needsize (prepares, preparemax, preparecnt, ); 1428 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1246 prepares [preparecnt - 1] = w; 1429 prepares [preparecnt - 1] = w;
1247} 1430}
1248 1431
1249void 1432void
1250ev_prepare_stop (EV_P_ struct ev_prepare *w) 1433ev_prepare_stop (EV_P_ struct ev_prepare *w)
1262{ 1445{
1263 if (ev_is_active (w)) 1446 if (ev_is_active (w))
1264 return; 1447 return;
1265 1448
1266 ev_start (EV_A_ (W)w, ++checkcnt); 1449 ev_start (EV_A_ (W)w, ++checkcnt);
1267 array_needsize (checks, checkmax, checkcnt, ); 1450 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1268 checks [checkcnt - 1] = w; 1451 checks [checkcnt - 1] = w;
1269} 1452}
1270 1453
1271void 1454void
1272ev_check_stop (EV_P_ struct ev_check *w) 1455ev_check_stop (EV_P_ struct ev_check *w)
1293 return; 1476 return;
1294 1477
1295 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1478 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1296 1479
1297 ev_start (EV_A_ (W)w, 1); 1480 ev_start (EV_A_ (W)w, 1);
1298 array_needsize (signals, signalmax, w->signum, signals_init); 1481 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1299 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1482 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1300 1483
1301 if (!w->next) 1484 if (!((WL)w)->next)
1302 { 1485 {
1486#if WIN32
1487 signal (w->signum, sighandler);
1488#else
1303 struct sigaction sa; 1489 struct sigaction sa;
1304 sa.sa_handler = sighandler; 1490 sa.sa_handler = sighandler;
1305 sigfillset (&sa.sa_mask); 1491 sigfillset (&sa.sa_mask);
1306 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1492 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1307 sigaction (w->signum, &sa, 0); 1493 sigaction (w->signum, &sa, 0);
1494#endif
1308 } 1495 }
1309} 1496}
1310 1497
1311void 1498void
1312ev_signal_stop (EV_P_ struct ev_signal *w) 1499ev_signal_stop (EV_P_ struct ev_signal *w)
1362 void (*cb)(int revents, void *arg) = once->cb; 1549 void (*cb)(int revents, void *arg) = once->cb;
1363 void *arg = once->arg; 1550 void *arg = once->arg;
1364 1551
1365 ev_io_stop (EV_A_ &once->io); 1552 ev_io_stop (EV_A_ &once->io);
1366 ev_timer_stop (EV_A_ &once->to); 1553 ev_timer_stop (EV_A_ &once->to);
1367 free (once); 1554 ev_free (once);
1368 1555
1369 cb (revents, arg); 1556 cb (revents, arg);
1370} 1557}
1371 1558
1372static void 1559static void
1382} 1569}
1383 1570
1384void 1571void
1385ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1572ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1386{ 1573{
1387 struct ev_once *once = malloc (sizeof (struct ev_once)); 1574 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1388 1575
1389 if (!once) 1576 if (!once)
1390 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1577 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1391 else 1578 else
1392 { 1579 {
1393 once->cb = cb; 1580 once->cb = cb;
1394 once->arg = arg; 1581 once->arg = arg;
1395 1582
1396 ev_watcher_init (&once->io, once_cb_io); 1583 ev_init (&once->io, once_cb_io);
1397 if (fd >= 0) 1584 if (fd >= 0)
1398 { 1585 {
1399 ev_io_set (&once->io, fd, events); 1586 ev_io_set (&once->io, fd, events);
1400 ev_io_start (EV_A_ &once->io); 1587 ev_io_start (EV_A_ &once->io);
1401 } 1588 }
1402 1589
1403 ev_watcher_init (&once->to, once_cb_to); 1590 ev_init (&once->to, once_cb_to);
1404 if (timeout >= 0.) 1591 if (timeout >= 0.)
1405 { 1592 {
1406 ev_timer_set (&once->to, timeout, 0.); 1593 ev_timer_set (&once->to, timeout, 0.);
1407 ev_timer_start (EV_A_ &once->to); 1594 ev_timer_start (EV_A_ &once->to);
1408 } 1595 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines