ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.69 by root, Tue Nov 6 00:10:04 2007 UTC vs.
Revision 1.86 by root, Sat Nov 10 03:19:21 2007 UTC

54 54
55#endif 55#endif
56 56
57#include <math.h> 57#include <math.h>
58#include <stdlib.h> 58#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 59#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 60#include <stddef.h>
63 61
64#include <stdio.h> 62#include <stdio.h>
65 63
66#include <assert.h> 64#include <assert.h>
67#include <errno.h> 65#include <errno.h>
68#include <sys/types.h> 66#include <sys/types.h>
67#include <time.h>
68
69#include <signal.h>
70
69#ifndef WIN32 71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
70# include <sys/wait.h> 74# include <sys/wait.h>
71#endif 75#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 76/**/
76 77
77#ifndef EV_USE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
79#endif 80#endif
94# define EV_USE_KQUEUE 0 95# define EV_USE_KQUEUE 0
95#endif 96#endif
96 97
97#ifndef EV_USE_WIN32 98#ifndef EV_USE_WIN32
98# ifdef WIN32 99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
99# define EV_USE_WIN32 1 102# define EV_USE_SELECT 1
100# else 103# else
101# define EV_USE_WIN32 0 104# define EV_USE_WIN32 0
102# endif 105# endif
103#endif 106#endif
104 107
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 130
131#ifdef EV_H
132# include EV_H
133#else
128#include "ev.h" 134# include "ev.h"
135#endif
129 136
130#if __GNUC__ >= 3 137#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 138# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 139# define inline inline
133#else 140#else
145typedef struct ev_watcher_list *WL; 152typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 153typedef struct ev_watcher_time *WT;
147 154
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 156
150#if WIN32 157#include "ev_win32.c"
151/* note: the comment below could not be substantiated, but what would I care */
152/* MSDN says this is required to handle SIGFPE */
153volatile double SIGFPE_REQ = 0.0f;
154#endif
155 158
156/*****************************************************************************/ 159/*****************************************************************************/
157 160
158static void (*syserr_cb)(void); 161static void (*syserr_cb)(const char *msg);
159 162
160void ev_set_syserr_cb (void (*cb)(void)) 163void ev_set_syserr_cb (void (*cb)(const char *msg))
161{ 164{
162 syserr_cb = cb; 165 syserr_cb = cb;
163} 166}
164 167
165static void 168static void
166syserr (void) 169syserr (const char *msg)
167{ 170{
171 if (!msg)
172 msg = "(libev) system error";
173
168 if (syserr_cb) 174 if (syserr_cb)
169 syserr_cb (); 175 syserr_cb (msg);
170 else 176 else
171 { 177 {
172 perror ("libev"); 178 perror (msg);
173 abort (); 179 abort ();
174 } 180 }
175} 181}
176 182
177static void *(*alloc)(void *ptr, long size); 183static void *(*alloc)(void *ptr, long size);
213 int events; 219 int events;
214} ANPENDING; 220} ANPENDING;
215 221
216#if EV_MULTIPLICITY 222#if EV_MULTIPLICITY
217 223
218struct ev_loop 224 struct ev_loop
219{ 225 {
226 ev_tstamp ev_rt_now;
220# define VAR(name,decl) decl; 227 #define VAR(name,decl) decl;
221# include "ev_vars.h" 228 #include "ev_vars.h"
222};
223# undef VAR 229 #undef VAR
230 };
224# include "ev_wrap.h" 231 #include "ev_wrap.h"
232
233 struct ev_loop default_loop_struct;
234 static struct ev_loop *default_loop;
225 235
226#else 236#else
227 237
238 ev_tstamp ev_rt_now;
228# define VAR(name,decl) static decl; 239 #define VAR(name,decl) static decl;
229# include "ev_vars.h" 240 #include "ev_vars.h"
230# undef VAR 241 #undef VAR
242
243 static int default_loop;
231 244
232#endif 245#endif
233 246
234/*****************************************************************************/ 247/*****************************************************************************/
235 248
260#endif 273#endif
261 274
262 return ev_time (); 275 return ev_time ();
263} 276}
264 277
278#if EV_MULTIPLICITY
265ev_tstamp 279ev_tstamp
266ev_now (EV_P) 280ev_now (EV_P)
267{ 281{
268 return rt_now; 282 return ev_rt_now;
269} 283}
284#endif
270 285
271#define array_roundsize(base,n) ((n) | 4 & ~3) 286#define array_roundsize(type,n) ((n) | 4 & ~3)
272 287
273#define array_needsize(base,cur,cnt,init) \ 288#define array_needsize(type,base,cur,cnt,init) \
274 if (expect_false ((cnt) > cur)) \ 289 if (expect_false ((cnt) > cur)) \
275 { \ 290 { \
276 int newcnt = cur; \ 291 int newcnt = cur; \
277 do \ 292 do \
278 { \ 293 { \
279 newcnt = array_roundsize (base, newcnt << 1); \ 294 newcnt = array_roundsize (type, newcnt << 1); \
280 } \ 295 } \
281 while ((cnt) > newcnt); \ 296 while ((cnt) > newcnt); \
282 \ 297 \
283 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 298 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
284 init (base + cur, newcnt - cur); \ 299 init (base + cur, newcnt - cur); \
285 cur = newcnt; \ 300 cur = newcnt; \
286 } 301 }
287 302
288#define array_slim(stem) \ 303#define array_slim(type,stem) \
289 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 304 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
290 { \ 305 { \
291 stem ## max = array_roundsize (stem ## cnt >> 1); \ 306 stem ## max = array_roundsize (stem ## cnt >> 1); \
292 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 307 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
293 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 308 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
294 } 309 }
310
311/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
312/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
313#define array_free_microshit(stem) \
314 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
295 315
296#define array_free(stem, idx) \ 316#define array_free(stem, idx) \
297 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 317 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
298 318
299/*****************************************************************************/ 319/*****************************************************************************/
309 329
310 ++base; 330 ++base;
311 } 331 }
312} 332}
313 333
314static void 334void
315event (EV_P_ W w, int events) 335ev_feed_event (EV_P_ void *w, int revents)
316{ 336{
337 W w_ = (W)w;
338
317 if (w->pending) 339 if (w_->pending)
318 { 340 {
319 pendings [ABSPRI (w)][w->pending - 1].events |= events; 341 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
320 return; 342 return;
321 } 343 }
322 344
323 w->pending = ++pendingcnt [ABSPRI (w)]; 345 w_->pending = ++pendingcnt [ABSPRI (w_)];
324 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 346 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
325 pendings [ABSPRI (w)][w->pending - 1].w = w; 347 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
326 pendings [ABSPRI (w)][w->pending - 1].events = events; 348 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
327} 349}
328 350
329static void 351static void
330queue_events (EV_P_ W *events, int eventcnt, int type) 352queue_events (EV_P_ W *events, int eventcnt, int type)
331{ 353{
332 int i; 354 int i;
333 355
334 for (i = 0; i < eventcnt; ++i) 356 for (i = 0; i < eventcnt; ++i)
335 event (EV_A_ events [i], type); 357 ev_feed_event (EV_A_ events [i], type);
336} 358}
337 359
338static void 360inline void
339fd_event (EV_P_ int fd, int events) 361fd_event (EV_P_ int fd, int revents)
340{ 362{
341 ANFD *anfd = anfds + fd; 363 ANFD *anfd = anfds + fd;
342 struct ev_io *w; 364 struct ev_io *w;
343 365
344 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 366 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
345 { 367 {
346 int ev = w->events & events; 368 int ev = w->events & revents;
347 369
348 if (ev) 370 if (ev)
349 event (EV_A_ (W)w, ev); 371 ev_feed_event (EV_A_ (W)w, ev);
350 } 372 }
373}
374
375void
376ev_feed_fd_event (EV_P_ int fd, int revents)
377{
378 fd_event (EV_A_ fd, revents);
351} 379}
352 380
353/*****************************************************************************/ 381/*****************************************************************************/
354 382
355static void 383static void
378} 406}
379 407
380static void 408static void
381fd_change (EV_P_ int fd) 409fd_change (EV_P_ int fd)
382{ 410{
383 if (anfds [fd].reify || fdchangecnt < 0) 411 if (anfds [fd].reify)
384 return; 412 return;
385 413
386 anfds [fd].reify = 1; 414 anfds [fd].reify = 1;
387 415
388 ++fdchangecnt; 416 ++fdchangecnt;
389 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 417 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
390 fdchanges [fdchangecnt - 1] = fd; 418 fdchanges [fdchangecnt - 1] = fd;
391} 419}
392 420
393static void 421static void
394fd_kill (EV_P_ int fd) 422fd_kill (EV_P_ int fd)
396 struct ev_io *w; 424 struct ev_io *w;
397 425
398 while ((w = (struct ev_io *)anfds [fd].head)) 426 while ((w = (struct ev_io *)anfds [fd].head))
399 { 427 {
400 ev_io_stop (EV_A_ w); 428 ev_io_stop (EV_A_ w);
401 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 429 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
402 } 430 }
431}
432
433static int
434fd_valid (int fd)
435{
436#ifdef WIN32
437 return !!win32_get_osfhandle (fd);
438#else
439 return fcntl (fd, F_GETFD) != -1;
440#endif
403} 441}
404 442
405/* called on EBADF to verify fds */ 443/* called on EBADF to verify fds */
406static void 444static void
407fd_ebadf (EV_P) 445fd_ebadf (EV_P)
408{ 446{
409 int fd; 447 int fd;
410 448
411 for (fd = 0; fd < anfdmax; ++fd) 449 for (fd = 0; fd < anfdmax; ++fd)
412 if (anfds [fd].events) 450 if (anfds [fd].events)
413 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 451 if (!fd_valid (fd) == -1 && errno == EBADF)
414 fd_kill (EV_A_ fd); 452 fd_kill (EV_A_ fd);
415} 453}
416 454
417/* called on ENOMEM in select/poll to kill some fds and retry */ 455/* called on ENOMEM in select/poll to kill some fds and retry */
418static void 456static void
426 fd_kill (EV_A_ fd); 464 fd_kill (EV_A_ fd);
427 return; 465 return;
428 } 466 }
429} 467}
430 468
431/* susually called after fork if method needs to re-arm all fds from scratch */ 469/* usually called after fork if method needs to re-arm all fds from scratch */
432static void 470static void
433fd_rearm_all (EV_P) 471fd_rearm_all (EV_P)
434{ 472{
435 int fd; 473 int fd;
436 474
484 522
485 heap [k] = w; 523 heap [k] = w;
486 ((W)heap [k])->active = k + 1; 524 ((W)heap [k])->active = k + 1;
487} 525}
488 526
527inline void
528adjustheap (WT *heap, int N, int k, ev_tstamp at)
529{
530 ev_tstamp old_at = heap [k]->at;
531 heap [k]->at = at;
532
533 if (old_at < at)
534 downheap (heap, N, k);
535 else
536 upheap (heap, k);
537}
538
489/*****************************************************************************/ 539/*****************************************************************************/
490 540
491typedef struct 541typedef struct
492{ 542{
493 WL head; 543 WL head;
524 574
525 if (!gotsig) 575 if (!gotsig)
526 { 576 {
527 int old_errno = errno; 577 int old_errno = errno;
528 gotsig = 1; 578 gotsig = 1;
579#ifdef WIN32
580 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
581#else
529 write (sigpipe [1], &signum, 1); 582 write (sigpipe [1], &signum, 1);
583#endif
530 errno = old_errno; 584 errno = old_errno;
531 } 585 }
532} 586}
533 587
588void
589ev_feed_signal_event (EV_P_ int signum)
590{
591 WL w;
592
593#if EV_MULTIPLICITY
594 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
595#endif
596
597 --signum;
598
599 if (signum < 0 || signum >= signalmax)
600 return;
601
602 signals [signum].gotsig = 0;
603
604 for (w = signals [signum].head; w; w = w->next)
605 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
606}
607
534static void 608static void
535sigcb (EV_P_ struct ev_io *iow, int revents) 609sigcb (EV_P_ struct ev_io *iow, int revents)
536{ 610{
537 WL w;
538 int signum; 611 int signum;
539 612
613#ifdef WIN32
614 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
615#else
540 read (sigpipe [0], &revents, 1); 616 read (sigpipe [0], &revents, 1);
617#endif
541 gotsig = 0; 618 gotsig = 0;
542 619
543 for (signum = signalmax; signum--; ) 620 for (signum = signalmax; signum--; )
544 if (signals [signum].gotsig) 621 if (signals [signum].gotsig)
545 { 622 ev_feed_signal_event (EV_A_ signum + 1);
546 signals [signum].gotsig = 0;
547
548 for (w = signals [signum].head; w; w = w->next)
549 event (EV_A_ (W)w, EV_SIGNAL);
550 }
551} 623}
552 624
553static void 625static void
554siginit (EV_P) 626siginit (EV_P)
555{ 627{
567 ev_unref (EV_A); /* child watcher should not keep loop alive */ 639 ev_unref (EV_A); /* child watcher should not keep loop alive */
568} 640}
569 641
570/*****************************************************************************/ 642/*****************************************************************************/
571 643
644static struct ev_child *childs [PID_HASHSIZE];
645
572#ifndef WIN32 646#ifndef WIN32
573 647
574static struct ev_child *childs [PID_HASHSIZE];
575static struct ev_signal childev; 648static struct ev_signal childev;
576 649
577#ifndef WCONTINUED 650#ifndef WCONTINUED
578# define WCONTINUED 0 651# define WCONTINUED 0
579#endif 652#endif
587 if (w->pid == pid || !w->pid) 660 if (w->pid == pid || !w->pid)
588 { 661 {
589 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 662 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
590 w->rpid = pid; 663 w->rpid = pid;
591 w->rstatus = status; 664 w->rstatus = status;
592 event (EV_A_ (W)w, EV_CHILD); 665 ev_feed_event (EV_A_ (W)w, EV_CHILD);
593 } 666 }
594} 667}
595 668
596static void 669static void
597childcb (EV_P_ struct ev_signal *sw, int revents) 670childcb (EV_P_ struct ev_signal *sw, int revents)
599 int pid, status; 672 int pid, status;
600 673
601 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 674 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
602 { 675 {
603 /* make sure we are called again until all childs have been reaped */ 676 /* make sure we are called again until all childs have been reaped */
604 event (EV_A_ (W)sw, EV_SIGNAL); 677 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
605 678
606 child_reap (EV_A_ sw, pid, pid, status); 679 child_reap (EV_A_ sw, pid, pid, status);
607 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 680 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
608 } 681 }
609} 682}
666 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 739 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
667 have_monotonic = 1; 740 have_monotonic = 1;
668 } 741 }
669#endif 742#endif
670 743
671 rt_now = ev_time (); 744 ev_rt_now = ev_time ();
672 mn_now = get_clock (); 745 mn_now = get_clock ();
673 now_floor = mn_now; 746 now_floor = mn_now;
674 rtmn_diff = rt_now - mn_now; 747 rtmn_diff = ev_rt_now - mn_now;
675 748
676 if (methods == EVMETHOD_AUTO) 749 if (methods == EVMETHOD_AUTO)
677 if (!enable_secure () && getenv ("LIBEV_METHODS")) 750 if (!enable_secure () && getenv ("LIBEV_METHODS"))
678 methods = atoi (getenv ("LIBEV_METHODS")); 751 methods = atoi (getenv ("LIBEV_METHODS"));
679 else 752 else
693 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 766 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
694#endif 767#endif
695#if EV_USE_SELECT 768#if EV_USE_SELECT
696 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 769 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
697#endif 770#endif
771
772 ev_init (&sigev, sigcb);
773 ev_set_priority (&sigev, EV_MAXPRI);
698 } 774 }
699} 775}
700 776
701void 777void
702loop_destroy (EV_P) 778loop_destroy (EV_P)
720#endif 796#endif
721 797
722 for (i = NUMPRI; i--; ) 798 for (i = NUMPRI; i--; )
723 array_free (pending, [i]); 799 array_free (pending, [i]);
724 800
801 /* have to use the microsoft-never-gets-it-right macro */
725 array_free (fdchange, ); 802 array_free_microshit (fdchange);
726 array_free (timer, ); 803 array_free_microshit (timer);
727 array_free (periodic, ); 804 array_free_microshit (periodic);
728 array_free (idle, ); 805 array_free_microshit (idle);
729 array_free (prepare, ); 806 array_free_microshit (prepare);
730 array_free (check, ); 807 array_free_microshit (check);
731 808
732 method = 0; 809 method = 0;
733 /*TODO*/
734} 810}
735 811
736void 812static void
737loop_fork (EV_P) 813loop_fork (EV_P)
738{ 814{
739 /*TODO*/
740#if EV_USE_EPOLL 815#if EV_USE_EPOLL
741 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 816 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
742#endif 817#endif
743#if EV_USE_KQUEUE 818#if EV_USE_KQUEUE
744 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 819 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
745#endif 820#endif
821
822 if (ev_is_active (&sigev))
823 {
824 /* default loop */
825
826 ev_ref (EV_A);
827 ev_io_stop (EV_A_ &sigev);
828 close (sigpipe [0]);
829 close (sigpipe [1]);
830
831 while (pipe (sigpipe))
832 syserr ("(libev) error creating pipe");
833
834 siginit (EV_A);
835 }
836
837 postfork = 0;
746} 838}
747 839
748#if EV_MULTIPLICITY 840#if EV_MULTIPLICITY
749struct ev_loop * 841struct ev_loop *
750ev_loop_new (int methods) 842ev_loop_new (int methods)
769} 861}
770 862
771void 863void
772ev_loop_fork (EV_P) 864ev_loop_fork (EV_P)
773{ 865{
774 loop_fork (EV_A); 866 postfork = 1;
775} 867}
776 868
777#endif 869#endif
778 870
779#if EV_MULTIPLICITY 871#if EV_MULTIPLICITY
780struct ev_loop default_loop_struct;
781static struct ev_loop *default_loop;
782
783struct ev_loop * 872struct ev_loop *
784#else 873#else
785static int default_loop;
786
787int 874int
788#endif 875#endif
789ev_default_loop (int methods) 876ev_default_loop (int methods)
790{ 877{
791 if (sigpipe [0] == sigpipe [1]) 878 if (sigpipe [0] == sigpipe [1])
802 889
803 loop_init (EV_A_ methods); 890 loop_init (EV_A_ methods);
804 891
805 if (ev_method (EV_A)) 892 if (ev_method (EV_A))
806 { 893 {
807 ev_watcher_init (&sigev, sigcb);
808 ev_set_priority (&sigev, EV_MAXPRI);
809 siginit (EV_A); 894 siginit (EV_A);
810 895
811#ifndef WIN32 896#ifndef WIN32
812 ev_signal_init (&childev, childcb, SIGCHLD); 897 ev_signal_init (&childev, childcb, SIGCHLD);
813 ev_set_priority (&childev, EV_MAXPRI); 898 ev_set_priority (&childev, EV_MAXPRI);
827{ 912{
828#if EV_MULTIPLICITY 913#if EV_MULTIPLICITY
829 struct ev_loop *loop = default_loop; 914 struct ev_loop *loop = default_loop;
830#endif 915#endif
831 916
917#ifndef WIN32
832 ev_ref (EV_A); /* child watcher */ 918 ev_ref (EV_A); /* child watcher */
833 ev_signal_stop (EV_A_ &childev); 919 ev_signal_stop (EV_A_ &childev);
920#endif
834 921
835 ev_ref (EV_A); /* signal watcher */ 922 ev_ref (EV_A); /* signal watcher */
836 ev_io_stop (EV_A_ &sigev); 923 ev_io_stop (EV_A_ &sigev);
837 924
838 close (sigpipe [0]); sigpipe [0] = 0; 925 close (sigpipe [0]); sigpipe [0] = 0;
846{ 933{
847#if EV_MULTIPLICITY 934#if EV_MULTIPLICITY
848 struct ev_loop *loop = default_loop; 935 struct ev_loop *loop = default_loop;
849#endif 936#endif
850 937
851 loop_fork (EV_A); 938 if (method)
852 939 postfork = 1;
853 ev_io_stop (EV_A_ &sigev);
854 close (sigpipe [0]);
855 close (sigpipe [1]);
856 pipe (sigpipe);
857
858 ev_ref (EV_A); /* signal watcher */
859 siginit (EV_A);
860} 940}
861 941
862/*****************************************************************************/ 942/*****************************************************************************/
943
944static int
945any_pending (EV_P)
946{
947 int pri;
948
949 for (pri = NUMPRI; pri--; )
950 if (pendingcnt [pri])
951 return 1;
952
953 return 0;
954}
863 955
864static void 956static void
865call_pending (EV_P) 957call_pending (EV_P)
866{ 958{
867 int pri; 959 int pri;
872 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 964 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
873 965
874 if (p->w) 966 if (p->w)
875 { 967 {
876 p->w->pending = 0; 968 p->w->pending = 0;
877 p->w->cb (EV_A_ p->w, p->events); 969 EV_CB_INVOKE (p->w, p->events);
878 } 970 }
879 } 971 }
880} 972}
881 973
882static void 974static void
896 downheap ((WT *)timers, timercnt, 0); 988 downheap ((WT *)timers, timercnt, 0);
897 } 989 }
898 else 990 else
899 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 991 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
900 992
901 event (EV_A_ (W)w, EV_TIMEOUT); 993 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
902 } 994 }
903} 995}
904 996
905static void 997static void
906periodics_reify (EV_P) 998periodics_reify (EV_P)
907{ 999{
908 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1000 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
909 { 1001 {
910 struct ev_periodic *w = periodics [0]; 1002 struct ev_periodic *w = periodics [0];
911 1003
912 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1004 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
913 1005
914 /* first reschedule or stop timer */ 1006 /* first reschedule or stop timer */
915 if (w->interval) 1007 if (w->reschedule_cb)
916 { 1008 {
1009 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1010
1011 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1012 downheap ((WT *)periodics, periodiccnt, 0);
1013 }
1014 else if (w->interval)
1015 {
917 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1016 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
918 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1017 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
919 downheap ((WT *)periodics, periodiccnt, 0); 1018 downheap ((WT *)periodics, periodiccnt, 0);
920 } 1019 }
921 else 1020 else
922 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1021 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
923 1022
924 event (EV_A_ (W)w, EV_PERIODIC); 1023 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
925 } 1024 }
926} 1025}
927 1026
928static void 1027static void
929periodics_reschedule (EV_P) 1028periodics_reschedule (EV_P)
933 /* adjust periodics after time jump */ 1032 /* adjust periodics after time jump */
934 for (i = 0; i < periodiccnt; ++i) 1033 for (i = 0; i < periodiccnt; ++i)
935 { 1034 {
936 struct ev_periodic *w = periodics [i]; 1035 struct ev_periodic *w = periodics [i];
937 1036
1037 if (w->reschedule_cb)
1038 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
938 if (w->interval) 1039 else if (w->interval)
939 {
940 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1040 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
941
942 if (fabs (diff) >= 1e-4)
943 {
944 ev_periodic_stop (EV_A_ w);
945 ev_periodic_start (EV_A_ w);
946
947 i = 0; /* restart loop, inefficient, but time jumps should be rare */
948 }
949 }
950 } 1041 }
1042
1043 /* now rebuild the heap */
1044 for (i = periodiccnt >> 1; i--; )
1045 downheap ((WT *)periodics, periodiccnt, i);
951} 1046}
952 1047
953inline int 1048inline int
954time_update_monotonic (EV_P) 1049time_update_monotonic (EV_P)
955{ 1050{
956 mn_now = get_clock (); 1051 mn_now = get_clock ();
957 1052
958 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1053 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
959 { 1054 {
960 rt_now = rtmn_diff + mn_now; 1055 ev_rt_now = rtmn_diff + mn_now;
961 return 0; 1056 return 0;
962 } 1057 }
963 else 1058 else
964 { 1059 {
965 now_floor = mn_now; 1060 now_floor = mn_now;
966 rt_now = ev_time (); 1061 ev_rt_now = ev_time ();
967 return 1; 1062 return 1;
968 } 1063 }
969} 1064}
970 1065
971static void 1066static void
980 { 1075 {
981 ev_tstamp odiff = rtmn_diff; 1076 ev_tstamp odiff = rtmn_diff;
982 1077
983 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1078 for (i = 4; --i; ) /* loop a few times, before making important decisions */
984 { 1079 {
985 rtmn_diff = rt_now - mn_now; 1080 rtmn_diff = ev_rt_now - mn_now;
986 1081
987 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1082 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
988 return; /* all is well */ 1083 return; /* all is well */
989 1084
990 rt_now = ev_time (); 1085 ev_rt_now = ev_time ();
991 mn_now = get_clock (); 1086 mn_now = get_clock ();
992 now_floor = mn_now; 1087 now_floor = mn_now;
993 } 1088 }
994 1089
995 periodics_reschedule (EV_A); 1090 periodics_reschedule (EV_A);
998 } 1093 }
999 } 1094 }
1000 else 1095 else
1001#endif 1096#endif
1002 { 1097 {
1003 rt_now = ev_time (); 1098 ev_rt_now = ev_time ();
1004 1099
1005 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1100 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1006 { 1101 {
1007 periodics_reschedule (EV_A); 1102 periodics_reschedule (EV_A);
1008 1103
1009 /* adjust timers. this is easy, as the offset is the same for all */ 1104 /* adjust timers. this is easy, as the offset is the same for all */
1010 for (i = 0; i < timercnt; ++i) 1105 for (i = 0; i < timercnt; ++i)
1011 ((WT)timers [i])->at += rt_now - mn_now; 1106 ((WT)timers [i])->at += ev_rt_now - mn_now;
1012 } 1107 }
1013 1108
1014 mn_now = rt_now; 1109 mn_now = ev_rt_now;
1015 } 1110 }
1016} 1111}
1017 1112
1018void 1113void
1019ev_ref (EV_P) 1114ev_ref (EV_P)
1042 { 1137 {
1043 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1138 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1044 call_pending (EV_A); 1139 call_pending (EV_A);
1045 } 1140 }
1046 1141
1142 /* we might have forked, so reify kernel state if necessary */
1143 if (expect_false (postfork))
1144 loop_fork (EV_A);
1145
1047 /* update fd-related kernel structures */ 1146 /* update fd-related kernel structures */
1048 fd_reify (EV_A); 1147 fd_reify (EV_A);
1049 1148
1050 /* calculate blocking time */ 1149 /* calculate blocking time */
1051 1150
1052 /* we only need this for !monotonic clockor timers, but as we basically 1151 /* we only need this for !monotonic clock or timers, but as we basically
1053 always have timers, we just calculate it always */ 1152 always have timers, we just calculate it always */
1054#if EV_USE_MONOTONIC 1153#if EV_USE_MONOTONIC
1055 if (expect_true (have_monotonic)) 1154 if (expect_true (have_monotonic))
1056 time_update_monotonic (EV_A); 1155 time_update_monotonic (EV_A);
1057 else 1156 else
1058#endif 1157#endif
1059 { 1158 {
1060 rt_now = ev_time (); 1159 ev_rt_now = ev_time ();
1061 mn_now = rt_now; 1160 mn_now = ev_rt_now;
1062 } 1161 }
1063 1162
1064 if (flags & EVLOOP_NONBLOCK || idlecnt) 1163 if (flags & EVLOOP_NONBLOCK || idlecnt)
1065 block = 0.; 1164 block = 0.;
1066 else 1165 else
1073 if (block > to) block = to; 1172 if (block > to) block = to;
1074 } 1173 }
1075 1174
1076 if (periodiccnt) 1175 if (periodiccnt)
1077 { 1176 {
1078 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1177 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1079 if (block > to) block = to; 1178 if (block > to) block = to;
1080 } 1179 }
1081 1180
1082 if (block < 0.) block = 0.; 1181 if (block < 0.) block = 0.;
1083 } 1182 }
1084 1183
1085 method_poll (EV_A_ block); 1184 method_poll (EV_A_ block);
1086 1185
1087 /* update rt_now, do magic */ 1186 /* update ev_rt_now, do magic */
1088 time_update (EV_A); 1187 time_update (EV_A);
1089 1188
1090 /* queue pending timers and reschedule them */ 1189 /* queue pending timers and reschedule them */
1091 timers_reify (EV_A); /* relative timers called last */ 1190 timers_reify (EV_A); /* relative timers called last */
1092 periodics_reify (EV_A); /* absolute timers called first */ 1191 periodics_reify (EV_A); /* absolute timers called first */
1093 1192
1094 /* queue idle watchers unless io or timers are pending */ 1193 /* queue idle watchers unless io or timers are pending */
1095 if (!pendingcnt) 1194 if (idlecnt && !any_pending (EV_A))
1096 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1195 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1097 1196
1098 /* queue check watchers, to be executed first */ 1197 /* queue check watchers, to be executed first */
1099 if (checkcnt) 1198 if (checkcnt)
1100 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1199 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1175 return; 1274 return;
1176 1275
1177 assert (("ev_io_start called with negative fd", fd >= 0)); 1276 assert (("ev_io_start called with negative fd", fd >= 0));
1178 1277
1179 ev_start (EV_A_ (W)w, 1); 1278 ev_start (EV_A_ (W)w, 1);
1180 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1279 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1181 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1280 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1182 1281
1183 fd_change (EV_A_ fd); 1282 fd_change (EV_A_ fd);
1184} 1283}
1185 1284
1205 ((WT)w)->at += mn_now; 1304 ((WT)w)->at += mn_now;
1206 1305
1207 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1306 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1208 1307
1209 ev_start (EV_A_ (W)w, ++timercnt); 1308 ev_start (EV_A_ (W)w, ++timercnt);
1210 array_needsize (timers, timermax, timercnt, ); 1309 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1211 timers [timercnt - 1] = w; 1310 timers [timercnt - 1] = w;
1212 upheap ((WT *)timers, timercnt - 1); 1311 upheap ((WT *)timers, timercnt - 1);
1213 1312
1214 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1313 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1215} 1314}
1238ev_timer_again (EV_P_ struct ev_timer *w) 1337ev_timer_again (EV_P_ struct ev_timer *w)
1239{ 1338{
1240 if (ev_is_active (w)) 1339 if (ev_is_active (w))
1241 { 1340 {
1242 if (w->repeat) 1341 if (w->repeat)
1243 {
1244 ((WT)w)->at = mn_now + w->repeat;
1245 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1342 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1246 }
1247 else 1343 else
1248 ev_timer_stop (EV_A_ w); 1344 ev_timer_stop (EV_A_ w);
1249 } 1345 }
1250 else if (w->repeat) 1346 else if (w->repeat)
1251 ev_timer_start (EV_A_ w); 1347 ev_timer_start (EV_A_ w);
1255ev_periodic_start (EV_P_ struct ev_periodic *w) 1351ev_periodic_start (EV_P_ struct ev_periodic *w)
1256{ 1352{
1257 if (ev_is_active (w)) 1353 if (ev_is_active (w))
1258 return; 1354 return;
1259 1355
1356 if (w->reschedule_cb)
1357 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1358 else if (w->interval)
1359 {
1260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1360 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1261
1262 /* this formula differs from the one in periodic_reify because we do not always round up */ 1361 /* this formula differs from the one in periodic_reify because we do not always round up */
1263 if (w->interval)
1264 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1362 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1363 }
1265 1364
1266 ev_start (EV_A_ (W)w, ++periodiccnt); 1365 ev_start (EV_A_ (W)w, ++periodiccnt);
1267 array_needsize (periodics, periodicmax, periodiccnt, ); 1366 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1268 periodics [periodiccnt - 1] = w; 1367 periodics [periodiccnt - 1] = w;
1269 upheap ((WT *)periodics, periodiccnt - 1); 1368 upheap ((WT *)periodics, periodiccnt - 1);
1270 1369
1271 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1370 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1272} 1371}
1288 1387
1289 ev_stop (EV_A_ (W)w); 1388 ev_stop (EV_A_ (W)w);
1290} 1389}
1291 1390
1292void 1391void
1392ev_periodic_again (EV_P_ struct ev_periodic *w)
1393{
1394 /* TODO: use adjustheap and recalculation */
1395 ev_periodic_stop (EV_A_ w);
1396 ev_periodic_start (EV_A_ w);
1397}
1398
1399void
1293ev_idle_start (EV_P_ struct ev_idle *w) 1400ev_idle_start (EV_P_ struct ev_idle *w)
1294{ 1401{
1295 if (ev_is_active (w)) 1402 if (ev_is_active (w))
1296 return; 1403 return;
1297 1404
1298 ev_start (EV_A_ (W)w, ++idlecnt); 1405 ev_start (EV_A_ (W)w, ++idlecnt);
1299 array_needsize (idles, idlemax, idlecnt, ); 1406 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1300 idles [idlecnt - 1] = w; 1407 idles [idlecnt - 1] = w;
1301} 1408}
1302 1409
1303void 1410void
1304ev_idle_stop (EV_P_ struct ev_idle *w) 1411ev_idle_stop (EV_P_ struct ev_idle *w)
1316{ 1423{
1317 if (ev_is_active (w)) 1424 if (ev_is_active (w))
1318 return; 1425 return;
1319 1426
1320 ev_start (EV_A_ (W)w, ++preparecnt); 1427 ev_start (EV_A_ (W)w, ++preparecnt);
1321 array_needsize (prepares, preparemax, preparecnt, ); 1428 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1322 prepares [preparecnt - 1] = w; 1429 prepares [preparecnt - 1] = w;
1323} 1430}
1324 1431
1325void 1432void
1326ev_prepare_stop (EV_P_ struct ev_prepare *w) 1433ev_prepare_stop (EV_P_ struct ev_prepare *w)
1338{ 1445{
1339 if (ev_is_active (w)) 1446 if (ev_is_active (w))
1340 return; 1447 return;
1341 1448
1342 ev_start (EV_A_ (W)w, ++checkcnt); 1449 ev_start (EV_A_ (W)w, ++checkcnt);
1343 array_needsize (checks, checkmax, checkcnt, ); 1450 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1344 checks [checkcnt - 1] = w; 1451 checks [checkcnt - 1] = w;
1345} 1452}
1346 1453
1347void 1454void
1348ev_check_stop (EV_P_ struct ev_check *w) 1455ev_check_stop (EV_P_ struct ev_check *w)
1369 return; 1476 return;
1370 1477
1371 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1478 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1372 1479
1373 ev_start (EV_A_ (W)w, 1); 1480 ev_start (EV_A_ (W)w, 1);
1374 array_needsize (signals, signalmax, w->signum, signals_init); 1481 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1375 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1482 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1376 1483
1377 if (!((WL)w)->next) 1484 if (!((WL)w)->next)
1378 { 1485 {
1379#if WIN32 1486#if WIN32
1462} 1569}
1463 1570
1464void 1571void
1465ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1572ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1466{ 1573{
1467 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1574 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1468 1575
1469 if (!once) 1576 if (!once)
1470 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1577 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1471 else 1578 else
1472 { 1579 {
1473 once->cb = cb; 1580 once->cb = cb;
1474 once->arg = arg; 1581 once->arg = arg;
1475 1582
1476 ev_watcher_init (&once->io, once_cb_io); 1583 ev_init (&once->io, once_cb_io);
1477 if (fd >= 0) 1584 if (fd >= 0)
1478 { 1585 {
1479 ev_io_set (&once->io, fd, events); 1586 ev_io_set (&once->io, fd, events);
1480 ev_io_start (EV_A_ &once->io); 1587 ev_io_start (EV_A_ &once->io);
1481 } 1588 }
1482 1589
1483 ev_watcher_init (&once->to, once_cb_to); 1590 ev_init (&once->to, once_cb_to);
1484 if (timeout >= 0.) 1591 if (timeout >= 0.)
1485 { 1592 {
1486 ev_timer_set (&once->to, timeout, 0.); 1593 ev_timer_set (&once->to, timeout, 0.);
1487 ev_timer_start (EV_A_ &once->to); 1594 ev_timer_start (EV_A_ &once->to);
1488 } 1595 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines