ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.87 by root, Sat Nov 10 03:36:15 2007 UTC vs.
Revision 1.447 by root, Tue Jun 19 12:29:43 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
40# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
41# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
42# endif 82# endif
43 83
84# if HAVE_NANOSLEEP
85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
91# endif
92
44# if HAVE_SELECT && HAVE_SYS_SELECT_H 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
45# define EV_USE_SELECT 1 99# define EV_USE_SELECT 0
46# endif 100# endif
47 101
48# if HAVE_POLL && HAVE_POLL_H 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
49# define EV_USE_POLL 1 108# define EV_USE_POLL 0
50# endif 109# endif
51 110
52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
53# define EV_USE_EPOLL 1 117# define EV_USE_EPOLL 0
54# endif 118# endif
55 119
56# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
57# define EV_USE_KQUEUE 1 126# define EV_USE_KQUEUE 0
58# endif 127# endif
59 128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
60#endif 136# endif
61 137
62#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
63#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
64#include <fcntl.h> 169#include <fcntl.h>
65#include <stddef.h> 170#include <stddef.h>
66 171
67#include <stdio.h> 172#include <stdio.h>
68 173
69#include <assert.h> 174#include <assert.h>
70#include <errno.h> 175#include <errno.h>
71#include <sys/types.h> 176#include <sys/types.h>
72#include <time.h> 177#include <time.h>
178#include <limits.h>
73 179
74#include <signal.h> 180#include <signal.h>
75
76#ifndef WIN32
77# include <unistd.h>
78# include <sys/time.h>
79# include <sys/wait.h>
80#endif
81/**/
82
83#ifndef EV_USE_MONOTONIC
84# define EV_USE_MONOTONIC 1
85#endif
86
87#ifndef EV_USE_SELECT
88# define EV_USE_SELECT 1
89#endif
90
91#ifndef EV_USE_POLL
92# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
93#endif
94
95#ifndef EV_USE_EPOLL
96# define EV_USE_EPOLL 0
97#endif
98
99#ifndef EV_USE_KQUEUE
100# define EV_USE_KQUEUE 0
101#endif
102
103#ifndef EV_USE_WIN32
104# ifdef WIN32
105# define EV_USE_WIN32 0 /* it does not exist, use select */
106# undef EV_USE_SELECT
107# define EV_USE_SELECT 1
108# else
109# define EV_USE_WIN32 0
110# endif
111#endif
112
113#ifndef EV_USE_REALTIME
114# define EV_USE_REALTIME 1
115#endif
116
117/**/
118
119#ifndef CLOCK_MONOTONIC
120# undef EV_USE_MONOTONIC
121# define EV_USE_MONOTONIC 0
122#endif
123
124#ifndef CLOCK_REALTIME
125# undef EV_USE_REALTIME
126# define EV_USE_REALTIME 0
127#endif
128
129/**/
130
131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
135 181
136#ifdef EV_H 182#ifdef EV_H
137# include EV_H 183# include EV_H
138#else 184#else
139# include "ev.h" 185# include "ev.h"
140#endif 186#endif
141 187
142#if __GNUC__ >= 3 188#if EV_NO_THREADS
143# define expect(expr,value) __builtin_expect ((expr),(value)) 189# undef EV_NO_SMP
144# define inline inline 190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
197#endif
198
199#ifndef _WIN32
200# include <sys/time.h>
201# include <sys/wait.h>
202# include <unistd.h>
145#else 203#else
146# define expect(expr,value) (expr) 204# include <io.h>
147# define inline static 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
207# include <windows.h>
208# ifndef EV_SELECT_IS_WINSOCKET
209# define EV_SELECT_IS_WINSOCKET 1
148#endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
149 213
150#define expect_false(expr) expect ((expr) != 0, 0) 214/* OS X, in its infinite idiocy, actually HARDCODES
151#define expect_true(expr) expect ((expr) != 0, 1) 215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
152 221
153#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 222/* this block tries to deduce configuration from header-defined symbols and defaults */
154#define ABSPRI(w) ((w)->priority - EV_MINPRI)
155 223
156typedef struct ev_watcher *W; 224/* try to deduce the maximum number of signals on this platform */
157typedef struct ev_watcher_list *WL; 225#if defined EV_NSIG
158typedef struct ev_watcher_time *WT; 226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
159 251
160static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
161 255
162#include "ev_win32.c" 256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
261# endif
262#endif
263
264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
268# define EV_USE_MONOTONIC 0
269# endif
270#endif
271
272#ifndef EV_USE_REALTIME
273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274#endif
275
276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
280# define EV_USE_NANOSLEEP 0
281# endif
282#endif
283
284#ifndef EV_USE_SELECT
285# define EV_USE_SELECT EV_FEATURE_BACKENDS
286#endif
287
288#ifndef EV_USE_POLL
289# ifdef _WIN32
290# define EV_USE_POLL 0
291# else
292# define EV_USE_POLL EV_FEATURE_BACKENDS
293# endif
294#endif
295
296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
300# define EV_USE_EPOLL 0
301# endif
302#endif
303
304#ifndef EV_USE_KQUEUE
305# define EV_USE_KQUEUE 0
306#endif
307
308#ifndef EV_USE_PORT
309# define EV_USE_PORT 0
310#endif
311
312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
316# define EV_USE_INOTIFY 0
317# endif
318#endif
319
320#ifndef EV_PID_HASHSIZE
321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
331# else
332# define EV_USE_EVENTFD 0
333# endif
334#endif
335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
341# endif
342#endif
343
344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
374#endif
375
376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
383
384#ifndef CLOCK_MONOTONIC
385# undef EV_USE_MONOTONIC
386# define EV_USE_MONOTONIC 0
387#endif
388
389#ifndef CLOCK_REALTIME
390# undef EV_USE_REALTIME
391# define EV_USE_REALTIME 0
392#endif
393
394#if !EV_STAT_ENABLE
395# undef EV_USE_INOTIFY
396# define EV_USE_INOTIFY 0
397#endif
398
399#if !EV_USE_NANOSLEEP
400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
402# include <sys/select.h>
403# endif
404#endif
405
406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
413# endif
414#endif
415
416#if EV_USE_EVENTFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef EFD_NONBLOCK
420# define EFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef EFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
452#endif
453
454/**/
455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
462/*
463 * This is used to work around floating point rounding problems.
464 * This value is good at least till the year 4000.
465 */
466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
468
469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509/* 16 bits major, 16 bits minor */
510#define ECB_VERSION 0x00010001
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
519 #if __GNUC__
520 typedef signed long long int64_t;
521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #ifdef _WIN64
527 #define ECB_PTRSIZE 8
528 typedef uint64_t uintptr_t;
529 typedef int64_t intptr_t;
530 #else
531 #define ECB_PTRSIZE 4
532 typedef uint32_t uintptr_t;
533 typedef int32_t intptr_t;
534 #endif
535 typedef intptr_t ptrdiff_t;
536#else
537 #include <inttypes.h>
538 #if UINTMAX_MAX > 0xffffffffU
539 #define ECB_PTRSIZE 8
540 #else
541 #define ECB_PTRSIZE 4
542 #endif
543#endif
544
545/* many compilers define _GNUC_ to some versions but then only implement
546 * what their idiot authors think are the "more important" extensions,
547 * causing enormous grief in return for some better fake benchmark numbers.
548 * or so.
549 * we try to detect these and simply assume they are not gcc - if they have
550 * an issue with that they should have done it right in the first place.
551 */
552#ifndef ECB_GCC_VERSION
553 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
554 #define ECB_GCC_VERSION(major,minor) 0
555 #else
556 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
557 #endif
558#endif
559
560#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
561#define ECB_C99 (__STDC_VERSION__ >= 199901L)
562#define ECB_C11 (__STDC_VERSION__ >= 201112L)
563#define ECB_CPP (__cplusplus+0)
564#define ECB_CPP11 (__cplusplus >= 201103L)
163 565
164/*****************************************************************************/ 566/*****************************************************************************/
165 567
568/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
569/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
570
571#if ECB_NO_THREADS
572 #define ECB_NO_SMP 1
573#endif
574
575#if ECB_NO_SMP
576 #define ECB_MEMORY_FENCE do { } while (0)
577#endif
578
579#ifndef ECB_MEMORY_FENCE
580 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
581 #if __i386 || __i386__
582 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
583 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
584 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
585 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
586 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
587 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
588 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
589 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
590 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
591 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
592 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
593 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
594 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
595 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
596 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
597 #elif __sparc || __sparc__
598 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
599 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
600 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
601 #elif defined __s390__ || defined __s390x__
602 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
603 #elif defined __mips__
604 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
605 #elif defined __alpha__
606 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
607 #elif defined __hppa__
608 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
609 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
610 #elif defined __ia64__
611 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
612 #endif
613 #endif
614#endif
615
616#ifndef ECB_MEMORY_FENCE
617 #if ECB_GCC_VERSION(4,7)
618 /* see comment below (stdatomic.h) about the C11 memory model. */
619 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
620 #elif defined __clang && __has_feature (cxx_atomic)
621 /* see comment below (stdatomic.h) about the C11 memory model. */
622 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
623 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
624 #define ECB_MEMORY_FENCE __sync_synchronize ()
625 #elif _MSC_VER >= 1400 /* VC++ 2005 */
626 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
627 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
628 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
629 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
630 #elif defined _WIN32
631 #include <WinNT.h>
632 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
633 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
634 #include <mbarrier.h>
635 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
636 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
637 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
638 #elif __xlC__
639 #define ECB_MEMORY_FENCE __sync ()
640 #endif
641#endif
642
643#ifndef ECB_MEMORY_FENCE
644 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
645 /* we assume that these memory fences work on all variables/all memory accesses, */
646 /* not just C11 atomics and atomic accesses */
647 #include <stdatomic.h>
648 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
649 /* any fence other than seq_cst, which isn't very efficient for us. */
650 /* Why that is, we don't know - either the C11 memory model is quite useless */
651 /* for most usages, or gcc and clang have a bug */
652 /* I *currently* lean towards the latter, and inefficiently implement */
653 /* all three of ecb's fences as a seq_cst fence */
654 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
655 #endif
656#endif
657
658#ifndef ECB_MEMORY_FENCE
659 #if !ECB_AVOID_PTHREADS
660 /*
661 * if you get undefined symbol references to pthread_mutex_lock,
662 * or failure to find pthread.h, then you should implement
663 * the ECB_MEMORY_FENCE operations for your cpu/compiler
664 * OR provide pthread.h and link against the posix thread library
665 * of your system.
666 */
667 #include <pthread.h>
668 #define ECB_NEEDS_PTHREADS 1
669 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
670
671 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
672 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
673 #endif
674#endif
675
676#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
677 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
678#endif
679
680#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
681 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
682#endif
683
684/*****************************************************************************/
685
686#if __cplusplus
687 #define ecb_inline static inline
688#elif ECB_GCC_VERSION(2,5)
689 #define ecb_inline static __inline__
690#elif ECB_C99
691 #define ecb_inline static inline
692#else
693 #define ecb_inline static
694#endif
695
696#if ECB_GCC_VERSION(3,3)
697 #define ecb_restrict __restrict__
698#elif ECB_C99
699 #define ecb_restrict restrict
700#else
701 #define ecb_restrict
702#endif
703
704typedef int ecb_bool;
705
706#define ECB_CONCAT_(a, b) a ## b
707#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
708#define ECB_STRINGIFY_(a) # a
709#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
710
711#define ecb_function_ ecb_inline
712
713#if ECB_GCC_VERSION(3,1)
714 #define ecb_attribute(attrlist) __attribute__(attrlist)
715 #define ecb_is_constant(expr) __builtin_constant_p (expr)
716 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
717 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
718#else
719 #define ecb_attribute(attrlist)
720 #define ecb_is_constant(expr) 0
721 #define ecb_expect(expr,value) (expr)
722 #define ecb_prefetch(addr,rw,locality)
723#endif
724
725/* no emulation for ecb_decltype */
726#if ECB_GCC_VERSION(4,5)
727 #define ecb_decltype(x) __decltype(x)
728#elif ECB_GCC_VERSION(3,0)
729 #define ecb_decltype(x) __typeof(x)
730#endif
731
732#define ecb_noinline ecb_attribute ((__noinline__))
733#define ecb_unused ecb_attribute ((__unused__))
734#define ecb_const ecb_attribute ((__const__))
735#define ecb_pure ecb_attribute ((__pure__))
736
737#if ECB_C11
738 #define ecb_noreturn _Noreturn
739#else
740 #define ecb_noreturn ecb_attribute ((__noreturn__))
741#endif
742
743#if ECB_GCC_VERSION(4,3)
744 #define ecb_artificial ecb_attribute ((__artificial__))
745 #define ecb_hot ecb_attribute ((__hot__))
746 #define ecb_cold ecb_attribute ((__cold__))
747#else
748 #define ecb_artificial
749 #define ecb_hot
750 #define ecb_cold
751#endif
752
753/* put around conditional expressions if you are very sure that the */
754/* expression is mostly true or mostly false. note that these return */
755/* booleans, not the expression. */
756#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
757#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
758/* for compatibility to the rest of the world */
759#define ecb_likely(expr) ecb_expect_true (expr)
760#define ecb_unlikely(expr) ecb_expect_false (expr)
761
762/* count trailing zero bits and count # of one bits */
763#if ECB_GCC_VERSION(3,4)
764 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
765 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
766 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
767 #define ecb_ctz32(x) __builtin_ctz (x)
768 #define ecb_ctz64(x) __builtin_ctzll (x)
769 #define ecb_popcount32(x) __builtin_popcount (x)
770 /* no popcountll */
771#else
772 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
773 ecb_function_ int
774 ecb_ctz32 (uint32_t x)
775 {
776 int r = 0;
777
778 x &= ~x + 1; /* this isolates the lowest bit */
779
780#if ECB_branchless_on_i386
781 r += !!(x & 0xaaaaaaaa) << 0;
782 r += !!(x & 0xcccccccc) << 1;
783 r += !!(x & 0xf0f0f0f0) << 2;
784 r += !!(x & 0xff00ff00) << 3;
785 r += !!(x & 0xffff0000) << 4;
786#else
787 if (x & 0xaaaaaaaa) r += 1;
788 if (x & 0xcccccccc) r += 2;
789 if (x & 0xf0f0f0f0) r += 4;
790 if (x & 0xff00ff00) r += 8;
791 if (x & 0xffff0000) r += 16;
792#endif
793
794 return r;
795 }
796
797 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
798 ecb_function_ int
799 ecb_ctz64 (uint64_t x)
800 {
801 int shift = x & 0xffffffffU ? 0 : 32;
802 return ecb_ctz32 (x >> shift) + shift;
803 }
804
805 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
806 ecb_function_ int
807 ecb_popcount32 (uint32_t x)
808 {
809 x -= (x >> 1) & 0x55555555;
810 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
811 x = ((x >> 4) + x) & 0x0f0f0f0f;
812 x *= 0x01010101;
813
814 return x >> 24;
815 }
816
817 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
818 ecb_function_ int ecb_ld32 (uint32_t x)
819 {
820 int r = 0;
821
822 if (x >> 16) { x >>= 16; r += 16; }
823 if (x >> 8) { x >>= 8; r += 8; }
824 if (x >> 4) { x >>= 4; r += 4; }
825 if (x >> 2) { x >>= 2; r += 2; }
826 if (x >> 1) { r += 1; }
827
828 return r;
829 }
830
831 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
832 ecb_function_ int ecb_ld64 (uint64_t x)
833 {
834 int r = 0;
835
836 if (x >> 32) { x >>= 32; r += 32; }
837
838 return r + ecb_ld32 (x);
839 }
840#endif
841
842ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
843ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
844ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
845ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
846
847ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
848ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
849{
850 return ( (x * 0x0802U & 0x22110U)
851 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
852}
853
854ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
855ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
856{
857 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
858 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
859 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
860 x = ( x >> 8 ) | ( x << 8);
861
862 return x;
863}
864
865ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
866ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
867{
868 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
869 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
870 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
871 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
872 x = ( x >> 16 ) | ( x << 16);
873
874 return x;
875}
876
877/* popcount64 is only available on 64 bit cpus as gcc builtin */
878/* so for this version we are lazy */
879ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
880ecb_function_ int
881ecb_popcount64 (uint64_t x)
882{
883 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
884}
885
886ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
887ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
888ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
889ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
890ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
891ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
892ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
893ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
894
895ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
896ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
897ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
898ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
899ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
900ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
901ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
902ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
903
904#if ECB_GCC_VERSION(4,3)
905 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
906 #define ecb_bswap32(x) __builtin_bswap32 (x)
907 #define ecb_bswap64(x) __builtin_bswap64 (x)
908#else
909 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
910 ecb_function_ uint16_t
911 ecb_bswap16 (uint16_t x)
912 {
913 return ecb_rotl16 (x, 8);
914 }
915
916 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
917 ecb_function_ uint32_t
918 ecb_bswap32 (uint32_t x)
919 {
920 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
921 }
922
923 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
924 ecb_function_ uint64_t
925 ecb_bswap64 (uint64_t x)
926 {
927 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
928 }
929#endif
930
931#if ECB_GCC_VERSION(4,5)
932 #define ecb_unreachable() __builtin_unreachable ()
933#else
934 /* this seems to work fine, but gcc always emits a warning for it :/ */
935 ecb_inline void ecb_unreachable (void) ecb_noreturn;
936 ecb_inline void ecb_unreachable (void) { }
937#endif
938
939/* try to tell the compiler that some condition is definitely true */
940#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
941
942ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
943ecb_inline unsigned char
944ecb_byteorder_helper (void)
945{
946 const uint32_t u = 0x11223344;
947 return *(unsigned char *)&u;
948}
949
950ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
951ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
952ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
953ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
954
955#if ECB_GCC_VERSION(3,0) || ECB_C99
956 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
957#else
958 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
959#endif
960
961#if __cplusplus
962 template<typename T>
963 static inline T ecb_div_rd (T val, T div)
964 {
965 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
966 }
967 template<typename T>
968 static inline T ecb_div_ru (T val, T div)
969 {
970 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
971 }
972#else
973 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
974 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
975#endif
976
977#if ecb_cplusplus_does_not_suck
978 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
979 template<typename T, int N>
980 static inline int ecb_array_length (const T (&arr)[N])
981 {
982 return N;
983 }
984#else
985 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
986#endif
987
988#endif
989
990/* ECB.H END */
991
992#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
993/* if your architecture doesn't need memory fences, e.g. because it is
994 * single-cpu/core, or if you use libev in a project that doesn't use libev
995 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
996 * libev, in which cases the memory fences become nops.
997 * alternatively, you can remove this #error and link against libpthread,
998 * which will then provide the memory fences.
999 */
1000# error "memory fences not defined for your architecture, please report"
1001#endif
1002
1003#ifndef ECB_MEMORY_FENCE
1004# define ECB_MEMORY_FENCE do { } while (0)
1005# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1006# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1007#endif
1008
1009#define expect_false(cond) ecb_expect_false (cond)
1010#define expect_true(cond) ecb_expect_true (cond)
1011#define noinline ecb_noinline
1012
1013#define inline_size ecb_inline
1014
1015#if EV_FEATURE_CODE
1016# define inline_speed ecb_inline
1017#else
1018# define inline_speed static noinline
1019#endif
1020
1021#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1022
1023#if EV_MINPRI == EV_MAXPRI
1024# define ABSPRI(w) (((W)w), 0)
1025#else
1026# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1027#endif
1028
1029#define EMPTY /* required for microsofts broken pseudo-c compiler */
1030#define EMPTY2(a,b) /* used to suppress some warnings */
1031
1032typedef ev_watcher *W;
1033typedef ev_watcher_list *WL;
1034typedef ev_watcher_time *WT;
1035
1036#define ev_active(w) ((W)(w))->active
1037#define ev_at(w) ((WT)(w))->at
1038
1039#if EV_USE_REALTIME
1040/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1041/* giving it a reasonably high chance of working on typical architectures */
1042static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1043#endif
1044
1045#if EV_USE_MONOTONIC
1046static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1047#endif
1048
1049#ifndef EV_FD_TO_WIN32_HANDLE
1050# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1051#endif
1052#ifndef EV_WIN32_HANDLE_TO_FD
1053# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1054#endif
1055#ifndef EV_WIN32_CLOSE_FD
1056# define EV_WIN32_CLOSE_FD(fd) close (fd)
1057#endif
1058
1059#ifdef _WIN32
1060# include "ev_win32.c"
1061#endif
1062
1063/*****************************************************************************/
1064
1065/* define a suitable floor function (only used by periodics atm) */
1066
1067#if EV_USE_FLOOR
1068# include <math.h>
1069# define ev_floor(v) floor (v)
1070#else
1071
1072#include <float.h>
1073
1074/* a floor() replacement function, should be independent of ev_tstamp type */
1075static ev_tstamp noinline
1076ev_floor (ev_tstamp v)
1077{
1078 /* the choice of shift factor is not terribly important */
1079#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1080 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1081#else
1082 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1083#endif
1084
1085 /* argument too large for an unsigned long? */
1086 if (expect_false (v >= shift))
1087 {
1088 ev_tstamp f;
1089
1090 if (v == v - 1.)
1091 return v; /* very large number */
1092
1093 f = shift * ev_floor (v * (1. / shift));
1094 return f + ev_floor (v - f);
1095 }
1096
1097 /* special treatment for negative args? */
1098 if (expect_false (v < 0.))
1099 {
1100 ev_tstamp f = -ev_floor (-v);
1101
1102 return f - (f == v ? 0 : 1);
1103 }
1104
1105 /* fits into an unsigned long */
1106 return (unsigned long)v;
1107}
1108
1109#endif
1110
1111/*****************************************************************************/
1112
1113#ifdef __linux
1114# include <sys/utsname.h>
1115#endif
1116
1117static unsigned int noinline ecb_cold
1118ev_linux_version (void)
1119{
1120#ifdef __linux
1121 unsigned int v = 0;
1122 struct utsname buf;
1123 int i;
1124 char *p = buf.release;
1125
1126 if (uname (&buf))
1127 return 0;
1128
1129 for (i = 3+1; --i; )
1130 {
1131 unsigned int c = 0;
1132
1133 for (;;)
1134 {
1135 if (*p >= '0' && *p <= '9')
1136 c = c * 10 + *p++ - '0';
1137 else
1138 {
1139 p += *p == '.';
1140 break;
1141 }
1142 }
1143
1144 v = (v << 8) | c;
1145 }
1146
1147 return v;
1148#else
1149 return 0;
1150#endif
1151}
1152
1153/*****************************************************************************/
1154
1155#if EV_AVOID_STDIO
1156static void noinline ecb_cold
1157ev_printerr (const char *msg)
1158{
1159 write (STDERR_FILENO, msg, strlen (msg));
1160}
1161#endif
1162
166static void (*syserr_cb)(const char *msg); 1163static void (*syserr_cb)(const char *msg) EV_THROW;
167 1164
1165void ecb_cold
168void ev_set_syserr_cb (void (*cb)(const char *msg)) 1166ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
169{ 1167{
170 syserr_cb = cb; 1168 syserr_cb = cb;
171} 1169}
172 1170
173static void 1171static void noinline ecb_cold
174syserr (const char *msg) 1172ev_syserr (const char *msg)
175{ 1173{
176 if (!msg) 1174 if (!msg)
177 msg = "(libev) system error"; 1175 msg = "(libev) system error";
178 1176
179 if (syserr_cb) 1177 if (syserr_cb)
180 syserr_cb (msg); 1178 syserr_cb (msg);
181 else 1179 else
182 { 1180 {
1181#if EV_AVOID_STDIO
1182 ev_printerr (msg);
1183 ev_printerr (": ");
1184 ev_printerr (strerror (errno));
1185 ev_printerr ("\n");
1186#else
183 perror (msg); 1187 perror (msg);
1188#endif
184 abort (); 1189 abort ();
185 } 1190 }
186} 1191}
187 1192
1193static void *
1194ev_realloc_emul (void *ptr, long size) EV_THROW
1195{
1196 /* some systems, notably openbsd and darwin, fail to properly
1197 * implement realloc (x, 0) (as required by both ansi c-89 and
1198 * the single unix specification, so work around them here.
1199 * recently, also (at least) fedora and debian started breaking it,
1200 * despite documenting it otherwise.
1201 */
1202
1203 if (size)
1204 return realloc (ptr, size);
1205
1206 free (ptr);
1207 return 0;
1208}
1209
188static void *(*alloc)(void *ptr, long size); 1210static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
189 1211
1212void ecb_cold
190void ev_set_allocator (void *(*cb)(void *ptr, long size)) 1213ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
191{ 1214{
192 alloc = cb; 1215 alloc = cb;
193} 1216}
194 1217
195static void * 1218inline_speed void *
196ev_realloc (void *ptr, long size) 1219ev_realloc (void *ptr, long size)
197{ 1220{
198 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1221 ptr = alloc (ptr, size);
199 1222
200 if (!ptr && size) 1223 if (!ptr && size)
201 { 1224 {
1225#if EV_AVOID_STDIO
1226 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1227#else
202 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1228 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1229#endif
203 abort (); 1230 abort ();
204 } 1231 }
205 1232
206 return ptr; 1233 return ptr;
207} 1234}
209#define ev_malloc(size) ev_realloc (0, (size)) 1236#define ev_malloc(size) ev_realloc (0, (size))
210#define ev_free(ptr) ev_realloc ((ptr), 0) 1237#define ev_free(ptr) ev_realloc ((ptr), 0)
211 1238
212/*****************************************************************************/ 1239/*****************************************************************************/
213 1240
1241/* set in reify when reification needed */
1242#define EV_ANFD_REIFY 1
1243
1244/* file descriptor info structure */
214typedef struct 1245typedef struct
215{ 1246{
216 WL head; 1247 WL head;
217 unsigned char events; 1248 unsigned char events; /* the events watched for */
1249 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1250 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
218 unsigned char reify; 1251 unsigned char unused;
1252#if EV_USE_EPOLL
1253 unsigned int egen; /* generation counter to counter epoll bugs */
1254#endif
1255#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1256 SOCKET handle;
1257#endif
1258#if EV_USE_IOCP
1259 OVERLAPPED or, ow;
1260#endif
219} ANFD; 1261} ANFD;
220 1262
1263/* stores the pending event set for a given watcher */
221typedef struct 1264typedef struct
222{ 1265{
223 W w; 1266 W w;
224 int events; 1267 int events; /* the pending event set for the given watcher */
225} ANPENDING; 1268} ANPENDING;
1269
1270#if EV_USE_INOTIFY
1271/* hash table entry per inotify-id */
1272typedef struct
1273{
1274 WL head;
1275} ANFS;
1276#endif
1277
1278/* Heap Entry */
1279#if EV_HEAP_CACHE_AT
1280 /* a heap element */
1281 typedef struct {
1282 ev_tstamp at;
1283 WT w;
1284 } ANHE;
1285
1286 #define ANHE_w(he) (he).w /* access watcher, read-write */
1287 #define ANHE_at(he) (he).at /* access cached at, read-only */
1288 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1289#else
1290 /* a heap element */
1291 typedef WT ANHE;
1292
1293 #define ANHE_w(he) (he)
1294 #define ANHE_at(he) (he)->at
1295 #define ANHE_at_cache(he)
1296#endif
226 1297
227#if EV_MULTIPLICITY 1298#if EV_MULTIPLICITY
228 1299
229 struct ev_loop 1300 struct ev_loop
230 { 1301 {
231 ev_tstamp ev_rt_now; 1302 ev_tstamp ev_rt_now;
1303 #define ev_rt_now ((loop)->ev_rt_now)
232 #define VAR(name,decl) decl; 1304 #define VAR(name,decl) decl;
233 #include "ev_vars.h" 1305 #include "ev_vars.h"
234 #undef VAR 1306 #undef VAR
235 }; 1307 };
236 #include "ev_wrap.h" 1308 #include "ev_wrap.h"
237 1309
238 struct ev_loop default_loop_struct; 1310 static struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop; 1311 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
240 1312
241#else 1313#else
242 1314
243 ev_tstamp ev_rt_now; 1315 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
244 #define VAR(name,decl) static decl; 1316 #define VAR(name,decl) static decl;
245 #include "ev_vars.h" 1317 #include "ev_vars.h"
246 #undef VAR 1318 #undef VAR
247 1319
248 static int default_loop; 1320 static int ev_default_loop_ptr;
249 1321
250#endif 1322#endif
1323
1324#if EV_FEATURE_API
1325# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1326# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1327# define EV_INVOKE_PENDING invoke_cb (EV_A)
1328#else
1329# define EV_RELEASE_CB (void)0
1330# define EV_ACQUIRE_CB (void)0
1331# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1332#endif
1333
1334#define EVBREAK_RECURSE 0x80
251 1335
252/*****************************************************************************/ 1336/*****************************************************************************/
253 1337
254inline ev_tstamp 1338#ifndef EV_HAVE_EV_TIME
1339ev_tstamp
255ev_time (void) 1340ev_time (void) EV_THROW
256{ 1341{
257#if EV_USE_REALTIME 1342#if EV_USE_REALTIME
1343 if (expect_true (have_realtime))
1344 {
258 struct timespec ts; 1345 struct timespec ts;
259 clock_gettime (CLOCK_REALTIME, &ts); 1346 clock_gettime (CLOCK_REALTIME, &ts);
260 return ts.tv_sec + ts.tv_nsec * 1e-9; 1347 return ts.tv_sec + ts.tv_nsec * 1e-9;
261#else 1348 }
1349#endif
1350
262 struct timeval tv; 1351 struct timeval tv;
263 gettimeofday (&tv, 0); 1352 gettimeofday (&tv, 0);
264 return tv.tv_sec + tv.tv_usec * 1e-6; 1353 return tv.tv_sec + tv.tv_usec * 1e-6;
265#endif
266} 1354}
1355#endif
267 1356
268inline ev_tstamp 1357inline_size ev_tstamp
269get_clock (void) 1358get_clock (void)
270{ 1359{
271#if EV_USE_MONOTONIC 1360#if EV_USE_MONOTONIC
272 if (expect_true (have_monotonic)) 1361 if (expect_true (have_monotonic))
273 { 1362 {
280 return ev_time (); 1369 return ev_time ();
281} 1370}
282 1371
283#if EV_MULTIPLICITY 1372#if EV_MULTIPLICITY
284ev_tstamp 1373ev_tstamp
285ev_now (EV_P) 1374ev_now (EV_P) EV_THROW
286{ 1375{
287 return ev_rt_now; 1376 return ev_rt_now;
288} 1377}
289#endif 1378#endif
290 1379
291#define array_roundsize(type,n) ((n) | 4 & ~3) 1380void
1381ev_sleep (ev_tstamp delay) EV_THROW
1382{
1383 if (delay > 0.)
1384 {
1385#if EV_USE_NANOSLEEP
1386 struct timespec ts;
1387
1388 EV_TS_SET (ts, delay);
1389 nanosleep (&ts, 0);
1390#elif defined _WIN32
1391 Sleep ((unsigned long)(delay * 1e3));
1392#else
1393 struct timeval tv;
1394
1395 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1396 /* something not guaranteed by newer posix versions, but guaranteed */
1397 /* by older ones */
1398 EV_TV_SET (tv, delay);
1399 select (0, 0, 0, 0, &tv);
1400#endif
1401 }
1402}
1403
1404/*****************************************************************************/
1405
1406#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1407
1408/* find a suitable new size for the given array, */
1409/* hopefully by rounding to a nice-to-malloc size */
1410inline_size int
1411array_nextsize (int elem, int cur, int cnt)
1412{
1413 int ncur = cur + 1;
1414
1415 do
1416 ncur <<= 1;
1417 while (cnt > ncur);
1418
1419 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
1420 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
1421 {
1422 ncur *= elem;
1423 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
1424 ncur = ncur - sizeof (void *) * 4;
1425 ncur /= elem;
1426 }
1427
1428 return ncur;
1429}
1430
1431static void * noinline ecb_cold
1432array_realloc (int elem, void *base, int *cur, int cnt)
1433{
1434 *cur = array_nextsize (elem, *cur, cnt);
1435 return ev_realloc (base, elem * *cur);
1436}
1437
1438#define array_init_zero(base,count) \
1439 memset ((void *)(base), 0, sizeof (*(base)) * (count))
292 1440
293#define array_needsize(type,base,cur,cnt,init) \ 1441#define array_needsize(type,base,cur,cnt,init) \
294 if (expect_false ((cnt) > cur)) \ 1442 if (expect_false ((cnt) > (cur))) \
295 { \ 1443 { \
296 int newcnt = cur; \ 1444 int ecb_unused ocur_ = (cur); \
297 do \ 1445 (base) = (type *)array_realloc \
298 { \ 1446 (sizeof (type), (base), &(cur), (cnt)); \
299 newcnt = array_roundsize (type, newcnt << 1); \ 1447 init ((base) + (ocur_), (cur) - ocur_); \
300 } \
301 while ((cnt) > newcnt); \
302 \
303 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
304 init (base + cur, newcnt - cur); \
305 cur = newcnt; \
306 } 1448 }
307 1449
1450#if 0
308#define array_slim(type,stem) \ 1451#define array_slim(type,stem) \
309 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 1452 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
310 { \ 1453 { \
311 stem ## max = array_roundsize (stem ## cnt >> 1); \ 1454 stem ## max = array_roundsize (stem ## cnt >> 1); \
312 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 1455 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
313 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
314 } 1457 }
315 1458#endif
316/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
317/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
318#define array_free_microshit(stem) \
319 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
320 1459
321#define array_free(stem, idx) \ 1460#define array_free(stem, idx) \
322 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
323 1462
324/*****************************************************************************/ 1463/*****************************************************************************/
325 1464
326static void 1465/* dummy callback for pending events */
327anfds_init (ANFD *base, int count) 1466static void noinline
1467pendingcb (EV_P_ ev_prepare *w, int revents)
328{ 1468{
329 while (count--)
330 {
331 base->head = 0;
332 base->events = EV_NONE;
333 base->reify = 0;
334
335 ++base;
336 }
337} 1469}
338 1470
339void 1471void noinline
340ev_feed_event (EV_P_ void *w, int revents) 1472ev_feed_event (EV_P_ void *w, int revents) EV_THROW
341{ 1473{
342 W w_ = (W)w; 1474 W w_ = (W)w;
1475 int pri = ABSPRI (w_);
343 1476
344 if (w_->pending) 1477 if (expect_false (w_->pending))
1478 pendings [pri][w_->pending - 1].events |= revents;
1479 else
345 { 1480 {
1481 w_->pending = ++pendingcnt [pri];
1482 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1483 pendings [pri][w_->pending - 1].w = w_;
346 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1484 pendings [pri][w_->pending - 1].events = revents;
347 return;
348 } 1485 }
349 1486
350 w_->pending = ++pendingcnt [ABSPRI (w_)]; 1487 pendingpri = NUMPRI - 1;
351 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
352 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
353 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
354} 1488}
355 1489
356static void 1490inline_speed void
1491feed_reverse (EV_P_ W w)
1492{
1493 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1494 rfeeds [rfeedcnt++] = w;
1495}
1496
1497inline_size void
1498feed_reverse_done (EV_P_ int revents)
1499{
1500 do
1501 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1502 while (rfeedcnt);
1503}
1504
1505inline_speed void
357queue_events (EV_P_ W *events, int eventcnt, int type) 1506queue_events (EV_P_ W *events, int eventcnt, int type)
358{ 1507{
359 int i; 1508 int i;
360 1509
361 for (i = 0; i < eventcnt; ++i) 1510 for (i = 0; i < eventcnt; ++i)
362 ev_feed_event (EV_A_ events [i], type); 1511 ev_feed_event (EV_A_ events [i], type);
363} 1512}
364 1513
1514/*****************************************************************************/
1515
365inline void 1516inline_speed void
366fd_event (EV_P_ int fd, int revents) 1517fd_event_nocheck (EV_P_ int fd, int revents)
367{ 1518{
368 ANFD *anfd = anfds + fd; 1519 ANFD *anfd = anfds + fd;
369 struct ev_io *w; 1520 ev_io *w;
370 1521
371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 1522 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
372 { 1523 {
373 int ev = w->events & revents; 1524 int ev = w->events & revents;
374 1525
375 if (ev) 1526 if (ev)
376 ev_feed_event (EV_A_ (W)w, ev); 1527 ev_feed_event (EV_A_ (W)w, ev);
377 } 1528 }
378} 1529}
379 1530
1531/* do not submit kernel events for fds that have reify set */
1532/* because that means they changed while we were polling for new events */
1533inline_speed void
1534fd_event (EV_P_ int fd, int revents)
1535{
1536 ANFD *anfd = anfds + fd;
1537
1538 if (expect_true (!anfd->reify))
1539 fd_event_nocheck (EV_A_ fd, revents);
1540}
1541
380void 1542void
381ev_feed_fd_event (EV_P_ int fd, int revents) 1543ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
382{ 1544{
1545 if (fd >= 0 && fd < anfdmax)
383 fd_event (EV_A_ fd, revents); 1546 fd_event_nocheck (EV_A_ fd, revents);
384} 1547}
385 1548
386/*****************************************************************************/ 1549/* make sure the external fd watch events are in-sync */
387 1550/* with the kernel/libev internal state */
388static void 1551inline_size void
389fd_reify (EV_P) 1552fd_reify (EV_P)
390{ 1553{
391 int i; 1554 int i;
392 1555
1556#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
393 for (i = 0; i < fdchangecnt; ++i) 1557 for (i = 0; i < fdchangecnt; ++i)
394 { 1558 {
395 int fd = fdchanges [i]; 1559 int fd = fdchanges [i];
396 ANFD *anfd = anfds + fd; 1560 ANFD *anfd = anfds + fd;
1561
1562 if (anfd->reify & EV__IOFDSET && anfd->head)
1563 {
1564 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1565
1566 if (handle != anfd->handle)
1567 {
1568 unsigned long arg;
1569
1570 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1571
1572 /* handle changed, but fd didn't - we need to do it in two steps */
1573 backend_modify (EV_A_ fd, anfd->events, 0);
1574 anfd->events = 0;
1575 anfd->handle = handle;
1576 }
1577 }
1578 }
1579#endif
1580
1581 for (i = 0; i < fdchangecnt; ++i)
1582 {
1583 int fd = fdchanges [i];
1584 ANFD *anfd = anfds + fd;
397 struct ev_io *w; 1585 ev_io *w;
398 1586
399 int events = 0; 1587 unsigned char o_events = anfd->events;
1588 unsigned char o_reify = anfd->reify;
400 1589
401 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
402 events |= w->events;
403
404 anfd->reify = 0; 1590 anfd->reify = 0;
405 1591
406 method_modify (EV_A_ fd, anfd->events, events); 1592 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1593 {
407 anfd->events = events; 1594 anfd->events = 0;
1595
1596 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1597 anfd->events |= (unsigned char)w->events;
1598
1599 if (o_events != anfd->events)
1600 o_reify = EV__IOFDSET; /* actually |= */
1601 }
1602
1603 if (o_reify & EV__IOFDSET)
1604 backend_modify (EV_A_ fd, o_events, anfd->events);
408 } 1605 }
409 1606
410 fdchangecnt = 0; 1607 fdchangecnt = 0;
411} 1608}
412 1609
413static void 1610/* something about the given fd changed */
1611inline_size void
414fd_change (EV_P_ int fd) 1612fd_change (EV_P_ int fd, int flags)
415{ 1613{
416 if (anfds [fd].reify) 1614 unsigned char reify = anfds [fd].reify;
417 return;
418
419 anfds [fd].reify = 1; 1615 anfds [fd].reify |= flags;
420 1616
1617 if (expect_true (!reify))
1618 {
421 ++fdchangecnt; 1619 ++fdchangecnt;
422 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 1620 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
423 fdchanges [fdchangecnt - 1] = fd; 1621 fdchanges [fdchangecnt - 1] = fd;
1622 }
424} 1623}
425 1624
426static void 1625/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1626inline_speed void ecb_cold
427fd_kill (EV_P_ int fd) 1627fd_kill (EV_P_ int fd)
428{ 1628{
429 struct ev_io *w; 1629 ev_io *w;
430 1630
431 while ((w = (struct ev_io *)anfds [fd].head)) 1631 while ((w = (ev_io *)anfds [fd].head))
432 { 1632 {
433 ev_io_stop (EV_A_ w); 1633 ev_io_stop (EV_A_ w);
434 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1634 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
435 } 1635 }
436} 1636}
437 1637
438static int 1638/* check whether the given fd is actually valid, for error recovery */
1639inline_size int ecb_cold
439fd_valid (int fd) 1640fd_valid (int fd)
440{ 1641{
441#ifdef WIN32 1642#ifdef _WIN32
442 return !!win32_get_osfhandle (fd); 1643 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
443#else 1644#else
444 return fcntl (fd, F_GETFD) != -1; 1645 return fcntl (fd, F_GETFD) != -1;
445#endif 1646#endif
446} 1647}
447 1648
448/* called on EBADF to verify fds */ 1649/* called on EBADF to verify fds */
449static void 1650static void noinline ecb_cold
450fd_ebadf (EV_P) 1651fd_ebadf (EV_P)
451{ 1652{
452 int fd; 1653 int fd;
453 1654
454 for (fd = 0; fd < anfdmax; ++fd) 1655 for (fd = 0; fd < anfdmax; ++fd)
455 if (anfds [fd].events) 1656 if (anfds [fd].events)
456 if (!fd_valid (fd) == -1 && errno == EBADF) 1657 if (!fd_valid (fd) && errno == EBADF)
457 fd_kill (EV_A_ fd); 1658 fd_kill (EV_A_ fd);
458} 1659}
459 1660
460/* called on ENOMEM in select/poll to kill some fds and retry */ 1661/* called on ENOMEM in select/poll to kill some fds and retry */
461static void 1662static void noinline ecb_cold
462fd_enomem (EV_P) 1663fd_enomem (EV_P)
463{ 1664{
464 int fd; 1665 int fd;
465 1666
466 for (fd = anfdmax; fd--; ) 1667 for (fd = anfdmax; fd--; )
467 if (anfds [fd].events) 1668 if (anfds [fd].events)
468 { 1669 {
469 fd_kill (EV_A_ fd); 1670 fd_kill (EV_A_ fd);
470 return; 1671 break;
471 } 1672 }
472} 1673}
473 1674
474/* usually called after fork if method needs to re-arm all fds from scratch */ 1675/* usually called after fork if backend needs to re-arm all fds from scratch */
475static void 1676static void noinline
476fd_rearm_all (EV_P) 1677fd_rearm_all (EV_P)
477{ 1678{
478 int fd; 1679 int fd;
479 1680
480 /* this should be highly optimised to not do anything but set a flag */
481 for (fd = 0; fd < anfdmax; ++fd) 1681 for (fd = 0; fd < anfdmax; ++fd)
482 if (anfds [fd].events) 1682 if (anfds [fd].events)
483 { 1683 {
484 anfds [fd].events = 0; 1684 anfds [fd].events = 0;
485 fd_change (EV_A_ fd); 1685 anfds [fd].emask = 0;
1686 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
486 } 1687 }
487} 1688}
488 1689
1690/* used to prepare libev internal fd's */
1691/* this is not fork-safe */
1692inline_speed void
1693fd_intern (int fd)
1694{
1695#ifdef _WIN32
1696 unsigned long arg = 1;
1697 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1698#else
1699 fcntl (fd, F_SETFD, FD_CLOEXEC);
1700 fcntl (fd, F_SETFL, O_NONBLOCK);
1701#endif
1702}
1703
489/*****************************************************************************/ 1704/*****************************************************************************/
490 1705
1706/*
1707 * the heap functions want a real array index. array index 0 is guaranteed to not
1708 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1709 * the branching factor of the d-tree.
1710 */
1711
1712/*
1713 * at the moment we allow libev the luxury of two heaps,
1714 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1715 * which is more cache-efficient.
1716 * the difference is about 5% with 50000+ watchers.
1717 */
1718#if EV_USE_4HEAP
1719
1720#define DHEAP 4
1721#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1722#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1723#define UPHEAP_DONE(p,k) ((p) == (k))
1724
1725/* away from the root */
1726inline_speed void
1727downheap (ANHE *heap, int N, int k)
1728{
1729 ANHE he = heap [k];
1730 ANHE *E = heap + N + HEAP0;
1731
1732 for (;;)
1733 {
1734 ev_tstamp minat;
1735 ANHE *minpos;
1736 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1737
1738 /* find minimum child */
1739 if (expect_true (pos + DHEAP - 1 < E))
1740 {
1741 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1742 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1743 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1744 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1745 }
1746 else if (pos < E)
1747 {
1748 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1749 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1750 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1751 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1752 }
1753 else
1754 break;
1755
1756 if (ANHE_at (he) <= minat)
1757 break;
1758
1759 heap [k] = *minpos;
1760 ev_active (ANHE_w (*minpos)) = k;
1761
1762 k = minpos - heap;
1763 }
1764
1765 heap [k] = he;
1766 ev_active (ANHE_w (he)) = k;
1767}
1768
1769#else /* 4HEAP */
1770
1771#define HEAP0 1
1772#define HPARENT(k) ((k) >> 1)
1773#define UPHEAP_DONE(p,k) (!(p))
1774
1775/* away from the root */
1776inline_speed void
1777downheap (ANHE *heap, int N, int k)
1778{
1779 ANHE he = heap [k];
1780
1781 for (;;)
1782 {
1783 int c = k << 1;
1784
1785 if (c >= N + HEAP0)
1786 break;
1787
1788 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1789 ? 1 : 0;
1790
1791 if (ANHE_at (he) <= ANHE_at (heap [c]))
1792 break;
1793
1794 heap [k] = heap [c];
1795 ev_active (ANHE_w (heap [k])) = k;
1796
1797 k = c;
1798 }
1799
1800 heap [k] = he;
1801 ev_active (ANHE_w (he)) = k;
1802}
1803#endif
1804
1805/* towards the root */
1806inline_speed void
1807upheap (ANHE *heap, int k)
1808{
1809 ANHE he = heap [k];
1810
1811 for (;;)
1812 {
1813 int p = HPARENT (k);
1814
1815 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1816 break;
1817
1818 heap [k] = heap [p];
1819 ev_active (ANHE_w (heap [k])) = k;
1820 k = p;
1821 }
1822
1823 heap [k] = he;
1824 ev_active (ANHE_w (he)) = k;
1825}
1826
1827/* move an element suitably so it is in a correct place */
1828inline_size void
1829adjustheap (ANHE *heap, int N, int k)
1830{
1831 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1832 upheap (heap, k);
1833 else
1834 downheap (heap, N, k);
1835}
1836
1837/* rebuild the heap: this function is used only once and executed rarely */
1838inline_size void
1839reheap (ANHE *heap, int N)
1840{
1841 int i;
1842
1843 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1844 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1845 for (i = 0; i < N; ++i)
1846 upheap (heap, i + HEAP0);
1847}
1848
1849/*****************************************************************************/
1850
1851/* associate signal watchers to a signal signal */
1852typedef struct
1853{
1854 EV_ATOMIC_T pending;
1855#if EV_MULTIPLICITY
1856 EV_P;
1857#endif
1858 WL head;
1859} ANSIG;
1860
1861static ANSIG signals [EV_NSIG - 1];
1862
1863/*****************************************************************************/
1864
1865#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1866
1867static void noinline ecb_cold
1868evpipe_init (EV_P)
1869{
1870 if (!ev_is_active (&pipe_w))
1871 {
1872# if EV_USE_EVENTFD
1873 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1874 if (evfd < 0 && errno == EINVAL)
1875 evfd = eventfd (0, 0);
1876
1877 if (evfd >= 0)
1878 {
1879 evpipe [0] = -1;
1880 fd_intern (evfd); /* doing it twice doesn't hurt */
1881 ev_io_set (&pipe_w, evfd, EV_READ);
1882 }
1883 else
1884# endif
1885 {
1886 while (pipe (evpipe))
1887 ev_syserr ("(libev) error creating signal/async pipe");
1888
1889 fd_intern (evpipe [0]);
1890 fd_intern (evpipe [1]);
1891 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1892 }
1893
1894 ev_io_start (EV_A_ &pipe_w);
1895 ev_unref (EV_A); /* watcher should not keep loop alive */
1896 }
1897}
1898
1899inline_speed void
1900evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1901{
1902 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1903
1904 if (expect_true (*flag))
1905 return;
1906
1907 *flag = 1;
1908 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1909
1910 pipe_write_skipped = 1;
1911
1912 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1913
1914 if (pipe_write_wanted)
1915 {
1916 int old_errno;
1917
1918 pipe_write_skipped = 0;
1919 ECB_MEMORY_FENCE_RELEASE;
1920
1921 old_errno = errno; /* save errno because write will clobber it */
1922
1923#if EV_USE_EVENTFD
1924 if (evfd >= 0)
1925 {
1926 uint64_t counter = 1;
1927 write (evfd, &counter, sizeof (uint64_t));
1928 }
1929 else
1930#endif
1931 {
1932#ifdef _WIN32
1933 WSABUF buf;
1934 DWORD sent;
1935 buf.buf = &buf;
1936 buf.len = 1;
1937 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1938#else
1939 write (evpipe [1], &(evpipe [1]), 1);
1940#endif
1941 }
1942
1943 errno = old_errno;
1944 }
1945}
1946
1947/* called whenever the libev signal pipe */
1948/* got some events (signal, async) */
491static void 1949static void
492upheap (WT *heap, int k) 1950pipecb (EV_P_ ev_io *iow, int revents)
493{ 1951{
494 WT w = heap [k]; 1952 int i;
495 1953
496 while (k && heap [k >> 1]->at > w->at) 1954 if (revents & EV_READ)
497 {
498 heap [k] = heap [k >> 1];
499 ((W)heap [k])->active = k + 1;
500 k >>= 1;
501 } 1955 {
1956#if EV_USE_EVENTFD
1957 if (evfd >= 0)
1958 {
1959 uint64_t counter;
1960 read (evfd, &counter, sizeof (uint64_t));
1961 }
1962 else
1963#endif
1964 {
1965 char dummy[4];
1966#ifdef _WIN32
1967 WSABUF buf;
1968 DWORD recvd;
1969 DWORD flags = 0;
1970 buf.buf = dummy;
1971 buf.len = sizeof (dummy);
1972 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1973#else
1974 read (evpipe [0], &dummy, sizeof (dummy));
1975#endif
1976 }
1977 }
502 1978
503 heap [k] = w; 1979 pipe_write_skipped = 0;
504 ((W)heap [k])->active = k + 1;
505 1980
1981 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1982
1983#if EV_SIGNAL_ENABLE
1984 if (sig_pending)
1985 {
1986 sig_pending = 0;
1987
1988 ECB_MEMORY_FENCE;
1989
1990 for (i = EV_NSIG - 1; i--; )
1991 if (expect_false (signals [i].pending))
1992 ev_feed_signal_event (EV_A_ i + 1);
1993 }
1994#endif
1995
1996#if EV_ASYNC_ENABLE
1997 if (async_pending)
1998 {
1999 async_pending = 0;
2000
2001 ECB_MEMORY_FENCE;
2002
2003 for (i = asynccnt; i--; )
2004 if (asyncs [i]->sent)
2005 {
2006 asyncs [i]->sent = 0;
2007 ECB_MEMORY_FENCE_RELEASE;
2008 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2009 }
2010 }
2011#endif
2012}
2013
2014/*****************************************************************************/
2015
2016void
2017ev_feed_signal (int signum) EV_THROW
2018{
2019#if EV_MULTIPLICITY
2020 EV_P = signals [signum - 1].loop;
2021
2022 if (!EV_A)
2023 return;
2024#endif
2025
2026 if (!ev_active (&pipe_w))
2027 return;
2028
2029 signals [signum - 1].pending = 1;
2030 evpipe_write (EV_A_ &sig_pending);
506} 2031}
507 2032
508static void 2033static void
509downheap (WT *heap, int N, int k)
510{
511 WT w = heap [k];
512
513 while (k < (N >> 1))
514 {
515 int j = k << 1;
516
517 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
518 ++j;
519
520 if (w->at <= heap [j]->at)
521 break;
522
523 heap [k] = heap [j];
524 ((W)heap [k])->active = k + 1;
525 k = j;
526 }
527
528 heap [k] = w;
529 ((W)heap [k])->active = k + 1;
530}
531
532inline void
533adjustheap (WT *heap, int N, int k, ev_tstamp at)
534{
535 ev_tstamp old_at = heap [k]->at;
536 heap [k]->at = at;
537
538 if (old_at < at)
539 downheap (heap, N, k);
540 else
541 upheap (heap, k);
542}
543
544/*****************************************************************************/
545
546typedef struct
547{
548 WL head;
549 sig_atomic_t volatile gotsig;
550} ANSIG;
551
552static ANSIG *signals;
553static int signalmax;
554
555static int sigpipe [2];
556static sig_atomic_t volatile gotsig;
557static struct ev_io sigev;
558
559static void
560signals_init (ANSIG *base, int count)
561{
562 while (count--)
563 {
564 base->head = 0;
565 base->gotsig = 0;
566
567 ++base;
568 }
569}
570
571static void
572sighandler (int signum) 2034ev_sighandler (int signum)
573{ 2035{
574#if WIN32
575 signal (signum, sighandler);
576#endif
577
578 signals [signum - 1].gotsig = 1;
579
580 if (!gotsig)
581 {
582 int old_errno = errno;
583 gotsig = 1;
584#ifdef WIN32 2036#ifdef _WIN32
585 send (sigpipe [1], &signum, 1, MSG_DONTWAIT); 2037 signal (signum, ev_sighandler);
586#else
587 write (sigpipe [1], &signum, 1);
588#endif 2038#endif
589 errno = old_errno;
590 }
591}
592 2039
593void 2040 ev_feed_signal (signum);
2041}
2042
2043void noinline
594ev_feed_signal_event (EV_P_ int signum) 2044ev_feed_signal_event (EV_P_ int signum) EV_THROW
595{ 2045{
596 WL w; 2046 WL w;
597 2047
2048 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2049 return;
2050
2051 --signum;
2052
598#if EV_MULTIPLICITY 2053#if EV_MULTIPLICITY
599 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 2054 /* it is permissible to try to feed a signal to the wrong loop */
600#endif 2055 /* or, likely more useful, feeding a signal nobody is waiting for */
601 2056
602 --signum; 2057 if (expect_false (signals [signum].loop != EV_A))
603
604 if (signum < 0 || signum >= signalmax)
605 return; 2058 return;
2059#endif
606 2060
607 signals [signum].gotsig = 0; 2061 signals [signum].pending = 0;
2062 ECB_MEMORY_FENCE_RELEASE;
608 2063
609 for (w = signals [signum].head; w; w = w->next) 2064 for (w = signals [signum].head; w; w = w->next)
610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2065 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
611} 2066}
612 2067
2068#if EV_USE_SIGNALFD
613static void 2069static void
614sigcb (EV_P_ struct ev_io *iow, int revents) 2070sigfdcb (EV_P_ ev_io *iow, int revents)
615{ 2071{
616 int signum; 2072 struct signalfd_siginfo si[2], *sip; /* these structs are big */
617 2073
618#ifdef WIN32 2074 for (;;)
619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 2075 {
620#else 2076 ssize_t res = read (sigfd, si, sizeof (si));
621 read (sigpipe [0], &revents, 1);
622#endif
623 gotsig = 0;
624 2077
625 for (signum = signalmax; signum--; ) 2078 /* not ISO-C, as res might be -1, but works with SuS */
626 if (signals [signum].gotsig) 2079 for (sip = si; (char *)sip < (char *)si + res; ++sip)
627 ev_feed_signal_event (EV_A_ signum + 1); 2080 ev_feed_signal_event (EV_A_ sip->ssi_signo);
628}
629 2081
630static void 2082 if (res < (ssize_t)sizeof (si))
631siginit (EV_P) 2083 break;
632{ 2084 }
633#ifndef WIN32
634 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
635 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
636
637 /* rather than sort out wether we really need nb, set it */
638 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
639 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
640#endif
641
642 ev_io_set (&sigev, sigpipe [0], EV_READ);
643 ev_io_start (EV_A_ &sigev);
644 ev_unref (EV_A); /* child watcher should not keep loop alive */
645} 2085}
2086#endif
2087
2088#endif
646 2089
647/*****************************************************************************/ 2090/*****************************************************************************/
648 2091
649static struct ev_child *childs [PID_HASHSIZE]; 2092#if EV_CHILD_ENABLE
2093static WL childs [EV_PID_HASHSIZE];
650 2094
651#ifndef WIN32
652
653static struct ev_signal childev; 2095static ev_signal childev;
2096
2097#ifndef WIFCONTINUED
2098# define WIFCONTINUED(status) 0
2099#endif
2100
2101/* handle a single child status event */
2102inline_speed void
2103child_reap (EV_P_ int chain, int pid, int status)
2104{
2105 ev_child *w;
2106 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
2107
2108 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2109 {
2110 if ((w->pid == pid || !w->pid)
2111 && (!traced || (w->flags & 1)))
2112 {
2113 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
2114 w->rpid = pid;
2115 w->rstatus = status;
2116 ev_feed_event (EV_A_ (W)w, EV_CHILD);
2117 }
2118 }
2119}
654 2120
655#ifndef WCONTINUED 2121#ifndef WCONTINUED
656# define WCONTINUED 0 2122# define WCONTINUED 0
657#endif 2123#endif
658 2124
2125/* called on sigchld etc., calls waitpid */
659static void 2126static void
660child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
661{
662 struct ev_child *w;
663
664 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
665 if (w->pid == pid || !w->pid)
666 {
667 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
668 w->rpid = pid;
669 w->rstatus = status;
670 ev_feed_event (EV_A_ (W)w, EV_CHILD);
671 }
672}
673
674static void
675childcb (EV_P_ struct ev_signal *sw, int revents) 2127childcb (EV_P_ ev_signal *sw, int revents)
676{ 2128{
677 int pid, status; 2129 int pid, status;
678 2130
2131 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
679 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 2132 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
680 { 2133 if (!WCONTINUED
2134 || errno != EINVAL
2135 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
2136 return;
2137
681 /* make sure we are called again until all childs have been reaped */ 2138 /* make sure we are called again until all children have been reaped */
2139 /* we need to do it this way so that the callback gets called before we continue */
682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2140 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
683 2141
684 child_reap (EV_A_ sw, pid, pid, status); 2142 child_reap (EV_A_ pid, pid, status);
2143 if ((EV_PID_HASHSIZE) > 1)
685 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 2144 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
686 }
687} 2145}
688 2146
689#endif 2147#endif
690 2148
691/*****************************************************************************/ 2149/*****************************************************************************/
692 2150
2151#if EV_USE_IOCP
2152# include "ev_iocp.c"
2153#endif
2154#if EV_USE_PORT
2155# include "ev_port.c"
2156#endif
693#if EV_USE_KQUEUE 2157#if EV_USE_KQUEUE
694# include "ev_kqueue.c" 2158# include "ev_kqueue.c"
695#endif 2159#endif
696#if EV_USE_EPOLL 2160#if EV_USE_EPOLL
697# include "ev_epoll.c" 2161# include "ev_epoll.c"
701#endif 2165#endif
702#if EV_USE_SELECT 2166#if EV_USE_SELECT
703# include "ev_select.c" 2167# include "ev_select.c"
704#endif 2168#endif
705 2169
706int 2170int ecb_cold
707ev_version_major (void) 2171ev_version_major (void) EV_THROW
708{ 2172{
709 return EV_VERSION_MAJOR; 2173 return EV_VERSION_MAJOR;
710} 2174}
711 2175
712int 2176int ecb_cold
713ev_version_minor (void) 2177ev_version_minor (void) EV_THROW
714{ 2178{
715 return EV_VERSION_MINOR; 2179 return EV_VERSION_MINOR;
716} 2180}
717 2181
718/* return true if we are running with elevated privileges and should ignore env variables */ 2182/* return true if we are running with elevated privileges and should ignore env variables */
719static int 2183int inline_size ecb_cold
720enable_secure (void) 2184enable_secure (void)
721{ 2185{
722#ifdef WIN32 2186#ifdef _WIN32
723 return 0; 2187 return 0;
724#else 2188#else
725 return getuid () != geteuid () 2189 return getuid () != geteuid ()
726 || getgid () != getegid (); 2190 || getgid () != getegid ();
727#endif 2191#endif
728} 2192}
729 2193
730int 2194unsigned int ecb_cold
731ev_method (EV_P) 2195ev_supported_backends (void) EV_THROW
732{ 2196{
733 return method; 2197 unsigned int flags = 0;
734}
735 2198
736static void 2199 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
737loop_init (EV_P_ int methods) 2200 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
2201 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
2202 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
2203 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
2204
2205 return flags;
2206}
2207
2208unsigned int ecb_cold
2209ev_recommended_backends (void) EV_THROW
738{ 2210{
739 if (!method) 2211 unsigned int flags = ev_supported_backends ();
2212
2213#ifndef __NetBSD__
2214 /* kqueue is borked on everything but netbsd apparently */
2215 /* it usually doesn't work correctly on anything but sockets and pipes */
2216 flags &= ~EVBACKEND_KQUEUE;
2217#endif
2218#ifdef __APPLE__
2219 /* only select works correctly on that "unix-certified" platform */
2220 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2221 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2222#endif
2223#ifdef __FreeBSD__
2224 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
2225#endif
2226
2227 return flags;
2228}
2229
2230unsigned int ecb_cold
2231ev_embeddable_backends (void) EV_THROW
2232{
2233 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2234
2235 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2236 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2237 flags &= ~EVBACKEND_EPOLL;
2238
2239 return flags;
2240}
2241
2242unsigned int
2243ev_backend (EV_P) EV_THROW
2244{
2245 return backend;
2246}
2247
2248#if EV_FEATURE_API
2249unsigned int
2250ev_iteration (EV_P) EV_THROW
2251{
2252 return loop_count;
2253}
2254
2255unsigned int
2256ev_depth (EV_P) EV_THROW
2257{
2258 return loop_depth;
2259}
2260
2261void
2262ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2263{
2264 io_blocktime = interval;
2265}
2266
2267void
2268ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2269{
2270 timeout_blocktime = interval;
2271}
2272
2273void
2274ev_set_userdata (EV_P_ void *data) EV_THROW
2275{
2276 userdata = data;
2277}
2278
2279void *
2280ev_userdata (EV_P) EV_THROW
2281{
2282 return userdata;
2283}
2284
2285void
2286ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2287{
2288 invoke_cb = invoke_pending_cb;
2289}
2290
2291void
2292ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2293{
2294 release_cb = release;
2295 acquire_cb = acquire;
2296}
2297#endif
2298
2299/* initialise a loop structure, must be zero-initialised */
2300static void noinline ecb_cold
2301loop_init (EV_P_ unsigned int flags) EV_THROW
2302{
2303 if (!backend)
740 { 2304 {
2305 origflags = flags;
2306
2307#if EV_USE_REALTIME
2308 if (!have_realtime)
2309 {
2310 struct timespec ts;
2311
2312 if (!clock_gettime (CLOCK_REALTIME, &ts))
2313 have_realtime = 1;
2314 }
2315#endif
2316
741#if EV_USE_MONOTONIC 2317#if EV_USE_MONOTONIC
2318 if (!have_monotonic)
742 { 2319 {
743 struct timespec ts; 2320 struct timespec ts;
2321
744 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2322 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
745 have_monotonic = 1; 2323 have_monotonic = 1;
746 } 2324 }
747#endif 2325#endif
748 2326
2327 /* pid check not overridable via env */
2328#ifndef _WIN32
2329 if (flags & EVFLAG_FORKCHECK)
2330 curpid = getpid ();
2331#endif
2332
2333 if (!(flags & EVFLAG_NOENV)
2334 && !enable_secure ()
2335 && getenv ("LIBEV_FLAGS"))
2336 flags = atoi (getenv ("LIBEV_FLAGS"));
2337
749 ev_rt_now = ev_time (); 2338 ev_rt_now = ev_time ();
750 mn_now = get_clock (); 2339 mn_now = get_clock ();
751 now_floor = mn_now; 2340 now_floor = mn_now;
752 rtmn_diff = ev_rt_now - mn_now; 2341 rtmn_diff = ev_rt_now - mn_now;
2342#if EV_FEATURE_API
2343 invoke_cb = ev_invoke_pending;
2344#endif
753 2345
754 if (methods == EVMETHOD_AUTO) 2346 io_blocktime = 0.;
755 if (!enable_secure () && getenv ("LIBEV_METHODS")) 2347 timeout_blocktime = 0.;
756 methods = atoi (getenv ("LIBEV_METHODS")); 2348 backend = 0;
757 else 2349 backend_fd = -1;
758 methods = EVMETHOD_ANY; 2350 sig_pending = 0;
2351#if EV_ASYNC_ENABLE
2352 async_pending = 0;
2353#endif
2354 pipe_write_skipped = 0;
2355 pipe_write_wanted = 0;
2356#if EV_USE_INOTIFY
2357 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2358#endif
2359#if EV_USE_SIGNALFD
2360 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2361#endif
759 2362
760 method = 0; 2363 if (!(flags & EVBACKEND_MASK))
2364 flags |= ev_recommended_backends ();
2365
761#if EV_USE_WIN32 2366#if EV_USE_IOCP
762 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 2367 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2368#endif
2369#if EV_USE_PORT
2370 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
763#endif 2371#endif
764#if EV_USE_KQUEUE 2372#if EV_USE_KQUEUE
765 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 2373 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
766#endif 2374#endif
767#if EV_USE_EPOLL 2375#if EV_USE_EPOLL
768 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 2376 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
769#endif 2377#endif
770#if EV_USE_POLL 2378#if EV_USE_POLL
771 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 2379 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
772#endif 2380#endif
773#if EV_USE_SELECT 2381#if EV_USE_SELECT
774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 2382 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
775#endif 2383#endif
776 2384
2385 ev_prepare_init (&pending_w, pendingcb);
2386
2387#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
777 ev_init (&sigev, sigcb); 2388 ev_init (&pipe_w, pipecb);
778 ev_set_priority (&sigev, EV_MAXPRI); 2389 ev_set_priority (&pipe_w, EV_MAXPRI);
2390#endif
779 } 2391 }
780} 2392}
781 2393
782void 2394/* free up a loop structure */
2395void ecb_cold
783loop_destroy (EV_P) 2396ev_loop_destroy (EV_P)
784{ 2397{
785 int i; 2398 int i;
786 2399
2400#if EV_MULTIPLICITY
2401 /* mimic free (0) */
2402 if (!EV_A)
2403 return;
2404#endif
2405
2406#if EV_CLEANUP_ENABLE
2407 /* queue cleanup watchers (and execute them) */
2408 if (expect_false (cleanupcnt))
2409 {
2410 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2411 EV_INVOKE_PENDING;
2412 }
2413#endif
2414
2415#if EV_CHILD_ENABLE
2416 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2417 {
2418 ev_ref (EV_A); /* child watcher */
2419 ev_signal_stop (EV_A_ &childev);
2420 }
2421#endif
2422
2423 if (ev_is_active (&pipe_w))
2424 {
2425 /*ev_ref (EV_A);*/
2426 /*ev_io_stop (EV_A_ &pipe_w);*/
2427
2428#if EV_USE_EVENTFD
2429 if (evfd >= 0)
2430 close (evfd);
2431#endif
2432
2433 if (evpipe [0] >= 0)
2434 {
2435 EV_WIN32_CLOSE_FD (evpipe [0]);
2436 EV_WIN32_CLOSE_FD (evpipe [1]);
2437 }
2438 }
2439
2440#if EV_USE_SIGNALFD
2441 if (ev_is_active (&sigfd_w))
2442 close (sigfd);
2443#endif
2444
2445#if EV_USE_INOTIFY
2446 if (fs_fd >= 0)
2447 close (fs_fd);
2448#endif
2449
2450 if (backend_fd >= 0)
2451 close (backend_fd);
2452
787#if EV_USE_WIN32 2453#if EV_USE_IOCP
788 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 2454 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2455#endif
2456#if EV_USE_PORT
2457 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
789#endif 2458#endif
790#if EV_USE_KQUEUE 2459#if EV_USE_KQUEUE
791 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 2460 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
792#endif 2461#endif
793#if EV_USE_EPOLL 2462#if EV_USE_EPOLL
794 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 2463 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
795#endif 2464#endif
796#if EV_USE_POLL 2465#if EV_USE_POLL
797 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 2466 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
798#endif 2467#endif
799#if EV_USE_SELECT 2468#if EV_USE_SELECT
800 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 2469 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
801#endif 2470#endif
802 2471
803 for (i = NUMPRI; i--; ) 2472 for (i = NUMPRI; i--; )
2473 {
804 array_free (pending, [i]); 2474 array_free (pending, [i]);
2475#if EV_IDLE_ENABLE
2476 array_free (idle, [i]);
2477#endif
2478 }
2479
2480 ev_free (anfds); anfds = 0; anfdmax = 0;
805 2481
806 /* have to use the microsoft-never-gets-it-right macro */ 2482 /* have to use the microsoft-never-gets-it-right macro */
807 array_free_microshit (fdchange); 2483 array_free (rfeed, EMPTY);
808 array_free_microshit (timer); 2484 array_free (fdchange, EMPTY);
809 array_free_microshit (periodic); 2485 array_free (timer, EMPTY);
810 array_free_microshit (idle); 2486#if EV_PERIODIC_ENABLE
811 array_free_microshit (prepare); 2487 array_free (periodic, EMPTY);
812 array_free_microshit (check); 2488#endif
2489#if EV_FORK_ENABLE
2490 array_free (fork, EMPTY);
2491#endif
2492#if EV_CLEANUP_ENABLE
2493 array_free (cleanup, EMPTY);
2494#endif
2495 array_free (prepare, EMPTY);
2496 array_free (check, EMPTY);
2497#if EV_ASYNC_ENABLE
2498 array_free (async, EMPTY);
2499#endif
813 2500
814 method = 0; 2501 backend = 0;
815}
816 2502
817static void 2503#if EV_MULTIPLICITY
2504 if (ev_is_default_loop (EV_A))
2505#endif
2506 ev_default_loop_ptr = 0;
2507#if EV_MULTIPLICITY
2508 else
2509 ev_free (EV_A);
2510#endif
2511}
2512
2513#if EV_USE_INOTIFY
2514inline_size void infy_fork (EV_P);
2515#endif
2516
2517inline_size void
818loop_fork (EV_P) 2518loop_fork (EV_P)
819{ 2519{
2520#if EV_USE_PORT
2521 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
2522#endif
2523#if EV_USE_KQUEUE
2524 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
2525#endif
820#if EV_USE_EPOLL 2526#if EV_USE_EPOLL
821 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 2527 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
822#endif 2528#endif
823#if EV_USE_KQUEUE 2529#if EV_USE_INOTIFY
824 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 2530 infy_fork (EV_A);
825#endif 2531#endif
826 2532
827 if (ev_is_active (&sigev)) 2533 if (ev_is_active (&pipe_w))
828 { 2534 {
829 /* default loop */ 2535 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
830 2536
831 ev_ref (EV_A); 2537 ev_ref (EV_A);
832 ev_io_stop (EV_A_ &sigev); 2538 ev_io_stop (EV_A_ &pipe_w);
833 close (sigpipe [0]);
834 close (sigpipe [1]);
835 2539
836 while (pipe (sigpipe)) 2540#if EV_USE_EVENTFD
837 syserr ("(libev) error creating pipe"); 2541 if (evfd >= 0)
2542 close (evfd);
2543#endif
838 2544
2545 if (evpipe [0] >= 0)
2546 {
2547 EV_WIN32_CLOSE_FD (evpipe [0]);
2548 EV_WIN32_CLOSE_FD (evpipe [1]);
2549 }
2550
2551#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
839 siginit (EV_A); 2552 evpipe_init (EV_A);
2553 /* iterate over everything, in case we missed something before */
2554 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2555#endif
840 } 2556 }
841 2557
842 postfork = 0; 2558 postfork = 0;
843} 2559}
844 2560
845#if EV_MULTIPLICITY 2561#if EV_MULTIPLICITY
2562
846struct ev_loop * 2563struct ev_loop * ecb_cold
847ev_loop_new (int methods) 2564ev_loop_new (unsigned int flags) EV_THROW
848{ 2565{
849 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2566 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
850 2567
851 memset (loop, 0, sizeof (struct ev_loop)); 2568 memset (EV_A, 0, sizeof (struct ev_loop));
852
853 loop_init (EV_A_ methods); 2569 loop_init (EV_A_ flags);
854 2570
855 if (ev_method (EV_A)) 2571 if (ev_backend (EV_A))
856 return loop; 2572 return EV_A;
857 2573
2574 ev_free (EV_A);
858 return 0; 2575 return 0;
859} 2576}
860 2577
861void 2578#endif /* multiplicity */
862ev_loop_destroy (EV_P)
863{
864 loop_destroy (EV_A);
865 ev_free (loop);
866}
867 2579
868void 2580#if EV_VERIFY
869ev_loop_fork (EV_P) 2581static void noinline ecb_cold
2582verify_watcher (EV_P_ W w)
870{ 2583{
871 postfork = 1; 2584 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
872}
873 2585
2586 if (w->pending)
2587 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2588}
2589
2590static void noinline ecb_cold
2591verify_heap (EV_P_ ANHE *heap, int N)
2592{
2593 int i;
2594
2595 for (i = HEAP0; i < N + HEAP0; ++i)
2596 {
2597 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2598 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2599 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2600
2601 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2602 }
2603}
2604
2605static void noinline ecb_cold
2606array_verify (EV_P_ W *ws, int cnt)
2607{
2608 while (cnt--)
2609 {
2610 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2611 verify_watcher (EV_A_ ws [cnt]);
2612 }
2613}
2614#endif
2615
2616#if EV_FEATURE_API
2617void ecb_cold
2618ev_verify (EV_P) EV_THROW
2619{
2620#if EV_VERIFY
2621 int i;
2622 WL w, w2;
2623
2624 assert (activecnt >= -1);
2625
2626 assert (fdchangemax >= fdchangecnt);
2627 for (i = 0; i < fdchangecnt; ++i)
2628 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2629
2630 assert (anfdmax >= 0);
2631 for (i = 0; i < anfdmax; ++i)
2632 {
2633 int j = 0;
2634
2635 for (w = w2 = anfds [i].head; w; w = w->next)
2636 {
2637 verify_watcher (EV_A_ (W)w);
2638
2639 if (j++ & 1)
2640 {
2641 assert (("libev: io watcher list contains a loop", w != w2));
2642 w2 = w2->next;
2643 }
2644
2645 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2646 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2647 }
2648 }
2649
2650 assert (timermax >= timercnt);
2651 verify_heap (EV_A_ timers, timercnt);
2652
2653#if EV_PERIODIC_ENABLE
2654 assert (periodicmax >= periodiccnt);
2655 verify_heap (EV_A_ periodics, periodiccnt);
2656#endif
2657
2658 for (i = NUMPRI; i--; )
2659 {
2660 assert (pendingmax [i] >= pendingcnt [i]);
2661#if EV_IDLE_ENABLE
2662 assert (idleall >= 0);
2663 assert (idlemax [i] >= idlecnt [i]);
2664 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2665#endif
2666 }
2667
2668#if EV_FORK_ENABLE
2669 assert (forkmax >= forkcnt);
2670 array_verify (EV_A_ (W *)forks, forkcnt);
2671#endif
2672
2673#if EV_CLEANUP_ENABLE
2674 assert (cleanupmax >= cleanupcnt);
2675 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2676#endif
2677
2678#if EV_ASYNC_ENABLE
2679 assert (asyncmax >= asynccnt);
2680 array_verify (EV_A_ (W *)asyncs, asynccnt);
2681#endif
2682
2683#if EV_PREPARE_ENABLE
2684 assert (preparemax >= preparecnt);
2685 array_verify (EV_A_ (W *)prepares, preparecnt);
2686#endif
2687
2688#if EV_CHECK_ENABLE
2689 assert (checkmax >= checkcnt);
2690 array_verify (EV_A_ (W *)checks, checkcnt);
2691#endif
2692
2693# if 0
2694#if EV_CHILD_ENABLE
2695 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2696 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2697#endif
2698# endif
2699#endif
2700}
874#endif 2701#endif
875 2702
876#if EV_MULTIPLICITY 2703#if EV_MULTIPLICITY
877struct ev_loop * 2704struct ev_loop * ecb_cold
878#else 2705#else
879int 2706int
880#endif 2707#endif
881ev_default_loop (int methods) 2708ev_default_loop (unsigned int flags) EV_THROW
882{ 2709{
883 if (sigpipe [0] == sigpipe [1])
884 if (pipe (sigpipe))
885 return 0;
886
887 if (!default_loop) 2710 if (!ev_default_loop_ptr)
888 { 2711 {
889#if EV_MULTIPLICITY 2712#if EV_MULTIPLICITY
890 struct ev_loop *loop = default_loop = &default_loop_struct; 2713 EV_P = ev_default_loop_ptr = &default_loop_struct;
891#else 2714#else
892 default_loop = 1; 2715 ev_default_loop_ptr = 1;
893#endif 2716#endif
894 2717
895 loop_init (EV_A_ methods); 2718 loop_init (EV_A_ flags);
896 2719
897 if (ev_method (EV_A)) 2720 if (ev_backend (EV_A))
898 { 2721 {
899 siginit (EV_A); 2722#if EV_CHILD_ENABLE
900
901#ifndef WIN32
902 ev_signal_init (&childev, childcb, SIGCHLD); 2723 ev_signal_init (&childev, childcb, SIGCHLD);
903 ev_set_priority (&childev, EV_MAXPRI); 2724 ev_set_priority (&childev, EV_MAXPRI);
904 ev_signal_start (EV_A_ &childev); 2725 ev_signal_start (EV_A_ &childev);
905 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2726 ev_unref (EV_A); /* child watcher should not keep loop alive */
906#endif 2727#endif
907 } 2728 }
908 else 2729 else
909 default_loop = 0; 2730 ev_default_loop_ptr = 0;
910 } 2731 }
911 2732
912 return default_loop; 2733 return ev_default_loop_ptr;
913} 2734}
914 2735
915void 2736void
916ev_default_destroy (void) 2737ev_loop_fork (EV_P) EV_THROW
917{ 2738{
918#if EV_MULTIPLICITY 2739 postfork = 1;
919 struct ev_loop *loop = default_loop;
920#endif
921
922#ifndef WIN32
923 ev_ref (EV_A); /* child watcher */
924 ev_signal_stop (EV_A_ &childev);
925#endif
926
927 ev_ref (EV_A); /* signal watcher */
928 ev_io_stop (EV_A_ &sigev);
929
930 close (sigpipe [0]); sigpipe [0] = 0;
931 close (sigpipe [1]); sigpipe [1] = 0;
932
933 loop_destroy (EV_A);
934} 2740}
2741
2742/*****************************************************************************/
935 2743
936void 2744void
937ev_default_fork (void) 2745ev_invoke (EV_P_ void *w, int revents)
938{ 2746{
939#if EV_MULTIPLICITY 2747 EV_CB_INVOKE ((W)w, revents);
940 struct ev_loop *loop = default_loop;
941#endif
942
943 if (method)
944 postfork = 1;
945} 2748}
946 2749
947/*****************************************************************************/ 2750unsigned int
948 2751ev_pending_count (EV_P) EV_THROW
949static int
950any_pending (EV_P)
951{ 2752{
952 int pri; 2753 int pri;
2754 unsigned int count = 0;
953 2755
954 for (pri = NUMPRI; pri--; ) 2756 for (pri = NUMPRI; pri--; )
955 if (pendingcnt [pri]) 2757 count += pendingcnt [pri];
956 return 1;
957 2758
958 return 0; 2759 return count;
959} 2760}
960 2761
961static void 2762void noinline
962call_pending (EV_P) 2763ev_invoke_pending (EV_P)
963{ 2764{
964 int pri; 2765 pendingpri = NUMPRI;
965 2766
966 for (pri = NUMPRI; pri--; ) 2767 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2768 {
2769 --pendingpri;
2770
967 while (pendingcnt [pri]) 2771 while (pendingcnt [pendingpri])
968 {
969 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
970
971 if (p->w)
972 { 2772 {
2773 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
2774
973 p->w->pending = 0; 2775 p->w->pending = 0;
974 EV_CB_INVOKE (p->w, p->events); 2776 EV_CB_INVOKE (p->w, p->events);
2777 EV_FREQUENT_CHECK;
2778 }
2779 }
2780}
2781
2782#if EV_IDLE_ENABLE
2783/* make idle watchers pending. this handles the "call-idle */
2784/* only when higher priorities are idle" logic */
2785inline_size void
2786idle_reify (EV_P)
2787{
2788 if (expect_false (idleall))
2789 {
2790 int pri;
2791
2792 for (pri = NUMPRI; pri--; )
2793 {
2794 if (pendingcnt [pri])
2795 break;
2796
2797 if (idlecnt [pri])
2798 {
2799 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2800 break;
975 } 2801 }
976 } 2802 }
2803 }
977} 2804}
2805#endif
978 2806
979static void 2807/* make timers pending */
2808inline_size void
980timers_reify (EV_P) 2809timers_reify (EV_P)
981{ 2810{
2811 EV_FREQUENT_CHECK;
2812
982 while (timercnt && ((WT)timers [0])->at <= mn_now) 2813 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
983 { 2814 {
984 struct ev_timer *w = timers [0]; 2815 do
985
986 assert (("inactive timer on timer heap detected", ev_is_active (w)));
987
988 /* first reschedule or stop timer */
989 if (w->repeat)
990 { 2816 {
2817 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2818
2819 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2820
2821 /* first reschedule or stop timer */
2822 if (w->repeat)
2823 {
2824 ev_at (w) += w->repeat;
2825 if (ev_at (w) < mn_now)
2826 ev_at (w) = mn_now;
2827
991 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2828 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
992 ((WT)w)->at = mn_now + w->repeat; 2829
2830 ANHE_at_cache (timers [HEAP0]);
993 downheap ((WT *)timers, timercnt, 0); 2831 downheap (timers, timercnt, HEAP0);
2832 }
2833 else
2834 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2835
2836 EV_FREQUENT_CHECK;
2837 feed_reverse (EV_A_ (W)w);
994 } 2838 }
995 else 2839 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
996 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
997 2840
998 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2841 feed_reverse_done (EV_A_ EV_TIMER);
2842 }
2843}
2844
2845#if EV_PERIODIC_ENABLE
2846
2847static void noinline
2848periodic_recalc (EV_P_ ev_periodic *w)
2849{
2850 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2851 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2852
2853 /* the above almost always errs on the low side */
2854 while (at <= ev_rt_now)
999 } 2855 {
1000} 2856 ev_tstamp nat = at + w->interval;
1001 2857
1002static void 2858 /* when resolution fails us, we use ev_rt_now */
2859 if (expect_false (nat == at))
2860 {
2861 at = ev_rt_now;
2862 break;
2863 }
2864
2865 at = nat;
2866 }
2867
2868 ev_at (w) = at;
2869}
2870
2871/* make periodics pending */
2872inline_size void
1003periodics_reify (EV_P) 2873periodics_reify (EV_P)
1004{ 2874{
2875 EV_FREQUENT_CHECK;
2876
1005 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2877 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1006 { 2878 {
1007 struct ev_periodic *w = periodics [0]; 2879 do
2880 {
2881 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1008 2882
1009 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2883 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1010 2884
1011 /* first reschedule or stop timer */ 2885 /* first reschedule or stop timer */
2886 if (w->reschedule_cb)
2887 {
2888 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2889
2890 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2891
2892 ANHE_at_cache (periodics [HEAP0]);
2893 downheap (periodics, periodiccnt, HEAP0);
2894 }
2895 else if (w->interval)
2896 {
2897 periodic_recalc (EV_A_ w);
2898 ANHE_at_cache (periodics [HEAP0]);
2899 downheap (periodics, periodiccnt, HEAP0);
2900 }
2901 else
2902 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2903
2904 EV_FREQUENT_CHECK;
2905 feed_reverse (EV_A_ (W)w);
2906 }
2907 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2908
2909 feed_reverse_done (EV_A_ EV_PERIODIC);
2910 }
2911}
2912
2913/* simply recalculate all periodics */
2914/* TODO: maybe ensure that at least one event happens when jumping forward? */
2915static void noinline ecb_cold
2916periodics_reschedule (EV_P)
2917{
2918 int i;
2919
2920 /* adjust periodics after time jump */
2921 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2922 {
2923 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2924
1012 if (w->reschedule_cb) 2925 if (w->reschedule_cb)
2926 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2927 else if (w->interval)
2928 periodic_recalc (EV_A_ w);
2929
2930 ANHE_at_cache (periodics [i]);
2931 }
2932
2933 reheap (periodics, periodiccnt);
2934}
2935#endif
2936
2937/* adjust all timers by a given offset */
2938static void noinline ecb_cold
2939timers_reschedule (EV_P_ ev_tstamp adjust)
2940{
2941 int i;
2942
2943 for (i = 0; i < timercnt; ++i)
2944 {
2945 ANHE *he = timers + i + HEAP0;
2946 ANHE_w (*he)->at += adjust;
2947 ANHE_at_cache (*he);
2948 }
2949}
2950
2951/* fetch new monotonic and realtime times from the kernel */
2952/* also detect if there was a timejump, and act accordingly */
2953inline_speed void
2954time_update (EV_P_ ev_tstamp max_block)
2955{
2956#if EV_USE_MONOTONIC
2957 if (expect_true (have_monotonic))
2958 {
2959 int i;
2960 ev_tstamp odiff = rtmn_diff;
2961
2962 mn_now = get_clock ();
2963
2964 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2965 /* interpolate in the meantime */
2966 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1013 { 2967 {
1014 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2968 ev_rt_now = rtmn_diff + mn_now;
1015 2969 return;
1016 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1017 downheap ((WT *)periodics, periodiccnt, 0);
1018 } 2970 }
1019 else if (w->interval)
1020 {
1021 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1022 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1023 downheap ((WT *)periodics, periodiccnt, 0);
1024 }
1025 else
1026 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1027 2971
1028 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1029 }
1030}
1031
1032static void
1033periodics_reschedule (EV_P)
1034{
1035 int i;
1036
1037 /* adjust periodics after time jump */
1038 for (i = 0; i < periodiccnt; ++i)
1039 {
1040 struct ev_periodic *w = periodics [i];
1041
1042 if (w->reschedule_cb)
1043 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1044 else if (w->interval)
1045 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1046 }
1047
1048 /* now rebuild the heap */
1049 for (i = periodiccnt >> 1; i--; )
1050 downheap ((WT *)periodics, periodiccnt, i);
1051}
1052
1053inline int
1054time_update_monotonic (EV_P)
1055{
1056 mn_now = get_clock ();
1057
1058 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1059 {
1060 ev_rt_now = rtmn_diff + mn_now;
1061 return 0;
1062 }
1063 else
1064 {
1065 now_floor = mn_now; 2972 now_floor = mn_now;
1066 ev_rt_now = ev_time (); 2973 ev_rt_now = ev_time ();
1067 return 1;
1068 }
1069}
1070 2974
1071static void 2975 /* loop a few times, before making important decisions.
1072time_update (EV_P) 2976 * on the choice of "4": one iteration isn't enough,
1073{ 2977 * in case we get preempted during the calls to
1074 int i; 2978 * ev_time and get_clock. a second call is almost guaranteed
1075 2979 * to succeed in that case, though. and looping a few more times
1076#if EV_USE_MONOTONIC 2980 * doesn't hurt either as we only do this on time-jumps or
1077 if (expect_true (have_monotonic)) 2981 * in the unlikely event of having been preempted here.
1078 { 2982 */
1079 if (time_update_monotonic (EV_A)) 2983 for (i = 4; --i; )
1080 { 2984 {
1081 ev_tstamp odiff = rtmn_diff; 2985 ev_tstamp diff;
1082
1083 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1084 {
1085 rtmn_diff = ev_rt_now - mn_now; 2986 rtmn_diff = ev_rt_now - mn_now;
1086 2987
1087 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2988 diff = odiff - rtmn_diff;
2989
2990 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1088 return; /* all is well */ 2991 return; /* all is well */
1089 2992
1090 ev_rt_now = ev_time (); 2993 ev_rt_now = ev_time ();
1091 mn_now = get_clock (); 2994 mn_now = get_clock ();
1092 now_floor = mn_now; 2995 now_floor = mn_now;
1093 } 2996 }
1094 2997
2998 /* no timer adjustment, as the monotonic clock doesn't jump */
2999 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
3000# if EV_PERIODIC_ENABLE
3001 periodics_reschedule (EV_A);
3002# endif
3003 }
3004 else
3005#endif
3006 {
3007 ev_rt_now = ev_time ();
3008
3009 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
3010 {
3011 /* adjust timers. this is easy, as the offset is the same for all of them */
3012 timers_reschedule (EV_A_ ev_rt_now - mn_now);
3013#if EV_PERIODIC_ENABLE
1095 periodics_reschedule (EV_A); 3014 periodics_reschedule (EV_A);
1096 /* no timer adjustment, as the monotonic clock doesn't jump */ 3015#endif
1097 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1098 } 3016 }
1099 }
1100 else
1101#endif
1102 {
1103 ev_rt_now = ev_time ();
1104
1105 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1106 {
1107 periodics_reschedule (EV_A);
1108
1109 /* adjust timers. this is easy, as the offset is the same for all */
1110 for (i = 0; i < timercnt; ++i)
1111 ((WT)timers [i])->at += ev_rt_now - mn_now;
1112 }
1113 3017
1114 mn_now = ev_rt_now; 3018 mn_now = ev_rt_now;
1115 } 3019 }
1116} 3020}
1117 3021
1118void 3022int
1119ev_ref (EV_P)
1120{
1121 ++activecnt;
1122}
1123
1124void
1125ev_unref (EV_P)
1126{
1127 --activecnt;
1128}
1129
1130static int loop_done;
1131
1132void
1133ev_loop (EV_P_ int flags) 3023ev_run (EV_P_ int flags)
1134{ 3024{
1135 double block; 3025#if EV_FEATURE_API
1136 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 3026 ++loop_depth;
3027#endif
3028
3029 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3030
3031 loop_done = EVBREAK_CANCEL;
3032
3033 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1137 3034
1138 do 3035 do
1139 { 3036 {
3037#if EV_VERIFY >= 2
3038 ev_verify (EV_A);
3039#endif
3040
3041#ifndef _WIN32
3042 if (expect_false (curpid)) /* penalise the forking check even more */
3043 if (expect_false (getpid () != curpid))
3044 {
3045 curpid = getpid ();
3046 postfork = 1;
3047 }
3048#endif
3049
3050#if EV_FORK_ENABLE
3051 /* we might have forked, so queue fork handlers */
3052 if (expect_false (postfork))
3053 if (forkcnt)
3054 {
3055 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
3056 EV_INVOKE_PENDING;
3057 }
3058#endif
3059
3060#if EV_PREPARE_ENABLE
1140 /* queue check watchers (and execute them) */ 3061 /* queue prepare watchers (and execute them) */
1141 if (expect_false (preparecnt)) 3062 if (expect_false (preparecnt))
1142 { 3063 {
1143 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3064 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1144 call_pending (EV_A); 3065 EV_INVOKE_PENDING;
1145 } 3066 }
3067#endif
3068
3069 if (expect_false (loop_done))
3070 break;
1146 3071
1147 /* we might have forked, so reify kernel state if necessary */ 3072 /* we might have forked, so reify kernel state if necessary */
1148 if (expect_false (postfork)) 3073 if (expect_false (postfork))
1149 loop_fork (EV_A); 3074 loop_fork (EV_A);
1150 3075
1151 /* update fd-related kernel structures */ 3076 /* update fd-related kernel structures */
1152 fd_reify (EV_A); 3077 fd_reify (EV_A);
1153 3078
1154 /* calculate blocking time */ 3079 /* calculate blocking time */
3080 {
3081 ev_tstamp waittime = 0.;
3082 ev_tstamp sleeptime = 0.;
1155 3083
1156 /* we only need this for !monotonic clock or timers, but as we basically 3084 /* remember old timestamp for io_blocktime calculation */
1157 always have timers, we just calculate it always */ 3085 ev_tstamp prev_mn_now = mn_now;
1158#if EV_USE_MONOTONIC 3086
1159 if (expect_true (have_monotonic)) 3087 /* update time to cancel out callback processing overhead */
1160 time_update_monotonic (EV_A); 3088 time_update (EV_A_ 1e100);
1161 else 3089
1162#endif 3090 /* from now on, we want a pipe-wake-up */
3091 pipe_write_wanted = 1;
3092
3093 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3094
3095 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1163 { 3096 {
1164 ev_rt_now = ev_time ();
1165 mn_now = ev_rt_now;
1166 }
1167
1168 if (flags & EVLOOP_NONBLOCK || idlecnt)
1169 block = 0.;
1170 else
1171 {
1172 block = MAX_BLOCKTIME; 3097 waittime = MAX_BLOCKTIME;
1173 3098
1174 if (timercnt) 3099 if (timercnt)
1175 { 3100 {
1176 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 3101 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1177 if (block > to) block = to; 3102 if (waittime > to) waittime = to;
1178 } 3103 }
1179 3104
3105#if EV_PERIODIC_ENABLE
1180 if (periodiccnt) 3106 if (periodiccnt)
1181 { 3107 {
1182 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 3108 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1183 if (block > to) block = to; 3109 if (waittime > to) waittime = to;
1184 } 3110 }
3111#endif
1185 3112
1186 if (block < 0.) block = 0.; 3113 /* don't let timeouts decrease the waittime below timeout_blocktime */
3114 if (expect_false (waittime < timeout_blocktime))
3115 waittime = timeout_blocktime;
3116
3117 /* at this point, we NEED to wait, so we have to ensure */
3118 /* to pass a minimum nonzero value to the backend */
3119 if (expect_false (waittime < backend_mintime))
3120 waittime = backend_mintime;
3121
3122 /* extra check because io_blocktime is commonly 0 */
3123 if (expect_false (io_blocktime))
3124 {
3125 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3126
3127 if (sleeptime > waittime - backend_mintime)
3128 sleeptime = waittime - backend_mintime;
3129
3130 if (expect_true (sleeptime > 0.))
3131 {
3132 ev_sleep (sleeptime);
3133 waittime -= sleeptime;
3134 }
3135 }
1187 } 3136 }
1188 3137
1189 method_poll (EV_A_ block); 3138#if EV_FEATURE_API
3139 ++loop_count;
3140#endif
3141 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
3142 backend_poll (EV_A_ waittime);
3143 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1190 3144
3145 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3146
3147 ECB_MEMORY_FENCE_ACQUIRE;
3148 if (pipe_write_skipped)
3149 {
3150 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3151 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3152 }
3153
3154
1191 /* update ev_rt_now, do magic */ 3155 /* update ev_rt_now, do magic */
1192 time_update (EV_A); 3156 time_update (EV_A_ waittime + sleeptime);
3157 }
1193 3158
1194 /* queue pending timers and reschedule them */ 3159 /* queue pending timers and reschedule them */
1195 timers_reify (EV_A); /* relative timers called last */ 3160 timers_reify (EV_A); /* relative timers called last */
3161#if EV_PERIODIC_ENABLE
1196 periodics_reify (EV_A); /* absolute timers called first */ 3162 periodics_reify (EV_A); /* absolute timers called first */
3163#endif
1197 3164
3165#if EV_IDLE_ENABLE
1198 /* queue idle watchers unless io or timers are pending */ 3166 /* queue idle watchers unless other events are pending */
1199 if (idlecnt && !any_pending (EV_A)) 3167 idle_reify (EV_A);
1200 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 3168#endif
1201 3169
3170#if EV_CHECK_ENABLE
1202 /* queue check watchers, to be executed first */ 3171 /* queue check watchers, to be executed first */
1203 if (checkcnt) 3172 if (expect_false (checkcnt))
1204 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3173 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3174#endif
1205 3175
1206 call_pending (EV_A); 3176 EV_INVOKE_PENDING;
1207 } 3177 }
1208 while (activecnt && !loop_done); 3178 while (expect_true (
3179 activecnt
3180 && !loop_done
3181 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3182 ));
1209 3183
1210 if (loop_done != 2) 3184 if (loop_done == EVBREAK_ONE)
1211 loop_done = 0; 3185 loop_done = EVBREAK_CANCEL;
3186
3187#if EV_FEATURE_API
3188 --loop_depth;
3189#endif
3190
3191 return activecnt;
1212} 3192}
1213 3193
1214void 3194void
1215ev_unloop (EV_P_ int how) 3195ev_break (EV_P_ int how) EV_THROW
1216{ 3196{
1217 loop_done = how; 3197 loop_done = how;
1218} 3198}
1219 3199
3200void
3201ev_ref (EV_P) EV_THROW
3202{
3203 ++activecnt;
3204}
3205
3206void
3207ev_unref (EV_P) EV_THROW
3208{
3209 --activecnt;
3210}
3211
3212void
3213ev_now_update (EV_P) EV_THROW
3214{
3215 time_update (EV_A_ 1e100);
3216}
3217
3218void
3219ev_suspend (EV_P) EV_THROW
3220{
3221 ev_now_update (EV_A);
3222}
3223
3224void
3225ev_resume (EV_P) EV_THROW
3226{
3227 ev_tstamp mn_prev = mn_now;
3228
3229 ev_now_update (EV_A);
3230 timers_reschedule (EV_A_ mn_now - mn_prev);
3231#if EV_PERIODIC_ENABLE
3232 /* TODO: really do this? */
3233 periodics_reschedule (EV_A);
3234#endif
3235}
3236
1220/*****************************************************************************/ 3237/*****************************************************************************/
3238/* singly-linked list management, used when the expected list length is short */
1221 3239
1222inline void 3240inline_size void
1223wlist_add (WL *head, WL elem) 3241wlist_add (WL *head, WL elem)
1224{ 3242{
1225 elem->next = *head; 3243 elem->next = *head;
1226 *head = elem; 3244 *head = elem;
1227} 3245}
1228 3246
1229inline void 3247inline_size void
1230wlist_del (WL *head, WL elem) 3248wlist_del (WL *head, WL elem)
1231{ 3249{
1232 while (*head) 3250 while (*head)
1233 { 3251 {
1234 if (*head == elem) 3252 if (expect_true (*head == elem))
1235 { 3253 {
1236 *head = elem->next; 3254 *head = elem->next;
1237 return; 3255 break;
1238 } 3256 }
1239 3257
1240 head = &(*head)->next; 3258 head = &(*head)->next;
1241 } 3259 }
1242} 3260}
1243 3261
3262/* internal, faster, version of ev_clear_pending */
1244inline void 3263inline_speed void
1245ev_clear_pending (EV_P_ W w) 3264clear_pending (EV_P_ W w)
1246{ 3265{
1247 if (w->pending) 3266 if (w->pending)
1248 { 3267 {
1249 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3268 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1250 w->pending = 0; 3269 w->pending = 0;
1251 } 3270 }
1252} 3271}
1253 3272
3273int
3274ev_clear_pending (EV_P_ void *w) EV_THROW
3275{
3276 W w_ = (W)w;
3277 int pending = w_->pending;
3278
3279 if (expect_true (pending))
3280 {
3281 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3282 p->w = (W)&pending_w;
3283 w_->pending = 0;
3284 return p->events;
3285 }
3286 else
3287 return 0;
3288}
3289
1254inline void 3290inline_size void
3291pri_adjust (EV_P_ W w)
3292{
3293 int pri = ev_priority (w);
3294 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
3295 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
3296 ev_set_priority (w, pri);
3297}
3298
3299inline_speed void
1255ev_start (EV_P_ W w, int active) 3300ev_start (EV_P_ W w, int active)
1256{ 3301{
1257 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 3302 pri_adjust (EV_A_ w);
1258 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1259
1260 w->active = active; 3303 w->active = active;
1261 ev_ref (EV_A); 3304 ev_ref (EV_A);
1262} 3305}
1263 3306
1264inline void 3307inline_size void
1265ev_stop (EV_P_ W w) 3308ev_stop (EV_P_ W w)
1266{ 3309{
1267 ev_unref (EV_A); 3310 ev_unref (EV_A);
1268 w->active = 0; 3311 w->active = 0;
1269} 3312}
1270 3313
1271/*****************************************************************************/ 3314/*****************************************************************************/
1272 3315
1273void 3316void noinline
1274ev_io_start (EV_P_ struct ev_io *w) 3317ev_io_start (EV_P_ ev_io *w) EV_THROW
1275{ 3318{
1276 int fd = w->fd; 3319 int fd = w->fd;
1277 3320
3321 if (expect_false (ev_is_active (w)))
3322 return;
3323
3324 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3325 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3326
3327 EV_FREQUENT_CHECK;
3328
3329 ev_start (EV_A_ (W)w, 1);
3330 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
3331 wlist_add (&anfds[fd].head, (WL)w);
3332
3333 /* common bug, apparently */
3334 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3335
3336 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3337 w->events &= ~EV__IOFDSET;
3338
3339 EV_FREQUENT_CHECK;
3340}
3341
3342void noinline
3343ev_io_stop (EV_P_ ev_io *w) EV_THROW
3344{
3345 clear_pending (EV_A_ (W)w);
3346 if (expect_false (!ev_is_active (w)))
3347 return;
3348
3349 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3350
3351 EV_FREQUENT_CHECK;
3352
3353 wlist_del (&anfds[w->fd].head, (WL)w);
3354 ev_stop (EV_A_ (W)w);
3355
3356 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3357
3358 EV_FREQUENT_CHECK;
3359}
3360
3361void noinline
3362ev_timer_start (EV_P_ ev_timer *w) EV_THROW
3363{
3364 if (expect_false (ev_is_active (w)))
3365 return;
3366
3367 ev_at (w) += mn_now;
3368
3369 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
3370
3371 EV_FREQUENT_CHECK;
3372
3373 ++timercnt;
3374 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
3375 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
3376 ANHE_w (timers [ev_active (w)]) = (WT)w;
3377 ANHE_at_cache (timers [ev_active (w)]);
3378 upheap (timers, ev_active (w));
3379
3380 EV_FREQUENT_CHECK;
3381
3382 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
3383}
3384
3385void noinline
3386ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
3387{
3388 clear_pending (EV_A_ (W)w);
3389 if (expect_false (!ev_is_active (w)))
3390 return;
3391
3392 EV_FREQUENT_CHECK;
3393
3394 {
3395 int active = ev_active (w);
3396
3397 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3398
3399 --timercnt;
3400
3401 if (expect_true (active < timercnt + HEAP0))
3402 {
3403 timers [active] = timers [timercnt + HEAP0];
3404 adjustheap (timers, timercnt, active);
3405 }
3406 }
3407
3408 ev_at (w) -= mn_now;
3409
3410 ev_stop (EV_A_ (W)w);
3411
3412 EV_FREQUENT_CHECK;
3413}
3414
3415void noinline
3416ev_timer_again (EV_P_ ev_timer *w) EV_THROW
3417{
3418 EV_FREQUENT_CHECK;
3419
3420 clear_pending (EV_A_ (W)w);
3421
1278 if (ev_is_active (w)) 3422 if (ev_is_active (w))
1279 return;
1280
1281 assert (("ev_io_start called with negative fd", fd >= 0));
1282
1283 ev_start (EV_A_ (W)w, 1);
1284 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1285 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1286
1287 fd_change (EV_A_ fd);
1288}
1289
1290void
1291ev_io_stop (EV_P_ struct ev_io *w)
1292{
1293 ev_clear_pending (EV_A_ (W)w);
1294 if (!ev_is_active (w))
1295 return;
1296
1297 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1298 ev_stop (EV_A_ (W)w);
1299
1300 fd_change (EV_A_ w->fd);
1301}
1302
1303void
1304ev_timer_start (EV_P_ struct ev_timer *w)
1305{
1306 if (ev_is_active (w))
1307 return;
1308
1309 ((WT)w)->at += mn_now;
1310
1311 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1312
1313 ev_start (EV_A_ (W)w, ++timercnt);
1314 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1315 timers [timercnt - 1] = w;
1316 upheap ((WT *)timers, timercnt - 1);
1317
1318 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1319}
1320
1321void
1322ev_timer_stop (EV_P_ struct ev_timer *w)
1323{
1324 ev_clear_pending (EV_A_ (W)w);
1325 if (!ev_is_active (w))
1326 return;
1327
1328 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1329
1330 if (((W)w)->active < timercnt--)
1331 {
1332 timers [((W)w)->active - 1] = timers [timercnt];
1333 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1334 }
1335
1336 ((WT)w)->at = w->repeat;
1337
1338 ev_stop (EV_A_ (W)w);
1339}
1340
1341void
1342ev_timer_again (EV_P_ struct ev_timer *w)
1343{
1344 if (ev_is_active (w))
1345 { 3423 {
1346 if (w->repeat) 3424 if (w->repeat)
1347 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat); 3425 {
3426 ev_at (w) = mn_now + w->repeat;
3427 ANHE_at_cache (timers [ev_active (w)]);
3428 adjustheap (timers, timercnt, ev_active (w));
3429 }
1348 else 3430 else
1349 ev_timer_stop (EV_A_ w); 3431 ev_timer_stop (EV_A_ w);
1350 } 3432 }
1351 else if (w->repeat) 3433 else if (w->repeat)
3434 {
3435 ev_at (w) = w->repeat;
1352 ev_timer_start (EV_A_ w); 3436 ev_timer_start (EV_A_ w);
1353} 3437 }
1354 3438
1355void 3439 EV_FREQUENT_CHECK;
3440}
3441
3442ev_tstamp
3443ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3444{
3445 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
3446}
3447
3448#if EV_PERIODIC_ENABLE
3449void noinline
1356ev_periodic_start (EV_P_ struct ev_periodic *w) 3450ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1357{ 3451{
1358 if (ev_is_active (w)) 3452 if (expect_false (ev_is_active (w)))
1359 return; 3453 return;
1360 3454
1361 if (w->reschedule_cb) 3455 if (w->reschedule_cb)
1362 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3456 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1363 else if (w->interval) 3457 else if (w->interval)
1364 { 3458 {
1365 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3459 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1366 /* this formula differs from the one in periodic_reify because we do not always round up */ 3460 periodic_recalc (EV_A_ w);
1367 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1368 } 3461 }
3462 else
3463 ev_at (w) = w->offset;
1369 3464
3465 EV_FREQUENT_CHECK;
3466
3467 ++periodiccnt;
1370 ev_start (EV_A_ (W)w, ++periodiccnt); 3468 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1371 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 3469 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1372 periodics [periodiccnt - 1] = w; 3470 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1373 upheap ((WT *)periodics, periodiccnt - 1); 3471 ANHE_at_cache (periodics [ev_active (w)]);
3472 upheap (periodics, ev_active (w));
1374 3473
3474 EV_FREQUENT_CHECK;
3475
1375 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3476 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1376} 3477}
1377 3478
1378void 3479void noinline
1379ev_periodic_stop (EV_P_ struct ev_periodic *w) 3480ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1380{ 3481{
1381 ev_clear_pending (EV_A_ (W)w); 3482 clear_pending (EV_A_ (W)w);
1382 if (!ev_is_active (w)) 3483 if (expect_false (!ev_is_active (w)))
1383 return; 3484 return;
1384 3485
3486 EV_FREQUENT_CHECK;
3487
3488 {
3489 int active = ev_active (w);
3490
1385 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3491 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1386 3492
1387 if (((W)w)->active < periodiccnt--) 3493 --periodiccnt;
3494
3495 if (expect_true (active < periodiccnt + HEAP0))
1388 { 3496 {
1389 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 3497 periodics [active] = periodics [periodiccnt + HEAP0];
1390 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 3498 adjustheap (periodics, periodiccnt, active);
1391 } 3499 }
3500 }
1392 3501
1393 ev_stop (EV_A_ (W)w); 3502 ev_stop (EV_A_ (W)w);
1394}
1395 3503
1396void 3504 EV_FREQUENT_CHECK;
3505}
3506
3507void noinline
1397ev_periodic_again (EV_P_ struct ev_periodic *w) 3508ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1398{ 3509{
1399 /* TODO: use adjustheap and recalculation */ 3510 /* TODO: use adjustheap and recalculation */
1400 ev_periodic_stop (EV_A_ w); 3511 ev_periodic_stop (EV_A_ w);
1401 ev_periodic_start (EV_A_ w); 3512 ev_periodic_start (EV_A_ w);
1402} 3513}
1403 3514#endif
1404void
1405ev_idle_start (EV_P_ struct ev_idle *w)
1406{
1407 if (ev_is_active (w))
1408 return;
1409
1410 ev_start (EV_A_ (W)w, ++idlecnt);
1411 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1412 idles [idlecnt - 1] = w;
1413}
1414
1415void
1416ev_idle_stop (EV_P_ struct ev_idle *w)
1417{
1418 ev_clear_pending (EV_A_ (W)w);
1419 if (ev_is_active (w))
1420 return;
1421
1422 idles [((W)w)->active - 1] = idles [--idlecnt];
1423 ev_stop (EV_A_ (W)w);
1424}
1425
1426void
1427ev_prepare_start (EV_P_ struct ev_prepare *w)
1428{
1429 if (ev_is_active (w))
1430 return;
1431
1432 ev_start (EV_A_ (W)w, ++preparecnt);
1433 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1434 prepares [preparecnt - 1] = w;
1435}
1436
1437void
1438ev_prepare_stop (EV_P_ struct ev_prepare *w)
1439{
1440 ev_clear_pending (EV_A_ (W)w);
1441 if (ev_is_active (w))
1442 return;
1443
1444 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1445 ev_stop (EV_A_ (W)w);
1446}
1447
1448void
1449ev_check_start (EV_P_ struct ev_check *w)
1450{
1451 if (ev_is_active (w))
1452 return;
1453
1454 ev_start (EV_A_ (W)w, ++checkcnt);
1455 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1456 checks [checkcnt - 1] = w;
1457}
1458
1459void
1460ev_check_stop (EV_P_ struct ev_check *w)
1461{
1462 ev_clear_pending (EV_A_ (W)w);
1463 if (ev_is_active (w))
1464 return;
1465
1466 checks [((W)w)->active - 1] = checks [--checkcnt];
1467 ev_stop (EV_A_ (W)w);
1468}
1469 3515
1470#ifndef SA_RESTART 3516#ifndef SA_RESTART
1471# define SA_RESTART 0 3517# define SA_RESTART 0
1472#endif 3518#endif
1473 3519
3520#if EV_SIGNAL_ENABLE
3521
3522void noinline
3523ev_signal_start (EV_P_ ev_signal *w) EV_THROW
3524{
3525 if (expect_false (ev_is_active (w)))
3526 return;
3527
3528 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3529
3530#if EV_MULTIPLICITY
3531 assert (("libev: a signal must not be attached to two different loops",
3532 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3533
3534 signals [w->signum - 1].loop = EV_A;
3535#endif
3536
3537 EV_FREQUENT_CHECK;
3538
3539#if EV_USE_SIGNALFD
3540 if (sigfd == -2)
3541 {
3542 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3543 if (sigfd < 0 && errno == EINVAL)
3544 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3545
3546 if (sigfd >= 0)
3547 {
3548 fd_intern (sigfd); /* doing it twice will not hurt */
3549
3550 sigemptyset (&sigfd_set);
3551
3552 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3553 ev_set_priority (&sigfd_w, EV_MAXPRI);
3554 ev_io_start (EV_A_ &sigfd_w);
3555 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3556 }
3557 }
3558
3559 if (sigfd >= 0)
3560 {
3561 /* TODO: check .head */
3562 sigaddset (&sigfd_set, w->signum);
3563 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3564
3565 signalfd (sigfd, &sigfd_set, 0);
3566 }
3567#endif
3568
3569 ev_start (EV_A_ (W)w, 1);
3570 wlist_add (&signals [w->signum - 1].head, (WL)w);
3571
3572 if (!((WL)w)->next)
3573# if EV_USE_SIGNALFD
3574 if (sigfd < 0) /*TODO*/
3575# endif
3576 {
3577# ifdef _WIN32
3578 evpipe_init (EV_A);
3579
3580 signal (w->signum, ev_sighandler);
3581# else
3582 struct sigaction sa;
3583
3584 evpipe_init (EV_A);
3585
3586 sa.sa_handler = ev_sighandler;
3587 sigfillset (&sa.sa_mask);
3588 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
3589 sigaction (w->signum, &sa, 0);
3590
3591 if (origflags & EVFLAG_NOSIGMASK)
3592 {
3593 sigemptyset (&sa.sa_mask);
3594 sigaddset (&sa.sa_mask, w->signum);
3595 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3596 }
3597#endif
3598 }
3599
3600 EV_FREQUENT_CHECK;
3601}
3602
3603void noinline
3604ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
3605{
3606 clear_pending (EV_A_ (W)w);
3607 if (expect_false (!ev_is_active (w)))
3608 return;
3609
3610 EV_FREQUENT_CHECK;
3611
3612 wlist_del (&signals [w->signum - 1].head, (WL)w);
3613 ev_stop (EV_A_ (W)w);
3614
3615 if (!signals [w->signum - 1].head)
3616 {
3617#if EV_MULTIPLICITY
3618 signals [w->signum - 1].loop = 0; /* unattach from signal */
3619#endif
3620#if EV_USE_SIGNALFD
3621 if (sigfd >= 0)
3622 {
3623 sigset_t ss;
3624
3625 sigemptyset (&ss);
3626 sigaddset (&ss, w->signum);
3627 sigdelset (&sigfd_set, w->signum);
3628
3629 signalfd (sigfd, &sigfd_set, 0);
3630 sigprocmask (SIG_UNBLOCK, &ss, 0);
3631 }
3632 else
3633#endif
3634 signal (w->signum, SIG_DFL);
3635 }
3636
3637 EV_FREQUENT_CHECK;
3638}
3639
3640#endif
3641
3642#if EV_CHILD_ENABLE
3643
1474void 3644void
1475ev_signal_start (EV_P_ struct ev_signal *w) 3645ev_child_start (EV_P_ ev_child *w) EV_THROW
1476{ 3646{
1477#if EV_MULTIPLICITY 3647#if EV_MULTIPLICITY
1478 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 3648 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1479#endif 3649#endif
1480 if (ev_is_active (w)) 3650 if (expect_false (ev_is_active (w)))
1481 return; 3651 return;
1482 3652
1483 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3653 EV_FREQUENT_CHECK;
1484 3654
1485 ev_start (EV_A_ (W)w, 1); 3655 ev_start (EV_A_ (W)w, 1);
1486 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3656 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1487 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1488 3657
1489 if (!((WL)w)->next) 3658 EV_FREQUENT_CHECK;
3659}
3660
3661void
3662ev_child_stop (EV_P_ ev_child *w) EV_THROW
3663{
3664 clear_pending (EV_A_ (W)w);
3665 if (expect_false (!ev_is_active (w)))
3666 return;
3667
3668 EV_FREQUENT_CHECK;
3669
3670 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3671 ev_stop (EV_A_ (W)w);
3672
3673 EV_FREQUENT_CHECK;
3674}
3675
3676#endif
3677
3678#if EV_STAT_ENABLE
3679
3680# ifdef _WIN32
3681# undef lstat
3682# define lstat(a,b) _stati64 (a,b)
3683# endif
3684
3685#define DEF_STAT_INTERVAL 5.0074891
3686#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3687#define MIN_STAT_INTERVAL 0.1074891
3688
3689static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3690
3691#if EV_USE_INOTIFY
3692
3693/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3694# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3695
3696static void noinline
3697infy_add (EV_P_ ev_stat *w)
3698{
3699 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3700
3701 if (w->wd >= 0)
3702 {
3703 struct statfs sfs;
3704
3705 /* now local changes will be tracked by inotify, but remote changes won't */
3706 /* unless the filesystem is known to be local, we therefore still poll */
3707 /* also do poll on <2.6.25, but with normal frequency */
3708
3709 if (!fs_2625)
3710 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3711 else if (!statfs (w->path, &sfs)
3712 && (sfs.f_type == 0x1373 /* devfs */
3713 || sfs.f_type == 0xEF53 /* ext2/3 */
3714 || sfs.f_type == 0x3153464a /* jfs */
3715 || sfs.f_type == 0x52654973 /* reiser3 */
3716 || sfs.f_type == 0x01021994 /* tempfs */
3717 || sfs.f_type == 0x58465342 /* xfs */))
3718 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3719 else
3720 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1490 { 3721 }
1491#if WIN32 3722 else
1492 signal (w->signum, sighandler); 3723 {
3724 /* can't use inotify, continue to stat */
3725 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3726
3727 /* if path is not there, monitor some parent directory for speedup hints */
3728 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3729 /* but an efficiency issue only */
3730 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3731 {
3732 char path [4096];
3733 strcpy (path, w->path);
3734
3735 do
3736 {
3737 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3738 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3739
3740 char *pend = strrchr (path, '/');
3741
3742 if (!pend || pend == path)
3743 break;
3744
3745 *pend = 0;
3746 w->wd = inotify_add_watch (fs_fd, path, mask);
3747 }
3748 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3749 }
3750 }
3751
3752 if (w->wd >= 0)
3753 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3754
3755 /* now re-arm timer, if required */
3756 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3757 ev_timer_again (EV_A_ &w->timer);
3758 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3759}
3760
3761static void noinline
3762infy_del (EV_P_ ev_stat *w)
3763{
3764 int slot;
3765 int wd = w->wd;
3766
3767 if (wd < 0)
3768 return;
3769
3770 w->wd = -2;
3771 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3772 wlist_del (&fs_hash [slot].head, (WL)w);
3773
3774 /* remove this watcher, if others are watching it, they will rearm */
3775 inotify_rm_watch (fs_fd, wd);
3776}
3777
3778static void noinline
3779infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3780{
3781 if (slot < 0)
3782 /* overflow, need to check for all hash slots */
3783 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3784 infy_wd (EV_A_ slot, wd, ev);
3785 else
3786 {
3787 WL w_;
3788
3789 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3790 {
3791 ev_stat *w = (ev_stat *)w_;
3792 w_ = w_->next; /* lets us remove this watcher and all before it */
3793
3794 if (w->wd == wd || wd == -1)
3795 {
3796 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3797 {
3798 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3799 w->wd = -1;
3800 infy_add (EV_A_ w); /* re-add, no matter what */
3801 }
3802
3803 stat_timer_cb (EV_A_ &w->timer, 0);
3804 }
3805 }
3806 }
3807}
3808
3809static void
3810infy_cb (EV_P_ ev_io *w, int revents)
3811{
3812 char buf [EV_INOTIFY_BUFSIZE];
3813 int ofs;
3814 int len = read (fs_fd, buf, sizeof (buf));
3815
3816 for (ofs = 0; ofs < len; )
3817 {
3818 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3819 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3820 ofs += sizeof (struct inotify_event) + ev->len;
3821 }
3822}
3823
3824inline_size void ecb_cold
3825ev_check_2625 (EV_P)
3826{
3827 /* kernels < 2.6.25 are borked
3828 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3829 */
3830 if (ev_linux_version () < 0x020619)
3831 return;
3832
3833 fs_2625 = 1;
3834}
3835
3836inline_size int
3837infy_newfd (void)
3838{
3839#if defined IN_CLOEXEC && defined IN_NONBLOCK
3840 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3841 if (fd >= 0)
3842 return fd;
3843#endif
3844 return inotify_init ();
3845}
3846
3847inline_size void
3848infy_init (EV_P)
3849{
3850 if (fs_fd != -2)
3851 return;
3852
3853 fs_fd = -1;
3854
3855 ev_check_2625 (EV_A);
3856
3857 fs_fd = infy_newfd ();
3858
3859 if (fs_fd >= 0)
3860 {
3861 fd_intern (fs_fd);
3862 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3863 ev_set_priority (&fs_w, EV_MAXPRI);
3864 ev_io_start (EV_A_ &fs_w);
3865 ev_unref (EV_A);
3866 }
3867}
3868
3869inline_size void
3870infy_fork (EV_P)
3871{
3872 int slot;
3873
3874 if (fs_fd < 0)
3875 return;
3876
3877 ev_ref (EV_A);
3878 ev_io_stop (EV_A_ &fs_w);
3879 close (fs_fd);
3880 fs_fd = infy_newfd ();
3881
3882 if (fs_fd >= 0)
3883 {
3884 fd_intern (fs_fd);
3885 ev_io_set (&fs_w, fs_fd, EV_READ);
3886 ev_io_start (EV_A_ &fs_w);
3887 ev_unref (EV_A);
3888 }
3889
3890 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3891 {
3892 WL w_ = fs_hash [slot].head;
3893 fs_hash [slot].head = 0;
3894
3895 while (w_)
3896 {
3897 ev_stat *w = (ev_stat *)w_;
3898 w_ = w_->next; /* lets us add this watcher */
3899
3900 w->wd = -1;
3901
3902 if (fs_fd >= 0)
3903 infy_add (EV_A_ w); /* re-add, no matter what */
3904 else
3905 {
3906 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3907 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3908 ev_timer_again (EV_A_ &w->timer);
3909 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3910 }
3911 }
3912 }
3913}
3914
3915#endif
3916
3917#ifdef _WIN32
3918# define EV_LSTAT(p,b) _stati64 (p, b)
1493#else 3919#else
1494 struct sigaction sa; 3920# define EV_LSTAT(p,b) lstat (p, b)
1495 sa.sa_handler = sighandler;
1496 sigfillset (&sa.sa_mask);
1497 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1498 sigaction (w->signum, &sa, 0);
1499#endif 3921#endif
1500 }
1501}
1502 3922
1503void 3923void
1504ev_signal_stop (EV_P_ struct ev_signal *w) 3924ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1505{ 3925{
1506 ev_clear_pending (EV_A_ (W)w); 3926 if (lstat (w->path, &w->attr) < 0)
1507 if (!ev_is_active (w)) 3927 w->attr.st_nlink = 0;
3928 else if (!w->attr.st_nlink)
3929 w->attr.st_nlink = 1;
3930}
3931
3932static void noinline
3933stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3934{
3935 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3936
3937 ev_statdata prev = w->attr;
3938 ev_stat_stat (EV_A_ w);
3939
3940 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3941 if (
3942 prev.st_dev != w->attr.st_dev
3943 || prev.st_ino != w->attr.st_ino
3944 || prev.st_mode != w->attr.st_mode
3945 || prev.st_nlink != w->attr.st_nlink
3946 || prev.st_uid != w->attr.st_uid
3947 || prev.st_gid != w->attr.st_gid
3948 || prev.st_rdev != w->attr.st_rdev
3949 || prev.st_size != w->attr.st_size
3950 || prev.st_atime != w->attr.st_atime
3951 || prev.st_mtime != w->attr.st_mtime
3952 || prev.st_ctime != w->attr.st_ctime
3953 ) {
3954 /* we only update w->prev on actual differences */
3955 /* in case we test more often than invoke the callback, */
3956 /* to ensure that prev is always different to attr */
3957 w->prev = prev;
3958
3959 #if EV_USE_INOTIFY
3960 if (fs_fd >= 0)
3961 {
3962 infy_del (EV_A_ w);
3963 infy_add (EV_A_ w);
3964 ev_stat_stat (EV_A_ w); /* avoid race... */
3965 }
3966 #endif
3967
3968 ev_feed_event (EV_A_ w, EV_STAT);
3969 }
3970}
3971
3972void
3973ev_stat_start (EV_P_ ev_stat *w) EV_THROW
3974{
3975 if (expect_false (ev_is_active (w)))
1508 return; 3976 return;
1509 3977
1510 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3978 ev_stat_stat (EV_A_ w);
3979
3980 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3981 w->interval = MIN_STAT_INTERVAL;
3982
3983 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3984 ev_set_priority (&w->timer, ev_priority (w));
3985
3986#if EV_USE_INOTIFY
3987 infy_init (EV_A);
3988
3989 if (fs_fd >= 0)
3990 infy_add (EV_A_ w);
3991 else
3992#endif
3993 {
3994 ev_timer_again (EV_A_ &w->timer);
3995 ev_unref (EV_A);
3996 }
3997
3998 ev_start (EV_A_ (W)w, 1);
3999
4000 EV_FREQUENT_CHECK;
4001}
4002
4003void
4004ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
4005{
4006 clear_pending (EV_A_ (W)w);
4007 if (expect_false (!ev_is_active (w)))
4008 return;
4009
4010 EV_FREQUENT_CHECK;
4011
4012#if EV_USE_INOTIFY
4013 infy_del (EV_A_ w);
4014#endif
4015
4016 if (ev_is_active (&w->timer))
4017 {
4018 ev_ref (EV_A);
4019 ev_timer_stop (EV_A_ &w->timer);
4020 }
4021
1511 ev_stop (EV_A_ (W)w); 4022 ev_stop (EV_A_ (W)w);
1512 4023
1513 if (!signals [w->signum - 1].head) 4024 EV_FREQUENT_CHECK;
1514 signal (w->signum, SIG_DFL);
1515} 4025}
4026#endif
1516 4027
4028#if EV_IDLE_ENABLE
1517void 4029void
1518ev_child_start (EV_P_ struct ev_child *w) 4030ev_idle_start (EV_P_ ev_idle *w) EV_THROW
1519{ 4031{
1520#if EV_MULTIPLICITY
1521 assert (("child watchers are only supported in the default loop", loop == default_loop));
1522#endif
1523 if (ev_is_active (w)) 4032 if (expect_false (ev_is_active (w)))
1524 return; 4033 return;
1525 4034
4035 pri_adjust (EV_A_ (W)w);
4036
4037 EV_FREQUENT_CHECK;
4038
4039 {
4040 int active = ++idlecnt [ABSPRI (w)];
4041
4042 ++idleall;
4043 ev_start (EV_A_ (W)w, active);
4044
4045 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
4046 idles [ABSPRI (w)][active - 1] = w;
4047 }
4048
4049 EV_FREQUENT_CHECK;
4050}
4051
4052void
4053ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
4054{
4055 clear_pending (EV_A_ (W)w);
4056 if (expect_false (!ev_is_active (w)))
4057 return;
4058
4059 EV_FREQUENT_CHECK;
4060
4061 {
4062 int active = ev_active (w);
4063
4064 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
4065 ev_active (idles [ABSPRI (w)][active - 1]) = active;
4066
4067 ev_stop (EV_A_ (W)w);
4068 --idleall;
4069 }
4070
4071 EV_FREQUENT_CHECK;
4072}
4073#endif
4074
4075#if EV_PREPARE_ENABLE
4076void
4077ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
4078{
4079 if (expect_false (ev_is_active (w)))
4080 return;
4081
4082 EV_FREQUENT_CHECK;
4083
4084 ev_start (EV_A_ (W)w, ++preparecnt);
4085 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
4086 prepares [preparecnt - 1] = w;
4087
4088 EV_FREQUENT_CHECK;
4089}
4090
4091void
4092ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
4093{
4094 clear_pending (EV_A_ (W)w);
4095 if (expect_false (!ev_is_active (w)))
4096 return;
4097
4098 EV_FREQUENT_CHECK;
4099
4100 {
4101 int active = ev_active (w);
4102
4103 prepares [active - 1] = prepares [--preparecnt];
4104 ev_active (prepares [active - 1]) = active;
4105 }
4106
4107 ev_stop (EV_A_ (W)w);
4108
4109 EV_FREQUENT_CHECK;
4110}
4111#endif
4112
4113#if EV_CHECK_ENABLE
4114void
4115ev_check_start (EV_P_ ev_check *w) EV_THROW
4116{
4117 if (expect_false (ev_is_active (w)))
4118 return;
4119
4120 EV_FREQUENT_CHECK;
4121
4122 ev_start (EV_A_ (W)w, ++checkcnt);
4123 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
4124 checks [checkcnt - 1] = w;
4125
4126 EV_FREQUENT_CHECK;
4127}
4128
4129void
4130ev_check_stop (EV_P_ ev_check *w) EV_THROW
4131{
4132 clear_pending (EV_A_ (W)w);
4133 if (expect_false (!ev_is_active (w)))
4134 return;
4135
4136 EV_FREQUENT_CHECK;
4137
4138 {
4139 int active = ev_active (w);
4140
4141 checks [active - 1] = checks [--checkcnt];
4142 ev_active (checks [active - 1]) = active;
4143 }
4144
4145 ev_stop (EV_A_ (W)w);
4146
4147 EV_FREQUENT_CHECK;
4148}
4149#endif
4150
4151#if EV_EMBED_ENABLE
4152void noinline
4153ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
4154{
4155 ev_run (w->other, EVRUN_NOWAIT);
4156}
4157
4158static void
4159embed_io_cb (EV_P_ ev_io *io, int revents)
4160{
4161 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
4162
4163 if (ev_cb (w))
4164 ev_feed_event (EV_A_ (W)w, EV_EMBED);
4165 else
4166 ev_run (w->other, EVRUN_NOWAIT);
4167}
4168
4169static void
4170embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4171{
4172 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4173
4174 {
4175 EV_P = w->other;
4176
4177 while (fdchangecnt)
4178 {
4179 fd_reify (EV_A);
4180 ev_run (EV_A_ EVRUN_NOWAIT);
4181 }
4182 }
4183}
4184
4185static void
4186embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4187{
4188 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4189
4190 ev_embed_stop (EV_A_ w);
4191
4192 {
4193 EV_P = w->other;
4194
4195 ev_loop_fork (EV_A);
4196 ev_run (EV_A_ EVRUN_NOWAIT);
4197 }
4198
4199 ev_embed_start (EV_A_ w);
4200}
4201
4202#if 0
4203static void
4204embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4205{
4206 ev_idle_stop (EV_A_ idle);
4207}
4208#endif
4209
4210void
4211ev_embed_start (EV_P_ ev_embed *w) EV_THROW
4212{
4213 if (expect_false (ev_is_active (w)))
4214 return;
4215
4216 {
4217 EV_P = w->other;
4218 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
4219 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
4220 }
4221
4222 EV_FREQUENT_CHECK;
4223
4224 ev_set_priority (&w->io, ev_priority (w));
4225 ev_io_start (EV_A_ &w->io);
4226
4227 ev_prepare_init (&w->prepare, embed_prepare_cb);
4228 ev_set_priority (&w->prepare, EV_MINPRI);
4229 ev_prepare_start (EV_A_ &w->prepare);
4230
4231 ev_fork_init (&w->fork, embed_fork_cb);
4232 ev_fork_start (EV_A_ &w->fork);
4233
4234 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4235
1526 ev_start (EV_A_ (W)w, 1); 4236 ev_start (EV_A_ (W)w, 1);
1527 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4237
4238 EV_FREQUENT_CHECK;
1528} 4239}
1529 4240
1530void 4241void
1531ev_child_stop (EV_P_ struct ev_child *w) 4242ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
1532{ 4243{
1533 ev_clear_pending (EV_A_ (W)w); 4244 clear_pending (EV_A_ (W)w);
1534 if (ev_is_active (w)) 4245 if (expect_false (!ev_is_active (w)))
1535 return; 4246 return;
1536 4247
1537 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 4248 EV_FREQUENT_CHECK;
4249
4250 ev_io_stop (EV_A_ &w->io);
4251 ev_prepare_stop (EV_A_ &w->prepare);
4252 ev_fork_stop (EV_A_ &w->fork);
4253
1538 ev_stop (EV_A_ (W)w); 4254 ev_stop (EV_A_ (W)w);
4255
4256 EV_FREQUENT_CHECK;
1539} 4257}
4258#endif
4259
4260#if EV_FORK_ENABLE
4261void
4262ev_fork_start (EV_P_ ev_fork *w) EV_THROW
4263{
4264 if (expect_false (ev_is_active (w)))
4265 return;
4266
4267 EV_FREQUENT_CHECK;
4268
4269 ev_start (EV_A_ (W)w, ++forkcnt);
4270 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
4271 forks [forkcnt - 1] = w;
4272
4273 EV_FREQUENT_CHECK;
4274}
4275
4276void
4277ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
4278{
4279 clear_pending (EV_A_ (W)w);
4280 if (expect_false (!ev_is_active (w)))
4281 return;
4282
4283 EV_FREQUENT_CHECK;
4284
4285 {
4286 int active = ev_active (w);
4287
4288 forks [active - 1] = forks [--forkcnt];
4289 ev_active (forks [active - 1]) = active;
4290 }
4291
4292 ev_stop (EV_A_ (W)w);
4293
4294 EV_FREQUENT_CHECK;
4295}
4296#endif
4297
4298#if EV_CLEANUP_ENABLE
4299void
4300ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4301{
4302 if (expect_false (ev_is_active (w)))
4303 return;
4304
4305 EV_FREQUENT_CHECK;
4306
4307 ev_start (EV_A_ (W)w, ++cleanupcnt);
4308 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4309 cleanups [cleanupcnt - 1] = w;
4310
4311 /* cleanup watchers should never keep a refcount on the loop */
4312 ev_unref (EV_A);
4313 EV_FREQUENT_CHECK;
4314}
4315
4316void
4317ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4318{
4319 clear_pending (EV_A_ (W)w);
4320 if (expect_false (!ev_is_active (w)))
4321 return;
4322
4323 EV_FREQUENT_CHECK;
4324 ev_ref (EV_A);
4325
4326 {
4327 int active = ev_active (w);
4328
4329 cleanups [active - 1] = cleanups [--cleanupcnt];
4330 ev_active (cleanups [active - 1]) = active;
4331 }
4332
4333 ev_stop (EV_A_ (W)w);
4334
4335 EV_FREQUENT_CHECK;
4336}
4337#endif
4338
4339#if EV_ASYNC_ENABLE
4340void
4341ev_async_start (EV_P_ ev_async *w) EV_THROW
4342{
4343 if (expect_false (ev_is_active (w)))
4344 return;
4345
4346 w->sent = 0;
4347
4348 evpipe_init (EV_A);
4349
4350 EV_FREQUENT_CHECK;
4351
4352 ev_start (EV_A_ (W)w, ++asynccnt);
4353 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4354 asyncs [asynccnt - 1] = w;
4355
4356 EV_FREQUENT_CHECK;
4357}
4358
4359void
4360ev_async_stop (EV_P_ ev_async *w) EV_THROW
4361{
4362 clear_pending (EV_A_ (W)w);
4363 if (expect_false (!ev_is_active (w)))
4364 return;
4365
4366 EV_FREQUENT_CHECK;
4367
4368 {
4369 int active = ev_active (w);
4370
4371 asyncs [active - 1] = asyncs [--asynccnt];
4372 ev_active (asyncs [active - 1]) = active;
4373 }
4374
4375 ev_stop (EV_A_ (W)w);
4376
4377 EV_FREQUENT_CHECK;
4378}
4379
4380void
4381ev_async_send (EV_P_ ev_async *w) EV_THROW
4382{
4383 w->sent = 1;
4384 evpipe_write (EV_A_ &async_pending);
4385}
4386#endif
1540 4387
1541/*****************************************************************************/ 4388/*****************************************************************************/
1542 4389
1543struct ev_once 4390struct ev_once
1544{ 4391{
1545 struct ev_io io; 4392 ev_io io;
1546 struct ev_timer to; 4393 ev_timer to;
1547 void (*cb)(int revents, void *arg); 4394 void (*cb)(int revents, void *arg);
1548 void *arg; 4395 void *arg;
1549}; 4396};
1550 4397
1551static void 4398static void
1552once_cb (EV_P_ struct ev_once *once, int revents) 4399once_cb (EV_P_ struct ev_once *once, int revents)
1553{ 4400{
1554 void (*cb)(int revents, void *arg) = once->cb; 4401 void (*cb)(int revents, void *arg) = once->cb;
1555 void *arg = once->arg; 4402 void *arg = once->arg;
1556 4403
1557 ev_io_stop (EV_A_ &once->io); 4404 ev_io_stop (EV_A_ &once->io);
1558 ev_timer_stop (EV_A_ &once->to); 4405 ev_timer_stop (EV_A_ &once->to);
1559 ev_free (once); 4406 ev_free (once);
1560 4407
1561 cb (revents, arg); 4408 cb (revents, arg);
1562} 4409}
1563 4410
1564static void 4411static void
1565once_cb_io (EV_P_ struct ev_io *w, int revents) 4412once_cb_io (EV_P_ ev_io *w, int revents)
1566{ 4413{
1567 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4414 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4415
4416 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1568} 4417}
1569 4418
1570static void 4419static void
1571once_cb_to (EV_P_ struct ev_timer *w, int revents) 4420once_cb_to (EV_P_ ev_timer *w, int revents)
1572{ 4421{
1573 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4422 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4423
4424 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1574} 4425}
1575 4426
1576void 4427void
1577ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4428ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
1578{ 4429{
1579 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4430 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1580 4431
1581 if (!once) 4432 if (expect_false (!once))
4433 {
1582 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4434 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1583 else 4435 return;
1584 { 4436 }
4437
1585 once->cb = cb; 4438 once->cb = cb;
1586 once->arg = arg; 4439 once->arg = arg;
1587 4440
1588 ev_init (&once->io, once_cb_io); 4441 ev_init (&once->io, once_cb_io);
1589 if (fd >= 0) 4442 if (fd >= 0)
4443 {
4444 ev_io_set (&once->io, fd, events);
4445 ev_io_start (EV_A_ &once->io);
4446 }
4447
4448 ev_init (&once->to, once_cb_to);
4449 if (timeout >= 0.)
4450 {
4451 ev_timer_set (&once->to, timeout, 0.);
4452 ev_timer_start (EV_A_ &once->to);
4453 }
4454}
4455
4456/*****************************************************************************/
4457
4458#if EV_WALK_ENABLE
4459void ecb_cold
4460ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4461{
4462 int i, j;
4463 ev_watcher_list *wl, *wn;
4464
4465 if (types & (EV_IO | EV_EMBED))
4466 for (i = 0; i < anfdmax; ++i)
4467 for (wl = anfds [i].head; wl; )
1590 { 4468 {
1591 ev_io_set (&once->io, fd, events); 4469 wn = wl->next;
1592 ev_io_start (EV_A_ &once->io); 4470
4471#if EV_EMBED_ENABLE
4472 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4473 {
4474 if (types & EV_EMBED)
4475 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4476 }
4477 else
4478#endif
4479#if EV_USE_INOTIFY
4480 if (ev_cb ((ev_io *)wl) == infy_cb)
4481 ;
4482 else
4483#endif
4484 if ((ev_io *)wl != &pipe_w)
4485 if (types & EV_IO)
4486 cb (EV_A_ EV_IO, wl);
4487
4488 wl = wn;
1593 } 4489 }
1594 4490
1595 ev_init (&once->to, once_cb_to); 4491 if (types & (EV_TIMER | EV_STAT))
1596 if (timeout >= 0.) 4492 for (i = timercnt + HEAP0; i-- > HEAP0; )
4493#if EV_STAT_ENABLE
4494 /*TODO: timer is not always active*/
4495 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1597 { 4496 {
1598 ev_timer_set (&once->to, timeout, 0.); 4497 if (types & EV_STAT)
1599 ev_timer_start (EV_A_ &once->to); 4498 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1600 } 4499 }
1601 } 4500 else
1602} 4501#endif
4502 if (types & EV_TIMER)
4503 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1603 4504
1604#ifdef __cplusplus 4505#if EV_PERIODIC_ENABLE
1605} 4506 if (types & EV_PERIODIC)
4507 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4508 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4509#endif
4510
4511#if EV_IDLE_ENABLE
4512 if (types & EV_IDLE)
4513 for (j = NUMPRI; j--; )
4514 for (i = idlecnt [j]; i--; )
4515 cb (EV_A_ EV_IDLE, idles [j][i]);
4516#endif
4517
4518#if EV_FORK_ENABLE
4519 if (types & EV_FORK)
4520 for (i = forkcnt; i--; )
4521 if (ev_cb (forks [i]) != embed_fork_cb)
4522 cb (EV_A_ EV_FORK, forks [i]);
4523#endif
4524
4525#if EV_ASYNC_ENABLE
4526 if (types & EV_ASYNC)
4527 for (i = asynccnt; i--; )
4528 cb (EV_A_ EV_ASYNC, asyncs [i]);
4529#endif
4530
4531#if EV_PREPARE_ENABLE
4532 if (types & EV_PREPARE)
4533 for (i = preparecnt; i--; )
4534# if EV_EMBED_ENABLE
4535 if (ev_cb (prepares [i]) != embed_prepare_cb)
1606#endif 4536# endif
4537 cb (EV_A_ EV_PREPARE, prepares [i]);
4538#endif
1607 4539
4540#if EV_CHECK_ENABLE
4541 if (types & EV_CHECK)
4542 for (i = checkcnt; i--; )
4543 cb (EV_A_ EV_CHECK, checks [i]);
4544#endif
4545
4546#if EV_SIGNAL_ENABLE
4547 if (types & EV_SIGNAL)
4548 for (i = 0; i < EV_NSIG - 1; ++i)
4549 for (wl = signals [i].head; wl; )
4550 {
4551 wn = wl->next;
4552 cb (EV_A_ EV_SIGNAL, wl);
4553 wl = wn;
4554 }
4555#endif
4556
4557#if EV_CHILD_ENABLE
4558 if (types & EV_CHILD)
4559 for (i = (EV_PID_HASHSIZE); i--; )
4560 for (wl = childs [i]; wl; )
4561 {
4562 wn = wl->next;
4563 cb (EV_A_ EV_CHILD, wl);
4564 wl = wn;
4565 }
4566#endif
4567/* EV_STAT 0x00001000 /* stat data changed */
4568/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4569}
4570#endif
4571
4572#if EV_MULTIPLICITY
4573 #include "ev_wrap.h"
4574#endif
4575

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines