ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.88 by root, Sat Nov 10 04:40:27 2007 UTC vs.
Revision 1.313 by root, Wed Aug 19 23:44:51 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
40# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
41# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
42# endif 80# endif
43 81
44# if HAVE_SELECT && HAVE_SYS_SELECT_H 82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
45# define EV_USE_SELECT 1 84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
46# endif 88# endif
47 89
48# if HAVE_POLL && HAVE_POLL_H 90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
49# define EV_USE_POLL 1 92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
50# endif 96# endif
51 97
52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
53# define EV_USE_EPOLL 1 100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
54# endif 104# endif
55 105
56# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
57# define EV_USE_KQUEUE 1 108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
58# endif 112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
59 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
60#endif 154#endif
61 155
62#include <math.h> 156#include <math.h>
63#include <stdlib.h> 157#include <stdlib.h>
64#include <fcntl.h> 158#include <fcntl.h>
71#include <sys/types.h> 165#include <sys/types.h>
72#include <time.h> 166#include <time.h>
73 167
74#include <signal.h> 168#include <signal.h>
75 169
76#ifndef WIN32
77# include <unistd.h>
78# include <sys/time.h>
79# include <sys/wait.h>
80#endif
81/**/
82
83#ifndef EV_USE_MONOTONIC
84# define EV_USE_MONOTONIC 1
85#endif
86
87#ifndef EV_USE_SELECT
88# define EV_USE_SELECT 1
89#endif
90
91#ifndef EV_USE_POLL
92# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
93#endif
94
95#ifndef EV_USE_EPOLL
96# define EV_USE_EPOLL 0
97#endif
98
99#ifndef EV_USE_KQUEUE
100# define EV_USE_KQUEUE 0
101#endif
102
103#ifndef EV_USE_WIN32
104# ifdef WIN32
105# define EV_USE_WIN32 0 /* it does not exist, use select */
106# undef EV_USE_SELECT
107# define EV_USE_SELECT 1
108# else
109# define EV_USE_WIN32 0
110# endif
111#endif
112
113#ifndef EV_USE_REALTIME
114# define EV_USE_REALTIME 1
115#endif
116
117/**/
118
119#ifndef CLOCK_MONOTONIC
120# undef EV_USE_MONOTONIC
121# define EV_USE_MONOTONIC 0
122#endif
123
124#ifndef CLOCK_REALTIME
125# undef EV_USE_REALTIME
126# define EV_USE_REALTIME 0
127#endif
128
129/**/
130
131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
135
136#ifdef EV_H 170#ifdef EV_H
137# include EV_H 171# include EV_H
138#else 172#else
139# include "ev.h" 173# include "ev.h"
140#endif 174#endif
141 175
176#ifndef _WIN32
177# include <sys/time.h>
178# include <sys/wait.h>
179# include <unistd.h>
180#else
181# include <io.h>
182# define WIN32_LEAN_AND_MEAN
183# include <windows.h>
184# ifndef EV_SELECT_IS_WINSOCKET
185# define EV_SELECT_IS_WINSOCKET 1
186# endif
187#endif
188
189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
225
226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
230# define EV_USE_MONOTONIC 0
231# endif
232#endif
233
234#ifndef EV_USE_REALTIME
235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236#endif
237
238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
242# define EV_USE_NANOSLEEP 0
243# endif
244#endif
245
246#ifndef EV_USE_SELECT
247# define EV_USE_SELECT 1
248#endif
249
250#ifndef EV_USE_POLL
251# ifdef _WIN32
252# define EV_USE_POLL 0
253# else
254# define EV_USE_POLL 1
255# endif
256#endif
257
258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
262# define EV_USE_EPOLL 0
263# endif
264#endif
265
266#ifndef EV_USE_KQUEUE
267# define EV_USE_KQUEUE 0
268#endif
269
270#ifndef EV_USE_PORT
271# define EV_USE_PORT 0
272#endif
273
274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276# define EV_USE_INOTIFY 1
277# else
278# define EV_USE_INOTIFY 0
279# endif
280#endif
281
282#ifndef EV_PID_HASHSIZE
283# if EV_MINIMAL
284# define EV_PID_HASHSIZE 1
285# else
286# define EV_PID_HASHSIZE 16
287# endif
288#endif
289
290#ifndef EV_INOTIFY_HASHSIZE
291# if EV_MINIMAL
292# define EV_INOTIFY_HASHSIZE 1
293# else
294# define EV_INOTIFY_HASHSIZE 16
295# endif
296#endif
297
298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
347
348#ifndef CLOCK_MONOTONIC
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 0
351#endif
352
353#ifndef CLOCK_REALTIME
354# undef EV_USE_REALTIME
355# define EV_USE_REALTIME 0
356#endif
357
358#if !EV_STAT_ENABLE
359# undef EV_USE_INOTIFY
360# define EV_USE_INOTIFY 0
361#endif
362
363#if !EV_USE_NANOSLEEP
364# ifndef _WIN32
365# include <sys/select.h>
366# endif
367#endif
368
369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
378#endif
379
380#if EV_SELECT_IS_WINSOCKET
381# include <winsock.h>
382#endif
383
384#if EV_USE_EVENTFD
385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
389# endif
390# ifndef EFD_CLOEXEC
391# ifdef O_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
396# endif
397# ifdef __cplusplus
398extern "C" {
399# endif
400int eventfd (unsigned int initval, int flags);
401# ifdef __cplusplus
402}
403# endif
404#endif
405
406#if EV_USE_SIGNALFD
407# include <sys/signalfd.h>
408#endif
409
410/**/
411
412#if EV_VERIFY >= 3
413# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
414#else
415# define EV_FREQUENT_CHECK do { } while (0)
416#endif
417
418/*
419 * This is used to avoid floating point rounding problems.
420 * It is added to ev_rt_now when scheduling periodics
421 * to ensure progress, time-wise, even when rounding
422 * errors are against us.
423 * This value is good at least till the year 4000.
424 * Better solutions welcome.
425 */
426#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
427
428#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
429#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
430/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
431
142#if __GNUC__ >= 3 432#if __GNUC__ >= 4
143# define expect(expr,value) __builtin_expect ((expr),(value)) 433# define expect(expr,value) __builtin_expect ((expr),(value))
144# define inline inline 434# define noinline __attribute__ ((noinline))
145#else 435#else
146# define expect(expr,value) (expr) 436# define expect(expr,value) (expr)
147# define inline static 437# define noinline
438# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
439# define inline
440# endif
148#endif 441#endif
149 442
150#define expect_false(expr) expect ((expr) != 0, 0) 443#define expect_false(expr) expect ((expr) != 0, 0)
151#define expect_true(expr) expect ((expr) != 0, 1) 444#define expect_true(expr) expect ((expr) != 0, 1)
445#define inline_size static inline
152 446
447#if EV_MINIMAL
448# define inline_speed static noinline
449#else
450# define inline_speed static inline
451#endif
452
153#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 453#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
454
455#if EV_MINPRI == EV_MAXPRI
456# define ABSPRI(w) (((W)w), 0)
457#else
154#define ABSPRI(w) ((w)->priority - EV_MINPRI) 458# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
459#endif
155 460
461#define EMPTY /* required for microsofts broken pseudo-c compiler */
462#define EMPTY2(a,b) /* used to suppress some warnings */
463
156typedef struct ev_watcher *W; 464typedef ev_watcher *W;
157typedef struct ev_watcher_list *WL; 465typedef ev_watcher_list *WL;
158typedef struct ev_watcher_time *WT; 466typedef ev_watcher_time *WT;
159 467
468#define ev_active(w) ((W)(w))->active
469#define ev_at(w) ((WT)(w))->at
470
471#if EV_USE_REALTIME
472/* sig_atomic_t is used to avoid per-thread variables or locking but still */
473/* giving it a reasonably high chance of working on typical architetcures */
474static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
475#endif
476
477#if EV_USE_MONOTONIC
160static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 478static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
479#endif
161 480
481#ifndef EV_FD_TO_WIN32_HANDLE
482# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
483#endif
484#ifndef EV_WIN32_HANDLE_TO_FD
485# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
486#endif
487#ifndef EV_WIN32_CLOSE_FD
488# define EV_WIN32_CLOSE_FD(fd) close (fd)
489#endif
490
491#ifdef _WIN32
162#include "ev_win32.c" 492# include "ev_win32.c"
493#endif
163 494
164/*****************************************************************************/ 495/*****************************************************************************/
165 496
166static void (*syserr_cb)(const char *msg); 497static void (*syserr_cb)(const char *msg);
167 498
499void
168void ev_set_syserr_cb (void (*cb)(const char *msg)) 500ev_set_syserr_cb (void (*cb)(const char *msg))
169{ 501{
170 syserr_cb = cb; 502 syserr_cb = cb;
171} 503}
172 504
173static void 505static void noinline
174syserr (const char *msg) 506ev_syserr (const char *msg)
175{ 507{
176 if (!msg) 508 if (!msg)
177 msg = "(libev) system error"; 509 msg = "(libev) system error";
178 510
179 if (syserr_cb) 511 if (syserr_cb)
183 perror (msg); 515 perror (msg);
184 abort (); 516 abort ();
185 } 517 }
186} 518}
187 519
520static void *
521ev_realloc_emul (void *ptr, long size)
522{
523 /* some systems, notably openbsd and darwin, fail to properly
524 * implement realloc (x, 0) (as required by both ansi c-98 and
525 * the single unix specification, so work around them here.
526 */
527
528 if (size)
529 return realloc (ptr, size);
530
531 free (ptr);
532 return 0;
533}
534
188static void *(*alloc)(void *ptr, long size); 535static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
189 536
537void
190void ev_set_allocator (void *(*cb)(void *ptr, long size)) 538ev_set_allocator (void *(*cb)(void *ptr, long size))
191{ 539{
192 alloc = cb; 540 alloc = cb;
193} 541}
194 542
195static void * 543inline_speed void *
196ev_realloc (void *ptr, long size) 544ev_realloc (void *ptr, long size)
197{ 545{
198 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 546 ptr = alloc (ptr, size);
199 547
200 if (!ptr && size) 548 if (!ptr && size)
201 { 549 {
202 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 550 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
203 abort (); 551 abort ();
209#define ev_malloc(size) ev_realloc (0, (size)) 557#define ev_malloc(size) ev_realloc (0, (size))
210#define ev_free(ptr) ev_realloc ((ptr), 0) 558#define ev_free(ptr) ev_realloc ((ptr), 0)
211 559
212/*****************************************************************************/ 560/*****************************************************************************/
213 561
562/* set in reify when reification needed */
563#define EV_ANFD_REIFY 1
564
565/* file descriptor info structure */
214typedef struct 566typedef struct
215{ 567{
216 WL head; 568 WL head;
217 unsigned char events; 569 unsigned char events; /* the events watched for */
570 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
571 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
218 unsigned char reify; 572 unsigned char unused;
573#if EV_USE_EPOLL
574 unsigned int egen; /* generation counter to counter epoll bugs */
575#endif
576#if EV_SELECT_IS_WINSOCKET
577 SOCKET handle;
578#endif
219} ANFD; 579} ANFD;
220 580
581/* stores the pending event set for a given watcher */
221typedef struct 582typedef struct
222{ 583{
223 W w; 584 W w;
224 int events; 585 int events; /* the pending event set for the given watcher */
225} ANPENDING; 586} ANPENDING;
587
588#if EV_USE_INOTIFY
589/* hash table entry per inotify-id */
590typedef struct
591{
592 WL head;
593} ANFS;
594#endif
595
596/* Heap Entry */
597#if EV_HEAP_CACHE_AT
598 /* a heap element */
599 typedef struct {
600 ev_tstamp at;
601 WT w;
602 } ANHE;
603
604 #define ANHE_w(he) (he).w /* access watcher, read-write */
605 #define ANHE_at(he) (he).at /* access cached at, read-only */
606 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
607#else
608 /* a heap element */
609 typedef WT ANHE;
610
611 #define ANHE_w(he) (he)
612 #define ANHE_at(he) (he)->at
613 #define ANHE_at_cache(he)
614#endif
226 615
227#if EV_MULTIPLICITY 616#if EV_MULTIPLICITY
228 617
229 struct ev_loop 618 struct ev_loop
230 { 619 {
231 ev_tstamp ev_rt_now; 620 ev_tstamp ev_rt_now;
621 #define ev_rt_now ((loop)->ev_rt_now)
232 #define VAR(name,decl) decl; 622 #define VAR(name,decl) decl;
233 #include "ev_vars.h" 623 #include "ev_vars.h"
234 #undef VAR 624 #undef VAR
235 }; 625 };
236 #include "ev_wrap.h" 626 #include "ev_wrap.h"
237 627
238 struct ev_loop default_loop_struct; 628 static struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop; 629 struct ev_loop *ev_default_loop_ptr;
240 630
241#else 631#else
242 632
243 ev_tstamp ev_rt_now; 633 ev_tstamp ev_rt_now;
244 #define VAR(name,decl) static decl; 634 #define VAR(name,decl) static decl;
245 #include "ev_vars.h" 635 #include "ev_vars.h"
246 #undef VAR 636 #undef VAR
247 637
248 static int default_loop; 638 static int ev_default_loop_ptr;
249 639
250#endif 640#endif
641
642#if EV_MINIMAL < 2
643# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
644# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
645# define EV_INVOKE_PENDING invoke_cb (EV_A)
646#else
647# define EV_RELEASE_CB (void)0
648# define EV_ACQUIRE_CB (void)0
649# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
650#endif
651
652#define EVUNLOOP_RECURSE 0x80
251 653
252/*****************************************************************************/ 654/*****************************************************************************/
253 655
254inline ev_tstamp 656#ifndef EV_HAVE_EV_TIME
657ev_tstamp
255ev_time (void) 658ev_time (void)
256{ 659{
257#if EV_USE_REALTIME 660#if EV_USE_REALTIME
661 if (expect_true (have_realtime))
662 {
258 struct timespec ts; 663 struct timespec ts;
259 clock_gettime (CLOCK_REALTIME, &ts); 664 clock_gettime (CLOCK_REALTIME, &ts);
260 return ts.tv_sec + ts.tv_nsec * 1e-9; 665 return ts.tv_sec + ts.tv_nsec * 1e-9;
261#else 666 }
667#endif
668
262 struct timeval tv; 669 struct timeval tv;
263 gettimeofday (&tv, 0); 670 gettimeofday (&tv, 0);
264 return tv.tv_sec + tv.tv_usec * 1e-6; 671 return tv.tv_sec + tv.tv_usec * 1e-6;
265#endif
266} 672}
673#endif
267 674
268inline ev_tstamp 675inline_size ev_tstamp
269get_clock (void) 676get_clock (void)
270{ 677{
271#if EV_USE_MONOTONIC 678#if EV_USE_MONOTONIC
272 if (expect_true (have_monotonic)) 679 if (expect_true (have_monotonic))
273 { 680 {
286{ 693{
287 return ev_rt_now; 694 return ev_rt_now;
288} 695}
289#endif 696#endif
290 697
291#define array_roundsize(type,n) ((n) | 4 & ~3) 698void
699ev_sleep (ev_tstamp delay)
700{
701 if (delay > 0.)
702 {
703#if EV_USE_NANOSLEEP
704 struct timespec ts;
705
706 ts.tv_sec = (time_t)delay;
707 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
708
709 nanosleep (&ts, 0);
710#elif defined(_WIN32)
711 Sleep ((unsigned long)(delay * 1e3));
712#else
713 struct timeval tv;
714
715 tv.tv_sec = (time_t)delay;
716 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
717
718 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
719 /* something not guaranteed by newer posix versions, but guaranteed */
720 /* by older ones */
721 select (0, 0, 0, 0, &tv);
722#endif
723 }
724}
725
726/*****************************************************************************/
727
728#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
729
730/* find a suitable new size for the given array, */
731/* hopefully by rounding to a ncie-to-malloc size */
732inline_size int
733array_nextsize (int elem, int cur, int cnt)
734{
735 int ncur = cur + 1;
736
737 do
738 ncur <<= 1;
739 while (cnt > ncur);
740
741 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
742 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
743 {
744 ncur *= elem;
745 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
746 ncur = ncur - sizeof (void *) * 4;
747 ncur /= elem;
748 }
749
750 return ncur;
751}
752
753static noinline void *
754array_realloc (int elem, void *base, int *cur, int cnt)
755{
756 *cur = array_nextsize (elem, *cur, cnt);
757 return ev_realloc (base, elem * *cur);
758}
759
760#define array_init_zero(base,count) \
761 memset ((void *)(base), 0, sizeof (*(base)) * (count))
292 762
293#define array_needsize(type,base,cur,cnt,init) \ 763#define array_needsize(type,base,cur,cnt,init) \
294 if (expect_false ((cnt) > cur)) \ 764 if (expect_false ((cnt) > (cur))) \
295 { \ 765 { \
296 int newcnt = cur; \ 766 int ocur_ = (cur); \
297 do \ 767 (base) = (type *)array_realloc \
298 { \ 768 (sizeof (type), (base), &(cur), (cnt)); \
299 newcnt = array_roundsize (type, newcnt << 1); \ 769 init ((base) + (ocur_), (cur) - ocur_); \
300 } \
301 while ((cnt) > newcnt); \
302 \
303 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
304 init (base + cur, newcnt - cur); \
305 cur = newcnt; \
306 } 770 }
307 771
772#if 0
308#define array_slim(type,stem) \ 773#define array_slim(type,stem) \
309 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 774 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
310 { \ 775 { \
311 stem ## max = array_roundsize (stem ## cnt >> 1); \ 776 stem ## max = array_roundsize (stem ## cnt >> 1); \
312 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 777 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
313 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 778 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
314 } 779 }
315 780#endif
316/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
317/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
318#define array_free_microshit(stem) \
319 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
320 781
321#define array_free(stem, idx) \ 782#define array_free(stem, idx) \
322 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 783 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
323 784
324/*****************************************************************************/ 785/*****************************************************************************/
325 786
326static void 787/* dummy callback for pending events */
327anfds_init (ANFD *base, int count) 788static void noinline
789pendingcb (EV_P_ ev_prepare *w, int revents)
328{ 790{
329 while (count--)
330 {
331 base->head = 0;
332 base->events = EV_NONE;
333 base->reify = 0;
334
335 ++base;
336 }
337} 791}
338 792
339void 793void noinline
340ev_feed_event (EV_P_ void *w, int revents) 794ev_feed_event (EV_P_ void *w, int revents)
341{ 795{
342 W w_ = (W)w; 796 W w_ = (W)w;
797 int pri = ABSPRI (w_);
343 798
344 if (w_->pending) 799 if (expect_false (w_->pending))
800 pendings [pri][w_->pending - 1].events |= revents;
801 else
345 { 802 {
803 w_->pending = ++pendingcnt [pri];
804 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
805 pendings [pri][w_->pending - 1].w = w_;
346 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 806 pendings [pri][w_->pending - 1].events = revents;
347 return;
348 } 807 }
349
350 w_->pending = ++pendingcnt [ABSPRI (w_)];
351 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
352 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
353 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
354} 808}
355 809
356static void 810inline_speed void
811feed_reverse (EV_P_ W w)
812{
813 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
814 rfeeds [rfeedcnt++] = w;
815}
816
817inline_size void
818feed_reverse_done (EV_P_ int revents)
819{
820 do
821 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
822 while (rfeedcnt);
823}
824
825inline_speed void
357queue_events (EV_P_ W *events, int eventcnt, int type) 826queue_events (EV_P_ W *events, int eventcnt, int type)
358{ 827{
359 int i; 828 int i;
360 829
361 for (i = 0; i < eventcnt; ++i) 830 for (i = 0; i < eventcnt; ++i)
362 ev_feed_event (EV_A_ events [i], type); 831 ev_feed_event (EV_A_ events [i], type);
363} 832}
364 833
834/*****************************************************************************/
835
365inline void 836inline_speed void
366fd_event (EV_P_ int fd, int revents) 837fd_event_nc (EV_P_ int fd, int revents)
367{ 838{
368 ANFD *anfd = anfds + fd; 839 ANFD *anfd = anfds + fd;
369 struct ev_io *w; 840 ev_io *w;
370 841
371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 842 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
372 { 843 {
373 int ev = w->events & revents; 844 int ev = w->events & revents;
374 845
375 if (ev) 846 if (ev)
376 ev_feed_event (EV_A_ (W)w, ev); 847 ev_feed_event (EV_A_ (W)w, ev);
377 } 848 }
378} 849}
379 850
851/* do not submit kernel events for fds that have reify set */
852/* because that means they changed while we were polling for new events */
853inline_speed void
854fd_event (EV_P_ int fd, int revents)
855{
856 ANFD *anfd = anfds + fd;
857
858 if (expect_true (!anfd->reify))
859 fd_event_nc (EV_A_ fd, revents);
860}
861
380void 862void
381ev_feed_fd_event (EV_P_ int fd, int revents) 863ev_feed_fd_event (EV_P_ int fd, int revents)
382{ 864{
865 if (fd >= 0 && fd < anfdmax)
383 fd_event (EV_A_ fd, revents); 866 fd_event_nc (EV_A_ fd, revents);
384} 867}
385 868
386/*****************************************************************************/ 869/* make sure the external fd watch events are in-sync */
387 870/* with the kernel/libev internal state */
388static void 871inline_size void
389fd_reify (EV_P) 872fd_reify (EV_P)
390{ 873{
391 int i; 874 int i;
392 875
393 for (i = 0; i < fdchangecnt; ++i) 876 for (i = 0; i < fdchangecnt; ++i)
394 { 877 {
395 int fd = fdchanges [i]; 878 int fd = fdchanges [i];
396 ANFD *anfd = anfds + fd; 879 ANFD *anfd = anfds + fd;
397 struct ev_io *w; 880 ev_io *w;
398 881
399 int events = 0; 882 unsigned char events = 0;
400 883
401 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 884 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
402 events |= w->events; 885 events |= (unsigned char)w->events;
403 886
887#if EV_SELECT_IS_WINSOCKET
888 if (events)
889 {
890 unsigned long arg;
891 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
892 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
893 }
894#endif
895
896 {
897 unsigned char o_events = anfd->events;
898 unsigned char o_reify = anfd->reify;
899
404 anfd->reify = 0; 900 anfd->reify = 0;
405
406 method_modify (EV_A_ fd, anfd->events, events);
407 anfd->events = events; 901 anfd->events = events;
902
903 if (o_events != events || o_reify & EV__IOFDSET)
904 backend_modify (EV_A_ fd, o_events, events);
905 }
408 } 906 }
409 907
410 fdchangecnt = 0; 908 fdchangecnt = 0;
411} 909}
412 910
413static void 911/* something about the given fd changed */
912inline_size void
414fd_change (EV_P_ int fd) 913fd_change (EV_P_ int fd, int flags)
415{ 914{
416 if (anfds [fd].reify) 915 unsigned char reify = anfds [fd].reify;
417 return;
418
419 anfds [fd].reify = 1; 916 anfds [fd].reify |= flags;
420 917
918 if (expect_true (!reify))
919 {
421 ++fdchangecnt; 920 ++fdchangecnt;
422 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 921 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
423 fdchanges [fdchangecnt - 1] = fd; 922 fdchanges [fdchangecnt - 1] = fd;
923 }
424} 924}
425 925
426static void 926/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
927inline_speed void
427fd_kill (EV_P_ int fd) 928fd_kill (EV_P_ int fd)
428{ 929{
429 struct ev_io *w; 930 ev_io *w;
430 931
431 while ((w = (struct ev_io *)anfds [fd].head)) 932 while ((w = (ev_io *)anfds [fd].head))
432 { 933 {
433 ev_io_stop (EV_A_ w); 934 ev_io_stop (EV_A_ w);
434 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 935 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
435 } 936 }
436} 937}
437 938
438static int 939/* check whether the given fd is atcually valid, for error recovery */
940inline_size int
439fd_valid (int fd) 941fd_valid (int fd)
440{ 942{
441#ifdef WIN32 943#ifdef _WIN32
442 return !!win32_get_osfhandle (fd); 944 return _get_osfhandle (fd) != -1;
443#else 945#else
444 return fcntl (fd, F_GETFD) != -1; 946 return fcntl (fd, F_GETFD) != -1;
445#endif 947#endif
446} 948}
447 949
448/* called on EBADF to verify fds */ 950/* called on EBADF to verify fds */
449static void 951static void noinline
450fd_ebadf (EV_P) 952fd_ebadf (EV_P)
451{ 953{
452 int fd; 954 int fd;
453 955
454 for (fd = 0; fd < anfdmax; ++fd) 956 for (fd = 0; fd < anfdmax; ++fd)
455 if (anfds [fd].events) 957 if (anfds [fd].events)
456 if (!fd_valid (fd) == -1 && errno == EBADF) 958 if (!fd_valid (fd) && errno == EBADF)
457 fd_kill (EV_A_ fd); 959 fd_kill (EV_A_ fd);
458} 960}
459 961
460/* called on ENOMEM in select/poll to kill some fds and retry */ 962/* called on ENOMEM in select/poll to kill some fds and retry */
461static void 963static void noinline
462fd_enomem (EV_P) 964fd_enomem (EV_P)
463{ 965{
464 int fd; 966 int fd;
465 967
466 for (fd = anfdmax; fd--; ) 968 for (fd = anfdmax; fd--; )
467 if (anfds [fd].events) 969 if (anfds [fd].events)
468 { 970 {
469 fd_kill (EV_A_ fd); 971 fd_kill (EV_A_ fd);
470 return; 972 break;
471 } 973 }
472} 974}
473 975
474/* usually called after fork if method needs to re-arm all fds from scratch */ 976/* usually called after fork if backend needs to re-arm all fds from scratch */
475static void 977static void noinline
476fd_rearm_all (EV_P) 978fd_rearm_all (EV_P)
477{ 979{
478 int fd; 980 int fd;
479 981
480 /* this should be highly optimised to not do anything but set a flag */
481 for (fd = 0; fd < anfdmax; ++fd) 982 for (fd = 0; fd < anfdmax; ++fd)
482 if (anfds [fd].events) 983 if (anfds [fd].events)
483 { 984 {
484 anfds [fd].events = 0; 985 anfds [fd].events = 0;
485 fd_change (EV_A_ fd); 986 anfds [fd].emask = 0;
987 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
486 } 988 }
487} 989}
488 990
489/*****************************************************************************/ 991/*****************************************************************************/
490 992
993/*
994 * the heap functions want a real array index. array index 0 uis guaranteed to not
995 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
996 * the branching factor of the d-tree.
997 */
998
999/*
1000 * at the moment we allow libev the luxury of two heaps,
1001 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1002 * which is more cache-efficient.
1003 * the difference is about 5% with 50000+ watchers.
1004 */
1005#if EV_USE_4HEAP
1006
1007#define DHEAP 4
1008#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1009#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1010#define UPHEAP_DONE(p,k) ((p) == (k))
1011
1012/* away from the root */
1013inline_speed void
1014downheap (ANHE *heap, int N, int k)
1015{
1016 ANHE he = heap [k];
1017 ANHE *E = heap + N + HEAP0;
1018
1019 for (;;)
1020 {
1021 ev_tstamp minat;
1022 ANHE *minpos;
1023 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1024
1025 /* find minimum child */
1026 if (expect_true (pos + DHEAP - 1 < E))
1027 {
1028 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1029 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1030 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1031 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1032 }
1033 else if (pos < E)
1034 {
1035 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1036 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1037 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1038 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1039 }
1040 else
1041 break;
1042
1043 if (ANHE_at (he) <= minat)
1044 break;
1045
1046 heap [k] = *minpos;
1047 ev_active (ANHE_w (*minpos)) = k;
1048
1049 k = minpos - heap;
1050 }
1051
1052 heap [k] = he;
1053 ev_active (ANHE_w (he)) = k;
1054}
1055
1056#else /* 4HEAP */
1057
1058#define HEAP0 1
1059#define HPARENT(k) ((k) >> 1)
1060#define UPHEAP_DONE(p,k) (!(p))
1061
1062/* away from the root */
1063inline_speed void
1064downheap (ANHE *heap, int N, int k)
1065{
1066 ANHE he = heap [k];
1067
1068 for (;;)
1069 {
1070 int c = k << 1;
1071
1072 if (c >= N + HEAP0)
1073 break;
1074
1075 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1076 ? 1 : 0;
1077
1078 if (ANHE_at (he) <= ANHE_at (heap [c]))
1079 break;
1080
1081 heap [k] = heap [c];
1082 ev_active (ANHE_w (heap [k])) = k;
1083
1084 k = c;
1085 }
1086
1087 heap [k] = he;
1088 ev_active (ANHE_w (he)) = k;
1089}
1090#endif
1091
1092/* towards the root */
1093inline_speed void
1094upheap (ANHE *heap, int k)
1095{
1096 ANHE he = heap [k];
1097
1098 for (;;)
1099 {
1100 int p = HPARENT (k);
1101
1102 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1103 break;
1104
1105 heap [k] = heap [p];
1106 ev_active (ANHE_w (heap [k])) = k;
1107 k = p;
1108 }
1109
1110 heap [k] = he;
1111 ev_active (ANHE_w (he)) = k;
1112}
1113
1114/* move an element suitably so it is in a correct place */
1115inline_size void
1116adjustheap (ANHE *heap, int N, int k)
1117{
1118 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1119 upheap (heap, k);
1120 else
1121 downheap (heap, N, k);
1122}
1123
1124/* rebuild the heap: this function is used only once and executed rarely */
1125inline_size void
1126reheap (ANHE *heap, int N)
1127{
1128 int i;
1129
1130 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1131 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1132 for (i = 0; i < N; ++i)
1133 upheap (heap, i + HEAP0);
1134}
1135
1136/*****************************************************************************/
1137
1138/* associate signal watchers to a signal signal */
1139typedef struct
1140{
1141 EV_ATOMIC_T pending;
1142#if EV_MULTIPLICITY
1143 EV_P;
1144#endif
1145 WL head;
1146} ANSIG;
1147
1148static ANSIG signals [EV_NSIG - 1];
1149
1150/*****************************************************************************/
1151
1152/* used to prepare libev internal fd's */
1153/* this is not fork-safe */
1154inline_speed void
1155fd_intern (int fd)
1156{
1157#ifdef _WIN32
1158 unsigned long arg = 1;
1159 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1160#else
1161 fcntl (fd, F_SETFD, FD_CLOEXEC);
1162 fcntl (fd, F_SETFL, O_NONBLOCK);
1163#endif
1164}
1165
1166static void noinline
1167evpipe_init (EV_P)
1168{
1169 if (!ev_is_active (&pipe_w))
1170 {
1171#if EV_USE_EVENTFD
1172 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1173 if (evfd < 0 && errno == EINVAL)
1174 evfd = eventfd (0, 0);
1175
1176 if (evfd >= 0)
1177 {
1178 evpipe [0] = -1;
1179 fd_intern (evfd); /* doing it twice doesn't hurt */
1180 ev_io_set (&pipe_w, evfd, EV_READ);
1181 }
1182 else
1183#endif
1184 {
1185 while (pipe (evpipe))
1186 ev_syserr ("(libev) error creating signal/async pipe");
1187
1188 fd_intern (evpipe [0]);
1189 fd_intern (evpipe [1]);
1190 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1191 }
1192
1193 ev_io_start (EV_A_ &pipe_w);
1194 ev_unref (EV_A); /* watcher should not keep loop alive */
1195 }
1196}
1197
1198inline_size void
1199evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1200{
1201 if (!*flag)
1202 {
1203 int old_errno = errno; /* save errno because write might clobber it */
1204
1205 *flag = 1;
1206
1207#if EV_USE_EVENTFD
1208 if (evfd >= 0)
1209 {
1210 uint64_t counter = 1;
1211 write (evfd, &counter, sizeof (uint64_t));
1212 }
1213 else
1214#endif
1215 write (evpipe [1], &old_errno, 1);
1216
1217 errno = old_errno;
1218 }
1219}
1220
1221/* called whenever the libev signal pipe */
1222/* got some events (signal, async) */
491static void 1223static void
492upheap (WT *heap, int k) 1224pipecb (EV_P_ ev_io *iow, int revents)
493{ 1225{
494 WT w = heap [k]; 1226 int i;
495 1227
496 while (k && heap [k >> 1]->at > w->at) 1228#if EV_USE_EVENTFD
497 { 1229 if (evfd >= 0)
498 heap [k] = heap [k >> 1];
499 ((W)heap [k])->active = k + 1;
500 k >>= 1;
501 } 1230 {
1231 uint64_t counter;
1232 read (evfd, &counter, sizeof (uint64_t));
1233 }
1234 else
1235#endif
1236 {
1237 char dummy;
1238 read (evpipe [0], &dummy, 1);
1239 }
502 1240
503 heap [k] = w; 1241 if (sig_pending)
504 ((W)heap [k])->active = k + 1; 1242 {
1243 sig_pending = 0;
505 1244
1245 for (i = EV_NSIG - 1; i--; )
1246 if (expect_false (signals [i].pending))
1247 ev_feed_signal_event (EV_A_ i + 1);
1248 }
1249
1250#if EV_ASYNC_ENABLE
1251 if (async_pending)
1252 {
1253 async_pending = 0;
1254
1255 for (i = asynccnt; i--; )
1256 if (asyncs [i]->sent)
1257 {
1258 asyncs [i]->sent = 0;
1259 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1260 }
1261 }
1262#endif
506} 1263}
1264
1265/*****************************************************************************/
507 1266
508static void 1267static void
509downheap (WT *heap, int N, int k)
510{
511 WT w = heap [k];
512
513 while (k < (N >> 1))
514 {
515 int j = k << 1;
516
517 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
518 ++j;
519
520 if (w->at <= heap [j]->at)
521 break;
522
523 heap [k] = heap [j];
524 ((W)heap [k])->active = k + 1;
525 k = j;
526 }
527
528 heap [k] = w;
529 ((W)heap [k])->active = k + 1;
530}
531
532inline void
533adjustheap (WT *heap, int N, int k, ev_tstamp at)
534{
535 ev_tstamp old_at = heap [k]->at;
536 heap [k]->at = at;
537
538 if (old_at < at)
539 downheap (heap, N, k);
540 else
541 upheap (heap, k);
542}
543
544/*****************************************************************************/
545
546typedef struct
547{
548 WL head;
549 sig_atomic_t volatile gotsig;
550} ANSIG;
551
552static ANSIG *signals;
553static int signalmax;
554
555static int sigpipe [2];
556static sig_atomic_t volatile gotsig;
557static struct ev_io sigev;
558
559static void
560signals_init (ANSIG *base, int count)
561{
562 while (count--)
563 {
564 base->head = 0;
565 base->gotsig = 0;
566
567 ++base;
568 }
569}
570
571static void
572sighandler (int signum) 1268ev_sighandler (int signum)
573{ 1269{
1270#if EV_MULTIPLICITY
1271 EV_P = signals [signum - 1].loop;
1272#endif
1273
574#if WIN32 1274#if _WIN32
575 signal (signum, sighandler); 1275 signal (signum, ev_sighandler);
576#endif 1276#endif
577 1277
578 signals [signum - 1].gotsig = 1; 1278 signals [signum - 1].pending = 1;
579 1279 evpipe_write (EV_A_ &sig_pending);
580 if (!gotsig)
581 {
582 int old_errno = errno;
583 gotsig = 1;
584#ifdef WIN32
585 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
586#else
587 write (sigpipe [1], &signum, 1);
588#endif
589 errno = old_errno;
590 }
591} 1280}
592 1281
593void 1282void noinline
594ev_feed_signal_event (EV_P_ int signum) 1283ev_feed_signal_event (EV_P_ int signum)
595{ 1284{
596 WL w; 1285 WL w;
597 1286
1287 if (expect_false (signum <= 0 || signum > EV_NSIG))
1288 return;
1289
1290 --signum;
1291
598#if EV_MULTIPLICITY 1292#if EV_MULTIPLICITY
599 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 1293 /* it is permissible to try to feed a signal to the wrong loop */
600#endif 1294 /* or, likely more useful, feeding a signal nobody is waiting for */
601 1295
602 --signum; 1296 if (expect_false (signals [signum].loop != EV_A))
603
604 if (signum < 0 || signum >= signalmax)
605 return; 1297 return;
1298#endif
606 1299
607 signals [signum].gotsig = 0; 1300 signals [signum].pending = 0;
608 1301
609 for (w = signals [signum].head; w; w = w->next) 1302 for (w = signals [signum].head; w; w = w->next)
610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1303 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
611} 1304}
612 1305
1306#if EV_USE_SIGNALFD
613static void 1307static void
614sigcb (EV_P_ struct ev_io *iow, int revents) 1308sigfdcb (EV_P_ ev_io *iow, int revents)
615{ 1309{
616 int signum; 1310 struct signalfd_siginfo si[2], *sip; /* these structs are big */
617 1311
618#ifdef WIN32 1312 for (;;)
619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 1313 {
620#else 1314 ssize_t res = read (sigfd, si, sizeof (si));
621 read (sigpipe [0], &revents, 1);
622#endif
623 gotsig = 0;
624 1315
625 for (signum = signalmax; signum--; ) 1316 /* not ISO-C, as res might be -1, but works with SuS */
626 if (signals [signum].gotsig) 1317 for (sip = si; (char *)sip < (char *)si + res; ++sip)
627 ev_feed_signal_event (EV_A_ signum + 1); 1318 ev_feed_signal_event (EV_A_ sip->ssi_signo);
628}
629 1319
630static void 1320 if (res < (ssize_t)sizeof (si))
631siginit (EV_P) 1321 break;
632{ 1322 }
633#ifndef WIN32
634 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
635 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
636
637 /* rather than sort out wether we really need nb, set it */
638 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
639 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
640#endif
641
642 ev_io_set (&sigev, sigpipe [0], EV_READ);
643 ev_io_start (EV_A_ &sigev);
644 ev_unref (EV_A); /* child watcher should not keep loop alive */
645} 1323}
1324#endif
646 1325
647/*****************************************************************************/ 1326/*****************************************************************************/
648 1327
649static struct ev_child *childs [PID_HASHSIZE]; 1328static WL childs [EV_PID_HASHSIZE];
650 1329
651#ifndef WIN32 1330#ifndef _WIN32
652 1331
653static struct ev_signal childev; 1332static ev_signal childev;
1333
1334#ifndef WIFCONTINUED
1335# define WIFCONTINUED(status) 0
1336#endif
1337
1338/* handle a single child status event */
1339inline_speed void
1340child_reap (EV_P_ int chain, int pid, int status)
1341{
1342 ev_child *w;
1343 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1344
1345 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1346 {
1347 if ((w->pid == pid || !w->pid)
1348 && (!traced || (w->flags & 1)))
1349 {
1350 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1351 w->rpid = pid;
1352 w->rstatus = status;
1353 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1354 }
1355 }
1356}
654 1357
655#ifndef WCONTINUED 1358#ifndef WCONTINUED
656# define WCONTINUED 0 1359# define WCONTINUED 0
657#endif 1360#endif
658 1361
1362/* called on sigchld etc., calls waitpid */
659static void 1363static void
660child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
661{
662 struct ev_child *w;
663
664 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
665 if (w->pid == pid || !w->pid)
666 {
667 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
668 w->rpid = pid;
669 w->rstatus = status;
670 ev_feed_event (EV_A_ (W)w, EV_CHILD);
671 }
672}
673
674static void
675childcb (EV_P_ struct ev_signal *sw, int revents) 1364childcb (EV_P_ ev_signal *sw, int revents)
676{ 1365{
677 int pid, status; 1366 int pid, status;
678 1367
1368 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
679 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1369 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
680 { 1370 if (!WCONTINUED
1371 || errno != EINVAL
1372 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1373 return;
1374
681 /* make sure we are called again until all childs have been reaped */ 1375 /* make sure we are called again until all children have been reaped */
1376 /* we need to do it this way so that the callback gets called before we continue */
682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1377 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
683 1378
684 child_reap (EV_A_ sw, pid, pid, status); 1379 child_reap (EV_A_ pid, pid, status);
1380 if (EV_PID_HASHSIZE > 1)
685 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1381 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
686 }
687} 1382}
688 1383
689#endif 1384#endif
690 1385
691/*****************************************************************************/ 1386/*****************************************************************************/
692 1387
1388#if EV_USE_PORT
1389# include "ev_port.c"
1390#endif
693#if EV_USE_KQUEUE 1391#if EV_USE_KQUEUE
694# include "ev_kqueue.c" 1392# include "ev_kqueue.c"
695#endif 1393#endif
696#if EV_USE_EPOLL 1394#if EV_USE_EPOLL
697# include "ev_epoll.c" 1395# include "ev_epoll.c"
714{ 1412{
715 return EV_VERSION_MINOR; 1413 return EV_VERSION_MINOR;
716} 1414}
717 1415
718/* return true if we are running with elevated privileges and should ignore env variables */ 1416/* return true if we are running with elevated privileges and should ignore env variables */
719static int 1417int inline_size
720enable_secure (void) 1418enable_secure (void)
721{ 1419{
722#ifdef WIN32 1420#ifdef _WIN32
723 return 0; 1421 return 0;
724#else 1422#else
725 return getuid () != geteuid () 1423 return getuid () != geteuid ()
726 || getgid () != getegid (); 1424 || getgid () != getegid ();
727#endif 1425#endif
728} 1426}
729 1427
730int 1428unsigned int
731ev_method (EV_P) 1429ev_supported_backends (void)
732{ 1430{
733 return method; 1431 unsigned int flags = 0;
734}
735 1432
736static void 1433 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
737loop_init (EV_P_ int methods) 1434 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1435 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1436 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1437 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1438
1439 return flags;
1440}
1441
1442unsigned int
1443ev_recommended_backends (void)
738{ 1444{
739 if (!method) 1445 unsigned int flags = ev_supported_backends ();
1446
1447#ifndef __NetBSD__
1448 /* kqueue is borked on everything but netbsd apparently */
1449 /* it usually doesn't work correctly on anything but sockets and pipes */
1450 flags &= ~EVBACKEND_KQUEUE;
1451#endif
1452#ifdef __APPLE__
1453 /* only select works correctly on that "unix-certified" platform */
1454 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1455 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1456#endif
1457
1458 return flags;
1459}
1460
1461unsigned int
1462ev_embeddable_backends (void)
1463{
1464 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1465
1466 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1467 /* please fix it and tell me how to detect the fix */
1468 flags &= ~EVBACKEND_EPOLL;
1469
1470 return flags;
1471}
1472
1473unsigned int
1474ev_backend (EV_P)
1475{
1476 return backend;
1477}
1478
1479#if EV_MINIMAL < 2
1480unsigned int
1481ev_loop_count (EV_P)
1482{
1483 return loop_count;
1484}
1485
1486unsigned int
1487ev_loop_depth (EV_P)
1488{
1489 return loop_depth;
1490}
1491
1492void
1493ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1494{
1495 io_blocktime = interval;
1496}
1497
1498void
1499ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1500{
1501 timeout_blocktime = interval;
1502}
1503
1504void
1505ev_set_userdata (EV_P_ void *data)
1506{
1507 userdata = data;
1508}
1509
1510void *
1511ev_userdata (EV_P)
1512{
1513 return userdata;
1514}
1515
1516void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1517{
1518 invoke_cb = invoke_pending_cb;
1519}
1520
1521void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1522{
1523 release_cb = release;
1524 acquire_cb = acquire;
1525}
1526#endif
1527
1528/* initialise a loop structure, must be zero-initialised */
1529static void noinline
1530loop_init (EV_P_ unsigned int flags)
1531{
1532 if (!backend)
740 { 1533 {
1534#if EV_USE_REALTIME
1535 if (!have_realtime)
1536 {
1537 struct timespec ts;
1538
1539 if (!clock_gettime (CLOCK_REALTIME, &ts))
1540 have_realtime = 1;
1541 }
1542#endif
1543
741#if EV_USE_MONOTONIC 1544#if EV_USE_MONOTONIC
1545 if (!have_monotonic)
1546 {
1547 struct timespec ts;
1548
1549 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1550 have_monotonic = 1;
1551 }
1552#endif
1553
1554 /* pid check not overridable via env */
1555#ifndef _WIN32
1556 if (flags & EVFLAG_FORKCHECK)
1557 curpid = getpid ();
1558#endif
1559
1560 if (!(flags & EVFLAG_NOENV)
1561 && !enable_secure ()
1562 && getenv ("LIBEV_FLAGS"))
1563 flags = atoi (getenv ("LIBEV_FLAGS"));
1564
1565 ev_rt_now = ev_time ();
1566 mn_now = get_clock ();
1567 now_floor = mn_now;
1568 rtmn_diff = ev_rt_now - mn_now;
1569#if EV_MINIMAL < 2
1570 invoke_cb = ev_invoke_pending;
1571#endif
1572
1573 io_blocktime = 0.;
1574 timeout_blocktime = 0.;
1575 backend = 0;
1576 backend_fd = -1;
1577 sig_pending = 0;
1578#if EV_ASYNC_ENABLE
1579 async_pending = 0;
1580#endif
1581#if EV_USE_INOTIFY
1582 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1583#endif
1584#if EV_USE_SIGNALFD
1585 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1586#endif
1587
1588 if (!(flags & 0x0000ffffU))
1589 flags |= ev_recommended_backends ();
1590
1591#if EV_USE_PORT
1592 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1593#endif
1594#if EV_USE_KQUEUE
1595 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1596#endif
1597#if EV_USE_EPOLL
1598 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1599#endif
1600#if EV_USE_POLL
1601 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1602#endif
1603#if EV_USE_SELECT
1604 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1605#endif
1606
1607 ev_prepare_init (&pending_w, pendingcb);
1608
1609 ev_init (&pipe_w, pipecb);
1610 ev_set_priority (&pipe_w, EV_MAXPRI);
1611 }
1612}
1613
1614/* free up a loop structure */
1615static void noinline
1616loop_destroy (EV_P)
1617{
1618 int i;
1619
1620 if (ev_is_active (&pipe_w))
1621 {
1622 /*ev_ref (EV_A);*/
1623 /*ev_io_stop (EV_A_ &pipe_w);*/
1624
1625#if EV_USE_EVENTFD
1626 if (evfd >= 0)
1627 close (evfd);
1628#endif
1629
1630 if (evpipe [0] >= 0)
1631 {
1632 EV_WIN32_CLOSE_FD (evpipe [0]);
1633 EV_WIN32_CLOSE_FD (evpipe [1]);
1634 }
1635 }
1636
1637#if EV_USE_SIGNALFD
1638 if (ev_is_active (&sigfd_w))
1639 {
1640 /*ev_ref (EV_A);*/
1641 /*ev_io_stop (EV_A_ &sigfd_w);*/
1642
1643 close (sigfd);
1644 }
1645#endif
1646
1647#if EV_USE_INOTIFY
1648 if (fs_fd >= 0)
1649 close (fs_fd);
1650#endif
1651
1652 if (backend_fd >= 0)
1653 close (backend_fd);
1654
1655#if EV_USE_PORT
1656 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1657#endif
1658#if EV_USE_KQUEUE
1659 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1660#endif
1661#if EV_USE_EPOLL
1662 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1663#endif
1664#if EV_USE_POLL
1665 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1666#endif
1667#if EV_USE_SELECT
1668 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1669#endif
1670
1671 for (i = NUMPRI; i--; )
1672 {
1673 array_free (pending, [i]);
1674#if EV_IDLE_ENABLE
1675 array_free (idle, [i]);
1676#endif
1677 }
1678
1679 ev_free (anfds); anfds = 0; anfdmax = 0;
1680
1681 /* have to use the microsoft-never-gets-it-right macro */
1682 array_free (rfeed, EMPTY);
1683 array_free (fdchange, EMPTY);
1684 array_free (timer, EMPTY);
1685#if EV_PERIODIC_ENABLE
1686 array_free (periodic, EMPTY);
1687#endif
1688#if EV_FORK_ENABLE
1689 array_free (fork, EMPTY);
1690#endif
1691 array_free (prepare, EMPTY);
1692 array_free (check, EMPTY);
1693#if EV_ASYNC_ENABLE
1694 array_free (async, EMPTY);
1695#endif
1696
1697 backend = 0;
1698}
1699
1700#if EV_USE_INOTIFY
1701inline_size void infy_fork (EV_P);
1702#endif
1703
1704inline_size void
1705loop_fork (EV_P)
1706{
1707#if EV_USE_PORT
1708 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1709#endif
1710#if EV_USE_KQUEUE
1711 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1712#endif
1713#if EV_USE_EPOLL
1714 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1715#endif
1716#if EV_USE_INOTIFY
1717 infy_fork (EV_A);
1718#endif
1719
1720 if (ev_is_active (&pipe_w))
1721 {
1722 /* this "locks" the handlers against writing to the pipe */
1723 /* while we modify the fd vars */
1724 sig_pending = 1;
1725#if EV_ASYNC_ENABLE
1726 async_pending = 1;
1727#endif
1728
1729 ev_ref (EV_A);
1730 ev_io_stop (EV_A_ &pipe_w);
1731
1732#if EV_USE_EVENTFD
1733 if (evfd >= 0)
1734 close (evfd);
1735#endif
1736
1737 if (evpipe [0] >= 0)
1738 {
1739 EV_WIN32_CLOSE_FD (evpipe [0]);
1740 EV_WIN32_CLOSE_FD (evpipe [1]);
1741 }
1742
1743 evpipe_init (EV_A);
1744 /* now iterate over everything, in case we missed something */
1745 pipecb (EV_A_ &pipe_w, EV_READ);
1746 }
1747
1748 postfork = 0;
1749}
1750
1751#if EV_MULTIPLICITY
1752
1753struct ev_loop *
1754ev_loop_new (unsigned int flags)
1755{
1756 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1757
1758 memset (EV_A, 0, sizeof (struct ev_loop));
1759 loop_init (EV_A_ flags);
1760
1761 if (ev_backend (EV_A))
1762 return EV_A;
1763
1764 return 0;
1765}
1766
1767void
1768ev_loop_destroy (EV_P)
1769{
1770 loop_destroy (EV_A);
1771 ev_free (loop);
1772}
1773
1774void
1775ev_loop_fork (EV_P)
1776{
1777 postfork = 1; /* must be in line with ev_default_fork */
1778}
1779#endif /* multiplicity */
1780
1781#if EV_VERIFY
1782static void noinline
1783verify_watcher (EV_P_ W w)
1784{
1785 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1786
1787 if (w->pending)
1788 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1789}
1790
1791static void noinline
1792verify_heap (EV_P_ ANHE *heap, int N)
1793{
1794 int i;
1795
1796 for (i = HEAP0; i < N + HEAP0; ++i)
1797 {
1798 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1799 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1800 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1801
1802 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1803 }
1804}
1805
1806static void noinline
1807array_verify (EV_P_ W *ws, int cnt)
1808{
1809 while (cnt--)
1810 {
1811 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1812 verify_watcher (EV_A_ ws [cnt]);
1813 }
1814}
1815#endif
1816
1817#if EV_MINIMAL < 2
1818void
1819ev_loop_verify (EV_P)
1820{
1821#if EV_VERIFY
1822 int i;
1823 WL w;
1824
1825 assert (activecnt >= -1);
1826
1827 assert (fdchangemax >= fdchangecnt);
1828 for (i = 0; i < fdchangecnt; ++i)
1829 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1830
1831 assert (anfdmax >= 0);
1832 for (i = 0; i < anfdmax; ++i)
1833 for (w = anfds [i].head; w; w = w->next)
742 { 1834 {
743 struct timespec ts; 1835 verify_watcher (EV_A_ (W)w);
744 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1836 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
745 have_monotonic = 1; 1837 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
746 } 1838 }
747#endif
748 1839
749 ev_rt_now = ev_time (); 1840 assert (timermax >= timercnt);
750 mn_now = get_clock (); 1841 verify_heap (EV_A_ timers, timercnt);
751 now_floor = mn_now;
752 rtmn_diff = ev_rt_now - mn_now;
753 1842
754 if (methods == EVMETHOD_AUTO) 1843#if EV_PERIODIC_ENABLE
755 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1844 assert (periodicmax >= periodiccnt);
756 methods = atoi (getenv ("LIBEV_METHODS")); 1845 verify_heap (EV_A_ periodics, periodiccnt);
757 else
758 methods = EVMETHOD_ANY;
759
760 method = 0;
761#if EV_USE_WIN32
762 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
763#endif
764#if EV_USE_KQUEUE
765 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
766#endif
767#if EV_USE_EPOLL
768 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
769#endif
770#if EV_USE_POLL
771 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
772#endif
773#if EV_USE_SELECT
774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
775#endif
776
777 ev_init (&sigev, sigcb);
778 ev_set_priority (&sigev, EV_MAXPRI);
779 }
780}
781
782void
783loop_destroy (EV_P)
784{
785 int i;
786
787#if EV_USE_WIN32
788 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
789#endif
790#if EV_USE_KQUEUE
791 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
792#endif
793#if EV_USE_EPOLL
794 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
795#endif
796#if EV_USE_POLL
797 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
798#endif
799#if EV_USE_SELECT
800 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
801#endif 1846#endif
802 1847
803 for (i = NUMPRI; i--; ) 1848 for (i = NUMPRI; i--; )
804 array_free (pending, [i]); 1849 {
1850 assert (pendingmax [i] >= pendingcnt [i]);
1851#if EV_IDLE_ENABLE
1852 assert (idleall >= 0);
1853 assert (idlemax [i] >= idlecnt [i]);
1854 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1855#endif
1856 }
805 1857
806 /* have to use the microsoft-never-gets-it-right macro */ 1858#if EV_FORK_ENABLE
807 array_free_microshit (fdchange); 1859 assert (forkmax >= forkcnt);
808 array_free_microshit (timer); 1860 array_verify (EV_A_ (W *)forks, forkcnt);
809 array_free_microshit (periodic); 1861#endif
810 array_free_microshit (idle);
811 array_free_microshit (prepare);
812 array_free_microshit (check);
813 1862
814 method = 0; 1863#if EV_ASYNC_ENABLE
815} 1864 assert (asyncmax >= asynccnt);
1865 array_verify (EV_A_ (W *)asyncs, asynccnt);
1866#endif
816 1867
817static void 1868 assert (preparemax >= preparecnt);
818loop_fork (EV_P) 1869 array_verify (EV_A_ (W *)prepares, preparecnt);
819{ 1870
820#if EV_USE_EPOLL 1871 assert (checkmax >= checkcnt);
821 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1872 array_verify (EV_A_ (W *)checks, checkcnt);
1873
1874# if 0
1875 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1876 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
822#endif 1877# endif
823#if EV_USE_KQUEUE
824 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
825#endif 1878#endif
826
827 if (ev_is_active (&sigev))
828 {
829 /* default loop */
830
831 ev_ref (EV_A);
832 ev_io_stop (EV_A_ &sigev);
833 close (sigpipe [0]);
834 close (sigpipe [1]);
835
836 while (pipe (sigpipe))
837 syserr ("(libev) error creating pipe");
838
839 siginit (EV_A);
840 }
841
842 postfork = 0;
843} 1879}
1880#endif
844 1881
845#if EV_MULTIPLICITY 1882#if EV_MULTIPLICITY
846struct ev_loop * 1883struct ev_loop *
847ev_loop_new (int methods) 1884ev_default_loop_init (unsigned int flags)
848{
849 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
850
851 memset (loop, 0, sizeof (struct ev_loop));
852
853 loop_init (EV_A_ methods);
854
855 if (ev_method (EV_A))
856 return loop;
857
858 return 0;
859}
860
861void
862ev_loop_destroy (EV_P)
863{
864 loop_destroy (EV_A);
865 ev_free (loop);
866}
867
868void
869ev_loop_fork (EV_P)
870{
871 postfork = 1;
872}
873
874#endif
875
876#if EV_MULTIPLICITY
877struct ev_loop *
878#else 1885#else
879int 1886int
1887ev_default_loop (unsigned int flags)
880#endif 1888#endif
881ev_default_loop (int methods)
882{ 1889{
883 if (sigpipe [0] == sigpipe [1])
884 if (pipe (sigpipe))
885 return 0;
886
887 if (!default_loop) 1890 if (!ev_default_loop_ptr)
888 { 1891 {
889#if EV_MULTIPLICITY 1892#if EV_MULTIPLICITY
890 struct ev_loop *loop = default_loop = &default_loop_struct; 1893 EV_P = ev_default_loop_ptr = &default_loop_struct;
891#else 1894#else
892 default_loop = 1; 1895 ev_default_loop_ptr = 1;
893#endif 1896#endif
894 1897
895 loop_init (EV_A_ methods); 1898 loop_init (EV_A_ flags);
896 1899
897 if (ev_method (EV_A)) 1900 if (ev_backend (EV_A))
898 { 1901 {
899 siginit (EV_A);
900
901#ifndef WIN32 1902#ifndef _WIN32
902 ev_signal_init (&childev, childcb, SIGCHLD); 1903 ev_signal_init (&childev, childcb, SIGCHLD);
903 ev_set_priority (&childev, EV_MAXPRI); 1904 ev_set_priority (&childev, EV_MAXPRI);
904 ev_signal_start (EV_A_ &childev); 1905 ev_signal_start (EV_A_ &childev);
905 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1906 ev_unref (EV_A); /* child watcher should not keep loop alive */
906#endif 1907#endif
907 } 1908 }
908 else 1909 else
909 default_loop = 0; 1910 ev_default_loop_ptr = 0;
910 } 1911 }
911 1912
912 return default_loop; 1913 return ev_default_loop_ptr;
913} 1914}
914 1915
915void 1916void
916ev_default_destroy (void) 1917ev_default_destroy (void)
917{ 1918{
918#if EV_MULTIPLICITY 1919#if EV_MULTIPLICITY
919 struct ev_loop *loop = default_loop; 1920 EV_P = ev_default_loop_ptr;
920#endif 1921#endif
921 1922
1923 ev_default_loop_ptr = 0;
1924
922#ifndef WIN32 1925#ifndef _WIN32
923 ev_ref (EV_A); /* child watcher */ 1926 ev_ref (EV_A); /* child watcher */
924 ev_signal_stop (EV_A_ &childev); 1927 ev_signal_stop (EV_A_ &childev);
925#endif 1928#endif
926 1929
927 ev_ref (EV_A); /* signal watcher */
928 ev_io_stop (EV_A_ &sigev);
929
930 close (sigpipe [0]); sigpipe [0] = 0;
931 close (sigpipe [1]); sigpipe [1] = 0;
932
933 loop_destroy (EV_A); 1930 loop_destroy (EV_A);
934} 1931}
935 1932
936void 1933void
937ev_default_fork (void) 1934ev_default_fork (void)
938{ 1935{
939#if EV_MULTIPLICITY 1936#if EV_MULTIPLICITY
940 struct ev_loop *loop = default_loop; 1937 EV_P = ev_default_loop_ptr;
941#endif 1938#endif
942 1939
943 if (method) 1940 postfork = 1; /* must be in line with ev_loop_fork */
944 postfork = 1;
945} 1941}
946 1942
947/*****************************************************************************/ 1943/*****************************************************************************/
948 1944
949static int 1945void
950any_pending (EV_P) 1946ev_invoke (EV_P_ void *w, int revents)
1947{
1948 EV_CB_INVOKE ((W)w, revents);
1949}
1950
1951unsigned int
1952ev_pending_count (EV_P)
951{ 1953{
952 int pri; 1954 int pri;
1955 unsigned int count = 0;
953 1956
954 for (pri = NUMPRI; pri--; ) 1957 for (pri = NUMPRI; pri--; )
955 if (pendingcnt [pri]) 1958 count += pendingcnt [pri];
956 return 1;
957 1959
958 return 0; 1960 return count;
959} 1961}
960 1962
961static void 1963void noinline
962call_pending (EV_P) 1964ev_invoke_pending (EV_P)
963{ 1965{
964 int pri; 1966 int pri;
965 1967
966 for (pri = NUMPRI; pri--; ) 1968 for (pri = NUMPRI; pri--; )
967 while (pendingcnt [pri]) 1969 while (pendingcnt [pri])
968 { 1970 {
969 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1971 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
970 1972
971 if (p->w) 1973 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
972 { 1974 /* ^ this is no longer true, as pending_w could be here */
1975
973 p->w->pending = 0; 1976 p->w->pending = 0;
974 EV_CB_INVOKE (p->w, p->events); 1977 EV_CB_INVOKE (p->w, p->events);
975 } 1978 EV_FREQUENT_CHECK;
976 } 1979 }
977} 1980}
978 1981
979static void 1982#if EV_IDLE_ENABLE
1983/* make idle watchers pending. this handles the "call-idle */
1984/* only when higher priorities are idle" logic */
1985inline_size void
1986idle_reify (EV_P)
1987{
1988 if (expect_false (idleall))
1989 {
1990 int pri;
1991
1992 for (pri = NUMPRI; pri--; )
1993 {
1994 if (pendingcnt [pri])
1995 break;
1996
1997 if (idlecnt [pri])
1998 {
1999 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2000 break;
2001 }
2002 }
2003 }
2004}
2005#endif
2006
2007/* make timers pending */
2008inline_size void
980timers_reify (EV_P) 2009timers_reify (EV_P)
981{ 2010{
2011 EV_FREQUENT_CHECK;
2012
982 while (timercnt && ((WT)timers [0])->at <= mn_now) 2013 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
983 { 2014 {
984 struct ev_timer *w = timers [0]; 2015 do
985
986 assert (("inactive timer on timer heap detected", ev_is_active (w)));
987
988 /* first reschedule or stop timer */
989 if (w->repeat)
990 { 2016 {
2017 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2018
2019 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2020
2021 /* first reschedule or stop timer */
2022 if (w->repeat)
2023 {
2024 ev_at (w) += w->repeat;
2025 if (ev_at (w) < mn_now)
2026 ev_at (w) = mn_now;
2027
991 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2028 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
992 ((WT)w)->at = mn_now + w->repeat; 2029
2030 ANHE_at_cache (timers [HEAP0]);
993 downheap ((WT *)timers, timercnt, 0); 2031 downheap (timers, timercnt, HEAP0);
2032 }
2033 else
2034 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2035
2036 EV_FREQUENT_CHECK;
2037 feed_reverse (EV_A_ (W)w);
994 } 2038 }
995 else 2039 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
996 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
997 2040
998 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2041 feed_reverse_done (EV_A_ EV_TIMEOUT);
999 } 2042 }
1000} 2043}
1001 2044
1002static void 2045#if EV_PERIODIC_ENABLE
2046/* make periodics pending */
2047inline_size void
1003periodics_reify (EV_P) 2048periodics_reify (EV_P)
1004{ 2049{
2050 EV_FREQUENT_CHECK;
2051
1005 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2052 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1006 { 2053 {
1007 struct ev_periodic *w = periodics [0]; 2054 int feed_count = 0;
1008 2055
2056 do
2057 {
2058 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2059
1009 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2060 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1010 2061
1011 /* first reschedule or stop timer */ 2062 /* first reschedule or stop timer */
2063 if (w->reschedule_cb)
2064 {
2065 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2066
2067 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2068
2069 ANHE_at_cache (periodics [HEAP0]);
2070 downheap (periodics, periodiccnt, HEAP0);
2071 }
2072 else if (w->interval)
2073 {
2074 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2075 /* if next trigger time is not sufficiently in the future, put it there */
2076 /* this might happen because of floating point inexactness */
2077 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2078 {
2079 ev_at (w) += w->interval;
2080
2081 /* if interval is unreasonably low we might still have a time in the past */
2082 /* so correct this. this will make the periodic very inexact, but the user */
2083 /* has effectively asked to get triggered more often than possible */
2084 if (ev_at (w) < ev_rt_now)
2085 ev_at (w) = ev_rt_now;
2086 }
2087
2088 ANHE_at_cache (periodics [HEAP0]);
2089 downheap (periodics, periodiccnt, HEAP0);
2090 }
2091 else
2092 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2093
2094 EV_FREQUENT_CHECK;
2095 feed_reverse (EV_A_ (W)w);
2096 }
2097 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2098
2099 feed_reverse_done (EV_A_ EV_PERIODIC);
2100 }
2101}
2102
2103/* simply recalculate all periodics */
2104/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2105static void noinline
2106periodics_reschedule (EV_P)
2107{
2108 int i;
2109
2110 /* adjust periodics after time jump */
2111 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2112 {
2113 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2114
1012 if (w->reschedule_cb) 2115 if (w->reschedule_cb)
2116 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2117 else if (w->interval)
2118 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2119
2120 ANHE_at_cache (periodics [i]);
2121 }
2122
2123 reheap (periodics, periodiccnt);
2124}
2125#endif
2126
2127/* adjust all timers by a given offset */
2128static void noinline
2129timers_reschedule (EV_P_ ev_tstamp adjust)
2130{
2131 int i;
2132
2133 for (i = 0; i < timercnt; ++i)
2134 {
2135 ANHE *he = timers + i + HEAP0;
2136 ANHE_w (*he)->at += adjust;
2137 ANHE_at_cache (*he);
2138 }
2139}
2140
2141/* fetch new monotonic and realtime times from the kernel */
2142/* also detetc if there was a timejump, and act accordingly */
2143inline_speed void
2144time_update (EV_P_ ev_tstamp max_block)
2145{
2146#if EV_USE_MONOTONIC
2147 if (expect_true (have_monotonic))
2148 {
2149 int i;
2150 ev_tstamp odiff = rtmn_diff;
2151
2152 mn_now = get_clock ();
2153
2154 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2155 /* interpolate in the meantime */
2156 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1013 { 2157 {
1014 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2158 ev_rt_now = rtmn_diff + mn_now;
1015 2159 return;
1016 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1017 downheap ((WT *)periodics, periodiccnt, 0);
1018 } 2160 }
1019 else if (w->interval)
1020 {
1021 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1022 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1023 downheap ((WT *)periodics, periodiccnt, 0);
1024 }
1025 else
1026 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1027 2161
1028 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1029 }
1030}
1031
1032static void
1033periodics_reschedule (EV_P)
1034{
1035 int i;
1036
1037 /* adjust periodics after time jump */
1038 for (i = 0; i < periodiccnt; ++i)
1039 {
1040 struct ev_periodic *w = periodics [i];
1041
1042 if (w->reschedule_cb)
1043 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1044 else if (w->interval)
1045 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1046 }
1047
1048 /* now rebuild the heap */
1049 for (i = periodiccnt >> 1; i--; )
1050 downheap ((WT *)periodics, periodiccnt, i);
1051}
1052
1053inline int
1054time_update_monotonic (EV_P)
1055{
1056 mn_now = get_clock ();
1057
1058 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1059 {
1060 ev_rt_now = rtmn_diff + mn_now;
1061 return 0;
1062 }
1063 else
1064 {
1065 now_floor = mn_now; 2162 now_floor = mn_now;
1066 ev_rt_now = ev_time (); 2163 ev_rt_now = ev_time ();
1067 return 1;
1068 }
1069}
1070 2164
1071static void 2165 /* loop a few times, before making important decisions.
1072time_update (EV_P) 2166 * on the choice of "4": one iteration isn't enough,
1073{ 2167 * in case we get preempted during the calls to
1074 int i; 2168 * ev_time and get_clock. a second call is almost guaranteed
1075 2169 * to succeed in that case, though. and looping a few more times
1076#if EV_USE_MONOTONIC 2170 * doesn't hurt either as we only do this on time-jumps or
1077 if (expect_true (have_monotonic)) 2171 * in the unlikely event of having been preempted here.
1078 { 2172 */
1079 if (time_update_monotonic (EV_A)) 2173 for (i = 4; --i; )
1080 { 2174 {
1081 ev_tstamp odiff = rtmn_diff;
1082
1083 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1084 {
1085 rtmn_diff = ev_rt_now - mn_now; 2175 rtmn_diff = ev_rt_now - mn_now;
1086 2176
1087 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2177 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1088 return; /* all is well */ 2178 return; /* all is well */
1089 2179
1090 ev_rt_now = ev_time (); 2180 ev_rt_now = ev_time ();
1091 mn_now = get_clock (); 2181 mn_now = get_clock ();
1092 now_floor = mn_now; 2182 now_floor = mn_now;
1093 } 2183 }
1094 2184
2185 /* no timer adjustment, as the monotonic clock doesn't jump */
2186 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2187# if EV_PERIODIC_ENABLE
2188 periodics_reschedule (EV_A);
2189# endif
2190 }
2191 else
2192#endif
2193 {
2194 ev_rt_now = ev_time ();
2195
2196 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2197 {
2198 /* adjust timers. this is easy, as the offset is the same for all of them */
2199 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2200#if EV_PERIODIC_ENABLE
1095 periodics_reschedule (EV_A); 2201 periodics_reschedule (EV_A);
1096 /* no timer adjustment, as the monotonic clock doesn't jump */ 2202#endif
1097 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1098 } 2203 }
1099 }
1100 else
1101#endif
1102 {
1103 ev_rt_now = ev_time ();
1104
1105 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1106 {
1107 periodics_reschedule (EV_A);
1108
1109 /* adjust timers. this is easy, as the offset is the same for all */
1110 for (i = 0; i < timercnt; ++i)
1111 ((WT)timers [i])->at += ev_rt_now - mn_now;
1112 }
1113 2204
1114 mn_now = ev_rt_now; 2205 mn_now = ev_rt_now;
1115 } 2206 }
1116} 2207}
1117 2208
1118void 2209void
1119ev_ref (EV_P)
1120{
1121 ++activecnt;
1122}
1123
1124void
1125ev_unref (EV_P)
1126{
1127 --activecnt;
1128}
1129
1130static int loop_done;
1131
1132void
1133ev_loop (EV_P_ int flags) 2210ev_loop (EV_P_ int flags)
1134{ 2211{
1135 double block; 2212#if EV_MINIMAL < 2
1136 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2213 ++loop_depth;
2214#endif
2215
2216 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2217
2218 loop_done = EVUNLOOP_CANCEL;
2219
2220 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1137 2221
1138 do 2222 do
1139 { 2223 {
2224#if EV_VERIFY >= 2
2225 ev_loop_verify (EV_A);
2226#endif
2227
2228#ifndef _WIN32
2229 if (expect_false (curpid)) /* penalise the forking check even more */
2230 if (expect_false (getpid () != curpid))
2231 {
2232 curpid = getpid ();
2233 postfork = 1;
2234 }
2235#endif
2236
2237#if EV_FORK_ENABLE
2238 /* we might have forked, so queue fork handlers */
2239 if (expect_false (postfork))
2240 if (forkcnt)
2241 {
2242 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2243 EV_INVOKE_PENDING;
2244 }
2245#endif
2246
1140 /* queue check watchers (and execute them) */ 2247 /* queue prepare watchers (and execute them) */
1141 if (expect_false (preparecnt)) 2248 if (expect_false (preparecnt))
1142 { 2249 {
1143 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2250 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1144 call_pending (EV_A); 2251 EV_INVOKE_PENDING;
1145 } 2252 }
2253
2254 if (expect_false (loop_done))
2255 break;
1146 2256
1147 /* we might have forked, so reify kernel state if necessary */ 2257 /* we might have forked, so reify kernel state if necessary */
1148 if (expect_false (postfork)) 2258 if (expect_false (postfork))
1149 loop_fork (EV_A); 2259 loop_fork (EV_A);
1150 2260
1151 /* update fd-related kernel structures */ 2261 /* update fd-related kernel structures */
1152 fd_reify (EV_A); 2262 fd_reify (EV_A);
1153 2263
1154 /* calculate blocking time */ 2264 /* calculate blocking time */
2265 {
2266 ev_tstamp waittime = 0.;
2267 ev_tstamp sleeptime = 0.;
1155 2268
1156 /* we only need this for !monotonic clock or timers, but as we basically 2269 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1157 always have timers, we just calculate it always */
1158#if EV_USE_MONOTONIC
1159 if (expect_true (have_monotonic))
1160 time_update_monotonic (EV_A);
1161 else
1162#endif
1163 { 2270 {
1164 ev_rt_now = ev_time (); 2271 /* remember old timestamp for io_blocktime calculation */
1165 mn_now = ev_rt_now; 2272 ev_tstamp prev_mn_now = mn_now;
1166 }
1167 2273
1168 if (flags & EVLOOP_NONBLOCK || idlecnt) 2274 /* update time to cancel out callback processing overhead */
1169 block = 0.; 2275 time_update (EV_A_ 1e100);
1170 else 2276
1171 {
1172 block = MAX_BLOCKTIME; 2277 waittime = MAX_BLOCKTIME;
1173 2278
1174 if (timercnt) 2279 if (timercnt)
1175 { 2280 {
1176 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2281 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1177 if (block > to) block = to; 2282 if (waittime > to) waittime = to;
1178 } 2283 }
1179 2284
2285#if EV_PERIODIC_ENABLE
1180 if (periodiccnt) 2286 if (periodiccnt)
1181 { 2287 {
1182 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2288 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1183 if (block > to) block = to; 2289 if (waittime > to) waittime = to;
1184 } 2290 }
2291#endif
1185 2292
1186 if (block < 0.) block = 0.; 2293 /* don't let timeouts decrease the waittime below timeout_blocktime */
2294 if (expect_false (waittime < timeout_blocktime))
2295 waittime = timeout_blocktime;
2296
2297 /* extra check because io_blocktime is commonly 0 */
2298 if (expect_false (io_blocktime))
2299 {
2300 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2301
2302 if (sleeptime > waittime - backend_fudge)
2303 sleeptime = waittime - backend_fudge;
2304
2305 if (expect_true (sleeptime > 0.))
2306 {
2307 ev_sleep (sleeptime);
2308 waittime -= sleeptime;
2309 }
2310 }
1187 } 2311 }
1188 2312
1189 method_poll (EV_A_ block); 2313#if EV_MINIMAL < 2
2314 ++loop_count;
2315#endif
2316 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2317 backend_poll (EV_A_ waittime);
2318 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1190 2319
1191 /* update ev_rt_now, do magic */ 2320 /* update ev_rt_now, do magic */
1192 time_update (EV_A); 2321 time_update (EV_A_ waittime + sleeptime);
2322 }
1193 2323
1194 /* queue pending timers and reschedule them */ 2324 /* queue pending timers and reschedule them */
1195 timers_reify (EV_A); /* relative timers called last */ 2325 timers_reify (EV_A); /* relative timers called last */
2326#if EV_PERIODIC_ENABLE
1196 periodics_reify (EV_A); /* absolute timers called first */ 2327 periodics_reify (EV_A); /* absolute timers called first */
2328#endif
1197 2329
2330#if EV_IDLE_ENABLE
1198 /* queue idle watchers unless io or timers are pending */ 2331 /* queue idle watchers unless other events are pending */
1199 if (idlecnt && !any_pending (EV_A)) 2332 idle_reify (EV_A);
1200 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2333#endif
1201 2334
1202 /* queue check watchers, to be executed first */ 2335 /* queue check watchers, to be executed first */
1203 if (checkcnt) 2336 if (expect_false (checkcnt))
1204 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2337 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1205 2338
1206 call_pending (EV_A); 2339 EV_INVOKE_PENDING;
1207 } 2340 }
1208 while (activecnt && !loop_done); 2341 while (expect_true (
2342 activecnt
2343 && !loop_done
2344 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2345 ));
1209 2346
1210 if (loop_done != 2) 2347 if (loop_done == EVUNLOOP_ONE)
1211 loop_done = 0; 2348 loop_done = EVUNLOOP_CANCEL;
2349
2350#if EV_MINIMAL < 2
2351 --loop_depth;
2352#endif
1212} 2353}
1213 2354
1214void 2355void
1215ev_unloop (EV_P_ int how) 2356ev_unloop (EV_P_ int how)
1216{ 2357{
1217 loop_done = how; 2358 loop_done = how;
1218} 2359}
1219 2360
2361void
2362ev_ref (EV_P)
2363{
2364 ++activecnt;
2365}
2366
2367void
2368ev_unref (EV_P)
2369{
2370 --activecnt;
2371}
2372
2373void
2374ev_now_update (EV_P)
2375{
2376 time_update (EV_A_ 1e100);
2377}
2378
2379void
2380ev_suspend (EV_P)
2381{
2382 ev_now_update (EV_A);
2383}
2384
2385void
2386ev_resume (EV_P)
2387{
2388 ev_tstamp mn_prev = mn_now;
2389
2390 ev_now_update (EV_A);
2391 timers_reschedule (EV_A_ mn_now - mn_prev);
2392#if EV_PERIODIC_ENABLE
2393 /* TODO: really do this? */
2394 periodics_reschedule (EV_A);
2395#endif
2396}
2397
1220/*****************************************************************************/ 2398/*****************************************************************************/
2399/* singly-linked list management, used when the expected list length is short */
1221 2400
1222inline void 2401inline_size void
1223wlist_add (WL *head, WL elem) 2402wlist_add (WL *head, WL elem)
1224{ 2403{
1225 elem->next = *head; 2404 elem->next = *head;
1226 *head = elem; 2405 *head = elem;
1227} 2406}
1228 2407
1229inline void 2408inline_size void
1230wlist_del (WL *head, WL elem) 2409wlist_del (WL *head, WL elem)
1231{ 2410{
1232 while (*head) 2411 while (*head)
1233 { 2412 {
1234 if (*head == elem) 2413 if (expect_true (*head == elem))
1235 { 2414 {
1236 *head = elem->next; 2415 *head = elem->next;
1237 return; 2416 break;
1238 } 2417 }
1239 2418
1240 head = &(*head)->next; 2419 head = &(*head)->next;
1241 } 2420 }
1242} 2421}
1243 2422
2423/* internal, faster, version of ev_clear_pending */
1244inline void 2424inline_speed void
1245ev_clear_pending (EV_P_ W w) 2425clear_pending (EV_P_ W w)
1246{ 2426{
1247 if (w->pending) 2427 if (w->pending)
1248 { 2428 {
1249 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2429 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1250 w->pending = 0; 2430 w->pending = 0;
1251 } 2431 }
1252} 2432}
1253 2433
2434int
2435ev_clear_pending (EV_P_ void *w)
2436{
2437 W w_ = (W)w;
2438 int pending = w_->pending;
2439
2440 if (expect_true (pending))
2441 {
2442 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2443 p->w = (W)&pending_w;
2444 w_->pending = 0;
2445 return p->events;
2446 }
2447 else
2448 return 0;
2449}
2450
1254inline void 2451inline_size void
2452pri_adjust (EV_P_ W w)
2453{
2454 int pri = ev_priority (w);
2455 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2456 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2457 ev_set_priority (w, pri);
2458}
2459
2460inline_speed void
1255ev_start (EV_P_ W w, int active) 2461ev_start (EV_P_ W w, int active)
1256{ 2462{
1257 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2463 pri_adjust (EV_A_ w);
1258 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1259
1260 w->active = active; 2464 w->active = active;
1261 ev_ref (EV_A); 2465 ev_ref (EV_A);
1262} 2466}
1263 2467
1264inline void 2468inline_size void
1265ev_stop (EV_P_ W w) 2469ev_stop (EV_P_ W w)
1266{ 2470{
1267 ev_unref (EV_A); 2471 ev_unref (EV_A);
1268 w->active = 0; 2472 w->active = 0;
1269} 2473}
1270 2474
1271/*****************************************************************************/ 2475/*****************************************************************************/
1272 2476
1273void 2477void noinline
1274ev_io_start (EV_P_ struct ev_io *w) 2478ev_io_start (EV_P_ ev_io *w)
1275{ 2479{
1276 int fd = w->fd; 2480 int fd = w->fd;
1277 2481
2482 if (expect_false (ev_is_active (w)))
2483 return;
2484
2485 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2486 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2487
2488 EV_FREQUENT_CHECK;
2489
2490 ev_start (EV_A_ (W)w, 1);
2491 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2492 wlist_add (&anfds[fd].head, (WL)w);
2493
2494 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2495 w->events &= ~EV__IOFDSET;
2496
2497 EV_FREQUENT_CHECK;
2498}
2499
2500void noinline
2501ev_io_stop (EV_P_ ev_io *w)
2502{
2503 clear_pending (EV_A_ (W)w);
2504 if (expect_false (!ev_is_active (w)))
2505 return;
2506
2507 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2508
2509 EV_FREQUENT_CHECK;
2510
2511 wlist_del (&anfds[w->fd].head, (WL)w);
2512 ev_stop (EV_A_ (W)w);
2513
2514 fd_change (EV_A_ w->fd, 1);
2515
2516 EV_FREQUENT_CHECK;
2517}
2518
2519void noinline
2520ev_timer_start (EV_P_ ev_timer *w)
2521{
2522 if (expect_false (ev_is_active (w)))
2523 return;
2524
2525 ev_at (w) += mn_now;
2526
2527 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2528
2529 EV_FREQUENT_CHECK;
2530
2531 ++timercnt;
2532 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2533 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2534 ANHE_w (timers [ev_active (w)]) = (WT)w;
2535 ANHE_at_cache (timers [ev_active (w)]);
2536 upheap (timers, ev_active (w));
2537
2538 EV_FREQUENT_CHECK;
2539
2540 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2541}
2542
2543void noinline
2544ev_timer_stop (EV_P_ ev_timer *w)
2545{
2546 clear_pending (EV_A_ (W)w);
2547 if (expect_false (!ev_is_active (w)))
2548 return;
2549
2550 EV_FREQUENT_CHECK;
2551
2552 {
2553 int active = ev_active (w);
2554
2555 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2556
2557 --timercnt;
2558
2559 if (expect_true (active < timercnt + HEAP0))
2560 {
2561 timers [active] = timers [timercnt + HEAP0];
2562 adjustheap (timers, timercnt, active);
2563 }
2564 }
2565
2566 EV_FREQUENT_CHECK;
2567
2568 ev_at (w) -= mn_now;
2569
2570 ev_stop (EV_A_ (W)w);
2571}
2572
2573void noinline
2574ev_timer_again (EV_P_ ev_timer *w)
2575{
2576 EV_FREQUENT_CHECK;
2577
1278 if (ev_is_active (w)) 2578 if (ev_is_active (w))
1279 return;
1280
1281 assert (("ev_io_start called with negative fd", fd >= 0));
1282
1283 ev_start (EV_A_ (W)w, 1);
1284 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1285 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1286
1287 fd_change (EV_A_ fd);
1288}
1289
1290void
1291ev_io_stop (EV_P_ struct ev_io *w)
1292{
1293 ev_clear_pending (EV_A_ (W)w);
1294 if (!ev_is_active (w))
1295 return;
1296
1297 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1298 ev_stop (EV_A_ (W)w);
1299
1300 fd_change (EV_A_ w->fd);
1301}
1302
1303void
1304ev_timer_start (EV_P_ struct ev_timer *w)
1305{
1306 if (ev_is_active (w))
1307 return;
1308
1309 ((WT)w)->at += mn_now;
1310
1311 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1312
1313 ev_start (EV_A_ (W)w, ++timercnt);
1314 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1315 timers [timercnt - 1] = w;
1316 upheap ((WT *)timers, timercnt - 1);
1317
1318 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1319}
1320
1321void
1322ev_timer_stop (EV_P_ struct ev_timer *w)
1323{
1324 ev_clear_pending (EV_A_ (W)w);
1325 if (!ev_is_active (w))
1326 return;
1327
1328 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1329
1330 if (((W)w)->active < timercnt--)
1331 {
1332 timers [((W)w)->active - 1] = timers [timercnt];
1333 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1334 }
1335
1336 ((WT)w)->at = w->repeat;
1337
1338 ev_stop (EV_A_ (W)w);
1339}
1340
1341void
1342ev_timer_again (EV_P_ struct ev_timer *w)
1343{
1344 if (ev_is_active (w))
1345 { 2579 {
1346 if (w->repeat) 2580 if (w->repeat)
1347 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat); 2581 {
2582 ev_at (w) = mn_now + w->repeat;
2583 ANHE_at_cache (timers [ev_active (w)]);
2584 adjustheap (timers, timercnt, ev_active (w));
2585 }
1348 else 2586 else
1349 ev_timer_stop (EV_A_ w); 2587 ev_timer_stop (EV_A_ w);
1350 } 2588 }
1351 else if (w->repeat) 2589 else if (w->repeat)
2590 {
2591 ev_at (w) = w->repeat;
1352 ev_timer_start (EV_A_ w); 2592 ev_timer_start (EV_A_ w);
1353} 2593 }
1354 2594
1355void 2595 EV_FREQUENT_CHECK;
2596}
2597
2598ev_tstamp
2599ev_timer_remaining (EV_P_ ev_timer *w)
2600{
2601 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2602}
2603
2604#if EV_PERIODIC_ENABLE
2605void noinline
1356ev_periodic_start (EV_P_ struct ev_periodic *w) 2606ev_periodic_start (EV_P_ ev_periodic *w)
1357{ 2607{
1358 if (ev_is_active (w)) 2608 if (expect_false (ev_is_active (w)))
1359 return; 2609 return;
1360 2610
1361 if (w->reschedule_cb) 2611 if (w->reschedule_cb)
1362 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2612 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1363 else if (w->interval) 2613 else if (w->interval)
1364 { 2614 {
1365 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2615 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1366 /* this formula differs from the one in periodic_reify because we do not always round up */ 2616 /* this formula differs from the one in periodic_reify because we do not always round up */
1367 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2617 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1368 } 2618 }
2619 else
2620 ev_at (w) = w->offset;
1369 2621
2622 EV_FREQUENT_CHECK;
2623
2624 ++periodiccnt;
1370 ev_start (EV_A_ (W)w, ++periodiccnt); 2625 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1371 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2626 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1372 periodics [periodiccnt - 1] = w; 2627 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1373 upheap ((WT *)periodics, periodiccnt - 1); 2628 ANHE_at_cache (periodics [ev_active (w)]);
2629 upheap (periodics, ev_active (w));
1374 2630
2631 EV_FREQUENT_CHECK;
2632
1375 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2633 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1376} 2634}
1377 2635
1378void 2636void noinline
1379ev_periodic_stop (EV_P_ struct ev_periodic *w) 2637ev_periodic_stop (EV_P_ ev_periodic *w)
1380{ 2638{
1381 ev_clear_pending (EV_A_ (W)w); 2639 clear_pending (EV_A_ (W)w);
1382 if (!ev_is_active (w)) 2640 if (expect_false (!ev_is_active (w)))
1383 return; 2641 return;
1384 2642
2643 EV_FREQUENT_CHECK;
2644
2645 {
2646 int active = ev_active (w);
2647
1385 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2648 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1386 2649
1387 if (((W)w)->active < periodiccnt--) 2650 --periodiccnt;
2651
2652 if (expect_true (active < periodiccnt + HEAP0))
1388 { 2653 {
1389 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2654 periodics [active] = periodics [periodiccnt + HEAP0];
1390 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2655 adjustheap (periodics, periodiccnt, active);
1391 } 2656 }
2657 }
2658
2659 EV_FREQUENT_CHECK;
1392 2660
1393 ev_stop (EV_A_ (W)w); 2661 ev_stop (EV_A_ (W)w);
1394} 2662}
1395 2663
1396void 2664void noinline
1397ev_periodic_again (EV_P_ struct ev_periodic *w) 2665ev_periodic_again (EV_P_ ev_periodic *w)
1398{ 2666{
1399 /* TODO: use adjustheap and recalculation */ 2667 /* TODO: use adjustheap and recalculation */
1400 ev_periodic_stop (EV_A_ w); 2668 ev_periodic_stop (EV_A_ w);
1401 ev_periodic_start (EV_A_ w); 2669 ev_periodic_start (EV_A_ w);
1402} 2670}
1403 2671#endif
1404void
1405ev_idle_start (EV_P_ struct ev_idle *w)
1406{
1407 if (ev_is_active (w))
1408 return;
1409
1410 ev_start (EV_A_ (W)w, ++idlecnt);
1411 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1412 idles [idlecnt - 1] = w;
1413}
1414
1415void
1416ev_idle_stop (EV_P_ struct ev_idle *w)
1417{
1418 ev_clear_pending (EV_A_ (W)w);
1419 if (ev_is_active (w))
1420 return;
1421
1422 idles [((W)w)->active - 1] = idles [--idlecnt];
1423 ev_stop (EV_A_ (W)w);
1424}
1425
1426void
1427ev_prepare_start (EV_P_ struct ev_prepare *w)
1428{
1429 if (ev_is_active (w))
1430 return;
1431
1432 ev_start (EV_A_ (W)w, ++preparecnt);
1433 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1434 prepares [preparecnt - 1] = w;
1435}
1436
1437void
1438ev_prepare_stop (EV_P_ struct ev_prepare *w)
1439{
1440 ev_clear_pending (EV_A_ (W)w);
1441 if (ev_is_active (w))
1442 return;
1443
1444 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1445 ev_stop (EV_A_ (W)w);
1446}
1447
1448void
1449ev_check_start (EV_P_ struct ev_check *w)
1450{
1451 if (ev_is_active (w))
1452 return;
1453
1454 ev_start (EV_A_ (W)w, ++checkcnt);
1455 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1456 checks [checkcnt - 1] = w;
1457}
1458
1459void
1460ev_check_stop (EV_P_ struct ev_check *w)
1461{
1462 ev_clear_pending (EV_A_ (W)w);
1463 if (ev_is_active (w))
1464 return;
1465
1466 checks [((W)w)->active - 1] = checks [--checkcnt];
1467 ev_stop (EV_A_ (W)w);
1468}
1469 2672
1470#ifndef SA_RESTART 2673#ifndef SA_RESTART
1471# define SA_RESTART 0 2674# define SA_RESTART 0
1472#endif 2675#endif
1473 2676
1474void 2677void noinline
1475ev_signal_start (EV_P_ struct ev_signal *w) 2678ev_signal_start (EV_P_ ev_signal *w)
1476{ 2679{
2680 if (expect_false (ev_is_active (w)))
2681 return;
2682
2683 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2684
1477#if EV_MULTIPLICITY 2685#if EV_MULTIPLICITY
1478 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2686 assert (("libev: a signal must not be attached to two different loops",
2687 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2688
2689 signals [w->signum - 1].loop = EV_A;
2690#endif
2691
2692 EV_FREQUENT_CHECK;
2693
2694#if EV_USE_SIGNALFD
2695 if (sigfd == -2)
2696 {
2697 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2698 if (sigfd < 0 && errno == EINVAL)
2699 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2700
2701 if (sigfd >= 0)
2702 {
2703 fd_intern (sigfd); /* doing it twice will not hurt */
2704
2705 sigemptyset (&sigfd_set);
2706
2707 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2708 ev_set_priority (&sigfd_w, EV_MAXPRI);
2709 ev_io_start (EV_A_ &sigfd_w);
2710 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2711 }
2712 }
2713
2714 if (sigfd >= 0)
2715 {
2716 /* TODO: check .head */
2717 sigaddset (&sigfd_set, w->signum);
2718 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2719
2720 signalfd (sigfd, &sigfd_set, 0);
2721 }
2722#endif
2723
2724 ev_start (EV_A_ (W)w, 1);
2725 wlist_add (&signals [w->signum - 1].head, (WL)w);
2726
2727 if (!((WL)w)->next)
2728# if EV_USE_SIGNALFD
2729 if (sigfd < 0) /*TODO*/
1479#endif 2730# endif
1480 if (ev_is_active (w)) 2731 {
2732# if _WIN32
2733 signal (w->signum, ev_sighandler);
2734# else
2735 struct sigaction sa;
2736
2737 evpipe_init (EV_A);
2738
2739 sa.sa_handler = ev_sighandler;
2740 sigfillset (&sa.sa_mask);
2741 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2742 sigaction (w->signum, &sa, 0);
2743
2744 sigemptyset (&sa.sa_mask);
2745 sigaddset (&sa.sa_mask, w->signum);
2746 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2747#endif
2748 }
2749
2750 EV_FREQUENT_CHECK;
2751}
2752
2753void noinline
2754ev_signal_stop (EV_P_ ev_signal *w)
2755{
2756 clear_pending (EV_A_ (W)w);
2757 if (expect_false (!ev_is_active (w)))
1481 return; 2758 return;
1482 2759
1483 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2760 EV_FREQUENT_CHECK;
2761
2762 wlist_del (&signals [w->signum - 1].head, (WL)w);
2763 ev_stop (EV_A_ (W)w);
2764
2765 if (!signals [w->signum - 1].head)
2766 {
2767#if EV_MULTIPLICITY
2768 signals [w->signum - 1].loop = 0; /* unattach from signal */
2769#endif
2770#if EV_USE_SIGNALFD
2771 if (sigfd >= 0)
2772 {
2773 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2774 sigdelset (&sigfd_set, w->signum);
2775 signalfd (sigfd, &sigfd_set, 0);
2776 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2777 /*TODO: maybe unblock signal? */
2778 }
2779 else
2780#endif
2781 signal (w->signum, SIG_DFL);
2782 }
2783
2784 EV_FREQUENT_CHECK;
2785}
2786
2787void
2788ev_child_start (EV_P_ ev_child *w)
2789{
2790#if EV_MULTIPLICITY
2791 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2792#endif
2793 if (expect_false (ev_is_active (w)))
2794 return;
2795
2796 EV_FREQUENT_CHECK;
1484 2797
1485 ev_start (EV_A_ (W)w, 1); 2798 ev_start (EV_A_ (W)w, 1);
1486 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2799 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1487 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1488 2800
1489 if (!((WL)w)->next) 2801 EV_FREQUENT_CHECK;
2802}
2803
2804void
2805ev_child_stop (EV_P_ ev_child *w)
2806{
2807 clear_pending (EV_A_ (W)w);
2808 if (expect_false (!ev_is_active (w)))
2809 return;
2810
2811 EV_FREQUENT_CHECK;
2812
2813 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2814 ev_stop (EV_A_ (W)w);
2815
2816 EV_FREQUENT_CHECK;
2817}
2818
2819#if EV_STAT_ENABLE
2820
2821# ifdef _WIN32
2822# undef lstat
2823# define lstat(a,b) _stati64 (a,b)
2824# endif
2825
2826#define DEF_STAT_INTERVAL 5.0074891
2827#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2828#define MIN_STAT_INTERVAL 0.1074891
2829
2830static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2831
2832#if EV_USE_INOTIFY
2833# define EV_INOTIFY_BUFSIZE 8192
2834
2835static void noinline
2836infy_add (EV_P_ ev_stat *w)
2837{
2838 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2839
2840 if (w->wd < 0)
2841 {
2842 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2843 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2844
2845 /* monitor some parent directory for speedup hints */
2846 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2847 /* but an efficiency issue only */
2848 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2849 {
2850 char path [4096];
2851 strcpy (path, w->path);
2852
2853 do
2854 {
2855 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2856 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2857
2858 char *pend = strrchr (path, '/');
2859
2860 if (!pend || pend == path)
2861 break;
2862
2863 *pend = 0;
2864 w->wd = inotify_add_watch (fs_fd, path, mask);
2865 }
2866 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2867 }
1490 { 2868 }
1491#if WIN32 2869
1492 signal (w->signum, sighandler); 2870 if (w->wd >= 0)
2871 {
2872 struct statfs sfs;
2873
2874 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2875
2876 /* now local changes will be tracked by inotify, but remote changes won't */
2877 /* unless the filesystem it known to be local, we therefore still poll */
2878 /* also do poll on <2.6.25, but with normal frequency */
2879
2880 if (fs_2625 && !statfs (w->path, &sfs))
2881 if (sfs.f_type == 0x1373 /* devfs */
2882 || sfs.f_type == 0xEF53 /* ext2/3 */
2883 || sfs.f_type == 0x3153464a /* jfs */
2884 || sfs.f_type == 0x52654973 /* reiser3 */
2885 || sfs.f_type == 0x01021994 /* tempfs */
2886 || sfs.f_type == 0x58465342 /* xfs */)
2887 return;
2888
2889 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2890 ev_timer_again (EV_A_ &w->timer);
2891 }
2892}
2893
2894static void noinline
2895infy_del (EV_P_ ev_stat *w)
2896{
2897 int slot;
2898 int wd = w->wd;
2899
2900 if (wd < 0)
2901 return;
2902
2903 w->wd = -2;
2904 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2905 wlist_del (&fs_hash [slot].head, (WL)w);
2906
2907 /* remove this watcher, if others are watching it, they will rearm */
2908 inotify_rm_watch (fs_fd, wd);
2909}
2910
2911static void noinline
2912infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2913{
2914 if (slot < 0)
2915 /* overflow, need to check for all hash slots */
2916 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2917 infy_wd (EV_A_ slot, wd, ev);
2918 else
2919 {
2920 WL w_;
2921
2922 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2923 {
2924 ev_stat *w = (ev_stat *)w_;
2925 w_ = w_->next; /* lets us remove this watcher and all before it */
2926
2927 if (w->wd == wd || wd == -1)
2928 {
2929 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2930 {
2931 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2932 w->wd = -1;
2933 infy_add (EV_A_ w); /* re-add, no matter what */
2934 }
2935
2936 stat_timer_cb (EV_A_ &w->timer, 0);
2937 }
2938 }
2939 }
2940}
2941
2942static void
2943infy_cb (EV_P_ ev_io *w, int revents)
2944{
2945 char buf [EV_INOTIFY_BUFSIZE];
2946 struct inotify_event *ev = (struct inotify_event *)buf;
2947 int ofs;
2948 int len = read (fs_fd, buf, sizeof (buf));
2949
2950 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2951 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2952}
2953
2954inline_size void
2955check_2625 (EV_P)
2956{
2957 /* kernels < 2.6.25 are borked
2958 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2959 */
2960 struct utsname buf;
2961 int major, minor, micro;
2962
2963 if (uname (&buf))
2964 return;
2965
2966 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2967 return;
2968
2969 if (major < 2
2970 || (major == 2 && minor < 6)
2971 || (major == 2 && minor == 6 && micro < 25))
2972 return;
2973
2974 fs_2625 = 1;
2975}
2976
2977inline_size void
2978infy_init (EV_P)
2979{
2980 if (fs_fd != -2)
2981 return;
2982
2983 fs_fd = -1;
2984
2985 check_2625 (EV_A);
2986
2987 fs_fd = inotify_init ();
2988
2989 if (fs_fd >= 0)
2990 {
2991 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2992 ev_set_priority (&fs_w, EV_MAXPRI);
2993 ev_io_start (EV_A_ &fs_w);
2994 }
2995}
2996
2997inline_size void
2998infy_fork (EV_P)
2999{
3000 int slot;
3001
3002 if (fs_fd < 0)
3003 return;
3004
3005 close (fs_fd);
3006 fs_fd = inotify_init ();
3007
3008 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3009 {
3010 WL w_ = fs_hash [slot].head;
3011 fs_hash [slot].head = 0;
3012
3013 while (w_)
3014 {
3015 ev_stat *w = (ev_stat *)w_;
3016 w_ = w_->next; /* lets us add this watcher */
3017
3018 w->wd = -1;
3019
3020 if (fs_fd >= 0)
3021 infy_add (EV_A_ w); /* re-add, no matter what */
3022 else
3023 ev_timer_again (EV_A_ &w->timer);
3024 }
3025 }
3026}
3027
3028#endif
3029
3030#ifdef _WIN32
3031# define EV_LSTAT(p,b) _stati64 (p, b)
1493#else 3032#else
1494 struct sigaction sa; 3033# define EV_LSTAT(p,b) lstat (p, b)
1495 sa.sa_handler = sighandler;
1496 sigfillset (&sa.sa_mask);
1497 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1498 sigaction (w->signum, &sa, 0);
1499#endif 3034#endif
1500 }
1501}
1502 3035
1503void 3036void
1504ev_signal_stop (EV_P_ struct ev_signal *w) 3037ev_stat_stat (EV_P_ ev_stat *w)
1505{ 3038{
1506 ev_clear_pending (EV_A_ (W)w); 3039 if (lstat (w->path, &w->attr) < 0)
1507 if (!ev_is_active (w)) 3040 w->attr.st_nlink = 0;
3041 else if (!w->attr.st_nlink)
3042 w->attr.st_nlink = 1;
3043}
3044
3045static void noinline
3046stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3047{
3048 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3049
3050 /* we copy this here each the time so that */
3051 /* prev has the old value when the callback gets invoked */
3052 w->prev = w->attr;
3053 ev_stat_stat (EV_A_ w);
3054
3055 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3056 if (
3057 w->prev.st_dev != w->attr.st_dev
3058 || w->prev.st_ino != w->attr.st_ino
3059 || w->prev.st_mode != w->attr.st_mode
3060 || w->prev.st_nlink != w->attr.st_nlink
3061 || w->prev.st_uid != w->attr.st_uid
3062 || w->prev.st_gid != w->attr.st_gid
3063 || w->prev.st_rdev != w->attr.st_rdev
3064 || w->prev.st_size != w->attr.st_size
3065 || w->prev.st_atime != w->attr.st_atime
3066 || w->prev.st_mtime != w->attr.st_mtime
3067 || w->prev.st_ctime != w->attr.st_ctime
3068 ) {
3069 #if EV_USE_INOTIFY
3070 if (fs_fd >= 0)
3071 {
3072 infy_del (EV_A_ w);
3073 infy_add (EV_A_ w);
3074 ev_stat_stat (EV_A_ w); /* avoid race... */
3075 }
3076 #endif
3077
3078 ev_feed_event (EV_A_ w, EV_STAT);
3079 }
3080}
3081
3082void
3083ev_stat_start (EV_P_ ev_stat *w)
3084{
3085 if (expect_false (ev_is_active (w)))
1508 return; 3086 return;
1509 3087
1510 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3088 ev_stat_stat (EV_A_ w);
3089
3090 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3091 w->interval = MIN_STAT_INTERVAL;
3092
3093 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3094 ev_set_priority (&w->timer, ev_priority (w));
3095
3096#if EV_USE_INOTIFY
3097 infy_init (EV_A);
3098
3099 if (fs_fd >= 0)
3100 infy_add (EV_A_ w);
3101 else
3102#endif
3103 ev_timer_again (EV_A_ &w->timer);
3104
3105 ev_start (EV_A_ (W)w, 1);
3106
3107 EV_FREQUENT_CHECK;
3108}
3109
3110void
3111ev_stat_stop (EV_P_ ev_stat *w)
3112{
3113 clear_pending (EV_A_ (W)w);
3114 if (expect_false (!ev_is_active (w)))
3115 return;
3116
3117 EV_FREQUENT_CHECK;
3118
3119#if EV_USE_INOTIFY
3120 infy_del (EV_A_ w);
3121#endif
3122 ev_timer_stop (EV_A_ &w->timer);
3123
1511 ev_stop (EV_A_ (W)w); 3124 ev_stop (EV_A_ (W)w);
1512 3125
1513 if (!signals [w->signum - 1].head) 3126 EV_FREQUENT_CHECK;
1514 signal (w->signum, SIG_DFL);
1515} 3127}
3128#endif
1516 3129
3130#if EV_IDLE_ENABLE
1517void 3131void
1518ev_child_start (EV_P_ struct ev_child *w) 3132ev_idle_start (EV_P_ ev_idle *w)
1519{ 3133{
1520#if EV_MULTIPLICITY
1521 assert (("child watchers are only supported in the default loop", loop == default_loop));
1522#endif
1523 if (ev_is_active (w)) 3134 if (expect_false (ev_is_active (w)))
1524 return; 3135 return;
1525 3136
3137 pri_adjust (EV_A_ (W)w);
3138
3139 EV_FREQUENT_CHECK;
3140
3141 {
3142 int active = ++idlecnt [ABSPRI (w)];
3143
3144 ++idleall;
3145 ev_start (EV_A_ (W)w, active);
3146
3147 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3148 idles [ABSPRI (w)][active - 1] = w;
3149 }
3150
3151 EV_FREQUENT_CHECK;
3152}
3153
3154void
3155ev_idle_stop (EV_P_ ev_idle *w)
3156{
3157 clear_pending (EV_A_ (W)w);
3158 if (expect_false (!ev_is_active (w)))
3159 return;
3160
3161 EV_FREQUENT_CHECK;
3162
3163 {
3164 int active = ev_active (w);
3165
3166 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3167 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3168
3169 ev_stop (EV_A_ (W)w);
3170 --idleall;
3171 }
3172
3173 EV_FREQUENT_CHECK;
3174}
3175#endif
3176
3177void
3178ev_prepare_start (EV_P_ ev_prepare *w)
3179{
3180 if (expect_false (ev_is_active (w)))
3181 return;
3182
3183 EV_FREQUENT_CHECK;
3184
3185 ev_start (EV_A_ (W)w, ++preparecnt);
3186 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3187 prepares [preparecnt - 1] = w;
3188
3189 EV_FREQUENT_CHECK;
3190}
3191
3192void
3193ev_prepare_stop (EV_P_ ev_prepare *w)
3194{
3195 clear_pending (EV_A_ (W)w);
3196 if (expect_false (!ev_is_active (w)))
3197 return;
3198
3199 EV_FREQUENT_CHECK;
3200
3201 {
3202 int active = ev_active (w);
3203
3204 prepares [active - 1] = prepares [--preparecnt];
3205 ev_active (prepares [active - 1]) = active;
3206 }
3207
3208 ev_stop (EV_A_ (W)w);
3209
3210 EV_FREQUENT_CHECK;
3211}
3212
3213void
3214ev_check_start (EV_P_ ev_check *w)
3215{
3216 if (expect_false (ev_is_active (w)))
3217 return;
3218
3219 EV_FREQUENT_CHECK;
3220
3221 ev_start (EV_A_ (W)w, ++checkcnt);
3222 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3223 checks [checkcnt - 1] = w;
3224
3225 EV_FREQUENT_CHECK;
3226}
3227
3228void
3229ev_check_stop (EV_P_ ev_check *w)
3230{
3231 clear_pending (EV_A_ (W)w);
3232 if (expect_false (!ev_is_active (w)))
3233 return;
3234
3235 EV_FREQUENT_CHECK;
3236
3237 {
3238 int active = ev_active (w);
3239
3240 checks [active - 1] = checks [--checkcnt];
3241 ev_active (checks [active - 1]) = active;
3242 }
3243
3244 ev_stop (EV_A_ (W)w);
3245
3246 EV_FREQUENT_CHECK;
3247}
3248
3249#if EV_EMBED_ENABLE
3250void noinline
3251ev_embed_sweep (EV_P_ ev_embed *w)
3252{
3253 ev_loop (w->other, EVLOOP_NONBLOCK);
3254}
3255
3256static void
3257embed_io_cb (EV_P_ ev_io *io, int revents)
3258{
3259 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3260
3261 if (ev_cb (w))
3262 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3263 else
3264 ev_loop (w->other, EVLOOP_NONBLOCK);
3265}
3266
3267static void
3268embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3269{
3270 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3271
3272 {
3273 EV_P = w->other;
3274
3275 while (fdchangecnt)
3276 {
3277 fd_reify (EV_A);
3278 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3279 }
3280 }
3281}
3282
3283static void
3284embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3285{
3286 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3287
3288 ev_embed_stop (EV_A_ w);
3289
3290 {
3291 EV_P = w->other;
3292
3293 ev_loop_fork (EV_A);
3294 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3295 }
3296
3297 ev_embed_start (EV_A_ w);
3298}
3299
3300#if 0
3301static void
3302embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3303{
3304 ev_idle_stop (EV_A_ idle);
3305}
3306#endif
3307
3308void
3309ev_embed_start (EV_P_ ev_embed *w)
3310{
3311 if (expect_false (ev_is_active (w)))
3312 return;
3313
3314 {
3315 EV_P = w->other;
3316 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3317 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3318 }
3319
3320 EV_FREQUENT_CHECK;
3321
3322 ev_set_priority (&w->io, ev_priority (w));
3323 ev_io_start (EV_A_ &w->io);
3324
3325 ev_prepare_init (&w->prepare, embed_prepare_cb);
3326 ev_set_priority (&w->prepare, EV_MINPRI);
3327 ev_prepare_start (EV_A_ &w->prepare);
3328
3329 ev_fork_init (&w->fork, embed_fork_cb);
3330 ev_fork_start (EV_A_ &w->fork);
3331
3332 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3333
1526 ev_start (EV_A_ (W)w, 1); 3334 ev_start (EV_A_ (W)w, 1);
1527 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1528}
1529 3335
3336 EV_FREQUENT_CHECK;
3337}
3338
1530void 3339void
1531ev_child_stop (EV_P_ struct ev_child *w) 3340ev_embed_stop (EV_P_ ev_embed *w)
1532{ 3341{
1533 ev_clear_pending (EV_A_ (W)w); 3342 clear_pending (EV_A_ (W)w);
1534 if (ev_is_active (w)) 3343 if (expect_false (!ev_is_active (w)))
1535 return; 3344 return;
1536 3345
1537 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3346 EV_FREQUENT_CHECK;
3347
3348 ev_io_stop (EV_A_ &w->io);
3349 ev_prepare_stop (EV_A_ &w->prepare);
3350 ev_fork_stop (EV_A_ &w->fork);
3351
3352 EV_FREQUENT_CHECK;
3353}
3354#endif
3355
3356#if EV_FORK_ENABLE
3357void
3358ev_fork_start (EV_P_ ev_fork *w)
3359{
3360 if (expect_false (ev_is_active (w)))
3361 return;
3362
3363 EV_FREQUENT_CHECK;
3364
3365 ev_start (EV_A_ (W)w, ++forkcnt);
3366 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3367 forks [forkcnt - 1] = w;
3368
3369 EV_FREQUENT_CHECK;
3370}
3371
3372void
3373ev_fork_stop (EV_P_ ev_fork *w)
3374{
3375 clear_pending (EV_A_ (W)w);
3376 if (expect_false (!ev_is_active (w)))
3377 return;
3378
3379 EV_FREQUENT_CHECK;
3380
3381 {
3382 int active = ev_active (w);
3383
3384 forks [active - 1] = forks [--forkcnt];
3385 ev_active (forks [active - 1]) = active;
3386 }
3387
1538 ev_stop (EV_A_ (W)w); 3388 ev_stop (EV_A_ (W)w);
3389
3390 EV_FREQUENT_CHECK;
1539} 3391}
3392#endif
3393
3394#if EV_ASYNC_ENABLE
3395void
3396ev_async_start (EV_P_ ev_async *w)
3397{
3398 if (expect_false (ev_is_active (w)))
3399 return;
3400
3401 evpipe_init (EV_A);
3402
3403 EV_FREQUENT_CHECK;
3404
3405 ev_start (EV_A_ (W)w, ++asynccnt);
3406 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3407 asyncs [asynccnt - 1] = w;
3408
3409 EV_FREQUENT_CHECK;
3410}
3411
3412void
3413ev_async_stop (EV_P_ ev_async *w)
3414{
3415 clear_pending (EV_A_ (W)w);
3416 if (expect_false (!ev_is_active (w)))
3417 return;
3418
3419 EV_FREQUENT_CHECK;
3420
3421 {
3422 int active = ev_active (w);
3423
3424 asyncs [active - 1] = asyncs [--asynccnt];
3425 ev_active (asyncs [active - 1]) = active;
3426 }
3427
3428 ev_stop (EV_A_ (W)w);
3429
3430 EV_FREQUENT_CHECK;
3431}
3432
3433void
3434ev_async_send (EV_P_ ev_async *w)
3435{
3436 w->sent = 1;
3437 evpipe_write (EV_A_ &async_pending);
3438}
3439#endif
1540 3440
1541/*****************************************************************************/ 3441/*****************************************************************************/
1542 3442
1543struct ev_once 3443struct ev_once
1544{ 3444{
1545 struct ev_io io; 3445 ev_io io;
1546 struct ev_timer to; 3446 ev_timer to;
1547 void (*cb)(int revents, void *arg); 3447 void (*cb)(int revents, void *arg);
1548 void *arg; 3448 void *arg;
1549}; 3449};
1550 3450
1551static void 3451static void
1552once_cb (EV_P_ struct ev_once *once, int revents) 3452once_cb (EV_P_ struct ev_once *once, int revents)
1553{ 3453{
1554 void (*cb)(int revents, void *arg) = once->cb; 3454 void (*cb)(int revents, void *arg) = once->cb;
1555 void *arg = once->arg; 3455 void *arg = once->arg;
1556 3456
1557 ev_io_stop (EV_A_ &once->io); 3457 ev_io_stop (EV_A_ &once->io);
1558 ev_timer_stop (EV_A_ &once->to); 3458 ev_timer_stop (EV_A_ &once->to);
1559 ev_free (once); 3459 ev_free (once);
1560 3460
1561 cb (revents, arg); 3461 cb (revents, arg);
1562} 3462}
1563 3463
1564static void 3464static void
1565once_cb_io (EV_P_ struct ev_io *w, int revents) 3465once_cb_io (EV_P_ ev_io *w, int revents)
1566{ 3466{
1567 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3467 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3468
3469 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1568} 3470}
1569 3471
1570static void 3472static void
1571once_cb_to (EV_P_ struct ev_timer *w, int revents) 3473once_cb_to (EV_P_ ev_timer *w, int revents)
1572{ 3474{
1573 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3475 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3476
3477 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1574} 3478}
1575 3479
1576void 3480void
1577ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3481ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1578{ 3482{
1579 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3483 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1580 3484
1581 if (!once) 3485 if (expect_false (!once))
3486 {
1582 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3487 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1583 else 3488 return;
1584 { 3489 }
3490
1585 once->cb = cb; 3491 once->cb = cb;
1586 once->arg = arg; 3492 once->arg = arg;
1587 3493
1588 ev_init (&once->io, once_cb_io); 3494 ev_init (&once->io, once_cb_io);
1589 if (fd >= 0) 3495 if (fd >= 0)
3496 {
3497 ev_io_set (&once->io, fd, events);
3498 ev_io_start (EV_A_ &once->io);
3499 }
3500
3501 ev_init (&once->to, once_cb_to);
3502 if (timeout >= 0.)
3503 {
3504 ev_timer_set (&once->to, timeout, 0.);
3505 ev_timer_start (EV_A_ &once->to);
3506 }
3507}
3508
3509/*****************************************************************************/
3510
3511#if EV_WALK_ENABLE
3512void
3513ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3514{
3515 int i, j;
3516 ev_watcher_list *wl, *wn;
3517
3518 if (types & (EV_IO | EV_EMBED))
3519 for (i = 0; i < anfdmax; ++i)
3520 for (wl = anfds [i].head; wl; )
1590 { 3521 {
1591 ev_io_set (&once->io, fd, events); 3522 wn = wl->next;
1592 ev_io_start (EV_A_ &once->io); 3523
3524#if EV_EMBED_ENABLE
3525 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3526 {
3527 if (types & EV_EMBED)
3528 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3529 }
3530 else
3531#endif
3532#if EV_USE_INOTIFY
3533 if (ev_cb ((ev_io *)wl) == infy_cb)
3534 ;
3535 else
3536#endif
3537 if ((ev_io *)wl != &pipe_w)
3538 if (types & EV_IO)
3539 cb (EV_A_ EV_IO, wl);
3540
3541 wl = wn;
1593 } 3542 }
1594 3543
1595 ev_init (&once->to, once_cb_to); 3544 if (types & (EV_TIMER | EV_STAT))
1596 if (timeout >= 0.) 3545 for (i = timercnt + HEAP0; i-- > HEAP0; )
3546#if EV_STAT_ENABLE
3547 /*TODO: timer is not always active*/
3548 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1597 { 3549 {
1598 ev_timer_set (&once->to, timeout, 0.); 3550 if (types & EV_STAT)
1599 ev_timer_start (EV_A_ &once->to); 3551 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1600 } 3552 }
1601 } 3553 else
3554#endif
3555 if (types & EV_TIMER)
3556 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3557
3558#if EV_PERIODIC_ENABLE
3559 if (types & EV_PERIODIC)
3560 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3561 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3562#endif
3563
3564#if EV_IDLE_ENABLE
3565 if (types & EV_IDLE)
3566 for (j = NUMPRI; i--; )
3567 for (i = idlecnt [j]; i--; )
3568 cb (EV_A_ EV_IDLE, idles [j][i]);
3569#endif
3570
3571#if EV_FORK_ENABLE
3572 if (types & EV_FORK)
3573 for (i = forkcnt; i--; )
3574 if (ev_cb (forks [i]) != embed_fork_cb)
3575 cb (EV_A_ EV_FORK, forks [i]);
3576#endif
3577
3578#if EV_ASYNC_ENABLE
3579 if (types & EV_ASYNC)
3580 for (i = asynccnt; i--; )
3581 cb (EV_A_ EV_ASYNC, asyncs [i]);
3582#endif
3583
3584 if (types & EV_PREPARE)
3585 for (i = preparecnt; i--; )
3586#if EV_EMBED_ENABLE
3587 if (ev_cb (prepares [i]) != embed_prepare_cb)
3588#endif
3589 cb (EV_A_ EV_PREPARE, prepares [i]);
3590
3591 if (types & EV_CHECK)
3592 for (i = checkcnt; i--; )
3593 cb (EV_A_ EV_CHECK, checks [i]);
3594
3595 if (types & EV_SIGNAL)
3596 for (i = 0; i < EV_NSIG - 1; ++i)
3597 for (wl = signals [i].head; wl; )
3598 {
3599 wn = wl->next;
3600 cb (EV_A_ EV_SIGNAL, wl);
3601 wl = wn;
3602 }
3603
3604 if (types & EV_CHILD)
3605 for (i = EV_PID_HASHSIZE; i--; )
3606 for (wl = childs [i]; wl; )
3607 {
3608 wn = wl->next;
3609 cb (EV_A_ EV_CHILD, wl);
3610 wl = wn;
3611 }
3612/* EV_STAT 0x00001000 /* stat data changed */
3613/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1602} 3614}
3615#endif
3616
3617#if EV_MULTIPLICITY
3618 #include "ev_wrap.h"
3619#endif
1603 3620
1604#ifdef __cplusplus 3621#ifdef __cplusplus
1605} 3622}
1606#endif 3623#endif
1607 3624

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines