ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.89 by root, Sat Nov 10 19:48:44 2007 UTC vs.
Revision 1.361 by root, Sun Oct 24 19:01:01 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
38 61
39# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
63# ifndef EV_USE_MONOTONIC
40# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
65# endif
66# ifndef EV_USE_REALTIME
41# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
68# endif
69# else
70# ifndef EV_USE_MONOTONIC
71# define EV_USE_MONOTONIC 0
72# endif
73# ifndef EV_USE_REALTIME
74# define EV_USE_REALTIME 0
75# endif
42# endif 76# endif
43 77
78# if HAVE_NANOSLEEP
79# ifndef EV_USE_NANOSLEEP
80# define EV_USE_NANOSLEEP EV_FEATURE_OS
81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
85# endif
86
44# if HAVE_SELECT && HAVE_SYS_SELECT_H 87# if HAVE_SELECT && HAVE_SYS_SELECT_H
88# ifndef EV_USE_SELECT
89# define EV_USE_SELECT EV_FEATURE_BACKENDS
90# endif
91# else
92# undef EV_USE_SELECT
45# define EV_USE_SELECT 1 93# define EV_USE_SELECT 0
46# endif 94# endif
47 95
48# if HAVE_POLL && HAVE_POLL_H 96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
49# define EV_USE_POLL 1 102# define EV_USE_POLL 0
50# endif 103# endif
51 104
52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
106# ifndef EV_USE_EPOLL
107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
108# endif
109# else
110# undef EV_USE_EPOLL
53# define EV_USE_EPOLL 1 111# define EV_USE_EPOLL 0
54# endif 112# endif
55 113
56# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
115# ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
117# endif
118# else
119# undef EV_USE_KQUEUE
57# define EV_USE_KQUEUE 1 120# define EV_USE_KQUEUE 0
58# endif 121# endif
122
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# ifndef EV_USE_PORT
125# define EV_USE_PORT EV_FEATURE_BACKENDS
126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
130# endif
59 131
132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
133# ifndef EV_USE_INOTIFY
134# define EV_USE_INOTIFY EV_FEATURE_OS
135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
139# endif
140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
60#endif 159#endif
61 160
62#include <math.h> 161#include <math.h>
63#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
64#include <fcntl.h> 164#include <fcntl.h>
65#include <stddef.h> 165#include <stddef.h>
66 166
67#include <stdio.h> 167#include <stdio.h>
68 168
69#include <assert.h> 169#include <assert.h>
70#include <errno.h> 170#include <errno.h>
71#include <sys/types.h> 171#include <sys/types.h>
72#include <time.h> 172#include <time.h>
173#include <limits.h>
73 174
74#include <signal.h> 175#include <signal.h>
75
76#ifndef WIN32
77# include <unistd.h>
78# include <sys/time.h>
79# include <sys/wait.h>
80#endif
81/**/
82
83#ifndef EV_USE_MONOTONIC
84# define EV_USE_MONOTONIC 1
85#endif
86
87#ifndef EV_USE_SELECT
88# define EV_USE_SELECT 1
89#endif
90
91#ifndef EV_USE_POLL
92# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
93#endif
94
95#ifndef EV_USE_EPOLL
96# define EV_USE_EPOLL 0
97#endif
98
99#ifndef EV_USE_KQUEUE
100# define EV_USE_KQUEUE 0
101#endif
102
103#ifndef EV_USE_WIN32
104# ifdef WIN32
105# define EV_USE_WIN32 0 /* it does not exist, use select */
106# undef EV_USE_SELECT
107# define EV_USE_SELECT 1
108# else
109# define EV_USE_WIN32 0
110# endif
111#endif
112
113#ifndef EV_USE_REALTIME
114# define EV_USE_REALTIME 1
115#endif
116
117/**/
118
119#ifndef CLOCK_MONOTONIC
120# undef EV_USE_MONOTONIC
121# define EV_USE_MONOTONIC 0
122#endif
123
124#ifndef CLOCK_REALTIME
125# undef EV_USE_REALTIME
126# define EV_USE_REALTIME 0
127#endif
128
129/**/
130
131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
135 176
136#ifdef EV_H 177#ifdef EV_H
137# include EV_H 178# include EV_H
138#else 179#else
139# include "ev.h" 180# include "ev.h"
140#endif 181#endif
141 182
183EV_CPP(extern "C" {)
184
185#ifndef _WIN32
186# include <sys/time.h>
187# include <sys/wait.h>
188# include <unistd.h>
189#else
190# include <io.h>
191# define WIN32_LEAN_AND_MEAN
192# include <windows.h>
193# ifndef EV_SELECT_IS_WINSOCKET
194# define EV_SELECT_IS_WINSOCKET 1
195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
242# endif
243#endif
244
245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
249# define EV_USE_MONOTONIC 0
250# endif
251#endif
252
253#ifndef EV_USE_REALTIME
254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
263#endif
264
265#ifndef EV_USE_SELECT
266# define EV_USE_SELECT EV_FEATURE_BACKENDS
267#endif
268
269#ifndef EV_USE_POLL
270# ifdef _WIN32
271# define EV_USE_POLL 0
272# else
273# define EV_USE_POLL EV_FEATURE_BACKENDS
274# endif
275#endif
276
277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
281# define EV_USE_EPOLL 0
282# endif
283#endif
284
285#ifndef EV_USE_KQUEUE
286# define EV_USE_KQUEUE 0
287#endif
288
289#ifndef EV_USE_PORT
290# define EV_USE_PORT 0
291#endif
292
293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
297# define EV_USE_INOTIFY 0
298# endif
299#endif
300
301#ifndef EV_PID_HASHSIZE
302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
312# else
313# define EV_USE_EVENTFD 0
314# endif
315#endif
316
317#ifndef EV_USE_SIGNALFD
318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
319# define EV_USE_SIGNALFD EV_FEATURE_OS
320# else
321# define EV_USE_SIGNALFD 0
322# endif
323#endif
324
325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
364
365#ifndef CLOCK_MONOTONIC
366# undef EV_USE_MONOTONIC
367# define EV_USE_MONOTONIC 0
368#endif
369
370#ifndef CLOCK_REALTIME
371# undef EV_USE_REALTIME
372# define EV_USE_REALTIME 0
373#endif
374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
396#if EV_SELECT_IS_WINSOCKET
397# include <winsock.h>
398#endif
399
400#if EV_USE_EVENTFD
401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
436#endif
437
438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
445
446/*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
455
456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
461
142#if __GNUC__ >= 3 462#if __GNUC__ >= 4
143# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
144# define inline inline 464# define noinline __attribute__ ((noinline))
145#else 465#else
146# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
147# define inline static 467# define noinline
468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
469# define inline
470# endif
148#endif 471#endif
149 472
150#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
151#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
475#define inline_size static inline
152 476
477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
480# define inline_speed static noinline
481#endif
482
153#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
487#else
154#define ABSPRI(w) ((w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
155 490
491#define EMPTY /* required for microsofts broken pseudo-c compiler */
492#define EMPTY2(a,b) /* used to suppress some warnings */
493
156typedef struct ev_watcher *W; 494typedef ev_watcher *W;
157typedef struct ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
158typedef struct ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
159 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
160static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
161 510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
520
521#ifdef _WIN32
162#include "ev_win32.c" 522# include "ev_win32.c"
523#endif
163 524
164/*****************************************************************************/ 525/*****************************************************************************/
165 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
166static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
167 578
579void
168void ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
169{ 581{
170 syserr_cb = cb; 582 syserr_cb = cb;
171} 583}
172 584
173static void 585static void noinline
174syserr (const char *msg) 586ev_syserr (const char *msg)
175{ 587{
176 if (!msg) 588 if (!msg)
177 msg = "(libev) system error"; 589 msg = "(libev) system error";
178 590
179 if (syserr_cb) 591 if (syserr_cb)
180 syserr_cb (msg); 592 syserr_cb (msg);
181 else 593 else
182 { 594 {
595#if EV_AVOID_STDIO
596 const char *err = strerror (errno);
597
598 ev_printerr (msg);
599 ev_printerr (": ");
600 ev_printerr (err);
601 ev_printerr ("\n");
602#else
183 perror (msg); 603 perror (msg);
604#endif
184 abort (); 605 abort ();
185 } 606 }
186} 607}
187 608
609static void *
610ev_realloc_emul (void *ptr, long size)
611{
612#if __GLIBC__
613 return realloc (ptr, size);
614#else
615 /* some systems, notably openbsd and darwin, fail to properly
616 * implement realloc (x, 0) (as required by both ansi c-89 and
617 * the single unix specification, so work around them here.
618 */
619
620 if (size)
621 return realloc (ptr, size);
622
623 free (ptr);
624 return 0;
625#endif
626}
627
188static void *(*alloc)(void *ptr, long size); 628static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
189 629
630void
190void ev_set_allocator (void *(*cb)(void *ptr, long size)) 631ev_set_allocator (void *(*cb)(void *ptr, long size))
191{ 632{
192 alloc = cb; 633 alloc = cb;
193} 634}
194 635
195static void * 636inline_speed void *
196ev_realloc (void *ptr, long size) 637ev_realloc (void *ptr, long size)
197{ 638{
198 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 639 ptr = alloc (ptr, size);
199 640
200 if (!ptr && size) 641 if (!ptr && size)
201 { 642 {
643#if EV_AVOID_STDIO
644 ev_printerr ("libev: memory allocation failed, aborting.\n");
645#else
202 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 646 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
647#endif
203 abort (); 648 abort ();
204 } 649 }
205 650
206 return ptr; 651 return ptr;
207} 652}
209#define ev_malloc(size) ev_realloc (0, (size)) 654#define ev_malloc(size) ev_realloc (0, (size))
210#define ev_free(ptr) ev_realloc ((ptr), 0) 655#define ev_free(ptr) ev_realloc ((ptr), 0)
211 656
212/*****************************************************************************/ 657/*****************************************************************************/
213 658
659/* set in reify when reification needed */
660#define EV_ANFD_REIFY 1
661
662/* file descriptor info structure */
214typedef struct 663typedef struct
215{ 664{
216 WL head; 665 WL head;
217 unsigned char events; 666 unsigned char events; /* the events watched for */
667 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
668 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
218 unsigned char reify; 669 unsigned char unused;
670#if EV_USE_EPOLL
671 unsigned int egen; /* generation counter to counter epoll bugs */
672#endif
673#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
674 SOCKET handle;
675#endif
676#if EV_USE_IOCP
677 OVERLAPPED or, ow;
678#endif
219} ANFD; 679} ANFD;
220 680
681/* stores the pending event set for a given watcher */
221typedef struct 682typedef struct
222{ 683{
223 W w; 684 W w;
224 int events; 685 int events; /* the pending event set for the given watcher */
225} ANPENDING; 686} ANPENDING;
687
688#if EV_USE_INOTIFY
689/* hash table entry per inotify-id */
690typedef struct
691{
692 WL head;
693} ANFS;
694#endif
695
696/* Heap Entry */
697#if EV_HEAP_CACHE_AT
698 /* a heap element */
699 typedef struct {
700 ev_tstamp at;
701 WT w;
702 } ANHE;
703
704 #define ANHE_w(he) (he).w /* access watcher, read-write */
705 #define ANHE_at(he) (he).at /* access cached at, read-only */
706 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
707#else
708 /* a heap element */
709 typedef WT ANHE;
710
711 #define ANHE_w(he) (he)
712 #define ANHE_at(he) (he)->at
713 #define ANHE_at_cache(he)
714#endif
226 715
227#if EV_MULTIPLICITY 716#if EV_MULTIPLICITY
228 717
229 struct ev_loop 718 struct ev_loop
230 { 719 {
231 ev_tstamp ev_rt_now; 720 ev_tstamp ev_rt_now;
721 #define ev_rt_now ((loop)->ev_rt_now)
232 #define VAR(name,decl) decl; 722 #define VAR(name,decl) decl;
233 #include "ev_vars.h" 723 #include "ev_vars.h"
234 #undef VAR 724 #undef VAR
235 }; 725 };
236 #include "ev_wrap.h" 726 #include "ev_wrap.h"
237 727
238 struct ev_loop default_loop_struct; 728 static struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop; 729 struct ev_loop *ev_default_loop_ptr;
240 730
241#else 731#else
242 732
243 ev_tstamp ev_rt_now; 733 ev_tstamp ev_rt_now;
244 #define VAR(name,decl) static decl; 734 #define VAR(name,decl) static decl;
245 #include "ev_vars.h" 735 #include "ev_vars.h"
246 #undef VAR 736 #undef VAR
247 737
248 static int default_loop; 738 static int ev_default_loop_ptr;
249 739
250#endif 740#endif
741
742#if EV_FEATURE_API
743# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
744# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
745# define EV_INVOKE_PENDING invoke_cb (EV_A)
746#else
747# define EV_RELEASE_CB (void)0
748# define EV_ACQUIRE_CB (void)0
749# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
750#endif
751
752#define EVBREAK_RECURSE 0x80
251 753
252/*****************************************************************************/ 754/*****************************************************************************/
253 755
254inline ev_tstamp 756#ifndef EV_HAVE_EV_TIME
757ev_tstamp
255ev_time (void) 758ev_time (void)
256{ 759{
257#if EV_USE_REALTIME 760#if EV_USE_REALTIME
761 if (expect_true (have_realtime))
762 {
258 struct timespec ts; 763 struct timespec ts;
259 clock_gettime (CLOCK_REALTIME, &ts); 764 clock_gettime (CLOCK_REALTIME, &ts);
260 return ts.tv_sec + ts.tv_nsec * 1e-9; 765 return ts.tv_sec + ts.tv_nsec * 1e-9;
261#else 766 }
767#endif
768
262 struct timeval tv; 769 struct timeval tv;
263 gettimeofday (&tv, 0); 770 gettimeofday (&tv, 0);
264 return tv.tv_sec + tv.tv_usec * 1e-6; 771 return tv.tv_sec + tv.tv_usec * 1e-6;
265#endif
266} 772}
773#endif
267 774
268inline ev_tstamp 775inline_size ev_tstamp
269get_clock (void) 776get_clock (void)
270{ 777{
271#if EV_USE_MONOTONIC 778#if EV_USE_MONOTONIC
272 if (expect_true (have_monotonic)) 779 if (expect_true (have_monotonic))
273 { 780 {
286{ 793{
287 return ev_rt_now; 794 return ev_rt_now;
288} 795}
289#endif 796#endif
290 797
291#define array_roundsize(type,n) ((n) | 4 & ~3) 798void
799ev_sleep (ev_tstamp delay)
800{
801 if (delay > 0.)
802 {
803#if EV_USE_NANOSLEEP
804 struct timespec ts;
805
806 EV_TS_SET (ts, delay);
807 nanosleep (&ts, 0);
808#elif defined(_WIN32)
809 Sleep ((unsigned long)(delay * 1e3));
810#else
811 struct timeval tv;
812
813 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
814 /* something not guaranteed by newer posix versions, but guaranteed */
815 /* by older ones */
816 EV_TV_SET (tv, delay);
817 select (0, 0, 0, 0, &tv);
818#endif
819 }
820}
821
822/*****************************************************************************/
823
824#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
825
826/* find a suitable new size for the given array, */
827/* hopefully by rounding to a nice-to-malloc size */
828inline_size int
829array_nextsize (int elem, int cur, int cnt)
830{
831 int ncur = cur + 1;
832
833 do
834 ncur <<= 1;
835 while (cnt > ncur);
836
837 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
838 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
839 {
840 ncur *= elem;
841 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
842 ncur = ncur - sizeof (void *) * 4;
843 ncur /= elem;
844 }
845
846 return ncur;
847}
848
849static noinline void *
850array_realloc (int elem, void *base, int *cur, int cnt)
851{
852 *cur = array_nextsize (elem, *cur, cnt);
853 return ev_realloc (base, elem * *cur);
854}
855
856#define array_init_zero(base,count) \
857 memset ((void *)(base), 0, sizeof (*(base)) * (count))
292 858
293#define array_needsize(type,base,cur,cnt,init) \ 859#define array_needsize(type,base,cur,cnt,init) \
294 if (expect_false ((cnt) > cur)) \ 860 if (expect_false ((cnt) > (cur))) \
295 { \ 861 { \
296 int newcnt = cur; \ 862 int ocur_ = (cur); \
297 do \ 863 (base) = (type *)array_realloc \
298 { \ 864 (sizeof (type), (base), &(cur), (cnt)); \
299 newcnt = array_roundsize (type, newcnt << 1); \ 865 init ((base) + (ocur_), (cur) - ocur_); \
300 } \
301 while ((cnt) > newcnt); \
302 \
303 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
304 init (base + cur, newcnt - cur); \
305 cur = newcnt; \
306 } 866 }
307 867
868#if 0
308#define array_slim(type,stem) \ 869#define array_slim(type,stem) \
309 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 870 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
310 { \ 871 { \
311 stem ## max = array_roundsize (stem ## cnt >> 1); \ 872 stem ## max = array_roundsize (stem ## cnt >> 1); \
312 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 873 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
313 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 874 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
314 } 875 }
315 876#endif
316/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
317/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
318#define array_free_microshit(stem) \
319 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
320 877
321#define array_free(stem, idx) \ 878#define array_free(stem, idx) \
322 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 879 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
323 880
324/*****************************************************************************/ 881/*****************************************************************************/
325 882
326static void 883/* dummy callback for pending events */
327anfds_init (ANFD *base, int count) 884static void noinline
885pendingcb (EV_P_ ev_prepare *w, int revents)
328{ 886{
329 while (count--)
330 {
331 base->head = 0;
332 base->events = EV_NONE;
333 base->reify = 0;
334
335 ++base;
336 }
337} 887}
338 888
339void 889void noinline
340ev_feed_event (EV_P_ void *w, int revents) 890ev_feed_event (EV_P_ void *w, int revents)
341{ 891{
342 W w_ = (W)w; 892 W w_ = (W)w;
893 int pri = ABSPRI (w_);
343 894
344 if (w_->pending) 895 if (expect_false (w_->pending))
896 pendings [pri][w_->pending - 1].events |= revents;
897 else
345 { 898 {
899 w_->pending = ++pendingcnt [pri];
900 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
901 pendings [pri][w_->pending - 1].w = w_;
346 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 902 pendings [pri][w_->pending - 1].events = revents;
347 return;
348 } 903 }
349
350 w_->pending = ++pendingcnt [ABSPRI (w_)];
351 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
352 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
353 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
354} 904}
355 905
356static void 906inline_speed void
907feed_reverse (EV_P_ W w)
908{
909 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
910 rfeeds [rfeedcnt++] = w;
911}
912
913inline_size void
914feed_reverse_done (EV_P_ int revents)
915{
916 do
917 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
918 while (rfeedcnt);
919}
920
921inline_speed void
357queue_events (EV_P_ W *events, int eventcnt, int type) 922queue_events (EV_P_ W *events, int eventcnt, int type)
358{ 923{
359 int i; 924 int i;
360 925
361 for (i = 0; i < eventcnt; ++i) 926 for (i = 0; i < eventcnt; ++i)
362 ev_feed_event (EV_A_ events [i], type); 927 ev_feed_event (EV_A_ events [i], type);
363} 928}
364 929
930/*****************************************************************************/
931
365inline void 932inline_speed void
366fd_event (EV_P_ int fd, int revents) 933fd_event_nocheck (EV_P_ int fd, int revents)
367{ 934{
368 ANFD *anfd = anfds + fd; 935 ANFD *anfd = anfds + fd;
369 struct ev_io *w; 936 ev_io *w;
370 937
371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 938 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
372 { 939 {
373 int ev = w->events & revents; 940 int ev = w->events & revents;
374 941
375 if (ev) 942 if (ev)
376 ev_feed_event (EV_A_ (W)w, ev); 943 ev_feed_event (EV_A_ (W)w, ev);
377 } 944 }
378} 945}
379 946
947/* do not submit kernel events for fds that have reify set */
948/* because that means they changed while we were polling for new events */
949inline_speed void
950fd_event (EV_P_ int fd, int revents)
951{
952 ANFD *anfd = anfds + fd;
953
954 if (expect_true (!anfd->reify))
955 fd_event_nocheck (EV_A_ fd, revents);
956}
957
380void 958void
381ev_feed_fd_event (EV_P_ int fd, int revents) 959ev_feed_fd_event (EV_P_ int fd, int revents)
382{ 960{
961 if (fd >= 0 && fd < anfdmax)
383 fd_event (EV_A_ fd, revents); 962 fd_event_nocheck (EV_A_ fd, revents);
384} 963}
385 964
386/*****************************************************************************/ 965/* make sure the external fd watch events are in-sync */
387 966/* with the kernel/libev internal state */
388static void 967inline_size void
389fd_reify (EV_P) 968fd_reify (EV_P)
390{ 969{
391 int i; 970 int i;
392 971
393 for (i = 0; i < fdchangecnt; ++i) 972 for (i = 0; i < fdchangecnt; ++i)
394 { 973 {
395 int fd = fdchanges [i]; 974 int fd = fdchanges [i];
396 ANFD *anfd = anfds + fd; 975 ANFD *anfd = anfds + fd;
397 struct ev_io *w; 976 ev_io *w;
398 977
399 int events = 0; 978 unsigned char o_events = anfd->events;
979 unsigned char o_reify = anfd->reify;
400 980
401 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
402 events |= w->events;
403
404 anfd->reify = 0; 981 anfd->reify = 0;
405 982
406 method_modify (EV_A_ fd, anfd->events, events); 983#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
984 if (o_reify & EV__IOFDSET)
985 {
986 unsigned long arg;
987 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
988 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
989 printf ("oi %d %x\n", fd, anfd->handle);//D
990 }
991#endif
992
993 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
994 {
407 anfd->events = events; 995 anfd->events = 0;
996
997 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
998 anfd->events |= (unsigned char)w->events;
999
1000 if (o_events != anfd->events)
1001 o_reify = EV__IOFDSET; /* actually |= */
1002 }
1003
1004 if (o_reify & EV__IOFDSET)
1005 backend_modify (EV_A_ fd, o_events, anfd->events);
408 } 1006 }
409 1007
410 fdchangecnt = 0; 1008 fdchangecnt = 0;
411} 1009}
412 1010
413static void 1011/* something about the given fd changed */
1012inline_size void
414fd_change (EV_P_ int fd) 1013fd_change (EV_P_ int fd, int flags)
415{ 1014{
416 if (anfds [fd].reify) 1015 unsigned char reify = anfds [fd].reify;
417 return;
418
419 anfds [fd].reify = 1; 1016 anfds [fd].reify |= flags;
420 1017
1018 if (expect_true (!reify))
1019 {
421 ++fdchangecnt; 1020 ++fdchangecnt;
422 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 1021 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
423 fdchanges [fdchangecnt - 1] = fd; 1022 fdchanges [fdchangecnt - 1] = fd;
1023 }
424} 1024}
425 1025
426static void 1026/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1027inline_speed void
427fd_kill (EV_P_ int fd) 1028fd_kill (EV_P_ int fd)
428{ 1029{
429 struct ev_io *w; 1030 ev_io *w;
430 1031
431 while ((w = (struct ev_io *)anfds [fd].head)) 1032 while ((w = (ev_io *)anfds [fd].head))
432 { 1033 {
433 ev_io_stop (EV_A_ w); 1034 ev_io_stop (EV_A_ w);
434 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1035 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
435 } 1036 }
436} 1037}
437 1038
438static int 1039/* check whether the given fd is actually valid, for error recovery */
1040inline_size int
439fd_valid (int fd) 1041fd_valid (int fd)
440{ 1042{
441#ifdef WIN32 1043#ifdef _WIN32
442 return !!win32_get_osfhandle (fd); 1044 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
443#else 1045#else
444 return fcntl (fd, F_GETFD) != -1; 1046 return fcntl (fd, F_GETFD) != -1;
445#endif 1047#endif
446} 1048}
447 1049
448/* called on EBADF to verify fds */ 1050/* called on EBADF to verify fds */
449static void 1051static void noinline
450fd_ebadf (EV_P) 1052fd_ebadf (EV_P)
451{ 1053{
452 int fd; 1054 int fd;
453 1055
454 for (fd = 0; fd < anfdmax; ++fd) 1056 for (fd = 0; fd < anfdmax; ++fd)
455 if (anfds [fd].events) 1057 if (anfds [fd].events)
456 if (!fd_valid (fd) == -1 && errno == EBADF) 1058 if (!fd_valid (fd) && errno == EBADF)
457 fd_kill (EV_A_ fd); 1059 fd_kill (EV_A_ fd);
458} 1060}
459 1061
460/* called on ENOMEM in select/poll to kill some fds and retry */ 1062/* called on ENOMEM in select/poll to kill some fds and retry */
461static void 1063static void noinline
462fd_enomem (EV_P) 1064fd_enomem (EV_P)
463{ 1065{
464 int fd; 1066 int fd;
465 1067
466 for (fd = anfdmax; fd--; ) 1068 for (fd = anfdmax; fd--; )
467 if (anfds [fd].events) 1069 if (anfds [fd].events)
468 { 1070 {
469 fd_kill (EV_A_ fd); 1071 fd_kill (EV_A_ fd);
470 return; 1072 break;
471 } 1073 }
472} 1074}
473 1075
474/* usually called after fork if method needs to re-arm all fds from scratch */ 1076/* usually called after fork if backend needs to re-arm all fds from scratch */
475static void 1077static void noinline
476fd_rearm_all (EV_P) 1078fd_rearm_all (EV_P)
477{ 1079{
478 int fd; 1080 int fd;
479 1081
480 /* this should be highly optimised to not do anything but set a flag */
481 for (fd = 0; fd < anfdmax; ++fd) 1082 for (fd = 0; fd < anfdmax; ++fd)
482 if (anfds [fd].events) 1083 if (anfds [fd].events)
483 { 1084 {
484 anfds [fd].events = 0; 1085 anfds [fd].events = 0;
485 fd_change (EV_A_ fd); 1086 anfds [fd].emask = 0;
1087 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
486 } 1088 }
487} 1089}
488 1090
1091/* used to prepare libev internal fd's */
1092/* this is not fork-safe */
1093inline_speed void
1094fd_intern (int fd)
1095{
1096#ifdef _WIN32
1097 unsigned long arg = 1;
1098 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1099#else
1100 fcntl (fd, F_SETFD, FD_CLOEXEC);
1101 fcntl (fd, F_SETFL, O_NONBLOCK);
1102#endif
1103}
1104
489/*****************************************************************************/ 1105/*****************************************************************************/
490 1106
1107/*
1108 * the heap functions want a real array index. array index 0 is guaranteed to not
1109 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1110 * the branching factor of the d-tree.
1111 */
1112
1113/*
1114 * at the moment we allow libev the luxury of two heaps,
1115 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1116 * which is more cache-efficient.
1117 * the difference is about 5% with 50000+ watchers.
1118 */
1119#if EV_USE_4HEAP
1120
1121#define DHEAP 4
1122#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1123#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1124#define UPHEAP_DONE(p,k) ((p) == (k))
1125
1126/* away from the root */
1127inline_speed void
1128downheap (ANHE *heap, int N, int k)
1129{
1130 ANHE he = heap [k];
1131 ANHE *E = heap + N + HEAP0;
1132
1133 for (;;)
1134 {
1135 ev_tstamp minat;
1136 ANHE *minpos;
1137 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1138
1139 /* find minimum child */
1140 if (expect_true (pos + DHEAP - 1 < E))
1141 {
1142 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1143 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1144 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1145 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1146 }
1147 else if (pos < E)
1148 {
1149 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1150 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1151 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1152 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1153 }
1154 else
1155 break;
1156
1157 if (ANHE_at (he) <= minat)
1158 break;
1159
1160 heap [k] = *minpos;
1161 ev_active (ANHE_w (*minpos)) = k;
1162
1163 k = minpos - heap;
1164 }
1165
1166 heap [k] = he;
1167 ev_active (ANHE_w (he)) = k;
1168}
1169
1170#else /* 4HEAP */
1171
1172#define HEAP0 1
1173#define HPARENT(k) ((k) >> 1)
1174#define UPHEAP_DONE(p,k) (!(p))
1175
1176/* away from the root */
1177inline_speed void
1178downheap (ANHE *heap, int N, int k)
1179{
1180 ANHE he = heap [k];
1181
1182 for (;;)
1183 {
1184 int c = k << 1;
1185
1186 if (c >= N + HEAP0)
1187 break;
1188
1189 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1190 ? 1 : 0;
1191
1192 if (ANHE_at (he) <= ANHE_at (heap [c]))
1193 break;
1194
1195 heap [k] = heap [c];
1196 ev_active (ANHE_w (heap [k])) = k;
1197
1198 k = c;
1199 }
1200
1201 heap [k] = he;
1202 ev_active (ANHE_w (he)) = k;
1203}
1204#endif
1205
1206/* towards the root */
1207inline_speed void
1208upheap (ANHE *heap, int k)
1209{
1210 ANHE he = heap [k];
1211
1212 for (;;)
1213 {
1214 int p = HPARENT (k);
1215
1216 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1217 break;
1218
1219 heap [k] = heap [p];
1220 ev_active (ANHE_w (heap [k])) = k;
1221 k = p;
1222 }
1223
1224 heap [k] = he;
1225 ev_active (ANHE_w (he)) = k;
1226}
1227
1228/* move an element suitably so it is in a correct place */
1229inline_size void
1230adjustheap (ANHE *heap, int N, int k)
1231{
1232 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1233 upheap (heap, k);
1234 else
1235 downheap (heap, N, k);
1236}
1237
1238/* rebuild the heap: this function is used only once and executed rarely */
1239inline_size void
1240reheap (ANHE *heap, int N)
1241{
1242 int i;
1243
1244 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1245 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1246 for (i = 0; i < N; ++i)
1247 upheap (heap, i + HEAP0);
1248}
1249
1250/*****************************************************************************/
1251
1252/* associate signal watchers to a signal signal */
1253typedef struct
1254{
1255 EV_ATOMIC_T pending;
1256#if EV_MULTIPLICITY
1257 EV_P;
1258#endif
1259 WL head;
1260} ANSIG;
1261
1262static ANSIG signals [EV_NSIG - 1];
1263
1264/*****************************************************************************/
1265
1266#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1267
1268static void noinline
1269evpipe_init (EV_P)
1270{
1271 if (!ev_is_active (&pipe_w))
1272 {
1273# if EV_USE_EVENTFD
1274 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1275 if (evfd < 0 && errno == EINVAL)
1276 evfd = eventfd (0, 0);
1277
1278 if (evfd >= 0)
1279 {
1280 evpipe [0] = -1;
1281 fd_intern (evfd); /* doing it twice doesn't hurt */
1282 ev_io_set (&pipe_w, evfd, EV_READ);
1283 }
1284 else
1285# endif
1286 {
1287 while (pipe (evpipe))
1288 ev_syserr ("(libev) error creating signal/async pipe");
1289
1290 fd_intern (evpipe [0]);
1291 fd_intern (evpipe [1]);
1292 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1293 }
1294
1295 ev_io_start (EV_A_ &pipe_w);
1296 ev_unref (EV_A); /* watcher should not keep loop alive */
1297 }
1298}
1299
1300inline_size void
1301evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1302{
1303 if (!*flag)
1304 {
1305 int old_errno = errno; /* save errno because write might clobber it */
1306 char dummy;
1307
1308 *flag = 1;
1309
1310#if EV_USE_EVENTFD
1311 if (evfd >= 0)
1312 {
1313 uint64_t counter = 1;
1314 write (evfd, &counter, sizeof (uint64_t));
1315 }
1316 else
1317#endif
1318 /* win32 people keep sending patches that change this write() to send() */
1319 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1320 /* so when you think this write should be a send instead, please find out */
1321 /* where your send() is from - it's definitely not the microsoft send, and */
1322 /* tell me. thank you. */
1323 write (evpipe [1], &dummy, 1);
1324
1325 errno = old_errno;
1326 }
1327}
1328
1329/* called whenever the libev signal pipe */
1330/* got some events (signal, async) */
491static void 1331static void
492upheap (WT *heap, int k) 1332pipecb (EV_P_ ev_io *iow, int revents)
493{ 1333{
494 WT w = heap [k]; 1334 int i;
495 1335
496 while (k && heap [k >> 1]->at > w->at) 1336#if EV_USE_EVENTFD
497 { 1337 if (evfd >= 0)
498 heap [k] = heap [k >> 1];
499 ((W)heap [k])->active = k + 1;
500 k >>= 1;
501 } 1338 {
1339 uint64_t counter;
1340 read (evfd, &counter, sizeof (uint64_t));
1341 }
1342 else
1343#endif
1344 {
1345 char dummy;
1346 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1347 read (evpipe [0], &dummy, 1);
1348 }
502 1349
503 heap [k] = w; 1350 if (sig_pending)
504 ((W)heap [k])->active = k + 1; 1351 {
1352 sig_pending = 0;
505 1353
1354 for (i = EV_NSIG - 1; i--; )
1355 if (expect_false (signals [i].pending))
1356 ev_feed_signal_event (EV_A_ i + 1);
1357 }
1358
1359#if EV_ASYNC_ENABLE
1360 if (async_pending)
1361 {
1362 async_pending = 0;
1363
1364 for (i = asynccnt; i--; )
1365 if (asyncs [i]->sent)
1366 {
1367 asyncs [i]->sent = 0;
1368 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1369 }
1370 }
1371#endif
506} 1372}
1373
1374/*****************************************************************************/
507 1375
508static void 1376static void
509downheap (WT *heap, int N, int k)
510{
511 WT w = heap [k];
512
513 while (k < (N >> 1))
514 {
515 int j = k << 1;
516
517 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
518 ++j;
519
520 if (w->at <= heap [j]->at)
521 break;
522
523 heap [k] = heap [j];
524 ((W)heap [k])->active = k + 1;
525 k = j;
526 }
527
528 heap [k] = w;
529 ((W)heap [k])->active = k + 1;
530}
531
532inline void
533adjustheap (WT *heap, int N, int k, ev_tstamp at)
534{
535 ev_tstamp old_at = heap [k]->at;
536 heap [k]->at = at;
537
538 if (old_at < at)
539 downheap (heap, N, k);
540 else
541 upheap (heap, k);
542}
543
544/*****************************************************************************/
545
546typedef struct
547{
548 WL head;
549 sig_atomic_t volatile gotsig;
550} ANSIG;
551
552static ANSIG *signals;
553static int signalmax;
554
555static int sigpipe [2];
556static sig_atomic_t volatile gotsig;
557static struct ev_io sigev;
558
559static void
560signals_init (ANSIG *base, int count)
561{
562 while (count--)
563 {
564 base->head = 0;
565 base->gotsig = 0;
566
567 ++base;
568 }
569}
570
571static void
572sighandler (int signum) 1377ev_sighandler (int signum)
573{ 1378{
574#if WIN32 1379#if EV_MULTIPLICITY
575 signal (signum, sighandler); 1380 EV_P = signals [signum - 1].loop;
576#endif 1381#endif
577 1382
578 signals [signum - 1].gotsig = 1;
579
580 if (!gotsig)
581 {
582 int old_errno = errno;
583 gotsig = 1;
584#ifdef WIN32 1383#ifdef _WIN32
585 send (sigpipe [1], &signum, 1, MSG_DONTWAIT); 1384 signal (signum, ev_sighandler);
586#else
587 write (sigpipe [1], &signum, 1);
588#endif 1385#endif
589 errno = old_errno;
590 }
591}
592 1386
593void 1387 signals [signum - 1].pending = 1;
1388 evpipe_write (EV_A_ &sig_pending);
1389}
1390
1391void noinline
594ev_feed_signal_event (EV_P_ int signum) 1392ev_feed_signal_event (EV_P_ int signum)
595{ 1393{
596 WL w; 1394 WL w;
597 1395
1396 if (expect_false (signum <= 0 || signum > EV_NSIG))
1397 return;
1398
1399 --signum;
1400
598#if EV_MULTIPLICITY 1401#if EV_MULTIPLICITY
599 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 1402 /* it is permissible to try to feed a signal to the wrong loop */
600#endif 1403 /* or, likely more useful, feeding a signal nobody is waiting for */
601 1404
602 --signum; 1405 if (expect_false (signals [signum].loop != EV_A))
603
604 if (signum < 0 || signum >= signalmax)
605 return; 1406 return;
1407#endif
606 1408
607 signals [signum].gotsig = 0; 1409 signals [signum].pending = 0;
608 1410
609 for (w = signals [signum].head; w; w = w->next) 1411 for (w = signals [signum].head; w; w = w->next)
610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1412 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
611} 1413}
612 1414
1415#if EV_USE_SIGNALFD
613static void 1416static void
614sigcb (EV_P_ struct ev_io *iow, int revents) 1417sigfdcb (EV_P_ ev_io *iow, int revents)
615{ 1418{
616 int signum; 1419 struct signalfd_siginfo si[2], *sip; /* these structs are big */
617 1420
618#ifdef WIN32 1421 for (;;)
619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 1422 {
620#else 1423 ssize_t res = read (sigfd, si, sizeof (si));
621 read (sigpipe [0], &revents, 1);
622#endif
623 gotsig = 0;
624 1424
625 for (signum = signalmax; signum--; ) 1425 /* not ISO-C, as res might be -1, but works with SuS */
626 if (signals [signum].gotsig) 1426 for (sip = si; (char *)sip < (char *)si + res; ++sip)
627 ev_feed_signal_event (EV_A_ signum + 1); 1427 ev_feed_signal_event (EV_A_ sip->ssi_signo);
628}
629 1428
630static void 1429 if (res < (ssize_t)sizeof (si))
631siginit (EV_P) 1430 break;
632{ 1431 }
633#ifndef WIN32
634 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
635 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
636
637 /* rather than sort out wether we really need nb, set it */
638 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
639 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
640#endif
641
642 ev_io_set (&sigev, sigpipe [0], EV_READ);
643 ev_io_start (EV_A_ &sigev);
644 ev_unref (EV_A); /* child watcher should not keep loop alive */
645} 1432}
1433#endif
1434
1435#endif
646 1436
647/*****************************************************************************/ 1437/*****************************************************************************/
648 1438
649static struct ev_child *childs [PID_HASHSIZE]; 1439#if EV_CHILD_ENABLE
1440static WL childs [EV_PID_HASHSIZE];
650 1441
651#ifndef WIN32
652
653static struct ev_signal childev; 1442static ev_signal childev;
1443
1444#ifndef WIFCONTINUED
1445# define WIFCONTINUED(status) 0
1446#endif
1447
1448/* handle a single child status event */
1449inline_speed void
1450child_reap (EV_P_ int chain, int pid, int status)
1451{
1452 ev_child *w;
1453 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1454
1455 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1456 {
1457 if ((w->pid == pid || !w->pid)
1458 && (!traced || (w->flags & 1)))
1459 {
1460 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1461 w->rpid = pid;
1462 w->rstatus = status;
1463 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1464 }
1465 }
1466}
654 1467
655#ifndef WCONTINUED 1468#ifndef WCONTINUED
656# define WCONTINUED 0 1469# define WCONTINUED 0
657#endif 1470#endif
658 1471
1472/* called on sigchld etc., calls waitpid */
659static void 1473static void
660child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
661{
662 struct ev_child *w;
663
664 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
665 if (w->pid == pid || !w->pid)
666 {
667 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
668 w->rpid = pid;
669 w->rstatus = status;
670 ev_feed_event (EV_A_ (W)w, EV_CHILD);
671 }
672}
673
674static void
675childcb (EV_P_ struct ev_signal *sw, int revents) 1474childcb (EV_P_ ev_signal *sw, int revents)
676{ 1475{
677 int pid, status; 1476 int pid, status;
678 1477
1478 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
679 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1479 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
680 { 1480 if (!WCONTINUED
1481 || errno != EINVAL
1482 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1483 return;
1484
681 /* make sure we are called again until all childs have been reaped */ 1485 /* make sure we are called again until all children have been reaped */
1486 /* we need to do it this way so that the callback gets called before we continue */
682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1487 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
683 1488
684 child_reap (EV_A_ sw, pid, pid, status); 1489 child_reap (EV_A_ pid, pid, status);
1490 if ((EV_PID_HASHSIZE) > 1)
685 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1491 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
686 }
687} 1492}
688 1493
689#endif 1494#endif
690 1495
691/*****************************************************************************/ 1496/*****************************************************************************/
692 1497
1498#if EV_USE_IOCP
1499# include "ev_iocp.c"
1500#endif
1501#if EV_USE_PORT
1502# include "ev_port.c"
1503#endif
693#if EV_USE_KQUEUE 1504#if EV_USE_KQUEUE
694# include "ev_kqueue.c" 1505# include "ev_kqueue.c"
695#endif 1506#endif
696#if EV_USE_EPOLL 1507#if EV_USE_EPOLL
697# include "ev_epoll.c" 1508# include "ev_epoll.c"
714{ 1525{
715 return EV_VERSION_MINOR; 1526 return EV_VERSION_MINOR;
716} 1527}
717 1528
718/* return true if we are running with elevated privileges and should ignore env variables */ 1529/* return true if we are running with elevated privileges and should ignore env variables */
719static int 1530int inline_size
720enable_secure (void) 1531enable_secure (void)
721{ 1532{
722#ifdef WIN32 1533#ifdef _WIN32
723 return 0; 1534 return 0;
724#else 1535#else
725 return getuid () != geteuid () 1536 return getuid () != geteuid ()
726 || getgid () != getegid (); 1537 || getgid () != getegid ();
727#endif 1538#endif
728} 1539}
729 1540
730int 1541unsigned int
1542ev_supported_backends (void)
1543{
1544 unsigned int flags = 0;
1545
1546 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1547 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1548 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1549 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1550 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1551
1552 return flags;
1553}
1554
1555unsigned int
1556ev_recommended_backends (void)
1557{
1558 unsigned int flags = ev_supported_backends ();
1559
1560#ifndef __NetBSD__
1561 /* kqueue is borked on everything but netbsd apparently */
1562 /* it usually doesn't work correctly on anything but sockets and pipes */
1563 flags &= ~EVBACKEND_KQUEUE;
1564#endif
1565#ifdef __APPLE__
1566 /* only select works correctly on that "unix-certified" platform */
1567 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1568 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1569#endif
1570#ifdef __FreeBSD__
1571 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1572#endif
1573
1574 return flags;
1575}
1576
1577unsigned int
1578ev_embeddable_backends (void)
1579{
1580 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1581
1582 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1583 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1584 flags &= ~EVBACKEND_EPOLL;
1585
1586 return flags;
1587}
1588
1589unsigned int
1590ev_backend (EV_P)
1591{
1592 return backend;
1593}
1594
1595#if EV_FEATURE_API
1596unsigned int
1597ev_iteration (EV_P)
1598{
1599 return loop_count;
1600}
1601
1602unsigned int
731ev_method (EV_P) 1603ev_depth (EV_P)
732{ 1604{
733 return method; 1605 return loop_depth;
734} 1606}
735 1607
736static void 1608void
737loop_init (EV_P_ int methods) 1609ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
738{ 1610{
739 if (!method) 1611 io_blocktime = interval;
1612}
1613
1614void
1615ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1616{
1617 timeout_blocktime = interval;
1618}
1619
1620void
1621ev_set_userdata (EV_P_ void *data)
1622{
1623 userdata = data;
1624}
1625
1626void *
1627ev_userdata (EV_P)
1628{
1629 return userdata;
1630}
1631
1632void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1633{
1634 invoke_cb = invoke_pending_cb;
1635}
1636
1637void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1638{
1639 release_cb = release;
1640 acquire_cb = acquire;
1641}
1642#endif
1643
1644/* initialise a loop structure, must be zero-initialised */
1645static void noinline
1646loop_init (EV_P_ unsigned int flags)
1647{
1648 if (!backend)
740 { 1649 {
1650#if EV_USE_REALTIME
1651 if (!have_realtime)
1652 {
1653 struct timespec ts;
1654
1655 if (!clock_gettime (CLOCK_REALTIME, &ts))
1656 have_realtime = 1;
1657 }
1658#endif
1659
741#if EV_USE_MONOTONIC 1660#if EV_USE_MONOTONIC
1661 if (!have_monotonic)
1662 {
1663 struct timespec ts;
1664
1665 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1666 have_monotonic = 1;
1667 }
1668#endif
1669
1670 /* pid check not overridable via env */
1671#ifndef _WIN32
1672 if (flags & EVFLAG_FORKCHECK)
1673 curpid = getpid ();
1674#endif
1675
1676 if (!(flags & EVFLAG_NOENV)
1677 && !enable_secure ()
1678 && getenv ("LIBEV_FLAGS"))
1679 flags = atoi (getenv ("LIBEV_FLAGS"));
1680
1681 ev_rt_now = ev_time ();
1682 mn_now = get_clock ();
1683 now_floor = mn_now;
1684 rtmn_diff = ev_rt_now - mn_now;
1685#if EV_FEATURE_API
1686 invoke_cb = ev_invoke_pending;
1687#endif
1688
1689 io_blocktime = 0.;
1690 timeout_blocktime = 0.;
1691 backend = 0;
1692 backend_fd = -1;
1693 sig_pending = 0;
1694#if EV_ASYNC_ENABLE
1695 async_pending = 0;
1696#endif
1697#if EV_USE_INOTIFY
1698 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1699#endif
1700#if EV_USE_SIGNALFD
1701 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1702#endif
1703
1704 if (!(flags & 0x0000ffffU))
1705 flags |= ev_recommended_backends ();
1706
1707#if EV_USE_IOCP
1708 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1709#endif
1710#if EV_USE_PORT
1711 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1712#endif
1713#if EV_USE_KQUEUE
1714 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1715#endif
1716#if EV_USE_EPOLL
1717 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1718#endif
1719#if EV_USE_POLL
1720 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1721#endif
1722#if EV_USE_SELECT
1723 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1724#endif
1725
1726 ev_prepare_init (&pending_w, pendingcb);
1727
1728#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1729 ev_init (&pipe_w, pipecb);
1730 ev_set_priority (&pipe_w, EV_MAXPRI);
1731#endif
1732 }
1733}
1734
1735/* free up a loop structure */
1736void
1737ev_loop_destroy (EV_P)
1738{
1739 int i;
1740
1741#if EV_CLEANUP_ENABLE
1742 /* queue cleanup watchers (and execute them) */
1743 if (expect_false (cleanupcnt))
1744 {
1745 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1746 EV_INVOKE_PENDING;
1747 }
1748#endif
1749
1750#if EV_CHILD_ENABLE
1751 if (ev_is_active (&childev))
1752 {
1753 ev_ref (EV_A); /* child watcher */
1754 ev_signal_stop (EV_A_ &childev);
1755 }
1756#endif
1757
1758 if (ev_is_active (&pipe_w))
1759 {
1760 /*ev_ref (EV_A);*/
1761 /*ev_io_stop (EV_A_ &pipe_w);*/
1762
1763#if EV_USE_EVENTFD
1764 if (evfd >= 0)
1765 close (evfd);
1766#endif
1767
1768 if (evpipe [0] >= 0)
1769 {
1770 EV_WIN32_CLOSE_FD (evpipe [0]);
1771 EV_WIN32_CLOSE_FD (evpipe [1]);
1772 }
1773 }
1774
1775#if EV_USE_SIGNALFD
1776 if (ev_is_active (&sigfd_w))
1777 close (sigfd);
1778#endif
1779
1780#if EV_USE_INOTIFY
1781 if (fs_fd >= 0)
1782 close (fs_fd);
1783#endif
1784
1785 if (backend_fd >= 0)
1786 close (backend_fd);
1787
1788#if EV_USE_IOCP
1789 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1790#endif
1791#if EV_USE_PORT
1792 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1793#endif
1794#if EV_USE_KQUEUE
1795 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1796#endif
1797#if EV_USE_EPOLL
1798 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1799#endif
1800#if EV_USE_POLL
1801 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1802#endif
1803#if EV_USE_SELECT
1804 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1805#endif
1806
1807 for (i = NUMPRI; i--; )
1808 {
1809 array_free (pending, [i]);
1810#if EV_IDLE_ENABLE
1811 array_free (idle, [i]);
1812#endif
1813 }
1814
1815 ev_free (anfds); anfds = 0; anfdmax = 0;
1816
1817 /* have to use the microsoft-never-gets-it-right macro */
1818 array_free (rfeed, EMPTY);
1819 array_free (fdchange, EMPTY);
1820 array_free (timer, EMPTY);
1821#if EV_PERIODIC_ENABLE
1822 array_free (periodic, EMPTY);
1823#endif
1824#if EV_FORK_ENABLE
1825 array_free (fork, EMPTY);
1826#endif
1827#if EV_CLEANUP_ENABLE
1828 array_free (cleanup, EMPTY);
1829#endif
1830 array_free (prepare, EMPTY);
1831 array_free (check, EMPTY);
1832#if EV_ASYNC_ENABLE
1833 array_free (async, EMPTY);
1834#endif
1835
1836 backend = 0;
1837
1838#if EV_MULTIPLICITY
1839 if (ev_is_default_loop (EV_A))
1840#endif
1841 ev_default_loop_ptr = 0;
1842#if EV_MULTIPLICITY
1843 else
1844 ev_free (EV_A);
1845#endif
1846}
1847
1848#if EV_USE_INOTIFY
1849inline_size void infy_fork (EV_P);
1850#endif
1851
1852inline_size void
1853loop_fork (EV_P)
1854{
1855#if EV_USE_PORT
1856 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1857#endif
1858#if EV_USE_KQUEUE
1859 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1860#endif
1861#if EV_USE_EPOLL
1862 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1863#endif
1864#if EV_USE_INOTIFY
1865 infy_fork (EV_A);
1866#endif
1867
1868 if (ev_is_active (&pipe_w))
1869 {
1870 /* this "locks" the handlers against writing to the pipe */
1871 /* while we modify the fd vars */
1872 sig_pending = 1;
1873#if EV_ASYNC_ENABLE
1874 async_pending = 1;
1875#endif
1876
1877 ev_ref (EV_A);
1878 ev_io_stop (EV_A_ &pipe_w);
1879
1880#if EV_USE_EVENTFD
1881 if (evfd >= 0)
1882 close (evfd);
1883#endif
1884
1885 if (evpipe [0] >= 0)
1886 {
1887 EV_WIN32_CLOSE_FD (evpipe [0]);
1888 EV_WIN32_CLOSE_FD (evpipe [1]);
1889 }
1890
1891#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1892 evpipe_init (EV_A);
1893 /* now iterate over everything, in case we missed something */
1894 pipecb (EV_A_ &pipe_w, EV_READ);
1895#endif
1896 }
1897
1898 postfork = 0;
1899}
1900
1901#if EV_MULTIPLICITY
1902
1903struct ev_loop *
1904ev_loop_new (unsigned int flags)
1905{
1906 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1907
1908 memset (EV_A, 0, sizeof (struct ev_loop));
1909 loop_init (EV_A_ flags);
1910
1911 if (ev_backend (EV_A))
1912 return EV_A;
1913
1914 ev_free (EV_A);
1915 return 0;
1916}
1917
1918#endif /* multiplicity */
1919
1920#if EV_VERIFY
1921static void noinline
1922verify_watcher (EV_P_ W w)
1923{
1924 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1925
1926 if (w->pending)
1927 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1928}
1929
1930static void noinline
1931verify_heap (EV_P_ ANHE *heap, int N)
1932{
1933 int i;
1934
1935 for (i = HEAP0; i < N + HEAP0; ++i)
1936 {
1937 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1938 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1939 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1940
1941 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1942 }
1943}
1944
1945static void noinline
1946array_verify (EV_P_ W *ws, int cnt)
1947{
1948 while (cnt--)
1949 {
1950 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1951 verify_watcher (EV_A_ ws [cnt]);
1952 }
1953}
1954#endif
1955
1956#if EV_FEATURE_API
1957void
1958ev_verify (EV_P)
1959{
1960#if EV_VERIFY
1961 int i;
1962 WL w;
1963
1964 assert (activecnt >= -1);
1965
1966 assert (fdchangemax >= fdchangecnt);
1967 for (i = 0; i < fdchangecnt; ++i)
1968 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1969
1970 assert (anfdmax >= 0);
1971 for (i = 0; i < anfdmax; ++i)
1972 for (w = anfds [i].head; w; w = w->next)
742 { 1973 {
743 struct timespec ts; 1974 verify_watcher (EV_A_ (W)w);
744 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1975 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
745 have_monotonic = 1; 1976 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
746 } 1977 }
747#endif
748 1978
749 ev_rt_now = ev_time (); 1979 assert (timermax >= timercnt);
750 mn_now = get_clock (); 1980 verify_heap (EV_A_ timers, timercnt);
751 now_floor = mn_now;
752 rtmn_diff = ev_rt_now - mn_now;
753 1981
754 if (methods == EVMETHOD_AUTO) 1982#if EV_PERIODIC_ENABLE
755 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1983 assert (periodicmax >= periodiccnt);
756 methods = atoi (getenv ("LIBEV_METHODS")); 1984 verify_heap (EV_A_ periodics, periodiccnt);
757 else
758 methods = EVMETHOD_ANY;
759
760 method = 0;
761#if EV_USE_WIN32
762 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
763#endif
764#if EV_USE_KQUEUE
765 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
766#endif
767#if EV_USE_EPOLL
768 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
769#endif
770#if EV_USE_POLL
771 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
772#endif
773#if EV_USE_SELECT
774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
775#endif
776
777 ev_init (&sigev, sigcb);
778 ev_set_priority (&sigev, EV_MAXPRI);
779 }
780}
781
782void
783loop_destroy (EV_P)
784{
785 int i;
786
787#if EV_USE_WIN32
788 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
789#endif
790#if EV_USE_KQUEUE
791 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
792#endif
793#if EV_USE_EPOLL
794 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
795#endif
796#if EV_USE_POLL
797 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
798#endif
799#if EV_USE_SELECT
800 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
801#endif 1985#endif
802 1986
803 for (i = NUMPRI; i--; ) 1987 for (i = NUMPRI; i--; )
804 array_free (pending, [i]); 1988 {
1989 assert (pendingmax [i] >= pendingcnt [i]);
1990#if EV_IDLE_ENABLE
1991 assert (idleall >= 0);
1992 assert (idlemax [i] >= idlecnt [i]);
1993 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1994#endif
1995 }
805 1996
806 /* have to use the microsoft-never-gets-it-right macro */ 1997#if EV_FORK_ENABLE
807 array_free_microshit (fdchange); 1998 assert (forkmax >= forkcnt);
808 array_free_microshit (timer); 1999 array_verify (EV_A_ (W *)forks, forkcnt);
809 array_free_microshit (periodic); 2000#endif
810 array_free_microshit (idle);
811 array_free_microshit (prepare);
812 array_free_microshit (check);
813 2001
814 method = 0; 2002#if EV_CLEANUP_ENABLE
815} 2003 assert (cleanupmax >= cleanupcnt);
2004 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2005#endif
816 2006
817static void 2007#if EV_ASYNC_ENABLE
818loop_fork (EV_P) 2008 assert (asyncmax >= asynccnt);
819{ 2009 array_verify (EV_A_ (W *)asyncs, asynccnt);
820#if EV_USE_EPOLL 2010#endif
821 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 2011
2012#if EV_PREPARE_ENABLE
2013 assert (preparemax >= preparecnt);
2014 array_verify (EV_A_ (W *)prepares, preparecnt);
2015#endif
2016
2017#if EV_CHECK_ENABLE
2018 assert (checkmax >= checkcnt);
2019 array_verify (EV_A_ (W *)checks, checkcnt);
2020#endif
2021
2022# if 0
2023#if EV_CHILD_ENABLE
2024 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2025 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2026#endif
822#endif 2027# endif
823#if EV_USE_KQUEUE
824 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
825#endif 2028#endif
826
827 if (ev_is_active (&sigev))
828 {
829 /* default loop */
830
831 ev_ref (EV_A);
832 ev_io_stop (EV_A_ &sigev);
833 close (sigpipe [0]);
834 close (sigpipe [1]);
835
836 while (pipe (sigpipe))
837 syserr ("(libev) error creating pipe");
838
839 siginit (EV_A);
840 }
841
842 postfork = 0;
843} 2029}
844
845#if EV_MULTIPLICITY
846struct ev_loop *
847ev_loop_new (int methods)
848{
849 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
850
851 memset (loop, 0, sizeof (struct ev_loop));
852
853 loop_init (EV_A_ methods);
854
855 if (ev_method (EV_A))
856 return loop;
857
858 return 0;
859}
860
861void
862ev_loop_destroy (EV_P)
863{
864 loop_destroy (EV_A);
865 ev_free (loop);
866}
867
868void
869ev_loop_fork (EV_P)
870{
871 postfork = 1;
872}
873
874#endif 2030#endif
875 2031
876#if EV_MULTIPLICITY 2032#if EV_MULTIPLICITY
877struct ev_loop * 2033struct ev_loop *
878#else 2034#else
879int 2035int
880#endif 2036#endif
881ev_default_loop (int methods) 2037ev_default_loop (unsigned int flags)
882{ 2038{
883 if (sigpipe [0] == sigpipe [1])
884 if (pipe (sigpipe))
885 return 0;
886
887 if (!default_loop) 2039 if (!ev_default_loop_ptr)
888 { 2040 {
889#if EV_MULTIPLICITY 2041#if EV_MULTIPLICITY
890 struct ev_loop *loop = default_loop = &default_loop_struct; 2042 EV_P = ev_default_loop_ptr = &default_loop_struct;
891#else 2043#else
892 default_loop = 1; 2044 ev_default_loop_ptr = 1;
893#endif 2045#endif
894 2046
895 loop_init (EV_A_ methods); 2047 loop_init (EV_A_ flags);
896 2048
897 if (ev_method (EV_A)) 2049 if (ev_backend (EV_A))
898 { 2050 {
899 siginit (EV_A); 2051#if EV_CHILD_ENABLE
900
901#ifndef WIN32
902 ev_signal_init (&childev, childcb, SIGCHLD); 2052 ev_signal_init (&childev, childcb, SIGCHLD);
903 ev_set_priority (&childev, EV_MAXPRI); 2053 ev_set_priority (&childev, EV_MAXPRI);
904 ev_signal_start (EV_A_ &childev); 2054 ev_signal_start (EV_A_ &childev);
905 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2055 ev_unref (EV_A); /* child watcher should not keep loop alive */
906#endif 2056#endif
907 } 2057 }
908 else 2058 else
909 default_loop = 0; 2059 ev_default_loop_ptr = 0;
910 } 2060 }
911 2061
912 return default_loop; 2062 return ev_default_loop_ptr;
913} 2063}
914 2064
915void 2065void
916ev_default_destroy (void) 2066ev_loop_fork (EV_P)
917{ 2067{
918#if EV_MULTIPLICITY 2068 postfork = 1; /* must be in line with ev_default_fork */
919 struct ev_loop *loop = default_loop;
920#endif
921
922#ifndef WIN32
923 ev_ref (EV_A); /* child watcher */
924 ev_signal_stop (EV_A_ &childev);
925#endif
926
927 ev_ref (EV_A); /* signal watcher */
928 ev_io_stop (EV_A_ &sigev);
929
930 close (sigpipe [0]); sigpipe [0] = 0;
931 close (sigpipe [1]); sigpipe [1] = 0;
932
933 loop_destroy (EV_A);
934}
935
936void
937ev_default_fork (void)
938{
939#if EV_MULTIPLICITY
940 struct ev_loop *loop = default_loop;
941#endif
942
943 if (method)
944 postfork = 1;
945} 2069}
946 2070
947/*****************************************************************************/ 2071/*****************************************************************************/
948 2072
949static int 2073void
950any_pending (EV_P) 2074ev_invoke (EV_P_ void *w, int revents)
2075{
2076 EV_CB_INVOKE ((W)w, revents);
2077}
2078
2079unsigned int
2080ev_pending_count (EV_P)
951{ 2081{
952 int pri; 2082 int pri;
2083 unsigned int count = 0;
953 2084
954 for (pri = NUMPRI; pri--; ) 2085 for (pri = NUMPRI; pri--; )
955 if (pendingcnt [pri]) 2086 count += pendingcnt [pri];
956 return 1;
957 2087
958 return 0; 2088 return count;
959} 2089}
960 2090
961static void 2091void noinline
962call_pending (EV_P) 2092ev_invoke_pending (EV_P)
963{ 2093{
964 int pri; 2094 int pri;
965 2095
966 for (pri = NUMPRI; pri--; ) 2096 for (pri = NUMPRI; pri--; )
967 while (pendingcnt [pri]) 2097 while (pendingcnt [pri])
968 { 2098 {
969 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2099 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
970 2100
971 if (p->w) 2101 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
972 { 2102 /* ^ this is no longer true, as pending_w could be here */
2103
973 p->w->pending = 0; 2104 p->w->pending = 0;
974 EV_CB_INVOKE (p->w, p->events); 2105 EV_CB_INVOKE (p->w, p->events);
975 } 2106 EV_FREQUENT_CHECK;
976 } 2107 }
977} 2108}
978 2109
979static void 2110#if EV_IDLE_ENABLE
2111/* make idle watchers pending. this handles the "call-idle */
2112/* only when higher priorities are idle" logic */
2113inline_size void
2114idle_reify (EV_P)
2115{
2116 if (expect_false (idleall))
2117 {
2118 int pri;
2119
2120 for (pri = NUMPRI; pri--; )
2121 {
2122 if (pendingcnt [pri])
2123 break;
2124
2125 if (idlecnt [pri])
2126 {
2127 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2128 break;
2129 }
2130 }
2131 }
2132}
2133#endif
2134
2135/* make timers pending */
2136inline_size void
980timers_reify (EV_P) 2137timers_reify (EV_P)
981{ 2138{
2139 EV_FREQUENT_CHECK;
2140
982 while (timercnt && ((WT)timers [0])->at <= mn_now) 2141 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
983 { 2142 {
984 struct ev_timer *w = timers [0]; 2143 do
985
986 assert (("inactive timer on timer heap detected", ev_is_active (w)));
987
988 /* first reschedule or stop timer */
989 if (w->repeat)
990 { 2144 {
2145 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2146
2147 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2148
2149 /* first reschedule or stop timer */
2150 if (w->repeat)
2151 {
2152 ev_at (w) += w->repeat;
2153 if (ev_at (w) < mn_now)
2154 ev_at (w) = mn_now;
2155
991 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2156 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
992 ((WT)w)->at = mn_now + w->repeat; 2157
2158 ANHE_at_cache (timers [HEAP0]);
993 downheap ((WT *)timers, timercnt, 0); 2159 downheap (timers, timercnt, HEAP0);
2160 }
2161 else
2162 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2163
2164 EV_FREQUENT_CHECK;
2165 feed_reverse (EV_A_ (W)w);
994 } 2166 }
995 else 2167 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
996 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
997 2168
998 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2169 feed_reverse_done (EV_A_ EV_TIMER);
999 } 2170 }
1000} 2171}
1001 2172
1002static void 2173#if EV_PERIODIC_ENABLE
2174/* make periodics pending */
2175inline_size void
1003periodics_reify (EV_P) 2176periodics_reify (EV_P)
1004{ 2177{
2178 EV_FREQUENT_CHECK;
2179
1005 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2180 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1006 { 2181 {
1007 struct ev_periodic *w = periodics [0]; 2182 int feed_count = 0;
1008 2183
2184 do
2185 {
2186 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2187
1009 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2188 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1010 2189
1011 /* first reschedule or stop timer */ 2190 /* first reschedule or stop timer */
2191 if (w->reschedule_cb)
2192 {
2193 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2194
2195 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2196
2197 ANHE_at_cache (periodics [HEAP0]);
2198 downheap (periodics, periodiccnt, HEAP0);
2199 }
2200 else if (w->interval)
2201 {
2202 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2203 /* if next trigger time is not sufficiently in the future, put it there */
2204 /* this might happen because of floating point inexactness */
2205 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2206 {
2207 ev_at (w) += w->interval;
2208
2209 /* if interval is unreasonably low we might still have a time in the past */
2210 /* so correct this. this will make the periodic very inexact, but the user */
2211 /* has effectively asked to get triggered more often than possible */
2212 if (ev_at (w) < ev_rt_now)
2213 ev_at (w) = ev_rt_now;
2214 }
2215
2216 ANHE_at_cache (periodics [HEAP0]);
2217 downheap (periodics, periodiccnt, HEAP0);
2218 }
2219 else
2220 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2221
2222 EV_FREQUENT_CHECK;
2223 feed_reverse (EV_A_ (W)w);
2224 }
2225 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2226
2227 feed_reverse_done (EV_A_ EV_PERIODIC);
2228 }
2229}
2230
2231/* simply recalculate all periodics */
2232/* TODO: maybe ensure that at least one event happens when jumping forward? */
2233static void noinline
2234periodics_reschedule (EV_P)
2235{
2236 int i;
2237
2238 /* adjust periodics after time jump */
2239 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2240 {
2241 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2242
1012 if (w->reschedule_cb) 2243 if (w->reschedule_cb)
2244 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2245 else if (w->interval)
2246 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2247
2248 ANHE_at_cache (periodics [i]);
2249 }
2250
2251 reheap (periodics, periodiccnt);
2252}
2253#endif
2254
2255/* adjust all timers by a given offset */
2256static void noinline
2257timers_reschedule (EV_P_ ev_tstamp adjust)
2258{
2259 int i;
2260
2261 for (i = 0; i < timercnt; ++i)
2262 {
2263 ANHE *he = timers + i + HEAP0;
2264 ANHE_w (*he)->at += adjust;
2265 ANHE_at_cache (*he);
2266 }
2267}
2268
2269/* fetch new monotonic and realtime times from the kernel */
2270/* also detect if there was a timejump, and act accordingly */
2271inline_speed void
2272time_update (EV_P_ ev_tstamp max_block)
2273{
2274#if EV_USE_MONOTONIC
2275 if (expect_true (have_monotonic))
2276 {
2277 int i;
2278 ev_tstamp odiff = rtmn_diff;
2279
2280 mn_now = get_clock ();
2281
2282 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2283 /* interpolate in the meantime */
2284 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1013 { 2285 {
1014 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2286 ev_rt_now = rtmn_diff + mn_now;
1015 2287 return;
1016 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1017 downheap ((WT *)periodics, periodiccnt, 0);
1018 } 2288 }
1019 else if (w->interval)
1020 {
1021 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1022 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1023 downheap ((WT *)periodics, periodiccnt, 0);
1024 }
1025 else
1026 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1027 2289
1028 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1029 }
1030}
1031
1032static void
1033periodics_reschedule (EV_P)
1034{
1035 int i;
1036
1037 /* adjust periodics after time jump */
1038 for (i = 0; i < periodiccnt; ++i)
1039 {
1040 struct ev_periodic *w = periodics [i];
1041
1042 if (w->reschedule_cb)
1043 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1044 else if (w->interval)
1045 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1046 }
1047
1048 /* now rebuild the heap */
1049 for (i = periodiccnt >> 1; i--; )
1050 downheap ((WT *)periodics, periodiccnt, i);
1051}
1052
1053inline int
1054time_update_monotonic (EV_P)
1055{
1056 mn_now = get_clock ();
1057
1058 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1059 {
1060 ev_rt_now = rtmn_diff + mn_now;
1061 return 0;
1062 }
1063 else
1064 {
1065 now_floor = mn_now; 2290 now_floor = mn_now;
1066 ev_rt_now = ev_time (); 2291 ev_rt_now = ev_time ();
1067 return 1;
1068 }
1069}
1070 2292
1071static void 2293 /* loop a few times, before making important decisions.
1072time_update (EV_P) 2294 * on the choice of "4": one iteration isn't enough,
1073{ 2295 * in case we get preempted during the calls to
1074 int i; 2296 * ev_time and get_clock. a second call is almost guaranteed
1075 2297 * to succeed in that case, though. and looping a few more times
1076#if EV_USE_MONOTONIC 2298 * doesn't hurt either as we only do this on time-jumps or
1077 if (expect_true (have_monotonic)) 2299 * in the unlikely event of having been preempted here.
1078 { 2300 */
1079 if (time_update_monotonic (EV_A)) 2301 for (i = 4; --i; )
1080 { 2302 {
1081 ev_tstamp odiff = rtmn_diff;
1082
1083 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1084 {
1085 rtmn_diff = ev_rt_now - mn_now; 2303 rtmn_diff = ev_rt_now - mn_now;
1086 2304
1087 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2305 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1088 return; /* all is well */ 2306 return; /* all is well */
1089 2307
1090 ev_rt_now = ev_time (); 2308 ev_rt_now = ev_time ();
1091 mn_now = get_clock (); 2309 mn_now = get_clock ();
1092 now_floor = mn_now; 2310 now_floor = mn_now;
1093 } 2311 }
1094 2312
2313 /* no timer adjustment, as the monotonic clock doesn't jump */
2314 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2315# if EV_PERIODIC_ENABLE
2316 periodics_reschedule (EV_A);
2317# endif
2318 }
2319 else
2320#endif
2321 {
2322 ev_rt_now = ev_time ();
2323
2324 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2325 {
2326 /* adjust timers. this is easy, as the offset is the same for all of them */
2327 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2328#if EV_PERIODIC_ENABLE
1095 periodics_reschedule (EV_A); 2329 periodics_reschedule (EV_A);
1096 /* no timer adjustment, as the monotonic clock doesn't jump */ 2330#endif
1097 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1098 } 2331 }
1099 }
1100 else
1101#endif
1102 {
1103 ev_rt_now = ev_time ();
1104
1105 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1106 {
1107 periodics_reschedule (EV_A);
1108
1109 /* adjust timers. this is easy, as the offset is the same for all */
1110 for (i = 0; i < timercnt; ++i)
1111 ((WT)timers [i])->at += ev_rt_now - mn_now;
1112 }
1113 2332
1114 mn_now = ev_rt_now; 2333 mn_now = ev_rt_now;
1115 } 2334 }
1116} 2335}
1117 2336
1118void 2337void
1119ev_ref (EV_P)
1120{
1121 ++activecnt;
1122}
1123
1124void
1125ev_unref (EV_P)
1126{
1127 --activecnt;
1128}
1129
1130static int loop_done;
1131
1132void
1133ev_loop (EV_P_ int flags) 2338ev_run (EV_P_ int flags)
1134{ 2339{
1135 double block; 2340#if EV_FEATURE_API
1136 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2341 ++loop_depth;
2342#endif
2343
2344 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2345
2346 loop_done = EVBREAK_CANCEL;
2347
2348 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1137 2349
1138 do 2350 do
1139 { 2351 {
2352#if EV_VERIFY >= 2
2353 ev_verify (EV_A);
2354#endif
2355
2356#ifndef _WIN32
2357 if (expect_false (curpid)) /* penalise the forking check even more */
2358 if (expect_false (getpid () != curpid))
2359 {
2360 curpid = getpid ();
2361 postfork = 1;
2362 }
2363#endif
2364
2365#if EV_FORK_ENABLE
2366 /* we might have forked, so queue fork handlers */
2367 if (expect_false (postfork))
2368 if (forkcnt)
2369 {
2370 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2371 EV_INVOKE_PENDING;
2372 }
2373#endif
2374
2375#if EV_PREPARE_ENABLE
1140 /* queue check watchers (and execute them) */ 2376 /* queue prepare watchers (and execute them) */
1141 if (expect_false (preparecnt)) 2377 if (expect_false (preparecnt))
1142 { 2378 {
1143 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2379 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1144 call_pending (EV_A); 2380 EV_INVOKE_PENDING;
1145 } 2381 }
2382#endif
2383
2384 if (expect_false (loop_done))
2385 break;
1146 2386
1147 /* we might have forked, so reify kernel state if necessary */ 2387 /* we might have forked, so reify kernel state if necessary */
1148 if (expect_false (postfork)) 2388 if (expect_false (postfork))
1149 loop_fork (EV_A); 2389 loop_fork (EV_A);
1150 2390
1151 /* update fd-related kernel structures */ 2391 /* update fd-related kernel structures */
1152 fd_reify (EV_A); 2392 fd_reify (EV_A);
1153 2393
1154 /* calculate blocking time */ 2394 /* calculate blocking time */
2395 {
2396 ev_tstamp waittime = 0.;
2397 ev_tstamp sleeptime = 0.;
1155 2398
1156 /* we only need this for !monotonic clock or timers, but as we basically 2399 /* remember old timestamp for io_blocktime calculation */
1157 always have timers, we just calculate it always */ 2400 ev_tstamp prev_mn_now = mn_now;
1158#if EV_USE_MONOTONIC 2401
1159 if (expect_true (have_monotonic)) 2402 /* update time to cancel out callback processing overhead */
1160 time_update_monotonic (EV_A); 2403 time_update (EV_A_ 1e100);
1161 else 2404
1162#endif 2405 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1163 { 2406 {
1164 ev_rt_now = ev_time ();
1165 mn_now = ev_rt_now;
1166 }
1167
1168 if (flags & EVLOOP_NONBLOCK || idlecnt)
1169 block = 0.;
1170 else
1171 {
1172 block = MAX_BLOCKTIME; 2407 waittime = MAX_BLOCKTIME;
1173 2408
1174 if (timercnt) 2409 if (timercnt)
1175 { 2410 {
1176 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2411 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1177 if (block > to) block = to; 2412 if (waittime > to) waittime = to;
1178 } 2413 }
1179 2414
2415#if EV_PERIODIC_ENABLE
1180 if (periodiccnt) 2416 if (periodiccnt)
1181 { 2417 {
1182 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2418 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1183 if (block > to) block = to; 2419 if (waittime > to) waittime = to;
1184 } 2420 }
2421#endif
1185 2422
1186 if (block < 0.) block = 0.; 2423 /* don't let timeouts decrease the waittime below timeout_blocktime */
2424 if (expect_false (waittime < timeout_blocktime))
2425 waittime = timeout_blocktime;
2426
2427 /* extra check because io_blocktime is commonly 0 */
2428 if (expect_false (io_blocktime))
2429 {
2430 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2431
2432 if (sleeptime > waittime - backend_fudge)
2433 sleeptime = waittime - backend_fudge;
2434
2435 if (expect_true (sleeptime > 0.))
2436 {
2437 ev_sleep (sleeptime);
2438 waittime -= sleeptime;
2439 }
2440 }
1187 } 2441 }
1188 2442
1189 method_poll (EV_A_ block); 2443#if EV_FEATURE_API
2444 ++loop_count;
2445#endif
2446 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2447 backend_poll (EV_A_ waittime);
2448 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1190 2449
1191 /* update ev_rt_now, do magic */ 2450 /* update ev_rt_now, do magic */
1192 time_update (EV_A); 2451 time_update (EV_A_ waittime + sleeptime);
2452 }
1193 2453
1194 /* queue pending timers and reschedule them */ 2454 /* queue pending timers and reschedule them */
1195 timers_reify (EV_A); /* relative timers called last */ 2455 timers_reify (EV_A); /* relative timers called last */
2456#if EV_PERIODIC_ENABLE
1196 periodics_reify (EV_A); /* absolute timers called first */ 2457 periodics_reify (EV_A); /* absolute timers called first */
2458#endif
1197 2459
2460#if EV_IDLE_ENABLE
1198 /* queue idle watchers unless io or timers are pending */ 2461 /* queue idle watchers unless other events are pending */
1199 if (idlecnt && !any_pending (EV_A)) 2462 idle_reify (EV_A);
1200 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2463#endif
1201 2464
2465#if EV_CHECK_ENABLE
1202 /* queue check watchers, to be executed first */ 2466 /* queue check watchers, to be executed first */
1203 if (checkcnt) 2467 if (expect_false (checkcnt))
1204 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2468 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2469#endif
1205 2470
1206 call_pending (EV_A); 2471 EV_INVOKE_PENDING;
1207 } 2472 }
1208 while (activecnt && !loop_done); 2473 while (expect_true (
2474 activecnt
2475 && !loop_done
2476 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2477 ));
1209 2478
1210 if (loop_done != 2) 2479 if (loop_done == EVBREAK_ONE)
1211 loop_done = 0; 2480 loop_done = EVBREAK_CANCEL;
1212}
1213 2481
2482#if EV_FEATURE_API
2483 --loop_depth;
2484#endif
2485}
2486
1214void 2487void
1215ev_unloop (EV_P_ int how) 2488ev_break (EV_P_ int how)
1216{ 2489{
1217 loop_done = how; 2490 loop_done = how;
1218} 2491}
1219 2492
2493void
2494ev_ref (EV_P)
2495{
2496 ++activecnt;
2497}
2498
2499void
2500ev_unref (EV_P)
2501{
2502 --activecnt;
2503}
2504
2505void
2506ev_now_update (EV_P)
2507{
2508 time_update (EV_A_ 1e100);
2509}
2510
2511void
2512ev_suspend (EV_P)
2513{
2514 ev_now_update (EV_A);
2515}
2516
2517void
2518ev_resume (EV_P)
2519{
2520 ev_tstamp mn_prev = mn_now;
2521
2522 ev_now_update (EV_A);
2523 timers_reschedule (EV_A_ mn_now - mn_prev);
2524#if EV_PERIODIC_ENABLE
2525 /* TODO: really do this? */
2526 periodics_reschedule (EV_A);
2527#endif
2528}
2529
1220/*****************************************************************************/ 2530/*****************************************************************************/
2531/* singly-linked list management, used when the expected list length is short */
1221 2532
1222inline void 2533inline_size void
1223wlist_add (WL *head, WL elem) 2534wlist_add (WL *head, WL elem)
1224{ 2535{
1225 elem->next = *head; 2536 elem->next = *head;
1226 *head = elem; 2537 *head = elem;
1227} 2538}
1228 2539
1229inline void 2540inline_size void
1230wlist_del (WL *head, WL elem) 2541wlist_del (WL *head, WL elem)
1231{ 2542{
1232 while (*head) 2543 while (*head)
1233 { 2544 {
1234 if (*head == elem) 2545 if (expect_true (*head == elem))
1235 { 2546 {
1236 *head = elem->next; 2547 *head = elem->next;
1237 return; 2548 break;
1238 } 2549 }
1239 2550
1240 head = &(*head)->next; 2551 head = &(*head)->next;
1241 } 2552 }
1242} 2553}
1243 2554
2555/* internal, faster, version of ev_clear_pending */
1244inline void 2556inline_speed void
1245ev_clear_pending (EV_P_ W w) 2557clear_pending (EV_P_ W w)
1246{ 2558{
1247 if (w->pending) 2559 if (w->pending)
1248 { 2560 {
1249 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2561 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1250 w->pending = 0; 2562 w->pending = 0;
1251 } 2563 }
1252} 2564}
1253 2565
2566int
2567ev_clear_pending (EV_P_ void *w)
2568{
2569 W w_ = (W)w;
2570 int pending = w_->pending;
2571
2572 if (expect_true (pending))
2573 {
2574 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2575 p->w = (W)&pending_w;
2576 w_->pending = 0;
2577 return p->events;
2578 }
2579 else
2580 return 0;
2581}
2582
1254inline void 2583inline_size void
2584pri_adjust (EV_P_ W w)
2585{
2586 int pri = ev_priority (w);
2587 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2588 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2589 ev_set_priority (w, pri);
2590}
2591
2592inline_speed void
1255ev_start (EV_P_ W w, int active) 2593ev_start (EV_P_ W w, int active)
1256{ 2594{
1257 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2595 pri_adjust (EV_A_ w);
1258 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1259
1260 w->active = active; 2596 w->active = active;
1261 ev_ref (EV_A); 2597 ev_ref (EV_A);
1262} 2598}
1263 2599
1264inline void 2600inline_size void
1265ev_stop (EV_P_ W w) 2601ev_stop (EV_P_ W w)
1266{ 2602{
1267 ev_unref (EV_A); 2603 ev_unref (EV_A);
1268 w->active = 0; 2604 w->active = 0;
1269} 2605}
1270 2606
1271/*****************************************************************************/ 2607/*****************************************************************************/
1272 2608
1273void 2609void noinline
1274ev_io_start (EV_P_ struct ev_io *w) 2610ev_io_start (EV_P_ ev_io *w)
1275{ 2611{
1276 int fd = w->fd; 2612 int fd = w->fd;
1277 2613
2614 if (expect_false (ev_is_active (w)))
2615 return;
2616
2617 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2618 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2619
2620 EV_FREQUENT_CHECK;
2621
2622 ev_start (EV_A_ (W)w, 1);
2623 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2624 wlist_add (&anfds[fd].head, (WL)w);
2625
2626 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2627 w->events &= ~EV__IOFDSET;
2628
2629 EV_FREQUENT_CHECK;
2630}
2631
2632void noinline
2633ev_io_stop (EV_P_ ev_io *w)
2634{
2635 clear_pending (EV_A_ (W)w);
2636 if (expect_false (!ev_is_active (w)))
2637 return;
2638
2639 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2640
2641 EV_FREQUENT_CHECK;
2642
2643 wlist_del (&anfds[w->fd].head, (WL)w);
2644 ev_stop (EV_A_ (W)w);
2645
2646 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2647
2648 EV_FREQUENT_CHECK;
2649}
2650
2651void noinline
2652ev_timer_start (EV_P_ ev_timer *w)
2653{
2654 if (expect_false (ev_is_active (w)))
2655 return;
2656
2657 ev_at (w) += mn_now;
2658
2659 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2660
2661 EV_FREQUENT_CHECK;
2662
2663 ++timercnt;
2664 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2665 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2666 ANHE_w (timers [ev_active (w)]) = (WT)w;
2667 ANHE_at_cache (timers [ev_active (w)]);
2668 upheap (timers, ev_active (w));
2669
2670 EV_FREQUENT_CHECK;
2671
2672 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2673}
2674
2675void noinline
2676ev_timer_stop (EV_P_ ev_timer *w)
2677{
2678 clear_pending (EV_A_ (W)w);
2679 if (expect_false (!ev_is_active (w)))
2680 return;
2681
2682 EV_FREQUENT_CHECK;
2683
2684 {
2685 int active = ev_active (w);
2686
2687 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2688
2689 --timercnt;
2690
2691 if (expect_true (active < timercnt + HEAP0))
2692 {
2693 timers [active] = timers [timercnt + HEAP0];
2694 adjustheap (timers, timercnt, active);
2695 }
2696 }
2697
2698 ev_at (w) -= mn_now;
2699
2700 ev_stop (EV_A_ (W)w);
2701
2702 EV_FREQUENT_CHECK;
2703}
2704
2705void noinline
2706ev_timer_again (EV_P_ ev_timer *w)
2707{
2708 EV_FREQUENT_CHECK;
2709
1278 if (ev_is_active (w)) 2710 if (ev_is_active (w))
1279 return;
1280
1281 assert (("ev_io_start called with negative fd", fd >= 0));
1282
1283 ev_start (EV_A_ (W)w, 1);
1284 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1285 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1286
1287 fd_change (EV_A_ fd);
1288}
1289
1290void
1291ev_io_stop (EV_P_ struct ev_io *w)
1292{
1293 ev_clear_pending (EV_A_ (W)w);
1294 if (!ev_is_active (w))
1295 return;
1296
1297 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1298
1299 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1300 ev_stop (EV_A_ (W)w);
1301
1302 fd_change (EV_A_ w->fd);
1303}
1304
1305void
1306ev_timer_start (EV_P_ struct ev_timer *w)
1307{
1308 if (ev_is_active (w))
1309 return;
1310
1311 ((WT)w)->at += mn_now;
1312
1313 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1314
1315 ev_start (EV_A_ (W)w, ++timercnt);
1316 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1317 timers [timercnt - 1] = w;
1318 upheap ((WT *)timers, timercnt - 1);
1319
1320 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1321}
1322
1323void
1324ev_timer_stop (EV_P_ struct ev_timer *w)
1325{
1326 ev_clear_pending (EV_A_ (W)w);
1327 if (!ev_is_active (w))
1328 return;
1329
1330 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1331
1332 if (((W)w)->active < timercnt--)
1333 {
1334 timers [((W)w)->active - 1] = timers [timercnt];
1335 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1336 }
1337
1338 ((WT)w)->at = w->repeat;
1339
1340 ev_stop (EV_A_ (W)w);
1341}
1342
1343void
1344ev_timer_again (EV_P_ struct ev_timer *w)
1345{
1346 if (ev_is_active (w))
1347 { 2711 {
1348 if (w->repeat) 2712 if (w->repeat)
1349 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat); 2713 {
2714 ev_at (w) = mn_now + w->repeat;
2715 ANHE_at_cache (timers [ev_active (w)]);
2716 adjustheap (timers, timercnt, ev_active (w));
2717 }
1350 else 2718 else
1351 ev_timer_stop (EV_A_ w); 2719 ev_timer_stop (EV_A_ w);
1352 } 2720 }
1353 else if (w->repeat) 2721 else if (w->repeat)
2722 {
2723 ev_at (w) = w->repeat;
1354 ev_timer_start (EV_A_ w); 2724 ev_timer_start (EV_A_ w);
1355} 2725 }
1356 2726
1357void 2727 EV_FREQUENT_CHECK;
2728}
2729
2730ev_tstamp
2731ev_timer_remaining (EV_P_ ev_timer *w)
2732{
2733 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2734}
2735
2736#if EV_PERIODIC_ENABLE
2737void noinline
1358ev_periodic_start (EV_P_ struct ev_periodic *w) 2738ev_periodic_start (EV_P_ ev_periodic *w)
1359{ 2739{
1360 if (ev_is_active (w)) 2740 if (expect_false (ev_is_active (w)))
1361 return; 2741 return;
1362 2742
1363 if (w->reschedule_cb) 2743 if (w->reschedule_cb)
1364 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2744 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1365 else if (w->interval) 2745 else if (w->interval)
1366 { 2746 {
1367 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2747 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1368 /* this formula differs from the one in periodic_reify because we do not always round up */ 2748 /* this formula differs from the one in periodic_reify because we do not always round up */
1369 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2749 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1370 } 2750 }
2751 else
2752 ev_at (w) = w->offset;
1371 2753
2754 EV_FREQUENT_CHECK;
2755
2756 ++periodiccnt;
1372 ev_start (EV_A_ (W)w, ++periodiccnt); 2757 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1373 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2758 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1374 periodics [periodiccnt - 1] = w; 2759 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1375 upheap ((WT *)periodics, periodiccnt - 1); 2760 ANHE_at_cache (periodics [ev_active (w)]);
2761 upheap (periodics, ev_active (w));
1376 2762
2763 EV_FREQUENT_CHECK;
2764
1377 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2765 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1378} 2766}
1379 2767
1380void 2768void noinline
1381ev_periodic_stop (EV_P_ struct ev_periodic *w) 2769ev_periodic_stop (EV_P_ ev_periodic *w)
1382{ 2770{
1383 ev_clear_pending (EV_A_ (W)w); 2771 clear_pending (EV_A_ (W)w);
1384 if (!ev_is_active (w)) 2772 if (expect_false (!ev_is_active (w)))
1385 return; 2773 return;
1386 2774
2775 EV_FREQUENT_CHECK;
2776
2777 {
2778 int active = ev_active (w);
2779
1387 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2780 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1388 2781
1389 if (((W)w)->active < periodiccnt--) 2782 --periodiccnt;
2783
2784 if (expect_true (active < periodiccnt + HEAP0))
1390 { 2785 {
1391 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2786 periodics [active] = periodics [periodiccnt + HEAP0];
1392 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2787 adjustheap (periodics, periodiccnt, active);
1393 } 2788 }
2789 }
1394 2790
1395 ev_stop (EV_A_ (W)w); 2791 ev_stop (EV_A_ (W)w);
1396}
1397 2792
1398void 2793 EV_FREQUENT_CHECK;
2794}
2795
2796void noinline
1399ev_periodic_again (EV_P_ struct ev_periodic *w) 2797ev_periodic_again (EV_P_ ev_periodic *w)
1400{ 2798{
1401 /* TODO: use adjustheap and recalculation */ 2799 /* TODO: use adjustheap and recalculation */
1402 ev_periodic_stop (EV_A_ w); 2800 ev_periodic_stop (EV_A_ w);
1403 ev_periodic_start (EV_A_ w); 2801 ev_periodic_start (EV_A_ w);
1404} 2802}
1405 2803#endif
1406void
1407ev_idle_start (EV_P_ struct ev_idle *w)
1408{
1409 if (ev_is_active (w))
1410 return;
1411
1412 ev_start (EV_A_ (W)w, ++idlecnt);
1413 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1414 idles [idlecnt - 1] = w;
1415}
1416
1417void
1418ev_idle_stop (EV_P_ struct ev_idle *w)
1419{
1420 ev_clear_pending (EV_A_ (W)w);
1421 if (ev_is_active (w))
1422 return;
1423
1424 idles [((W)w)->active - 1] = idles [--idlecnt];
1425 ev_stop (EV_A_ (W)w);
1426}
1427
1428void
1429ev_prepare_start (EV_P_ struct ev_prepare *w)
1430{
1431 if (ev_is_active (w))
1432 return;
1433
1434 ev_start (EV_A_ (W)w, ++preparecnt);
1435 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1436 prepares [preparecnt - 1] = w;
1437}
1438
1439void
1440ev_prepare_stop (EV_P_ struct ev_prepare *w)
1441{
1442 ev_clear_pending (EV_A_ (W)w);
1443 if (ev_is_active (w))
1444 return;
1445
1446 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1447 ev_stop (EV_A_ (W)w);
1448}
1449
1450void
1451ev_check_start (EV_P_ struct ev_check *w)
1452{
1453 if (ev_is_active (w))
1454 return;
1455
1456 ev_start (EV_A_ (W)w, ++checkcnt);
1457 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1458 checks [checkcnt - 1] = w;
1459}
1460
1461void
1462ev_check_stop (EV_P_ struct ev_check *w)
1463{
1464 ev_clear_pending (EV_A_ (W)w);
1465 if (ev_is_active (w))
1466 return;
1467
1468 checks [((W)w)->active - 1] = checks [--checkcnt];
1469 ev_stop (EV_A_ (W)w);
1470}
1471 2804
1472#ifndef SA_RESTART 2805#ifndef SA_RESTART
1473# define SA_RESTART 0 2806# define SA_RESTART 0
1474#endif 2807#endif
1475 2808
1476void 2809#if EV_SIGNAL_ENABLE
2810
2811void noinline
1477ev_signal_start (EV_P_ struct ev_signal *w) 2812ev_signal_start (EV_P_ ev_signal *w)
1478{ 2813{
2814 if (expect_false (ev_is_active (w)))
2815 return;
2816
2817 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2818
1479#if EV_MULTIPLICITY 2819#if EV_MULTIPLICITY
1480 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2820 assert (("libev: a signal must not be attached to two different loops",
2821 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2822
2823 signals [w->signum - 1].loop = EV_A;
2824#endif
2825
2826 EV_FREQUENT_CHECK;
2827
2828#if EV_USE_SIGNALFD
2829 if (sigfd == -2)
2830 {
2831 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2832 if (sigfd < 0 && errno == EINVAL)
2833 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2834
2835 if (sigfd >= 0)
2836 {
2837 fd_intern (sigfd); /* doing it twice will not hurt */
2838
2839 sigemptyset (&sigfd_set);
2840
2841 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2842 ev_set_priority (&sigfd_w, EV_MAXPRI);
2843 ev_io_start (EV_A_ &sigfd_w);
2844 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2845 }
2846 }
2847
2848 if (sigfd >= 0)
2849 {
2850 /* TODO: check .head */
2851 sigaddset (&sigfd_set, w->signum);
2852 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2853
2854 signalfd (sigfd, &sigfd_set, 0);
2855 }
2856#endif
2857
2858 ev_start (EV_A_ (W)w, 1);
2859 wlist_add (&signals [w->signum - 1].head, (WL)w);
2860
2861 if (!((WL)w)->next)
2862# if EV_USE_SIGNALFD
2863 if (sigfd < 0) /*TODO*/
1481#endif 2864# endif
1482 if (ev_is_active (w)) 2865 {
2866# ifdef _WIN32
2867 evpipe_init (EV_A);
2868
2869 signal (w->signum, ev_sighandler);
2870# else
2871 struct sigaction sa;
2872
2873 evpipe_init (EV_A);
2874
2875 sa.sa_handler = ev_sighandler;
2876 sigfillset (&sa.sa_mask);
2877 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2878 sigaction (w->signum, &sa, 0);
2879
2880 sigemptyset (&sa.sa_mask);
2881 sigaddset (&sa.sa_mask, w->signum);
2882 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2883#endif
2884 }
2885
2886 EV_FREQUENT_CHECK;
2887}
2888
2889void noinline
2890ev_signal_stop (EV_P_ ev_signal *w)
2891{
2892 clear_pending (EV_A_ (W)w);
2893 if (expect_false (!ev_is_active (w)))
1483 return; 2894 return;
1484 2895
1485 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2896 EV_FREQUENT_CHECK;
2897
2898 wlist_del (&signals [w->signum - 1].head, (WL)w);
2899 ev_stop (EV_A_ (W)w);
2900
2901 if (!signals [w->signum - 1].head)
2902 {
2903#if EV_MULTIPLICITY
2904 signals [w->signum - 1].loop = 0; /* unattach from signal */
2905#endif
2906#if EV_USE_SIGNALFD
2907 if (sigfd >= 0)
2908 {
2909 sigset_t ss;
2910
2911 sigemptyset (&ss);
2912 sigaddset (&ss, w->signum);
2913 sigdelset (&sigfd_set, w->signum);
2914
2915 signalfd (sigfd, &sigfd_set, 0);
2916 sigprocmask (SIG_UNBLOCK, &ss, 0);
2917 }
2918 else
2919#endif
2920 signal (w->signum, SIG_DFL);
2921 }
2922
2923 EV_FREQUENT_CHECK;
2924}
2925
2926#endif
2927
2928#if EV_CHILD_ENABLE
2929
2930void
2931ev_child_start (EV_P_ ev_child *w)
2932{
2933#if EV_MULTIPLICITY
2934 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2935#endif
2936 if (expect_false (ev_is_active (w)))
2937 return;
2938
2939 EV_FREQUENT_CHECK;
1486 2940
1487 ev_start (EV_A_ (W)w, 1); 2941 ev_start (EV_A_ (W)w, 1);
1488 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2942 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1489 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1490 2943
1491 if (!((WL)w)->next) 2944 EV_FREQUENT_CHECK;
2945}
2946
2947void
2948ev_child_stop (EV_P_ ev_child *w)
2949{
2950 clear_pending (EV_A_ (W)w);
2951 if (expect_false (!ev_is_active (w)))
2952 return;
2953
2954 EV_FREQUENT_CHECK;
2955
2956 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2957 ev_stop (EV_A_ (W)w);
2958
2959 EV_FREQUENT_CHECK;
2960}
2961
2962#endif
2963
2964#if EV_STAT_ENABLE
2965
2966# ifdef _WIN32
2967# undef lstat
2968# define lstat(a,b) _stati64 (a,b)
2969# endif
2970
2971#define DEF_STAT_INTERVAL 5.0074891
2972#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2973#define MIN_STAT_INTERVAL 0.1074891
2974
2975static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2976
2977#if EV_USE_INOTIFY
2978
2979/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2980# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2981
2982static void noinline
2983infy_add (EV_P_ ev_stat *w)
2984{
2985 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2986
2987 if (w->wd >= 0)
2988 {
2989 struct statfs sfs;
2990
2991 /* now local changes will be tracked by inotify, but remote changes won't */
2992 /* unless the filesystem is known to be local, we therefore still poll */
2993 /* also do poll on <2.6.25, but with normal frequency */
2994
2995 if (!fs_2625)
2996 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2997 else if (!statfs (w->path, &sfs)
2998 && (sfs.f_type == 0x1373 /* devfs */
2999 || sfs.f_type == 0xEF53 /* ext2/3 */
3000 || sfs.f_type == 0x3153464a /* jfs */
3001 || sfs.f_type == 0x52654973 /* reiser3 */
3002 || sfs.f_type == 0x01021994 /* tempfs */
3003 || sfs.f_type == 0x58465342 /* xfs */))
3004 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3005 else
3006 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1492 { 3007 }
1493#if WIN32 3008 else
1494 signal (w->signum, sighandler); 3009 {
3010 /* can't use inotify, continue to stat */
3011 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3012
3013 /* if path is not there, monitor some parent directory for speedup hints */
3014 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3015 /* but an efficiency issue only */
3016 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3017 {
3018 char path [4096];
3019 strcpy (path, w->path);
3020
3021 do
3022 {
3023 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3024 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3025
3026 char *pend = strrchr (path, '/');
3027
3028 if (!pend || pend == path)
3029 break;
3030
3031 *pend = 0;
3032 w->wd = inotify_add_watch (fs_fd, path, mask);
3033 }
3034 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3035 }
3036 }
3037
3038 if (w->wd >= 0)
3039 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3040
3041 /* now re-arm timer, if required */
3042 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3043 ev_timer_again (EV_A_ &w->timer);
3044 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3045}
3046
3047static void noinline
3048infy_del (EV_P_ ev_stat *w)
3049{
3050 int slot;
3051 int wd = w->wd;
3052
3053 if (wd < 0)
3054 return;
3055
3056 w->wd = -2;
3057 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3058 wlist_del (&fs_hash [slot].head, (WL)w);
3059
3060 /* remove this watcher, if others are watching it, they will rearm */
3061 inotify_rm_watch (fs_fd, wd);
3062}
3063
3064static void noinline
3065infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3066{
3067 if (slot < 0)
3068 /* overflow, need to check for all hash slots */
3069 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3070 infy_wd (EV_A_ slot, wd, ev);
3071 else
3072 {
3073 WL w_;
3074
3075 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3076 {
3077 ev_stat *w = (ev_stat *)w_;
3078 w_ = w_->next; /* lets us remove this watcher and all before it */
3079
3080 if (w->wd == wd || wd == -1)
3081 {
3082 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3083 {
3084 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3085 w->wd = -1;
3086 infy_add (EV_A_ w); /* re-add, no matter what */
3087 }
3088
3089 stat_timer_cb (EV_A_ &w->timer, 0);
3090 }
3091 }
3092 }
3093}
3094
3095static void
3096infy_cb (EV_P_ ev_io *w, int revents)
3097{
3098 char buf [EV_INOTIFY_BUFSIZE];
3099 int ofs;
3100 int len = read (fs_fd, buf, sizeof (buf));
3101
3102 for (ofs = 0; ofs < len; )
3103 {
3104 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3105 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3106 ofs += sizeof (struct inotify_event) + ev->len;
3107 }
3108}
3109
3110inline_size void
3111ev_check_2625 (EV_P)
3112{
3113 /* kernels < 2.6.25 are borked
3114 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3115 */
3116 if (ev_linux_version () < 0x020619)
3117 return;
3118
3119 fs_2625 = 1;
3120}
3121
3122inline_size int
3123infy_newfd (void)
3124{
3125#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3126 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3127 if (fd >= 0)
3128 return fd;
3129#endif
3130 return inotify_init ();
3131}
3132
3133inline_size void
3134infy_init (EV_P)
3135{
3136 if (fs_fd != -2)
3137 return;
3138
3139 fs_fd = -1;
3140
3141 ev_check_2625 (EV_A);
3142
3143 fs_fd = infy_newfd ();
3144
3145 if (fs_fd >= 0)
3146 {
3147 fd_intern (fs_fd);
3148 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3149 ev_set_priority (&fs_w, EV_MAXPRI);
3150 ev_io_start (EV_A_ &fs_w);
3151 ev_unref (EV_A);
3152 }
3153}
3154
3155inline_size void
3156infy_fork (EV_P)
3157{
3158 int slot;
3159
3160 if (fs_fd < 0)
3161 return;
3162
3163 ev_ref (EV_A);
3164 ev_io_stop (EV_A_ &fs_w);
3165 close (fs_fd);
3166 fs_fd = infy_newfd ();
3167
3168 if (fs_fd >= 0)
3169 {
3170 fd_intern (fs_fd);
3171 ev_io_set (&fs_w, fs_fd, EV_READ);
3172 ev_io_start (EV_A_ &fs_w);
3173 ev_unref (EV_A);
3174 }
3175
3176 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3177 {
3178 WL w_ = fs_hash [slot].head;
3179 fs_hash [slot].head = 0;
3180
3181 while (w_)
3182 {
3183 ev_stat *w = (ev_stat *)w_;
3184 w_ = w_->next; /* lets us add this watcher */
3185
3186 w->wd = -1;
3187
3188 if (fs_fd >= 0)
3189 infy_add (EV_A_ w); /* re-add, no matter what */
3190 else
3191 {
3192 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3193 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3194 ev_timer_again (EV_A_ &w->timer);
3195 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3196 }
3197 }
3198 }
3199}
3200
3201#endif
3202
3203#ifdef _WIN32
3204# define EV_LSTAT(p,b) _stati64 (p, b)
1495#else 3205#else
1496 struct sigaction sa; 3206# define EV_LSTAT(p,b) lstat (p, b)
1497 sa.sa_handler = sighandler;
1498 sigfillset (&sa.sa_mask);
1499 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1500 sigaction (w->signum, &sa, 0);
1501#endif 3207#endif
1502 }
1503}
1504 3208
1505void 3209void
1506ev_signal_stop (EV_P_ struct ev_signal *w) 3210ev_stat_stat (EV_P_ ev_stat *w)
1507{ 3211{
1508 ev_clear_pending (EV_A_ (W)w); 3212 if (lstat (w->path, &w->attr) < 0)
1509 if (!ev_is_active (w)) 3213 w->attr.st_nlink = 0;
3214 else if (!w->attr.st_nlink)
3215 w->attr.st_nlink = 1;
3216}
3217
3218static void noinline
3219stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3220{
3221 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3222
3223 ev_statdata prev = w->attr;
3224 ev_stat_stat (EV_A_ w);
3225
3226 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3227 if (
3228 prev.st_dev != w->attr.st_dev
3229 || prev.st_ino != w->attr.st_ino
3230 || prev.st_mode != w->attr.st_mode
3231 || prev.st_nlink != w->attr.st_nlink
3232 || prev.st_uid != w->attr.st_uid
3233 || prev.st_gid != w->attr.st_gid
3234 || prev.st_rdev != w->attr.st_rdev
3235 || prev.st_size != w->attr.st_size
3236 || prev.st_atime != w->attr.st_atime
3237 || prev.st_mtime != w->attr.st_mtime
3238 || prev.st_ctime != w->attr.st_ctime
3239 ) {
3240 /* we only update w->prev on actual differences */
3241 /* in case we test more often than invoke the callback, */
3242 /* to ensure that prev is always different to attr */
3243 w->prev = prev;
3244
3245 #if EV_USE_INOTIFY
3246 if (fs_fd >= 0)
3247 {
3248 infy_del (EV_A_ w);
3249 infy_add (EV_A_ w);
3250 ev_stat_stat (EV_A_ w); /* avoid race... */
3251 }
3252 #endif
3253
3254 ev_feed_event (EV_A_ w, EV_STAT);
3255 }
3256}
3257
3258void
3259ev_stat_start (EV_P_ ev_stat *w)
3260{
3261 if (expect_false (ev_is_active (w)))
1510 return; 3262 return;
1511 3263
1512 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3264 ev_stat_stat (EV_A_ w);
3265
3266 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3267 w->interval = MIN_STAT_INTERVAL;
3268
3269 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3270 ev_set_priority (&w->timer, ev_priority (w));
3271
3272#if EV_USE_INOTIFY
3273 infy_init (EV_A);
3274
3275 if (fs_fd >= 0)
3276 infy_add (EV_A_ w);
3277 else
3278#endif
3279 {
3280 ev_timer_again (EV_A_ &w->timer);
3281 ev_unref (EV_A);
3282 }
3283
3284 ev_start (EV_A_ (W)w, 1);
3285
3286 EV_FREQUENT_CHECK;
3287}
3288
3289void
3290ev_stat_stop (EV_P_ ev_stat *w)
3291{
3292 clear_pending (EV_A_ (W)w);
3293 if (expect_false (!ev_is_active (w)))
3294 return;
3295
3296 EV_FREQUENT_CHECK;
3297
3298#if EV_USE_INOTIFY
3299 infy_del (EV_A_ w);
3300#endif
3301
3302 if (ev_is_active (&w->timer))
3303 {
3304 ev_ref (EV_A);
3305 ev_timer_stop (EV_A_ &w->timer);
3306 }
3307
1513 ev_stop (EV_A_ (W)w); 3308 ev_stop (EV_A_ (W)w);
1514 3309
1515 if (!signals [w->signum - 1].head) 3310 EV_FREQUENT_CHECK;
1516 signal (w->signum, SIG_DFL);
1517} 3311}
3312#endif
1518 3313
3314#if EV_IDLE_ENABLE
1519void 3315void
1520ev_child_start (EV_P_ struct ev_child *w) 3316ev_idle_start (EV_P_ ev_idle *w)
1521{ 3317{
1522#if EV_MULTIPLICITY
1523 assert (("child watchers are only supported in the default loop", loop == default_loop));
1524#endif
1525 if (ev_is_active (w)) 3318 if (expect_false (ev_is_active (w)))
1526 return; 3319 return;
1527 3320
3321 pri_adjust (EV_A_ (W)w);
3322
3323 EV_FREQUENT_CHECK;
3324
3325 {
3326 int active = ++idlecnt [ABSPRI (w)];
3327
3328 ++idleall;
3329 ev_start (EV_A_ (W)w, active);
3330
3331 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3332 idles [ABSPRI (w)][active - 1] = w;
3333 }
3334
3335 EV_FREQUENT_CHECK;
3336}
3337
3338void
3339ev_idle_stop (EV_P_ ev_idle *w)
3340{
3341 clear_pending (EV_A_ (W)w);
3342 if (expect_false (!ev_is_active (w)))
3343 return;
3344
3345 EV_FREQUENT_CHECK;
3346
3347 {
3348 int active = ev_active (w);
3349
3350 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3351 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3352
3353 ev_stop (EV_A_ (W)w);
3354 --idleall;
3355 }
3356
3357 EV_FREQUENT_CHECK;
3358}
3359#endif
3360
3361#if EV_PREPARE_ENABLE
3362void
3363ev_prepare_start (EV_P_ ev_prepare *w)
3364{
3365 if (expect_false (ev_is_active (w)))
3366 return;
3367
3368 EV_FREQUENT_CHECK;
3369
3370 ev_start (EV_A_ (W)w, ++preparecnt);
3371 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3372 prepares [preparecnt - 1] = w;
3373
3374 EV_FREQUENT_CHECK;
3375}
3376
3377void
3378ev_prepare_stop (EV_P_ ev_prepare *w)
3379{
3380 clear_pending (EV_A_ (W)w);
3381 if (expect_false (!ev_is_active (w)))
3382 return;
3383
3384 EV_FREQUENT_CHECK;
3385
3386 {
3387 int active = ev_active (w);
3388
3389 prepares [active - 1] = prepares [--preparecnt];
3390 ev_active (prepares [active - 1]) = active;
3391 }
3392
3393 ev_stop (EV_A_ (W)w);
3394
3395 EV_FREQUENT_CHECK;
3396}
3397#endif
3398
3399#if EV_CHECK_ENABLE
3400void
3401ev_check_start (EV_P_ ev_check *w)
3402{
3403 if (expect_false (ev_is_active (w)))
3404 return;
3405
3406 EV_FREQUENT_CHECK;
3407
3408 ev_start (EV_A_ (W)w, ++checkcnt);
3409 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3410 checks [checkcnt - 1] = w;
3411
3412 EV_FREQUENT_CHECK;
3413}
3414
3415void
3416ev_check_stop (EV_P_ ev_check *w)
3417{
3418 clear_pending (EV_A_ (W)w);
3419 if (expect_false (!ev_is_active (w)))
3420 return;
3421
3422 EV_FREQUENT_CHECK;
3423
3424 {
3425 int active = ev_active (w);
3426
3427 checks [active - 1] = checks [--checkcnt];
3428 ev_active (checks [active - 1]) = active;
3429 }
3430
3431 ev_stop (EV_A_ (W)w);
3432
3433 EV_FREQUENT_CHECK;
3434}
3435#endif
3436
3437#if EV_EMBED_ENABLE
3438void noinline
3439ev_embed_sweep (EV_P_ ev_embed *w)
3440{
3441 ev_run (w->other, EVRUN_NOWAIT);
3442}
3443
3444static void
3445embed_io_cb (EV_P_ ev_io *io, int revents)
3446{
3447 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3448
3449 if (ev_cb (w))
3450 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3451 else
3452 ev_run (w->other, EVRUN_NOWAIT);
3453}
3454
3455static void
3456embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3457{
3458 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3459
3460 {
3461 EV_P = w->other;
3462
3463 while (fdchangecnt)
3464 {
3465 fd_reify (EV_A);
3466 ev_run (EV_A_ EVRUN_NOWAIT);
3467 }
3468 }
3469}
3470
3471static void
3472embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3473{
3474 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3475
3476 ev_embed_stop (EV_A_ w);
3477
3478 {
3479 EV_P = w->other;
3480
3481 ev_loop_fork (EV_A);
3482 ev_run (EV_A_ EVRUN_NOWAIT);
3483 }
3484
3485 ev_embed_start (EV_A_ w);
3486}
3487
3488#if 0
3489static void
3490embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3491{
3492 ev_idle_stop (EV_A_ idle);
3493}
3494#endif
3495
3496void
3497ev_embed_start (EV_P_ ev_embed *w)
3498{
3499 if (expect_false (ev_is_active (w)))
3500 return;
3501
3502 {
3503 EV_P = w->other;
3504 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3505 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3506 }
3507
3508 EV_FREQUENT_CHECK;
3509
3510 ev_set_priority (&w->io, ev_priority (w));
3511 ev_io_start (EV_A_ &w->io);
3512
3513 ev_prepare_init (&w->prepare, embed_prepare_cb);
3514 ev_set_priority (&w->prepare, EV_MINPRI);
3515 ev_prepare_start (EV_A_ &w->prepare);
3516
3517 ev_fork_init (&w->fork, embed_fork_cb);
3518 ev_fork_start (EV_A_ &w->fork);
3519
3520 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3521
1528 ev_start (EV_A_ (W)w, 1); 3522 ev_start (EV_A_ (W)w, 1);
1529 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1530}
1531 3523
3524 EV_FREQUENT_CHECK;
3525}
3526
1532void 3527void
1533ev_child_stop (EV_P_ struct ev_child *w) 3528ev_embed_stop (EV_P_ ev_embed *w)
1534{ 3529{
1535 ev_clear_pending (EV_A_ (W)w); 3530 clear_pending (EV_A_ (W)w);
1536 if (ev_is_active (w)) 3531 if (expect_false (!ev_is_active (w)))
1537 return; 3532 return;
1538 3533
1539 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3534 EV_FREQUENT_CHECK;
3535
3536 ev_io_stop (EV_A_ &w->io);
3537 ev_prepare_stop (EV_A_ &w->prepare);
3538 ev_fork_stop (EV_A_ &w->fork);
3539
1540 ev_stop (EV_A_ (W)w); 3540 ev_stop (EV_A_ (W)w);
3541
3542 EV_FREQUENT_CHECK;
1541} 3543}
3544#endif
3545
3546#if EV_FORK_ENABLE
3547void
3548ev_fork_start (EV_P_ ev_fork *w)
3549{
3550 if (expect_false (ev_is_active (w)))
3551 return;
3552
3553 EV_FREQUENT_CHECK;
3554
3555 ev_start (EV_A_ (W)w, ++forkcnt);
3556 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3557 forks [forkcnt - 1] = w;
3558
3559 EV_FREQUENT_CHECK;
3560}
3561
3562void
3563ev_fork_stop (EV_P_ ev_fork *w)
3564{
3565 clear_pending (EV_A_ (W)w);
3566 if (expect_false (!ev_is_active (w)))
3567 return;
3568
3569 EV_FREQUENT_CHECK;
3570
3571 {
3572 int active = ev_active (w);
3573
3574 forks [active - 1] = forks [--forkcnt];
3575 ev_active (forks [active - 1]) = active;
3576 }
3577
3578 ev_stop (EV_A_ (W)w);
3579
3580 EV_FREQUENT_CHECK;
3581}
3582#endif
3583
3584#if EV_CLEANUP_ENABLE
3585void
3586ev_cleanup_start (EV_P_ ev_cleanup *w)
3587{
3588 if (expect_false (ev_is_active (w)))
3589 return;
3590
3591 EV_FREQUENT_CHECK;
3592
3593 ev_start (EV_A_ (W)w, ++cleanupcnt);
3594 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3595 cleanups [cleanupcnt - 1] = w;
3596
3597 EV_FREQUENT_CHECK;
3598}
3599
3600void
3601ev_cleanup_stop (EV_P_ ev_cleanup *w)
3602{
3603 clear_pending (EV_A_ (W)w);
3604 if (expect_false (!ev_is_active (w)))
3605 return;
3606
3607 EV_FREQUENT_CHECK;
3608
3609 {
3610 int active = ev_active (w);
3611
3612 cleanups [active - 1] = cleanups [--cleanupcnt];
3613 ev_active (cleanups [active - 1]) = active;
3614 }
3615
3616 ev_stop (EV_A_ (W)w);
3617
3618 EV_FREQUENT_CHECK;
3619}
3620#endif
3621
3622#if EV_ASYNC_ENABLE
3623void
3624ev_async_start (EV_P_ ev_async *w)
3625{
3626 if (expect_false (ev_is_active (w)))
3627 return;
3628
3629 w->sent = 0;
3630
3631 evpipe_init (EV_A);
3632
3633 EV_FREQUENT_CHECK;
3634
3635 ev_start (EV_A_ (W)w, ++asynccnt);
3636 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3637 asyncs [asynccnt - 1] = w;
3638
3639 EV_FREQUENT_CHECK;
3640}
3641
3642void
3643ev_async_stop (EV_P_ ev_async *w)
3644{
3645 clear_pending (EV_A_ (W)w);
3646 if (expect_false (!ev_is_active (w)))
3647 return;
3648
3649 EV_FREQUENT_CHECK;
3650
3651 {
3652 int active = ev_active (w);
3653
3654 asyncs [active - 1] = asyncs [--asynccnt];
3655 ev_active (asyncs [active - 1]) = active;
3656 }
3657
3658 ev_stop (EV_A_ (W)w);
3659
3660 EV_FREQUENT_CHECK;
3661}
3662
3663void
3664ev_async_send (EV_P_ ev_async *w)
3665{
3666 w->sent = 1;
3667 evpipe_write (EV_A_ &async_pending);
3668}
3669#endif
1542 3670
1543/*****************************************************************************/ 3671/*****************************************************************************/
1544 3672
1545struct ev_once 3673struct ev_once
1546{ 3674{
1547 struct ev_io io; 3675 ev_io io;
1548 struct ev_timer to; 3676 ev_timer to;
1549 void (*cb)(int revents, void *arg); 3677 void (*cb)(int revents, void *arg);
1550 void *arg; 3678 void *arg;
1551}; 3679};
1552 3680
1553static void 3681static void
1554once_cb (EV_P_ struct ev_once *once, int revents) 3682once_cb (EV_P_ struct ev_once *once, int revents)
1555{ 3683{
1556 void (*cb)(int revents, void *arg) = once->cb; 3684 void (*cb)(int revents, void *arg) = once->cb;
1557 void *arg = once->arg; 3685 void *arg = once->arg;
1558 3686
1559 ev_io_stop (EV_A_ &once->io); 3687 ev_io_stop (EV_A_ &once->io);
1560 ev_timer_stop (EV_A_ &once->to); 3688 ev_timer_stop (EV_A_ &once->to);
1561 ev_free (once); 3689 ev_free (once);
1562 3690
1563 cb (revents, arg); 3691 cb (revents, arg);
1564} 3692}
1565 3693
1566static void 3694static void
1567once_cb_io (EV_P_ struct ev_io *w, int revents) 3695once_cb_io (EV_P_ ev_io *w, int revents)
1568{ 3696{
1569 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3697 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3698
3699 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1570} 3700}
1571 3701
1572static void 3702static void
1573once_cb_to (EV_P_ struct ev_timer *w, int revents) 3703once_cb_to (EV_P_ ev_timer *w, int revents)
1574{ 3704{
1575 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3705 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3706
3707 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1576} 3708}
1577 3709
1578void 3710void
1579ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3711ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1580{ 3712{
1581 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3713 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1582 3714
1583 if (!once) 3715 if (expect_false (!once))
3716 {
1584 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3717 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1585 else 3718 return;
1586 { 3719 }
3720
1587 once->cb = cb; 3721 once->cb = cb;
1588 once->arg = arg; 3722 once->arg = arg;
1589 3723
1590 ev_init (&once->io, once_cb_io); 3724 ev_init (&once->io, once_cb_io);
1591 if (fd >= 0) 3725 if (fd >= 0)
3726 {
3727 ev_io_set (&once->io, fd, events);
3728 ev_io_start (EV_A_ &once->io);
3729 }
3730
3731 ev_init (&once->to, once_cb_to);
3732 if (timeout >= 0.)
3733 {
3734 ev_timer_set (&once->to, timeout, 0.);
3735 ev_timer_start (EV_A_ &once->to);
3736 }
3737}
3738
3739/*****************************************************************************/
3740
3741#if EV_WALK_ENABLE
3742void
3743ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3744{
3745 int i, j;
3746 ev_watcher_list *wl, *wn;
3747
3748 if (types & (EV_IO | EV_EMBED))
3749 for (i = 0; i < anfdmax; ++i)
3750 for (wl = anfds [i].head; wl; )
1592 { 3751 {
1593 ev_io_set (&once->io, fd, events); 3752 wn = wl->next;
1594 ev_io_start (EV_A_ &once->io); 3753
3754#if EV_EMBED_ENABLE
3755 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3756 {
3757 if (types & EV_EMBED)
3758 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3759 }
3760 else
3761#endif
3762#if EV_USE_INOTIFY
3763 if (ev_cb ((ev_io *)wl) == infy_cb)
3764 ;
3765 else
3766#endif
3767 if ((ev_io *)wl != &pipe_w)
3768 if (types & EV_IO)
3769 cb (EV_A_ EV_IO, wl);
3770
3771 wl = wn;
1595 } 3772 }
1596 3773
1597 ev_init (&once->to, once_cb_to); 3774 if (types & (EV_TIMER | EV_STAT))
1598 if (timeout >= 0.) 3775 for (i = timercnt + HEAP0; i-- > HEAP0; )
3776#if EV_STAT_ENABLE
3777 /*TODO: timer is not always active*/
3778 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1599 { 3779 {
1600 ev_timer_set (&once->to, timeout, 0.); 3780 if (types & EV_STAT)
1601 ev_timer_start (EV_A_ &once->to); 3781 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1602 } 3782 }
1603 } 3783 else
1604} 3784#endif
3785 if (types & EV_TIMER)
3786 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1605 3787
1606#ifdef __cplusplus 3788#if EV_PERIODIC_ENABLE
1607} 3789 if (types & EV_PERIODIC)
3790 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3791 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3792#endif
3793
3794#if EV_IDLE_ENABLE
3795 if (types & EV_IDLE)
3796 for (j = NUMPRI; i--; )
3797 for (i = idlecnt [j]; i--; )
3798 cb (EV_A_ EV_IDLE, idles [j][i]);
3799#endif
3800
3801#if EV_FORK_ENABLE
3802 if (types & EV_FORK)
3803 for (i = forkcnt; i--; )
3804 if (ev_cb (forks [i]) != embed_fork_cb)
3805 cb (EV_A_ EV_FORK, forks [i]);
3806#endif
3807
3808#if EV_ASYNC_ENABLE
3809 if (types & EV_ASYNC)
3810 for (i = asynccnt; i--; )
3811 cb (EV_A_ EV_ASYNC, asyncs [i]);
3812#endif
3813
3814#if EV_PREPARE_ENABLE
3815 if (types & EV_PREPARE)
3816 for (i = preparecnt; i--; )
3817# if EV_EMBED_ENABLE
3818 if (ev_cb (prepares [i]) != embed_prepare_cb)
1608#endif 3819# endif
3820 cb (EV_A_ EV_PREPARE, prepares [i]);
3821#endif
1609 3822
3823#if EV_CHECK_ENABLE
3824 if (types & EV_CHECK)
3825 for (i = checkcnt; i--; )
3826 cb (EV_A_ EV_CHECK, checks [i]);
3827#endif
3828
3829#if EV_SIGNAL_ENABLE
3830 if (types & EV_SIGNAL)
3831 for (i = 0; i < EV_NSIG - 1; ++i)
3832 for (wl = signals [i].head; wl; )
3833 {
3834 wn = wl->next;
3835 cb (EV_A_ EV_SIGNAL, wl);
3836 wl = wn;
3837 }
3838#endif
3839
3840#if EV_CHILD_ENABLE
3841 if (types & EV_CHILD)
3842 for (i = (EV_PID_HASHSIZE); i--; )
3843 for (wl = childs [i]; wl; )
3844 {
3845 wn = wl->next;
3846 cb (EV_A_ EV_CHILD, wl);
3847 wl = wn;
3848 }
3849#endif
3850/* EV_STAT 0x00001000 /* stat data changed */
3851/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3852}
3853#endif
3854
3855#if EV_MULTIPLICITY
3856 #include "ev_wrap.h"
3857#endif
3858
3859EV_CPP(})
3860

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines