ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.54 by root, Sun Nov 4 00:24:16 2007 UTC vs.
Revision 1.89 by root, Sat Nov 10 19:48:44 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
38
39# if HAVE_CLOCK_GETTIME
40# define EV_USE_MONOTONIC 1
41# define EV_USE_REALTIME 1
42# endif
43
44# if HAVE_SELECT && HAVE_SYS_SELECT_H
45# define EV_USE_SELECT 1
46# endif
47
48# if HAVE_POLL && HAVE_POLL_H
49# define EV_USE_POLL 1
50# endif
51
52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
53# define EV_USE_EPOLL 1
54# endif
55
56# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
57# define EV_USE_KQUEUE 1
58# endif
59
33#endif 60#endif
34 61
35#include <math.h> 62#include <math.h>
36#include <stdlib.h> 63#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 64#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 65#include <stddef.h>
41 66
42#include <stdio.h> 67#include <stdio.h>
43 68
44#include <assert.h> 69#include <assert.h>
45#include <errno.h> 70#include <errno.h>
46#include <sys/types.h> 71#include <sys/types.h>
72#include <time.h>
73
74#include <signal.h>
75
47#ifndef WIN32 76#ifndef WIN32
77# include <unistd.h>
78# include <sys/time.h>
48# include <sys/wait.h> 79# include <sys/wait.h>
49#endif 80#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 81/**/
54 82
55#ifndef EV_USE_MONOTONIC 83#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 84# define EV_USE_MONOTONIC 1
57#endif 85#endif
58 86
59#ifndef EV_USE_SELECT 87#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 88# define EV_USE_SELECT 1
61#endif 89#endif
62 90
63#ifndef EV_USEV_POLL 91#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 92# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif 93#endif
66 94
67#ifndef EV_USE_EPOLL 95#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 96# define EV_USE_EPOLL 0
69#endif 97#endif
70 98
71#ifndef EV_USE_KQUEUE 99#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 100# define EV_USE_KQUEUE 0
101#endif
102
103#ifndef EV_USE_WIN32
104# ifdef WIN32
105# define EV_USE_WIN32 0 /* it does not exist, use select */
106# undef EV_USE_SELECT
107# define EV_USE_SELECT 1
108# else
109# define EV_USE_WIN32 0
110# endif
73#endif 111#endif
74 112
75#ifndef EV_USE_REALTIME 113#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 114# define EV_USE_REALTIME 1
77#endif 115#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 135
136#ifdef EV_H
137# include EV_H
138#else
98#include "ev.h" 139# include "ev.h"
140#endif
99 141
100#if __GNUC__ >= 3 142#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value)) 143# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 144# define inline inline
103#else 145#else
115typedef struct ev_watcher_list *WL; 157typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 158typedef struct ev_watcher_time *WT;
117 159
118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 160static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119 161
162#include "ev_win32.c"
163
120/*****************************************************************************/ 164/*****************************************************************************/
121 165
166static void (*syserr_cb)(const char *msg);
167
168void ev_set_syserr_cb (void (*cb)(const char *msg))
169{
170 syserr_cb = cb;
171}
172
173static void
174syserr (const char *msg)
175{
176 if (!msg)
177 msg = "(libev) system error";
178
179 if (syserr_cb)
180 syserr_cb (msg);
181 else
182 {
183 perror (msg);
184 abort ();
185 }
186}
187
188static void *(*alloc)(void *ptr, long size);
189
190void ev_set_allocator (void *(*cb)(void *ptr, long size))
191{
192 alloc = cb;
193}
194
195static void *
196ev_realloc (void *ptr, long size)
197{
198 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
199
200 if (!ptr && size)
201 {
202 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
203 abort ();
204 }
205
206 return ptr;
207}
208
209#define ev_malloc(size) ev_realloc (0, (size))
210#define ev_free(ptr) ev_realloc ((ptr), 0)
211
212/*****************************************************************************/
213
122typedef struct 214typedef struct
123{ 215{
124 struct ev_watcher_list *head; 216 WL head;
125 unsigned char events; 217 unsigned char events;
126 unsigned char reify; 218 unsigned char reify;
127} ANFD; 219} ANFD;
128 220
129typedef struct 221typedef struct
130{ 222{
131 W w; 223 W w;
132 int events; 224 int events;
133} ANPENDING; 225} ANPENDING;
134 226
135#ifdef EV_MULTIPLICITY 227#if EV_MULTIPLICITY
136 228
137struct ev_loop 229 struct ev_loop
138{ 230 {
231 ev_tstamp ev_rt_now;
139# define VAR(name,decl) decl; 232 #define VAR(name,decl) decl;
140# include "ev_vars.h" 233 #include "ev_vars.h"
141};
142# undef VAR 234 #undef VAR
235 };
143# include "ev_wrap.h" 236 #include "ev_wrap.h"
237
238 struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop;
144 240
145#else 241#else
146 242
243 ev_tstamp ev_rt_now;
147# define VAR(name,decl) static decl; 244 #define VAR(name,decl) static decl;
148# include "ev_vars.h" 245 #include "ev_vars.h"
149# undef VAR 246 #undef VAR
247
248 static int default_loop;
150 249
151#endif 250#endif
152 251
153/*****************************************************************************/ 252/*****************************************************************************/
154 253
179#endif 278#endif
180 279
181 return ev_time (); 280 return ev_time ();
182} 281}
183 282
283#if EV_MULTIPLICITY
184ev_tstamp 284ev_tstamp
185ev_now (EV_P) 285ev_now (EV_P)
186{ 286{
187 return rt_now; 287 return ev_rt_now;
188} 288}
289#endif
189 290
190#define array_roundsize(base,n) ((n) | 4 & ~3) 291#define array_roundsize(type,n) ((n) | 4 & ~3)
191 292
192#define array_needsize(base,cur,cnt,init) \ 293#define array_needsize(type,base,cur,cnt,init) \
193 if (expect_false ((cnt) > cur)) \ 294 if (expect_false ((cnt) > cur)) \
194 { \ 295 { \
195 int newcnt = cur; \ 296 int newcnt = cur; \
196 do \ 297 do \
197 { \ 298 { \
198 newcnt = array_roundsize (base, newcnt << 1); \ 299 newcnt = array_roundsize (type, newcnt << 1); \
199 } \ 300 } \
200 while ((cnt) > newcnt); \ 301 while ((cnt) > newcnt); \
201 \ 302 \
202 base = realloc (base, sizeof (*base) * (newcnt)); \ 303 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
203 init (base + cur, newcnt - cur); \ 304 init (base + cur, newcnt - cur); \
204 cur = newcnt; \ 305 cur = newcnt; \
205 } 306 }
307
308#define array_slim(type,stem) \
309 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
310 { \
311 stem ## max = array_roundsize (stem ## cnt >> 1); \
312 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
313 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
314 }
315
316/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
317/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
318#define array_free_microshit(stem) \
319 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
320
321#define array_free(stem, idx) \
322 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
206 323
207/*****************************************************************************/ 324/*****************************************************************************/
208 325
209static void 326static void
210anfds_init (ANFD *base, int count) 327anfds_init (ANFD *base, int count)
217 334
218 ++base; 335 ++base;
219 } 336 }
220} 337}
221 338
222static void 339void
223event (EV_P_ W w, int events) 340ev_feed_event (EV_P_ void *w, int revents)
224{ 341{
342 W w_ = (W)w;
343
225 if (w->pending) 344 if (w_->pending)
226 { 345 {
227 pendings [ABSPRI (w)][w->pending - 1].events |= events; 346 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
228 return; 347 return;
229 } 348 }
230 349
231 w->pending = ++pendingcnt [ABSPRI (w)]; 350 w_->pending = ++pendingcnt [ABSPRI (w_)];
232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 351 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
233 pendings [ABSPRI (w)][w->pending - 1].w = w; 352 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
234 pendings [ABSPRI (w)][w->pending - 1].events = events; 353 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
235} 354}
236 355
237static void 356static void
238queue_events (EV_P_ W *events, int eventcnt, int type) 357queue_events (EV_P_ W *events, int eventcnt, int type)
239{ 358{
240 int i; 359 int i;
241 360
242 for (i = 0; i < eventcnt; ++i) 361 for (i = 0; i < eventcnt; ++i)
243 event (EV_A_ events [i], type); 362 ev_feed_event (EV_A_ events [i], type);
244} 363}
245 364
246static void 365inline void
247fd_event (EV_P_ int fd, int events) 366fd_event (EV_P_ int fd, int revents)
248{ 367{
249 ANFD *anfd = anfds + fd; 368 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 369 struct ev_io *w;
251 370
252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
253 { 372 {
254 int ev = w->events & events; 373 int ev = w->events & revents;
255 374
256 if (ev) 375 if (ev)
257 event (EV_A_ (W)w, ev); 376 ev_feed_event (EV_A_ (W)w, ev);
258 } 377 }
378}
379
380void
381ev_feed_fd_event (EV_P_ int fd, int revents)
382{
383 fd_event (EV_A_ fd, revents);
259} 384}
260 385
261/*****************************************************************************/ 386/*****************************************************************************/
262 387
263static void 388static void
276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 401 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
277 events |= w->events; 402 events |= w->events;
278 403
279 anfd->reify = 0; 404 anfd->reify = 0;
280 405
281 if (anfd->events != events)
282 {
283 method_modify (EV_A_ fd, anfd->events, events); 406 method_modify (EV_A_ fd, anfd->events, events);
284 anfd->events = events; 407 anfd->events = events;
285 }
286 } 408 }
287 409
288 fdchangecnt = 0; 410 fdchangecnt = 0;
289} 411}
290 412
291static void 413static void
292fd_change (EV_P_ int fd) 414fd_change (EV_P_ int fd)
293{ 415{
294 if (anfds [fd].reify || fdchangecnt < 0) 416 if (anfds [fd].reify)
295 return; 417 return;
296 418
297 anfds [fd].reify = 1; 419 anfds [fd].reify = 1;
298 420
299 ++fdchangecnt; 421 ++fdchangecnt;
300 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 422 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
301 fdchanges [fdchangecnt - 1] = fd; 423 fdchanges [fdchangecnt - 1] = fd;
302} 424}
303 425
304static void 426static void
305fd_kill (EV_P_ int fd) 427fd_kill (EV_P_ int fd)
307 struct ev_io *w; 429 struct ev_io *w;
308 430
309 while ((w = (struct ev_io *)anfds [fd].head)) 431 while ((w = (struct ev_io *)anfds [fd].head))
310 { 432 {
311 ev_io_stop (EV_A_ w); 433 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 434 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 } 435 }
436}
437
438static int
439fd_valid (int fd)
440{
441#ifdef WIN32
442 return !!win32_get_osfhandle (fd);
443#else
444 return fcntl (fd, F_GETFD) != -1;
445#endif
314} 446}
315 447
316/* called on EBADF to verify fds */ 448/* called on EBADF to verify fds */
317static void 449static void
318fd_ebadf (EV_P) 450fd_ebadf (EV_P)
319{ 451{
320 int fd; 452 int fd;
321 453
322 for (fd = 0; fd < anfdmax; ++fd) 454 for (fd = 0; fd < anfdmax; ++fd)
323 if (anfds [fd].events) 455 if (anfds [fd].events)
324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 456 if (!fd_valid (fd) == -1 && errno == EBADF)
325 fd_kill (EV_A_ fd); 457 fd_kill (EV_A_ fd);
326} 458}
327 459
328/* called on ENOMEM in select/poll to kill some fds and retry */ 460/* called on ENOMEM in select/poll to kill some fds and retry */
329static void 461static void
330fd_enomem (EV_P) 462fd_enomem (EV_P)
331{ 463{
332 int fd = anfdmax; 464 int fd;
333 465
334 while (fd--) 466 for (fd = anfdmax; fd--; )
335 if (anfds [fd].events) 467 if (anfds [fd].events)
336 { 468 {
337 close (fd);
338 fd_kill (EV_A_ fd); 469 fd_kill (EV_A_ fd);
339 return; 470 return;
340 } 471 }
341} 472}
342 473
474/* usually called after fork if method needs to re-arm all fds from scratch */
475static void
476fd_rearm_all (EV_P)
477{
478 int fd;
479
480 /* this should be highly optimised to not do anything but set a flag */
481 for (fd = 0; fd < anfdmax; ++fd)
482 if (anfds [fd].events)
483 {
484 anfds [fd].events = 0;
485 fd_change (EV_A_ fd);
486 }
487}
488
343/*****************************************************************************/ 489/*****************************************************************************/
344 490
345static void 491static void
346upheap (WT *heap, int k) 492upheap (WT *heap, int k)
347{ 493{
348 WT w = heap [k]; 494 WT w = heap [k];
349 495
350 while (k && heap [k >> 1]->at > w->at) 496 while (k && heap [k >> 1]->at > w->at)
351 { 497 {
352 heap [k] = heap [k >> 1]; 498 heap [k] = heap [k >> 1];
353 heap [k]->active = k + 1; 499 ((W)heap [k])->active = k + 1;
354 k >>= 1; 500 k >>= 1;
355 } 501 }
356 502
357 heap [k] = w; 503 heap [k] = w;
358 heap [k]->active = k + 1; 504 ((W)heap [k])->active = k + 1;
359 505
360} 506}
361 507
362static void 508static void
363downheap (WT *heap, int N, int k) 509downheap (WT *heap, int N, int k)
373 519
374 if (w->at <= heap [j]->at) 520 if (w->at <= heap [j]->at)
375 break; 521 break;
376 522
377 heap [k] = heap [j]; 523 heap [k] = heap [j];
378 heap [k]->active = k + 1; 524 ((W)heap [k])->active = k + 1;
379 k = j; 525 k = j;
380 } 526 }
381 527
382 heap [k] = w; 528 heap [k] = w;
383 heap [k]->active = k + 1; 529 ((W)heap [k])->active = k + 1;
530}
531
532inline void
533adjustheap (WT *heap, int N, int k, ev_tstamp at)
534{
535 ev_tstamp old_at = heap [k]->at;
536 heap [k]->at = at;
537
538 if (old_at < at)
539 downheap (heap, N, k);
540 else
541 upheap (heap, k);
384} 542}
385 543
386/*****************************************************************************/ 544/*****************************************************************************/
387 545
388typedef struct 546typedef struct
389{ 547{
390 struct ev_watcher_list *head; 548 WL head;
391 sig_atomic_t volatile gotsig; 549 sig_atomic_t volatile gotsig;
392} ANSIG; 550} ANSIG;
393 551
394static ANSIG *signals; 552static ANSIG *signals;
395static int signalmax; 553static int signalmax;
396 554
397static int sigpipe [2]; 555static int sigpipe [2];
398static sig_atomic_t volatile gotsig; 556static sig_atomic_t volatile gotsig;
557static struct ev_io sigev;
399 558
400static void 559static void
401signals_init (ANSIG *base, int count) 560signals_init (ANSIG *base, int count)
402{ 561{
403 while (count--) 562 while (count--)
410} 569}
411 570
412static void 571static void
413sighandler (int signum) 572sighandler (int signum)
414{ 573{
574#if WIN32
575 signal (signum, sighandler);
576#endif
577
415 signals [signum - 1].gotsig = 1; 578 signals [signum - 1].gotsig = 1;
416 579
417 if (!gotsig) 580 if (!gotsig)
418 { 581 {
419 int old_errno = errno; 582 int old_errno = errno;
420 gotsig = 1; 583 gotsig = 1;
584#ifdef WIN32
585 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
586#else
421 write (sigpipe [1], &signum, 1); 587 write (sigpipe [1], &signum, 1);
588#endif
422 errno = old_errno; 589 errno = old_errno;
423 } 590 }
424} 591}
425 592
593void
594ev_feed_signal_event (EV_P_ int signum)
595{
596 WL w;
597
598#if EV_MULTIPLICITY
599 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
600#endif
601
602 --signum;
603
604 if (signum < 0 || signum >= signalmax)
605 return;
606
607 signals [signum].gotsig = 0;
608
609 for (w = signals [signum].head; w; w = w->next)
610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
611}
612
426static void 613static void
427sigcb (EV_P_ struct ev_io *iow, int revents) 614sigcb (EV_P_ struct ev_io *iow, int revents)
428{ 615{
429 struct ev_watcher_list *w;
430 int signum; 616 int signum;
431 617
618#ifdef WIN32
619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
620#else
432 read (sigpipe [0], &revents, 1); 621 read (sigpipe [0], &revents, 1);
622#endif
433 gotsig = 0; 623 gotsig = 0;
434 624
435 for (signum = signalmax; signum--; ) 625 for (signum = signalmax; signum--; )
436 if (signals [signum].gotsig) 626 if (signals [signum].gotsig)
437 { 627 ev_feed_signal_event (EV_A_ signum + 1);
438 signals [signum].gotsig = 0;
439
440 for (w = signals [signum].head; w; w = w->next)
441 event (EV_A_ (W)w, EV_SIGNAL);
442 }
443} 628}
444 629
445static void 630static void
446siginit (EV_P) 631siginit (EV_P)
447{ 632{
459 ev_unref (EV_A); /* child watcher should not keep loop alive */ 644 ev_unref (EV_A); /* child watcher should not keep loop alive */
460} 645}
461 646
462/*****************************************************************************/ 647/*****************************************************************************/
463 648
649static struct ev_child *childs [PID_HASHSIZE];
650
464#ifndef WIN32 651#ifndef WIN32
652
653static struct ev_signal childev;
465 654
466#ifndef WCONTINUED 655#ifndef WCONTINUED
467# define WCONTINUED 0 656# define WCONTINUED 0
468#endif 657#endif
469 658
473 struct ev_child *w; 662 struct ev_child *w;
474 663
475 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 664 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
476 if (w->pid == pid || !w->pid) 665 if (w->pid == pid || !w->pid)
477 { 666 {
478 w->priority = sw->priority; /* need to do it *now* */ 667 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
479 w->rpid = pid; 668 w->rpid = pid;
480 w->rstatus = status; 669 w->rstatus = status;
481 event (EV_A_ (W)w, EV_CHILD); 670 ev_feed_event (EV_A_ (W)w, EV_CHILD);
482 } 671 }
483} 672}
484 673
485static void 674static void
486childcb (EV_P_ struct ev_signal *sw, int revents) 675childcb (EV_P_ struct ev_signal *sw, int revents)
488 int pid, status; 677 int pid, status;
489 678
490 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 679 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
491 { 680 {
492 /* make sure we are called again until all childs have been reaped */ 681 /* make sure we are called again until all childs have been reaped */
493 event (EV_A_ (W)sw, EV_SIGNAL); 682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
494 683
495 child_reap (EV_A_ sw, pid, pid, status); 684 child_reap (EV_A_ sw, pid, pid, status);
496 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 685 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
497 } 686 }
498} 687}
505# include "ev_kqueue.c" 694# include "ev_kqueue.c"
506#endif 695#endif
507#if EV_USE_EPOLL 696#if EV_USE_EPOLL
508# include "ev_epoll.c" 697# include "ev_epoll.c"
509#endif 698#endif
510#if EV_USEV_POLL 699#if EV_USE_POLL
511# include "ev_poll.c" 700# include "ev_poll.c"
512#endif 701#endif
513#if EV_USE_SELECT 702#if EV_USE_SELECT
514# include "ev_select.c" 703# include "ev_select.c"
515#endif 704#endif
555 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 744 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
556 have_monotonic = 1; 745 have_monotonic = 1;
557 } 746 }
558#endif 747#endif
559 748
560 rt_now = ev_time (); 749 ev_rt_now = ev_time ();
561 mn_now = get_clock (); 750 mn_now = get_clock ();
562 now_floor = mn_now; 751 now_floor = mn_now;
563 rtmn_diff = rt_now - mn_now; 752 rtmn_diff = ev_rt_now - mn_now;
564
565 if (pipe (sigpipe))
566 return 0;
567 753
568 if (methods == EVMETHOD_AUTO) 754 if (methods == EVMETHOD_AUTO)
569 if (!enable_secure () && getenv ("LIBmethodS")) 755 if (!enable_secure () && getenv ("LIBEV_METHODS"))
570 methods = atoi (getenv ("LIBmethodS")); 756 methods = atoi (getenv ("LIBEV_METHODS"));
571 else 757 else
572 methods = EVMETHOD_ANY; 758 methods = EVMETHOD_ANY;
573 759
574 method = 0; 760 method = 0;
761#if EV_USE_WIN32
762 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
763#endif
575#if EV_USE_KQUEUE 764#if EV_USE_KQUEUE
576 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 765 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
577#endif 766#endif
578#if EV_USE_EPOLL 767#if EV_USE_EPOLL
579 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 768 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
580#endif 769#endif
581#if EV_USEV_POLL 770#if EV_USE_POLL
582 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 771 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
583#endif 772#endif
584#if EV_USE_SELECT 773#if EV_USE_SELECT
585 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
586#endif 775#endif
587 776
777 ev_init (&sigev, sigcb);
778 ev_set_priority (&sigev, EV_MAXPRI);
779 }
780}
781
782void
783loop_destroy (EV_P)
784{
785 int i;
786
787#if EV_USE_WIN32
788 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
789#endif
790#if EV_USE_KQUEUE
791 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
792#endif
793#if EV_USE_EPOLL
794 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
795#endif
796#if EV_USE_POLL
797 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
798#endif
799#if EV_USE_SELECT
800 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
801#endif
802
803 for (i = NUMPRI; i--; )
804 array_free (pending, [i]);
805
806 /* have to use the microsoft-never-gets-it-right macro */
807 array_free_microshit (fdchange);
808 array_free_microshit (timer);
809 array_free_microshit (periodic);
810 array_free_microshit (idle);
811 array_free_microshit (prepare);
812 array_free_microshit (check);
813
814 method = 0;
815}
816
817static void
818loop_fork (EV_P)
819{
820#if EV_USE_EPOLL
821 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
822#endif
823#if EV_USE_KQUEUE
824 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
825#endif
826
827 if (ev_is_active (&sigev))
828 {
829 /* default loop */
830
831 ev_ref (EV_A);
832 ev_io_stop (EV_A_ &sigev);
833 close (sigpipe [0]);
834 close (sigpipe [1]);
835
836 while (pipe (sigpipe))
837 syserr ("(libev) error creating pipe");
838
839 siginit (EV_A);
840 }
841
842 postfork = 0;
843}
844
845#if EV_MULTIPLICITY
846struct ev_loop *
847ev_loop_new (int methods)
848{
849 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
850
851 memset (loop, 0, sizeof (struct ev_loop));
852
853 loop_init (EV_A_ methods);
854
855 if (ev_method (EV_A))
856 return loop;
857
858 return 0;
859}
860
861void
862ev_loop_destroy (EV_P)
863{
864 loop_destroy (EV_A);
865 ev_free (loop);
866}
867
868void
869ev_loop_fork (EV_P)
870{
871 postfork = 1;
872}
873
874#endif
875
876#if EV_MULTIPLICITY
877struct ev_loop *
878#else
879int
880#endif
881ev_default_loop (int methods)
882{
883 if (sigpipe [0] == sigpipe [1])
884 if (pipe (sigpipe))
885 return 0;
886
887 if (!default_loop)
888 {
889#if EV_MULTIPLICITY
890 struct ev_loop *loop = default_loop = &default_loop_struct;
891#else
892 default_loop = 1;
893#endif
894
895 loop_init (EV_A_ methods);
896
588 if (method) 897 if (ev_method (EV_A))
589 { 898 {
590 ev_watcher_init (&sigev, sigcb);
591 ev_set_priority (&sigev, EV_MAXPRI);
592 siginit (EV_A); 899 siginit (EV_A);
593 900
594#ifndef WIN32 901#ifndef WIN32
595 ev_signal_init (&childev, childcb, SIGCHLD); 902 ev_signal_init (&childev, childcb, SIGCHLD);
596 ev_set_priority (&childev, EV_MAXPRI); 903 ev_set_priority (&childev, EV_MAXPRI);
597 ev_signal_start (EV_A_ &childev); 904 ev_signal_start (EV_A_ &childev);
598 ev_unref (EV_A); /* child watcher should not keep loop alive */ 905 ev_unref (EV_A); /* child watcher should not keep loop alive */
599#endif 906#endif
600 } 907 }
908 else
909 default_loop = 0;
601 } 910 }
602 911
603 return method; 912 return default_loop;
604} 913}
605 914
915void
916ev_default_destroy (void)
917{
606#ifdef EV_MULTIPLICITY 918#if EV_MULTIPLICITY
607 919 struct ev_loop *loop = default_loop;
608struct ev_loop *
609ev_loop_new (int methods)
610{
611 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
612
613 loop_init (EV_A_ methods);
614
615 return loop;
616}
617
618void
619ev_loop_delete (EV_P)
620{
621 /*TODO*/
622 free (loop);
623}
624
625#else
626
627int
628ev_init (int methods)
629{
630 loop_init ();
631}
632
633#endif 920#endif
921
922#ifndef WIN32
923 ev_ref (EV_A); /* child watcher */
924 ev_signal_stop (EV_A_ &childev);
925#endif
926
927 ev_ref (EV_A); /* signal watcher */
928 ev_io_stop (EV_A_ &sigev);
929
930 close (sigpipe [0]); sigpipe [0] = 0;
931 close (sigpipe [1]); sigpipe [1] = 0;
932
933 loop_destroy (EV_A);
934}
935
936void
937ev_default_fork (void)
938{
939#if EV_MULTIPLICITY
940 struct ev_loop *loop = default_loop;
941#endif
942
943 if (method)
944 postfork = 1;
945}
634 946
635/*****************************************************************************/ 947/*****************************************************************************/
636 948
637void 949static int
638ev_fork_prepare (void) 950any_pending (EV_P)
639{ 951{
640 /* nop */ 952 int pri;
641}
642 953
643void 954 for (pri = NUMPRI; pri--; )
644ev_fork_parent (void) 955 if (pendingcnt [pri])
645{ 956 return 1;
646 /* nop */
647}
648 957
649void 958 return 0;
650ev_fork_child (void)
651{
652 /*TODO*/
653#if !EV_MULTIPLICITY
654#if EV_USE_EPOLL
655 if (method == EVMETHOD_EPOLL)
656 epoll_postfork_child (EV_A);
657#endif
658
659 ev_io_stop (EV_A_ &sigev);
660 close (sigpipe [0]);
661 close (sigpipe [1]);
662 pipe (sigpipe);
663 siginit (EV_A);
664#endif
665} 959}
666
667/*****************************************************************************/
668 960
669static void 961static void
670call_pending (EV_P) 962call_pending (EV_P)
671{ 963{
672 int pri; 964 int pri;
677 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 969 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
678 970
679 if (p->w) 971 if (p->w)
680 { 972 {
681 p->w->pending = 0; 973 p->w->pending = 0;
682 p->w->cb (EV_A_ p->w, p->events); 974 EV_CB_INVOKE (p->w, p->events);
683 } 975 }
684 } 976 }
685} 977}
686 978
687static void 979static void
688timers_reify (EV_P) 980timers_reify (EV_P)
689{ 981{
690 while (timercnt && timers [0]->at <= mn_now) 982 while (timercnt && ((WT)timers [0])->at <= mn_now)
691 { 983 {
692 struct ev_timer *w = timers [0]; 984 struct ev_timer *w = timers [0];
985
986 assert (("inactive timer on timer heap detected", ev_is_active (w)));
693 987
694 /* first reschedule or stop timer */ 988 /* first reschedule or stop timer */
695 if (w->repeat) 989 if (w->repeat)
696 { 990 {
697 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 991 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
698 w->at = mn_now + w->repeat; 992 ((WT)w)->at = mn_now + w->repeat;
699 downheap ((WT *)timers, timercnt, 0); 993 downheap ((WT *)timers, timercnt, 0);
700 } 994 }
701 else 995 else
702 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 996 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
703 997
704 event (EV_A_ (W)w, EV_TIMEOUT); 998 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
705 } 999 }
706} 1000}
707 1001
708static void 1002static void
709periodics_reify (EV_P) 1003periodics_reify (EV_P)
710{ 1004{
711 while (periodiccnt && periodics [0]->at <= rt_now) 1005 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
712 { 1006 {
713 struct ev_periodic *w = periodics [0]; 1007 struct ev_periodic *w = periodics [0];
714 1008
1009 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1010
715 /* first reschedule or stop timer */ 1011 /* first reschedule or stop timer */
716 if (w->interval) 1012 if (w->reschedule_cb)
717 { 1013 {
1014 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1015
1016 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1017 downheap ((WT *)periodics, periodiccnt, 0);
1018 }
1019 else if (w->interval)
1020 {
718 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1021 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
719 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1022 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
720 downheap ((WT *)periodics, periodiccnt, 0); 1023 downheap ((WT *)periodics, periodiccnt, 0);
721 } 1024 }
722 else 1025 else
723 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1026 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
724 1027
725 event (EV_A_ (W)w, EV_PERIODIC); 1028 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
726 } 1029 }
727} 1030}
728 1031
729static void 1032static void
730periodics_reschedule (EV_P) 1033periodics_reschedule (EV_P)
734 /* adjust periodics after time jump */ 1037 /* adjust periodics after time jump */
735 for (i = 0; i < periodiccnt; ++i) 1038 for (i = 0; i < periodiccnt; ++i)
736 { 1039 {
737 struct ev_periodic *w = periodics [i]; 1040 struct ev_periodic *w = periodics [i];
738 1041
1042 if (w->reschedule_cb)
1043 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
739 if (w->interval) 1044 else if (w->interval)
740 {
741 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1045 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
742
743 if (fabs (diff) >= 1e-4)
744 {
745 ev_periodic_stop (EV_A_ w);
746 ev_periodic_start (EV_A_ w);
747
748 i = 0; /* restart loop, inefficient, but time jumps should be rare */
749 }
750 }
751 } 1046 }
1047
1048 /* now rebuild the heap */
1049 for (i = periodiccnt >> 1; i--; )
1050 downheap ((WT *)periodics, periodiccnt, i);
752} 1051}
753 1052
754inline int 1053inline int
755time_update_monotonic (EV_P) 1054time_update_monotonic (EV_P)
756{ 1055{
757 mn_now = get_clock (); 1056 mn_now = get_clock ();
758 1057
759 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1058 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
760 { 1059 {
761 rt_now = rtmn_diff + mn_now; 1060 ev_rt_now = rtmn_diff + mn_now;
762 return 0; 1061 return 0;
763 } 1062 }
764 else 1063 else
765 { 1064 {
766 now_floor = mn_now; 1065 now_floor = mn_now;
767 rt_now = ev_time (); 1066 ev_rt_now = ev_time ();
768 return 1; 1067 return 1;
769 } 1068 }
770} 1069}
771 1070
772static void 1071static void
781 { 1080 {
782 ev_tstamp odiff = rtmn_diff; 1081 ev_tstamp odiff = rtmn_diff;
783 1082
784 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1083 for (i = 4; --i; ) /* loop a few times, before making important decisions */
785 { 1084 {
786 rtmn_diff = rt_now - mn_now; 1085 rtmn_diff = ev_rt_now - mn_now;
787 1086
788 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1087 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
789 return; /* all is well */ 1088 return; /* all is well */
790 1089
791 rt_now = ev_time (); 1090 ev_rt_now = ev_time ();
792 mn_now = get_clock (); 1091 mn_now = get_clock ();
793 now_floor = mn_now; 1092 now_floor = mn_now;
794 } 1093 }
795 1094
796 periodics_reschedule (EV_A); 1095 periodics_reschedule (EV_A);
799 } 1098 }
800 } 1099 }
801 else 1100 else
802#endif 1101#endif
803 { 1102 {
804 rt_now = ev_time (); 1103 ev_rt_now = ev_time ();
805 1104
806 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1105 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
807 { 1106 {
808 periodics_reschedule (EV_A); 1107 periodics_reschedule (EV_A);
809 1108
810 /* adjust timers. this is easy, as the offset is the same for all */ 1109 /* adjust timers. this is easy, as the offset is the same for all */
811 for (i = 0; i < timercnt; ++i) 1110 for (i = 0; i < timercnt; ++i)
812 timers [i]->at += rt_now - mn_now; 1111 ((WT)timers [i])->at += ev_rt_now - mn_now;
813 } 1112 }
814 1113
815 mn_now = rt_now; 1114 mn_now = ev_rt_now;
816 } 1115 }
817} 1116}
818 1117
819void 1118void
820ev_ref (EV_P) 1119ev_ref (EV_P)
843 { 1142 {
844 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1143 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
845 call_pending (EV_A); 1144 call_pending (EV_A);
846 } 1145 }
847 1146
1147 /* we might have forked, so reify kernel state if necessary */
1148 if (expect_false (postfork))
1149 loop_fork (EV_A);
1150
848 /* update fd-related kernel structures */ 1151 /* update fd-related kernel structures */
849 fd_reify (EV_A); 1152 fd_reify (EV_A);
850 1153
851 /* calculate blocking time */ 1154 /* calculate blocking time */
852 1155
853 /* we only need this for !monotonic clockor timers, but as we basically 1156 /* we only need this for !monotonic clock or timers, but as we basically
854 always have timers, we just calculate it always */ 1157 always have timers, we just calculate it always */
855#if EV_USE_MONOTONIC 1158#if EV_USE_MONOTONIC
856 if (expect_true (have_monotonic)) 1159 if (expect_true (have_monotonic))
857 time_update_monotonic (EV_A); 1160 time_update_monotonic (EV_A);
858 else 1161 else
859#endif 1162#endif
860 { 1163 {
861 rt_now = ev_time (); 1164 ev_rt_now = ev_time ();
862 mn_now = rt_now; 1165 mn_now = ev_rt_now;
863 } 1166 }
864 1167
865 if (flags & EVLOOP_NONBLOCK || idlecnt) 1168 if (flags & EVLOOP_NONBLOCK || idlecnt)
866 block = 0.; 1169 block = 0.;
867 else 1170 else
868 { 1171 {
869 block = MAX_BLOCKTIME; 1172 block = MAX_BLOCKTIME;
870 1173
871 if (timercnt) 1174 if (timercnt)
872 { 1175 {
873 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1176 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
874 if (block > to) block = to; 1177 if (block > to) block = to;
875 } 1178 }
876 1179
877 if (periodiccnt) 1180 if (periodiccnt)
878 { 1181 {
879 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1182 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
880 if (block > to) block = to; 1183 if (block > to) block = to;
881 } 1184 }
882 1185
883 if (block < 0.) block = 0.; 1186 if (block < 0.) block = 0.;
884 } 1187 }
885 1188
886 method_poll (EV_A_ block); 1189 method_poll (EV_A_ block);
887 1190
888 /* update rt_now, do magic */ 1191 /* update ev_rt_now, do magic */
889 time_update (EV_A); 1192 time_update (EV_A);
890 1193
891 /* queue pending timers and reschedule them */ 1194 /* queue pending timers and reschedule them */
892 timers_reify (EV_A); /* relative timers called last */ 1195 timers_reify (EV_A); /* relative timers called last */
893 periodics_reify (EV_A); /* absolute timers called first */ 1196 periodics_reify (EV_A); /* absolute timers called first */
894 1197
895 /* queue idle watchers unless io or timers are pending */ 1198 /* queue idle watchers unless io or timers are pending */
896 if (!pendingcnt) 1199 if (idlecnt && !any_pending (EV_A))
897 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1200 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
898 1201
899 /* queue check watchers, to be executed first */ 1202 /* queue check watchers, to be executed first */
900 if (checkcnt) 1203 if (checkcnt)
901 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1204 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
976 return; 1279 return;
977 1280
978 assert (("ev_io_start called with negative fd", fd >= 0)); 1281 assert (("ev_io_start called with negative fd", fd >= 0));
979 1282
980 ev_start (EV_A_ (W)w, 1); 1283 ev_start (EV_A_ (W)w, 1);
981 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1284 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
982 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1285 wlist_add ((WL *)&anfds[fd].head, (WL)w);
983 1286
984 fd_change (EV_A_ fd); 1287 fd_change (EV_A_ fd);
985} 1288}
986 1289
989{ 1292{
990 ev_clear_pending (EV_A_ (W)w); 1293 ev_clear_pending (EV_A_ (W)w);
991 if (!ev_is_active (w)) 1294 if (!ev_is_active (w))
992 return; 1295 return;
993 1296
1297 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1298
994 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1299 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
995 ev_stop (EV_A_ (W)w); 1300 ev_stop (EV_A_ (W)w);
996 1301
997 fd_change (EV_A_ w->fd); 1302 fd_change (EV_A_ w->fd);
998} 1303}
1001ev_timer_start (EV_P_ struct ev_timer *w) 1306ev_timer_start (EV_P_ struct ev_timer *w)
1002{ 1307{
1003 if (ev_is_active (w)) 1308 if (ev_is_active (w))
1004 return; 1309 return;
1005 1310
1006 w->at += mn_now; 1311 ((WT)w)->at += mn_now;
1007 1312
1008 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1313 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1009 1314
1010 ev_start (EV_A_ (W)w, ++timercnt); 1315 ev_start (EV_A_ (W)w, ++timercnt);
1011 array_needsize (timers, timermax, timercnt, ); 1316 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1012 timers [timercnt - 1] = w; 1317 timers [timercnt - 1] = w;
1013 upheap ((WT *)timers, timercnt - 1); 1318 upheap ((WT *)timers, timercnt - 1);
1319
1320 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1014} 1321}
1015 1322
1016void 1323void
1017ev_timer_stop (EV_P_ struct ev_timer *w) 1324ev_timer_stop (EV_P_ struct ev_timer *w)
1018{ 1325{
1019 ev_clear_pending (EV_A_ (W)w); 1326 ev_clear_pending (EV_A_ (W)w);
1020 if (!ev_is_active (w)) 1327 if (!ev_is_active (w))
1021 return; 1328 return;
1022 1329
1330 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1331
1023 if (w->active < timercnt--) 1332 if (((W)w)->active < timercnt--)
1024 { 1333 {
1025 timers [w->active - 1] = timers [timercnt]; 1334 timers [((W)w)->active - 1] = timers [timercnt];
1026 downheap ((WT *)timers, timercnt, w->active - 1); 1335 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1027 } 1336 }
1028 1337
1029 w->at = w->repeat; 1338 ((WT)w)->at = w->repeat;
1030 1339
1031 ev_stop (EV_A_ (W)w); 1340 ev_stop (EV_A_ (W)w);
1032} 1341}
1033 1342
1034void 1343void
1035ev_timer_again (EV_P_ struct ev_timer *w) 1344ev_timer_again (EV_P_ struct ev_timer *w)
1036{ 1345{
1037 if (ev_is_active (w)) 1346 if (ev_is_active (w))
1038 { 1347 {
1039 if (w->repeat) 1348 if (w->repeat)
1040 {
1041 w->at = mn_now + w->repeat;
1042 downheap ((WT *)timers, timercnt, w->active - 1); 1349 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1043 }
1044 else 1350 else
1045 ev_timer_stop (EV_A_ w); 1351 ev_timer_stop (EV_A_ w);
1046 } 1352 }
1047 else if (w->repeat) 1353 else if (w->repeat)
1048 ev_timer_start (EV_A_ w); 1354 ev_timer_start (EV_A_ w);
1052ev_periodic_start (EV_P_ struct ev_periodic *w) 1358ev_periodic_start (EV_P_ struct ev_periodic *w)
1053{ 1359{
1054 if (ev_is_active (w)) 1360 if (ev_is_active (w))
1055 return; 1361 return;
1056 1362
1363 if (w->reschedule_cb)
1364 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1365 else if (w->interval)
1366 {
1057 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1367 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1058
1059 /* this formula differs from the one in periodic_reify because we do not always round up */ 1368 /* this formula differs from the one in periodic_reify because we do not always round up */
1060 if (w->interval)
1061 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1369 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1370 }
1062 1371
1063 ev_start (EV_A_ (W)w, ++periodiccnt); 1372 ev_start (EV_A_ (W)w, ++periodiccnt);
1064 array_needsize (periodics, periodicmax, periodiccnt, ); 1373 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1065 periodics [periodiccnt - 1] = w; 1374 periodics [periodiccnt - 1] = w;
1066 upheap ((WT *)periodics, periodiccnt - 1); 1375 upheap ((WT *)periodics, periodiccnt - 1);
1376
1377 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1067} 1378}
1068 1379
1069void 1380void
1070ev_periodic_stop (EV_P_ struct ev_periodic *w) 1381ev_periodic_stop (EV_P_ struct ev_periodic *w)
1071{ 1382{
1072 ev_clear_pending (EV_A_ (W)w); 1383 ev_clear_pending (EV_A_ (W)w);
1073 if (!ev_is_active (w)) 1384 if (!ev_is_active (w))
1074 return; 1385 return;
1075 1386
1387 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1388
1076 if (w->active < periodiccnt--) 1389 if (((W)w)->active < periodiccnt--)
1077 { 1390 {
1078 periodics [w->active - 1] = periodics [periodiccnt]; 1391 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1079 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1392 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1080 } 1393 }
1081 1394
1395 ev_stop (EV_A_ (W)w);
1396}
1397
1398void
1399ev_periodic_again (EV_P_ struct ev_periodic *w)
1400{
1401 /* TODO: use adjustheap and recalculation */
1402 ev_periodic_stop (EV_A_ w);
1403 ev_periodic_start (EV_A_ w);
1404}
1405
1406void
1407ev_idle_start (EV_P_ struct ev_idle *w)
1408{
1409 if (ev_is_active (w))
1410 return;
1411
1412 ev_start (EV_A_ (W)w, ++idlecnt);
1413 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1414 idles [idlecnt - 1] = w;
1415}
1416
1417void
1418ev_idle_stop (EV_P_ struct ev_idle *w)
1419{
1420 ev_clear_pending (EV_A_ (W)w);
1421 if (ev_is_active (w))
1422 return;
1423
1424 idles [((W)w)->active - 1] = idles [--idlecnt];
1425 ev_stop (EV_A_ (W)w);
1426}
1427
1428void
1429ev_prepare_start (EV_P_ struct ev_prepare *w)
1430{
1431 if (ev_is_active (w))
1432 return;
1433
1434 ev_start (EV_A_ (W)w, ++preparecnt);
1435 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1436 prepares [preparecnt - 1] = w;
1437}
1438
1439void
1440ev_prepare_stop (EV_P_ struct ev_prepare *w)
1441{
1442 ev_clear_pending (EV_A_ (W)w);
1443 if (ev_is_active (w))
1444 return;
1445
1446 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1447 ev_stop (EV_A_ (W)w);
1448}
1449
1450void
1451ev_check_start (EV_P_ struct ev_check *w)
1452{
1453 if (ev_is_active (w))
1454 return;
1455
1456 ev_start (EV_A_ (W)w, ++checkcnt);
1457 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1458 checks [checkcnt - 1] = w;
1459}
1460
1461void
1462ev_check_stop (EV_P_ struct ev_check *w)
1463{
1464 ev_clear_pending (EV_A_ (W)w);
1465 if (ev_is_active (w))
1466 return;
1467
1468 checks [((W)w)->active - 1] = checks [--checkcnt];
1082 ev_stop (EV_A_ (W)w); 1469 ev_stop (EV_A_ (W)w);
1083} 1470}
1084 1471
1085#ifndef SA_RESTART 1472#ifndef SA_RESTART
1086# define SA_RESTART 0 1473# define SA_RESTART 0
1087#endif 1474#endif
1088 1475
1089void 1476void
1090ev_signal_start (EV_P_ struct ev_signal *w) 1477ev_signal_start (EV_P_ struct ev_signal *w)
1091{ 1478{
1479#if EV_MULTIPLICITY
1480 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1481#endif
1092 if (ev_is_active (w)) 1482 if (ev_is_active (w))
1093 return; 1483 return;
1094 1484
1095 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1485 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1096 1486
1097 ev_start (EV_A_ (W)w, 1); 1487 ev_start (EV_A_ (W)w, 1);
1098 array_needsize (signals, signalmax, w->signum, signals_init); 1488 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1099 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1489 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1100 1490
1101 if (!w->next) 1491 if (!((WL)w)->next)
1102 { 1492 {
1493#if WIN32
1494 signal (w->signum, sighandler);
1495#else
1103 struct sigaction sa; 1496 struct sigaction sa;
1104 sa.sa_handler = sighandler; 1497 sa.sa_handler = sighandler;
1105 sigfillset (&sa.sa_mask); 1498 sigfillset (&sa.sa_mask);
1106 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1499 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1107 sigaction (w->signum, &sa, 0); 1500 sigaction (w->signum, &sa, 0);
1501#endif
1108 } 1502 }
1109} 1503}
1110 1504
1111void 1505void
1112ev_signal_stop (EV_P_ struct ev_signal *w) 1506ev_signal_stop (EV_P_ struct ev_signal *w)
1121 if (!signals [w->signum - 1].head) 1515 if (!signals [w->signum - 1].head)
1122 signal (w->signum, SIG_DFL); 1516 signal (w->signum, SIG_DFL);
1123} 1517}
1124 1518
1125void 1519void
1126ev_idle_start (EV_P_ struct ev_idle *w)
1127{
1128 if (ev_is_active (w))
1129 return;
1130
1131 ev_start (EV_A_ (W)w, ++idlecnt);
1132 array_needsize (idles, idlemax, idlecnt, );
1133 idles [idlecnt - 1] = w;
1134}
1135
1136void
1137ev_idle_stop (EV_P_ struct ev_idle *w)
1138{
1139 ev_clear_pending (EV_A_ (W)w);
1140 if (ev_is_active (w))
1141 return;
1142
1143 idles [w->active - 1] = idles [--idlecnt];
1144 ev_stop (EV_A_ (W)w);
1145}
1146
1147void
1148ev_prepare_start (EV_P_ struct ev_prepare *w)
1149{
1150 if (ev_is_active (w))
1151 return;
1152
1153 ev_start (EV_A_ (W)w, ++preparecnt);
1154 array_needsize (prepares, preparemax, preparecnt, );
1155 prepares [preparecnt - 1] = w;
1156}
1157
1158void
1159ev_prepare_stop (EV_P_ struct ev_prepare *w)
1160{
1161 ev_clear_pending (EV_A_ (W)w);
1162 if (ev_is_active (w))
1163 return;
1164
1165 prepares [w->active - 1] = prepares [--preparecnt];
1166 ev_stop (EV_A_ (W)w);
1167}
1168
1169void
1170ev_check_start (EV_P_ struct ev_check *w)
1171{
1172 if (ev_is_active (w))
1173 return;
1174
1175 ev_start (EV_A_ (W)w, ++checkcnt);
1176 array_needsize (checks, checkmax, checkcnt, );
1177 checks [checkcnt - 1] = w;
1178}
1179
1180void
1181ev_check_stop (EV_P_ struct ev_check *w)
1182{
1183 ev_clear_pending (EV_A_ (W)w);
1184 if (ev_is_active (w))
1185 return;
1186
1187 checks [w->active - 1] = checks [--checkcnt];
1188 ev_stop (EV_A_ (W)w);
1189}
1190
1191void
1192ev_child_start (EV_P_ struct ev_child *w) 1520ev_child_start (EV_P_ struct ev_child *w)
1193{ 1521{
1522#if EV_MULTIPLICITY
1523 assert (("child watchers are only supported in the default loop", loop == default_loop));
1524#endif
1194 if (ev_is_active (w)) 1525 if (ev_is_active (w))
1195 return; 1526 return;
1196 1527
1197 ev_start (EV_A_ (W)w, 1); 1528 ev_start (EV_A_ (W)w, 1);
1198 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1529 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1225 void (*cb)(int revents, void *arg) = once->cb; 1556 void (*cb)(int revents, void *arg) = once->cb;
1226 void *arg = once->arg; 1557 void *arg = once->arg;
1227 1558
1228 ev_io_stop (EV_A_ &once->io); 1559 ev_io_stop (EV_A_ &once->io);
1229 ev_timer_stop (EV_A_ &once->to); 1560 ev_timer_stop (EV_A_ &once->to);
1230 free (once); 1561 ev_free (once);
1231 1562
1232 cb (revents, arg); 1563 cb (revents, arg);
1233} 1564}
1234 1565
1235static void 1566static void
1245} 1576}
1246 1577
1247void 1578void
1248ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1579ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1249{ 1580{
1250 struct ev_once *once = malloc (sizeof (struct ev_once)); 1581 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1251 1582
1252 if (!once) 1583 if (!once)
1253 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1584 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1254 else 1585 else
1255 { 1586 {
1256 once->cb = cb; 1587 once->cb = cb;
1257 once->arg = arg; 1588 once->arg = arg;
1258 1589
1259 ev_watcher_init (&once->io, once_cb_io); 1590 ev_init (&once->io, once_cb_io);
1260 if (fd >= 0) 1591 if (fd >= 0)
1261 { 1592 {
1262 ev_io_set (&once->io, fd, events); 1593 ev_io_set (&once->io, fd, events);
1263 ev_io_start (EV_A_ &once->io); 1594 ev_io_start (EV_A_ &once->io);
1264 } 1595 }
1265 1596
1266 ev_watcher_init (&once->to, once_cb_to); 1597 ev_init (&once->to, once_cb_to);
1267 if (timeout >= 0.) 1598 if (timeout >= 0.)
1268 { 1599 {
1269 ev_timer_set (&once->to, timeout, 0.); 1600 ev_timer_set (&once->to, timeout, 0.);
1270 ev_timer_start (EV_A_ &once->to); 1601 ev_timer_start (EV_A_ &once->to);
1271 } 1602 }
1272 } 1603 }
1273} 1604}
1274 1605
1275/*****************************************************************************/ 1606#ifdef __cplusplus
1276
1277#if 0
1278
1279struct ev_io wio;
1280
1281static void
1282sin_cb (struct ev_io *w, int revents)
1283{
1284 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1285} 1607}
1286
1287static void
1288ocb (struct ev_timer *w, int revents)
1289{
1290 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1291 ev_timer_stop (w);
1292 ev_timer_start (w);
1293}
1294
1295static void
1296scb (struct ev_signal *w, int revents)
1297{
1298 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1299 ev_io_stop (&wio);
1300 ev_io_start (&wio);
1301}
1302
1303static void
1304gcb (struct ev_signal *w, int revents)
1305{
1306 fprintf (stderr, "generic %x\n", revents);
1307
1308}
1309
1310int main (void)
1311{
1312 ev_init (0);
1313
1314 ev_io_init (&wio, sin_cb, 0, EV_READ);
1315 ev_io_start (&wio);
1316
1317 struct ev_timer t[10000];
1318
1319#if 0
1320 int i;
1321 for (i = 0; i < 10000; ++i)
1322 {
1323 struct ev_timer *w = t + i;
1324 ev_watcher_init (w, ocb, i);
1325 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1326 ev_timer_start (w);
1327 if (drand48 () < 0.5)
1328 ev_timer_stop (w);
1329 }
1330#endif 1608#endif
1331 1609
1332 struct ev_timer t1;
1333 ev_timer_init (&t1, ocb, 5, 10);
1334 ev_timer_start (&t1);
1335
1336 struct ev_signal sig;
1337 ev_signal_init (&sig, scb, SIGQUIT);
1338 ev_signal_start (&sig);
1339
1340 struct ev_check cw;
1341 ev_check_init (&cw, gcb);
1342 ev_check_start (&cw);
1343
1344 struct ev_idle iw;
1345 ev_idle_init (&iw, gcb);
1346 ev_idle_start (&iw);
1347
1348 ev_loop (0);
1349
1350 return 0;
1351}
1352
1353#endif
1354
1355
1356
1357

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines