ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.59 by root, Sun Nov 4 18:15:16 2007 UTC vs.
Revision 1.89 by root, Sat Nov 10 19:48:44 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
38
39# if HAVE_CLOCK_GETTIME
40# define EV_USE_MONOTONIC 1
41# define EV_USE_REALTIME 1
42# endif
43
44# if HAVE_SELECT && HAVE_SYS_SELECT_H
45# define EV_USE_SELECT 1
46# endif
47
48# if HAVE_POLL && HAVE_POLL_H
49# define EV_USE_POLL 1
50# endif
51
52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
53# define EV_USE_EPOLL 1
54# endif
55
56# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
57# define EV_USE_KQUEUE 1
58# endif
59
33#endif 60#endif
34 61
35#include <math.h> 62#include <math.h>
36#include <stdlib.h> 63#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 64#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 65#include <stddef.h>
41 66
42#include <stdio.h> 67#include <stdio.h>
43 68
44#include <assert.h> 69#include <assert.h>
45#include <errno.h> 70#include <errno.h>
46#include <sys/types.h> 71#include <sys/types.h>
72#include <time.h>
73
74#include <signal.h>
75
47#ifndef WIN32 76#ifndef WIN32
77# include <unistd.h>
78# include <sys/time.h>
48# include <sys/wait.h> 79# include <sys/wait.h>
49#endif 80#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 81/**/
54 82
55#ifndef EV_USE_MONOTONIC 83#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 84# define EV_USE_MONOTONIC 1
57#endif 85#endif
68# define EV_USE_EPOLL 0 96# define EV_USE_EPOLL 0
69#endif 97#endif
70 98
71#ifndef EV_USE_KQUEUE 99#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 100# define EV_USE_KQUEUE 0
101#endif
102
103#ifndef EV_USE_WIN32
104# ifdef WIN32
105# define EV_USE_WIN32 0 /* it does not exist, use select */
106# undef EV_USE_SELECT
107# define EV_USE_SELECT 1
108# else
109# define EV_USE_WIN32 0
110# endif
73#endif 111#endif
74 112
75#ifndef EV_USE_REALTIME 113#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 114# define EV_USE_REALTIME 1
77#endif 115#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 135
136#ifdef EV_H
137# include EV_H
138#else
98#include "ev.h" 139# include "ev.h"
140#endif
99 141
100#if __GNUC__ >= 3 142#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value)) 143# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 144# define inline inline
103#else 145#else
115typedef struct ev_watcher_list *WL; 157typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 158typedef struct ev_watcher_time *WT;
117 159
118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 160static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119 161
162#include "ev_win32.c"
163
120/*****************************************************************************/ 164/*****************************************************************************/
121 165
166static void (*syserr_cb)(const char *msg);
167
168void ev_set_syserr_cb (void (*cb)(const char *msg))
169{
170 syserr_cb = cb;
171}
172
173static void
174syserr (const char *msg)
175{
176 if (!msg)
177 msg = "(libev) system error";
178
179 if (syserr_cb)
180 syserr_cb (msg);
181 else
182 {
183 perror (msg);
184 abort ();
185 }
186}
187
188static void *(*alloc)(void *ptr, long size);
189
190void ev_set_allocator (void *(*cb)(void *ptr, long size))
191{
192 alloc = cb;
193}
194
195static void *
196ev_realloc (void *ptr, long size)
197{
198 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
199
200 if (!ptr && size)
201 {
202 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
203 abort ();
204 }
205
206 return ptr;
207}
208
209#define ev_malloc(size) ev_realloc (0, (size))
210#define ev_free(ptr) ev_realloc ((ptr), 0)
211
212/*****************************************************************************/
213
122typedef struct 214typedef struct
123{ 215{
124 struct ev_watcher_list *head; 216 WL head;
125 unsigned char events; 217 unsigned char events;
126 unsigned char reify; 218 unsigned char reify;
127} ANFD; 219} ANFD;
128 220
129typedef struct 221typedef struct
132 int events; 224 int events;
133} ANPENDING; 225} ANPENDING;
134 226
135#if EV_MULTIPLICITY 227#if EV_MULTIPLICITY
136 228
137struct ev_loop 229 struct ev_loop
138{ 230 {
231 ev_tstamp ev_rt_now;
139# define VAR(name,decl) decl; 232 #define VAR(name,decl) decl;
140# include "ev_vars.h" 233 #include "ev_vars.h"
141};
142# undef VAR 234 #undef VAR
235 };
143# include "ev_wrap.h" 236 #include "ev_wrap.h"
237
238 struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop;
144 240
145#else 241#else
146 242
243 ev_tstamp ev_rt_now;
147# define VAR(name,decl) static decl; 244 #define VAR(name,decl) static decl;
148# include "ev_vars.h" 245 #include "ev_vars.h"
149# undef VAR 246 #undef VAR
247
248 static int default_loop;
150 249
151#endif 250#endif
152 251
153/*****************************************************************************/ 252/*****************************************************************************/
154 253
179#endif 278#endif
180 279
181 return ev_time (); 280 return ev_time ();
182} 281}
183 282
283#if EV_MULTIPLICITY
184ev_tstamp 284ev_tstamp
185ev_now (EV_P) 285ev_now (EV_P)
186{ 286{
187 return rt_now; 287 return ev_rt_now;
188} 288}
289#endif
189 290
190#define array_roundsize(base,n) ((n) | 4 & ~3) 291#define array_roundsize(type,n) ((n) | 4 & ~3)
191 292
192#define array_needsize(base,cur,cnt,init) \ 293#define array_needsize(type,base,cur,cnt,init) \
193 if (expect_false ((cnt) > cur)) \ 294 if (expect_false ((cnt) > cur)) \
194 { \ 295 { \
195 int newcnt = cur; \ 296 int newcnt = cur; \
196 do \ 297 do \
197 { \ 298 { \
198 newcnt = array_roundsize (base, newcnt << 1); \ 299 newcnt = array_roundsize (type, newcnt << 1); \
199 } \ 300 } \
200 while ((cnt) > newcnt); \ 301 while ((cnt) > newcnt); \
201 \ 302 \
202 base = realloc (base, sizeof (*base) * (newcnt)); \ 303 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
203 init (base + cur, newcnt - cur); \ 304 init (base + cur, newcnt - cur); \
204 cur = newcnt; \ 305 cur = newcnt; \
205 } 306 }
307
308#define array_slim(type,stem) \
309 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
310 { \
311 stem ## max = array_roundsize (stem ## cnt >> 1); \
312 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
313 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
314 }
315
316/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
317/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
318#define array_free_microshit(stem) \
319 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
320
321#define array_free(stem, idx) \
322 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
206 323
207/*****************************************************************************/ 324/*****************************************************************************/
208 325
209static void 326static void
210anfds_init (ANFD *base, int count) 327anfds_init (ANFD *base, int count)
217 334
218 ++base; 335 ++base;
219 } 336 }
220} 337}
221 338
222static void 339void
223event (EV_P_ W w, int events) 340ev_feed_event (EV_P_ void *w, int revents)
224{ 341{
342 W w_ = (W)w;
343
225 if (w->pending) 344 if (w_->pending)
226 { 345 {
227 pendings [ABSPRI (w)][w->pending - 1].events |= events; 346 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
228 return; 347 return;
229 } 348 }
230 349
231 w->pending = ++pendingcnt [ABSPRI (w)]; 350 w_->pending = ++pendingcnt [ABSPRI (w_)];
232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 351 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
233 pendings [ABSPRI (w)][w->pending - 1].w = w; 352 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
234 pendings [ABSPRI (w)][w->pending - 1].events = events; 353 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
235} 354}
236 355
237static void 356static void
238queue_events (EV_P_ W *events, int eventcnt, int type) 357queue_events (EV_P_ W *events, int eventcnt, int type)
239{ 358{
240 int i; 359 int i;
241 360
242 for (i = 0; i < eventcnt; ++i) 361 for (i = 0; i < eventcnt; ++i)
243 event (EV_A_ events [i], type); 362 ev_feed_event (EV_A_ events [i], type);
244} 363}
245 364
246static void 365inline void
247fd_event (EV_P_ int fd, int events) 366fd_event (EV_P_ int fd, int revents)
248{ 367{
249 ANFD *anfd = anfds + fd; 368 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 369 struct ev_io *w;
251 370
252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
253 { 372 {
254 int ev = w->events & events; 373 int ev = w->events & revents;
255 374
256 if (ev) 375 if (ev)
257 event (EV_A_ (W)w, ev); 376 ev_feed_event (EV_A_ (W)w, ev);
258 } 377 }
378}
379
380void
381ev_feed_fd_event (EV_P_ int fd, int revents)
382{
383 fd_event (EV_A_ fd, revents);
259} 384}
260 385
261/*****************************************************************************/ 386/*****************************************************************************/
262 387
263static void 388static void
276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 401 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
277 events |= w->events; 402 events |= w->events;
278 403
279 anfd->reify = 0; 404 anfd->reify = 0;
280 405
281 if (anfd->events != events)
282 {
283 method_modify (EV_A_ fd, anfd->events, events); 406 method_modify (EV_A_ fd, anfd->events, events);
284 anfd->events = events; 407 anfd->events = events;
285 }
286 } 408 }
287 409
288 fdchangecnt = 0; 410 fdchangecnt = 0;
289} 411}
290 412
291static void 413static void
292fd_change (EV_P_ int fd) 414fd_change (EV_P_ int fd)
293{ 415{
294 if (anfds [fd].reify || fdchangecnt < 0) 416 if (anfds [fd].reify)
295 return; 417 return;
296 418
297 anfds [fd].reify = 1; 419 anfds [fd].reify = 1;
298 420
299 ++fdchangecnt; 421 ++fdchangecnt;
300 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 422 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
301 fdchanges [fdchangecnt - 1] = fd; 423 fdchanges [fdchangecnt - 1] = fd;
302} 424}
303 425
304static void 426static void
305fd_kill (EV_P_ int fd) 427fd_kill (EV_P_ int fd)
307 struct ev_io *w; 429 struct ev_io *w;
308 430
309 while ((w = (struct ev_io *)anfds [fd].head)) 431 while ((w = (struct ev_io *)anfds [fd].head))
310 { 432 {
311 ev_io_stop (EV_A_ w); 433 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 434 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 } 435 }
436}
437
438static int
439fd_valid (int fd)
440{
441#ifdef WIN32
442 return !!win32_get_osfhandle (fd);
443#else
444 return fcntl (fd, F_GETFD) != -1;
445#endif
314} 446}
315 447
316/* called on EBADF to verify fds */ 448/* called on EBADF to verify fds */
317static void 449static void
318fd_ebadf (EV_P) 450fd_ebadf (EV_P)
319{ 451{
320 int fd; 452 int fd;
321 453
322 for (fd = 0; fd < anfdmax; ++fd) 454 for (fd = 0; fd < anfdmax; ++fd)
323 if (anfds [fd].events) 455 if (anfds [fd].events)
324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 456 if (!fd_valid (fd) == -1 && errno == EBADF)
325 fd_kill (EV_A_ fd); 457 fd_kill (EV_A_ fd);
326} 458}
327 459
328/* called on ENOMEM in select/poll to kill some fds and retry */ 460/* called on ENOMEM in select/poll to kill some fds and retry */
329static void 461static void
330fd_enomem (EV_P) 462fd_enomem (EV_P)
331{ 463{
332 int fd = anfdmax; 464 int fd;
333 465
334 while (fd--) 466 for (fd = anfdmax; fd--; )
335 if (anfds [fd].events) 467 if (anfds [fd].events)
336 { 468 {
337 close (fd);
338 fd_kill (EV_A_ fd); 469 fd_kill (EV_A_ fd);
339 return; 470 return;
340 } 471 }
341} 472}
342 473
343/* susually called after fork if method needs to re-arm all fds from scratch */ 474/* usually called after fork if method needs to re-arm all fds from scratch */
344static void 475static void
345fd_rearm_all (EV_P) 476fd_rearm_all (EV_P)
346{ 477{
347 int fd; 478 int fd;
348 479
349 /* this should be highly optimised to not do anything but set a flag */ 480 /* this should be highly optimised to not do anything but set a flag */
350 for (fd = 0; fd < anfdmax; ++fd) 481 for (fd = 0; fd < anfdmax; ++fd)
351 if (anfds [fd].events) 482 if (anfds [fd].events)
352 { 483 {
353 anfds [fd].events = 0; 484 anfds [fd].events = 0;
354 fd_change (fd); 485 fd_change (EV_A_ fd);
355 } 486 }
356} 487}
357 488
358/*****************************************************************************/ 489/*****************************************************************************/
359 490
363 WT w = heap [k]; 494 WT w = heap [k];
364 495
365 while (k && heap [k >> 1]->at > w->at) 496 while (k && heap [k >> 1]->at > w->at)
366 { 497 {
367 heap [k] = heap [k >> 1]; 498 heap [k] = heap [k >> 1];
368 heap [k]->active = k + 1; 499 ((W)heap [k])->active = k + 1;
369 k >>= 1; 500 k >>= 1;
370 } 501 }
371 502
372 heap [k] = w; 503 heap [k] = w;
373 heap [k]->active = k + 1; 504 ((W)heap [k])->active = k + 1;
374 505
375} 506}
376 507
377static void 508static void
378downheap (WT *heap, int N, int k) 509downheap (WT *heap, int N, int k)
388 519
389 if (w->at <= heap [j]->at) 520 if (w->at <= heap [j]->at)
390 break; 521 break;
391 522
392 heap [k] = heap [j]; 523 heap [k] = heap [j];
393 heap [k]->active = k + 1; 524 ((W)heap [k])->active = k + 1;
394 k = j; 525 k = j;
395 } 526 }
396 527
397 heap [k] = w; 528 heap [k] = w;
398 heap [k]->active = k + 1; 529 ((W)heap [k])->active = k + 1;
530}
531
532inline void
533adjustheap (WT *heap, int N, int k, ev_tstamp at)
534{
535 ev_tstamp old_at = heap [k]->at;
536 heap [k]->at = at;
537
538 if (old_at < at)
539 downheap (heap, N, k);
540 else
541 upheap (heap, k);
399} 542}
400 543
401/*****************************************************************************/ 544/*****************************************************************************/
402 545
403typedef struct 546typedef struct
404{ 547{
405 struct ev_watcher_list *head; 548 WL head;
406 sig_atomic_t volatile gotsig; 549 sig_atomic_t volatile gotsig;
407} ANSIG; 550} ANSIG;
408 551
409static ANSIG *signals; 552static ANSIG *signals;
410static int signalmax; 553static int signalmax;
426} 569}
427 570
428static void 571static void
429sighandler (int signum) 572sighandler (int signum)
430{ 573{
574#if WIN32
575 signal (signum, sighandler);
576#endif
577
431 signals [signum - 1].gotsig = 1; 578 signals [signum - 1].gotsig = 1;
432 579
433 if (!gotsig) 580 if (!gotsig)
434 { 581 {
435 int old_errno = errno; 582 int old_errno = errno;
436 gotsig = 1; 583 gotsig = 1;
584#ifdef WIN32
585 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
586#else
437 write (sigpipe [1], &signum, 1); 587 write (sigpipe [1], &signum, 1);
588#endif
438 errno = old_errno; 589 errno = old_errno;
439 } 590 }
440} 591}
441 592
593void
594ev_feed_signal_event (EV_P_ int signum)
595{
596 WL w;
597
598#if EV_MULTIPLICITY
599 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
600#endif
601
602 --signum;
603
604 if (signum < 0 || signum >= signalmax)
605 return;
606
607 signals [signum].gotsig = 0;
608
609 for (w = signals [signum].head; w; w = w->next)
610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
611}
612
442static void 613static void
443sigcb (EV_P_ struct ev_io *iow, int revents) 614sigcb (EV_P_ struct ev_io *iow, int revents)
444{ 615{
445 struct ev_watcher_list *w;
446 int signum; 616 int signum;
447 617
618#ifdef WIN32
619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
620#else
448 read (sigpipe [0], &revents, 1); 621 read (sigpipe [0], &revents, 1);
622#endif
449 gotsig = 0; 623 gotsig = 0;
450 624
451 for (signum = signalmax; signum--; ) 625 for (signum = signalmax; signum--; )
452 if (signals [signum].gotsig) 626 if (signals [signum].gotsig)
453 { 627 ev_feed_signal_event (EV_A_ signum + 1);
454 signals [signum].gotsig = 0;
455
456 for (w = signals [signum].head; w; w = w->next)
457 event (EV_A_ (W)w, EV_SIGNAL);
458 }
459} 628}
460 629
461static void 630static void
462siginit (EV_P) 631siginit (EV_P)
463{ 632{
475 ev_unref (EV_A); /* child watcher should not keep loop alive */ 644 ev_unref (EV_A); /* child watcher should not keep loop alive */
476} 645}
477 646
478/*****************************************************************************/ 647/*****************************************************************************/
479 648
649static struct ev_child *childs [PID_HASHSIZE];
650
480#ifndef WIN32 651#ifndef WIN32
481 652
482static struct ev_child *childs [PID_HASHSIZE];
483static struct ev_signal childev; 653static struct ev_signal childev;
484 654
485#ifndef WCONTINUED 655#ifndef WCONTINUED
486# define WCONTINUED 0 656# define WCONTINUED 0
487#endif 657#endif
492 struct ev_child *w; 662 struct ev_child *w;
493 663
494 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 664 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
495 if (w->pid == pid || !w->pid) 665 if (w->pid == pid || !w->pid)
496 { 666 {
497 w->priority = sw->priority; /* need to do it *now* */ 667 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
498 w->rpid = pid; 668 w->rpid = pid;
499 w->rstatus = status; 669 w->rstatus = status;
500 event (EV_A_ (W)w, EV_CHILD); 670 ev_feed_event (EV_A_ (W)w, EV_CHILD);
501 } 671 }
502} 672}
503 673
504static void 674static void
505childcb (EV_P_ struct ev_signal *sw, int revents) 675childcb (EV_P_ struct ev_signal *sw, int revents)
507 int pid, status; 677 int pid, status;
508 678
509 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 679 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
510 { 680 {
511 /* make sure we are called again until all childs have been reaped */ 681 /* make sure we are called again until all childs have been reaped */
512 event (EV_A_ (W)sw, EV_SIGNAL); 682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
513 683
514 child_reap (EV_A_ sw, pid, pid, status); 684 child_reap (EV_A_ sw, pid, pid, status);
515 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 685 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
516 } 686 }
517} 687}
574 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 744 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
575 have_monotonic = 1; 745 have_monotonic = 1;
576 } 746 }
577#endif 747#endif
578 748
579 rt_now = ev_time (); 749 ev_rt_now = ev_time ();
580 mn_now = get_clock (); 750 mn_now = get_clock ();
581 now_floor = mn_now; 751 now_floor = mn_now;
582 rtmn_diff = rt_now - mn_now; 752 rtmn_diff = ev_rt_now - mn_now;
583 753
584 if (methods == EVMETHOD_AUTO) 754 if (methods == EVMETHOD_AUTO)
585 if (!enable_secure () && getenv ("LIBEV_METHODS")) 755 if (!enable_secure () && getenv ("LIBEV_METHODS"))
586 methods = atoi (getenv ("LIBEV_METHODS")); 756 methods = atoi (getenv ("LIBEV_METHODS"));
587 else 757 else
588 methods = EVMETHOD_ANY; 758 methods = EVMETHOD_ANY;
589 759
590 method = 0; 760 method = 0;
761#if EV_USE_WIN32
762 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
763#endif
591#if EV_USE_KQUEUE 764#if EV_USE_KQUEUE
592 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 765 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
593#endif 766#endif
594#if EV_USE_EPOLL 767#if EV_USE_EPOLL
595 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 768 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
598 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 771 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
599#endif 772#endif
600#if EV_USE_SELECT 773#if EV_USE_SELECT
601 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
602#endif 775#endif
776
777 ev_init (&sigev, sigcb);
778 ev_set_priority (&sigev, EV_MAXPRI);
603 } 779 }
604} 780}
605 781
606void 782void
607loop_destroy (EV_P) 783loop_destroy (EV_P)
608{ 784{
785 int i;
786
787#if EV_USE_WIN32
788 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
789#endif
609#if EV_USE_KQUEUE 790#if EV_USE_KQUEUE
610 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 791 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
611#endif 792#endif
612#if EV_USE_EPOLL 793#if EV_USE_EPOLL
613 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 794 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
617#endif 798#endif
618#if EV_USE_SELECT 799#if EV_USE_SELECT
619 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 800 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
620#endif 801#endif
621 802
803 for (i = NUMPRI; i--; )
804 array_free (pending, [i]);
805
806 /* have to use the microsoft-never-gets-it-right macro */
807 array_free_microshit (fdchange);
808 array_free_microshit (timer);
809 array_free_microshit (periodic);
810 array_free_microshit (idle);
811 array_free_microshit (prepare);
812 array_free_microshit (check);
813
622 method = 0; 814 method = 0;
623 /*TODO*/
624} 815}
625 816
626void 817static void
627loop_fork (EV_P) 818loop_fork (EV_P)
628{ 819{
629 /*TODO*/
630#if EV_USE_EPOLL 820#if EV_USE_EPOLL
631 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 821 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
632#endif 822#endif
633#if EV_USE_KQUEUE 823#if EV_USE_KQUEUE
634 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 824 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
635#endif 825#endif
826
827 if (ev_is_active (&sigev))
828 {
829 /* default loop */
830
831 ev_ref (EV_A);
832 ev_io_stop (EV_A_ &sigev);
833 close (sigpipe [0]);
834 close (sigpipe [1]);
835
836 while (pipe (sigpipe))
837 syserr ("(libev) error creating pipe");
838
839 siginit (EV_A);
840 }
841
842 postfork = 0;
636} 843}
637 844
638#if EV_MULTIPLICITY 845#if EV_MULTIPLICITY
639struct ev_loop * 846struct ev_loop *
640ev_loop_new (int methods) 847ev_loop_new (int methods)
641{ 848{
642 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 849 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
850
851 memset (loop, 0, sizeof (struct ev_loop));
643 852
644 loop_init (EV_A_ methods); 853 loop_init (EV_A_ methods);
645 854
646 if (ev_methods (EV_A)) 855 if (ev_method (EV_A))
647 return loop; 856 return loop;
648 857
649 return 0; 858 return 0;
650} 859}
651 860
652void 861void
653ev_loop_destroy (EV_P) 862ev_loop_destroy (EV_P)
654{ 863{
655 loop_destroy (EV_A); 864 loop_destroy (EV_A);
656 free (loop); 865 ev_free (loop);
657} 866}
658 867
659void 868void
660ev_loop_fork (EV_P) 869ev_loop_fork (EV_P)
661{ 870{
662 loop_fork (EV_A); 871 postfork = 1;
663} 872}
664 873
665#endif 874#endif
666 875
667#if EV_MULTIPLICITY 876#if EV_MULTIPLICITY
668struct ev_loop default_loop_struct;
669static struct ev_loop *default_loop;
670
671struct ev_loop * 877struct ev_loop *
672#else 878#else
673static int default_loop;
674
675int 879int
676#endif 880#endif
677ev_default_loop (int methods) 881ev_default_loop (int methods)
678{ 882{
679 if (sigpipe [0] == sigpipe [1]) 883 if (sigpipe [0] == sigpipe [1])
690 894
691 loop_init (EV_A_ methods); 895 loop_init (EV_A_ methods);
692 896
693 if (ev_method (EV_A)) 897 if (ev_method (EV_A))
694 { 898 {
695 ev_watcher_init (&sigev, sigcb);
696 ev_set_priority (&sigev, EV_MAXPRI);
697 siginit (EV_A); 899 siginit (EV_A);
698 900
699#ifndef WIN32 901#ifndef WIN32
700 ev_signal_init (&childev, childcb, SIGCHLD); 902 ev_signal_init (&childev, childcb, SIGCHLD);
701 ev_set_priority (&childev, EV_MAXPRI); 903 ev_set_priority (&childev, EV_MAXPRI);
715{ 917{
716#if EV_MULTIPLICITY 918#if EV_MULTIPLICITY
717 struct ev_loop *loop = default_loop; 919 struct ev_loop *loop = default_loop;
718#endif 920#endif
719 921
922#ifndef WIN32
720 ev_ref (EV_A); /* child watcher */ 923 ev_ref (EV_A); /* child watcher */
721 ev_signal_stop (EV_A_ &childev); 924 ev_signal_stop (EV_A_ &childev);
925#endif
722 926
723 ev_ref (EV_A); /* signal watcher */ 927 ev_ref (EV_A); /* signal watcher */
724 ev_io_stop (EV_A_ &sigev); 928 ev_io_stop (EV_A_ &sigev);
725 929
726 close (sigpipe [0]); sigpipe [0] = 0; 930 close (sigpipe [0]); sigpipe [0] = 0;
728 932
729 loop_destroy (EV_A); 933 loop_destroy (EV_A);
730} 934}
731 935
732void 936void
733ev_default_fork (EV_P) 937ev_default_fork (void)
734{ 938{
735 loop_fork (EV_A); 939#if EV_MULTIPLICITY
940 struct ev_loop *loop = default_loop;
941#endif
736 942
737 ev_io_stop (EV_A_ &sigev); 943 if (method)
738 close (sigpipe [0]); 944 postfork = 1;
739 close (sigpipe [1]);
740 pipe (sigpipe);
741
742 ev_ref (EV_A); /* signal watcher */
743 siginit (EV_A);
744} 945}
745 946
746/*****************************************************************************/ 947/*****************************************************************************/
948
949static int
950any_pending (EV_P)
951{
952 int pri;
953
954 for (pri = NUMPRI; pri--; )
955 if (pendingcnt [pri])
956 return 1;
957
958 return 0;
959}
747 960
748static void 961static void
749call_pending (EV_P) 962call_pending (EV_P)
750{ 963{
751 int pri; 964 int pri;
756 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 969 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
757 970
758 if (p->w) 971 if (p->w)
759 { 972 {
760 p->w->pending = 0; 973 p->w->pending = 0;
761 p->w->cb (EV_A_ p->w, p->events); 974 EV_CB_INVOKE (p->w, p->events);
762 } 975 }
763 } 976 }
764} 977}
765 978
766static void 979static void
767timers_reify (EV_P) 980timers_reify (EV_P)
768{ 981{
769 while (timercnt && timers [0]->at <= mn_now) 982 while (timercnt && ((WT)timers [0])->at <= mn_now)
770 { 983 {
771 struct ev_timer *w = timers [0]; 984 struct ev_timer *w = timers [0];
985
986 assert (("inactive timer on timer heap detected", ev_is_active (w)));
772 987
773 /* first reschedule or stop timer */ 988 /* first reschedule or stop timer */
774 if (w->repeat) 989 if (w->repeat)
775 { 990 {
776 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 991 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
777 w->at = mn_now + w->repeat; 992 ((WT)w)->at = mn_now + w->repeat;
778 downheap ((WT *)timers, timercnt, 0); 993 downheap ((WT *)timers, timercnt, 0);
779 } 994 }
780 else 995 else
781 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 996 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
782 997
783 event (EV_A_ (W)w, EV_TIMEOUT); 998 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
784 } 999 }
785} 1000}
786 1001
787static void 1002static void
788periodics_reify (EV_P) 1003periodics_reify (EV_P)
789{ 1004{
790 while (periodiccnt && periodics [0]->at <= rt_now) 1005 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
791 { 1006 {
792 struct ev_periodic *w = periodics [0]; 1007 struct ev_periodic *w = periodics [0];
793 1008
1009 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1010
794 /* first reschedule or stop timer */ 1011 /* first reschedule or stop timer */
795 if (w->interval) 1012 if (w->reschedule_cb)
796 { 1013 {
1014 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1015
1016 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1017 downheap ((WT *)periodics, periodiccnt, 0);
1018 }
1019 else if (w->interval)
1020 {
797 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1021 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
798 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1022 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
799 downheap ((WT *)periodics, periodiccnt, 0); 1023 downheap ((WT *)periodics, periodiccnt, 0);
800 } 1024 }
801 else 1025 else
802 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1026 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
803 1027
804 event (EV_A_ (W)w, EV_PERIODIC); 1028 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
805 } 1029 }
806} 1030}
807 1031
808static void 1032static void
809periodics_reschedule (EV_P) 1033periodics_reschedule (EV_P)
813 /* adjust periodics after time jump */ 1037 /* adjust periodics after time jump */
814 for (i = 0; i < periodiccnt; ++i) 1038 for (i = 0; i < periodiccnt; ++i)
815 { 1039 {
816 struct ev_periodic *w = periodics [i]; 1040 struct ev_periodic *w = periodics [i];
817 1041
1042 if (w->reschedule_cb)
1043 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
818 if (w->interval) 1044 else if (w->interval)
819 {
820 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1045 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
821
822 if (fabs (diff) >= 1e-4)
823 {
824 ev_periodic_stop (EV_A_ w);
825 ev_periodic_start (EV_A_ w);
826
827 i = 0; /* restart loop, inefficient, but time jumps should be rare */
828 }
829 }
830 } 1046 }
1047
1048 /* now rebuild the heap */
1049 for (i = periodiccnt >> 1; i--; )
1050 downheap ((WT *)periodics, periodiccnt, i);
831} 1051}
832 1052
833inline int 1053inline int
834time_update_monotonic (EV_P) 1054time_update_monotonic (EV_P)
835{ 1055{
836 mn_now = get_clock (); 1056 mn_now = get_clock ();
837 1057
838 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1058 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
839 { 1059 {
840 rt_now = rtmn_diff + mn_now; 1060 ev_rt_now = rtmn_diff + mn_now;
841 return 0; 1061 return 0;
842 } 1062 }
843 else 1063 else
844 { 1064 {
845 now_floor = mn_now; 1065 now_floor = mn_now;
846 rt_now = ev_time (); 1066 ev_rt_now = ev_time ();
847 return 1; 1067 return 1;
848 } 1068 }
849} 1069}
850 1070
851static void 1071static void
860 { 1080 {
861 ev_tstamp odiff = rtmn_diff; 1081 ev_tstamp odiff = rtmn_diff;
862 1082
863 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1083 for (i = 4; --i; ) /* loop a few times, before making important decisions */
864 { 1084 {
865 rtmn_diff = rt_now - mn_now; 1085 rtmn_diff = ev_rt_now - mn_now;
866 1086
867 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1087 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
868 return; /* all is well */ 1088 return; /* all is well */
869 1089
870 rt_now = ev_time (); 1090 ev_rt_now = ev_time ();
871 mn_now = get_clock (); 1091 mn_now = get_clock ();
872 now_floor = mn_now; 1092 now_floor = mn_now;
873 } 1093 }
874 1094
875 periodics_reschedule (EV_A); 1095 periodics_reschedule (EV_A);
878 } 1098 }
879 } 1099 }
880 else 1100 else
881#endif 1101#endif
882 { 1102 {
883 rt_now = ev_time (); 1103 ev_rt_now = ev_time ();
884 1104
885 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1105 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
886 { 1106 {
887 periodics_reschedule (EV_A); 1107 periodics_reschedule (EV_A);
888 1108
889 /* adjust timers. this is easy, as the offset is the same for all */ 1109 /* adjust timers. this is easy, as the offset is the same for all */
890 for (i = 0; i < timercnt; ++i) 1110 for (i = 0; i < timercnt; ++i)
891 timers [i]->at += rt_now - mn_now; 1111 ((WT)timers [i])->at += ev_rt_now - mn_now;
892 } 1112 }
893 1113
894 mn_now = rt_now; 1114 mn_now = ev_rt_now;
895 } 1115 }
896} 1116}
897 1117
898void 1118void
899ev_ref (EV_P) 1119ev_ref (EV_P)
922 { 1142 {
923 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1143 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
924 call_pending (EV_A); 1144 call_pending (EV_A);
925 } 1145 }
926 1146
1147 /* we might have forked, so reify kernel state if necessary */
1148 if (expect_false (postfork))
1149 loop_fork (EV_A);
1150
927 /* update fd-related kernel structures */ 1151 /* update fd-related kernel structures */
928 fd_reify (EV_A); 1152 fd_reify (EV_A);
929 1153
930 /* calculate blocking time */ 1154 /* calculate blocking time */
931 1155
932 /* we only need this for !monotonic clockor timers, but as we basically 1156 /* we only need this for !monotonic clock or timers, but as we basically
933 always have timers, we just calculate it always */ 1157 always have timers, we just calculate it always */
934#if EV_USE_MONOTONIC 1158#if EV_USE_MONOTONIC
935 if (expect_true (have_monotonic)) 1159 if (expect_true (have_monotonic))
936 time_update_monotonic (EV_A); 1160 time_update_monotonic (EV_A);
937 else 1161 else
938#endif 1162#endif
939 { 1163 {
940 rt_now = ev_time (); 1164 ev_rt_now = ev_time ();
941 mn_now = rt_now; 1165 mn_now = ev_rt_now;
942 } 1166 }
943 1167
944 if (flags & EVLOOP_NONBLOCK || idlecnt) 1168 if (flags & EVLOOP_NONBLOCK || idlecnt)
945 block = 0.; 1169 block = 0.;
946 else 1170 else
947 { 1171 {
948 block = MAX_BLOCKTIME; 1172 block = MAX_BLOCKTIME;
949 1173
950 if (timercnt) 1174 if (timercnt)
951 { 1175 {
952 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1176 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
953 if (block > to) block = to; 1177 if (block > to) block = to;
954 } 1178 }
955 1179
956 if (periodiccnt) 1180 if (periodiccnt)
957 { 1181 {
958 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1182 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
959 if (block > to) block = to; 1183 if (block > to) block = to;
960 } 1184 }
961 1185
962 if (block < 0.) block = 0.; 1186 if (block < 0.) block = 0.;
963 } 1187 }
964 1188
965 method_poll (EV_A_ block); 1189 method_poll (EV_A_ block);
966 1190
967 /* update rt_now, do magic */ 1191 /* update ev_rt_now, do magic */
968 time_update (EV_A); 1192 time_update (EV_A);
969 1193
970 /* queue pending timers and reschedule them */ 1194 /* queue pending timers and reschedule them */
971 timers_reify (EV_A); /* relative timers called last */ 1195 timers_reify (EV_A); /* relative timers called last */
972 periodics_reify (EV_A); /* absolute timers called first */ 1196 periodics_reify (EV_A); /* absolute timers called first */
973 1197
974 /* queue idle watchers unless io or timers are pending */ 1198 /* queue idle watchers unless io or timers are pending */
975 if (!pendingcnt) 1199 if (idlecnt && !any_pending (EV_A))
976 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1200 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
977 1201
978 /* queue check watchers, to be executed first */ 1202 /* queue check watchers, to be executed first */
979 if (checkcnt) 1203 if (checkcnt)
980 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1204 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1055 return; 1279 return;
1056 1280
1057 assert (("ev_io_start called with negative fd", fd >= 0)); 1281 assert (("ev_io_start called with negative fd", fd >= 0));
1058 1282
1059 ev_start (EV_A_ (W)w, 1); 1283 ev_start (EV_A_ (W)w, 1);
1060 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1284 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1061 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1285 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1062 1286
1063 fd_change (EV_A_ fd); 1287 fd_change (EV_A_ fd);
1064} 1288}
1065 1289
1068{ 1292{
1069 ev_clear_pending (EV_A_ (W)w); 1293 ev_clear_pending (EV_A_ (W)w);
1070 if (!ev_is_active (w)) 1294 if (!ev_is_active (w))
1071 return; 1295 return;
1072 1296
1297 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1298
1073 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1299 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1074 ev_stop (EV_A_ (W)w); 1300 ev_stop (EV_A_ (W)w);
1075 1301
1076 fd_change (EV_A_ w->fd); 1302 fd_change (EV_A_ w->fd);
1077} 1303}
1080ev_timer_start (EV_P_ struct ev_timer *w) 1306ev_timer_start (EV_P_ struct ev_timer *w)
1081{ 1307{
1082 if (ev_is_active (w)) 1308 if (ev_is_active (w))
1083 return; 1309 return;
1084 1310
1085 w->at += mn_now; 1311 ((WT)w)->at += mn_now;
1086 1312
1087 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1313 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1088 1314
1089 ev_start (EV_A_ (W)w, ++timercnt); 1315 ev_start (EV_A_ (W)w, ++timercnt);
1090 array_needsize (timers, timermax, timercnt, ); 1316 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1091 timers [timercnt - 1] = w; 1317 timers [timercnt - 1] = w;
1092 upheap ((WT *)timers, timercnt - 1); 1318 upheap ((WT *)timers, timercnt - 1);
1319
1320 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1093} 1321}
1094 1322
1095void 1323void
1096ev_timer_stop (EV_P_ struct ev_timer *w) 1324ev_timer_stop (EV_P_ struct ev_timer *w)
1097{ 1325{
1098 ev_clear_pending (EV_A_ (W)w); 1326 ev_clear_pending (EV_A_ (W)w);
1099 if (!ev_is_active (w)) 1327 if (!ev_is_active (w))
1100 return; 1328 return;
1101 1329
1330 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1331
1102 if (w->active < timercnt--) 1332 if (((W)w)->active < timercnt--)
1103 { 1333 {
1104 timers [w->active - 1] = timers [timercnt]; 1334 timers [((W)w)->active - 1] = timers [timercnt];
1105 downheap ((WT *)timers, timercnt, w->active - 1); 1335 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1106 } 1336 }
1107 1337
1108 w->at = w->repeat; 1338 ((WT)w)->at = w->repeat;
1109 1339
1110 ev_stop (EV_A_ (W)w); 1340 ev_stop (EV_A_ (W)w);
1111} 1341}
1112 1342
1113void 1343void
1114ev_timer_again (EV_P_ struct ev_timer *w) 1344ev_timer_again (EV_P_ struct ev_timer *w)
1115{ 1345{
1116 if (ev_is_active (w)) 1346 if (ev_is_active (w))
1117 { 1347 {
1118 if (w->repeat) 1348 if (w->repeat)
1119 {
1120 w->at = mn_now + w->repeat;
1121 downheap ((WT *)timers, timercnt, w->active - 1); 1349 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1122 }
1123 else 1350 else
1124 ev_timer_stop (EV_A_ w); 1351 ev_timer_stop (EV_A_ w);
1125 } 1352 }
1126 else if (w->repeat) 1353 else if (w->repeat)
1127 ev_timer_start (EV_A_ w); 1354 ev_timer_start (EV_A_ w);
1131ev_periodic_start (EV_P_ struct ev_periodic *w) 1358ev_periodic_start (EV_P_ struct ev_periodic *w)
1132{ 1359{
1133 if (ev_is_active (w)) 1360 if (ev_is_active (w))
1134 return; 1361 return;
1135 1362
1363 if (w->reschedule_cb)
1364 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1365 else if (w->interval)
1366 {
1136 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1367 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1137
1138 /* this formula differs from the one in periodic_reify because we do not always round up */ 1368 /* this formula differs from the one in periodic_reify because we do not always round up */
1139 if (w->interval)
1140 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1369 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1370 }
1141 1371
1142 ev_start (EV_A_ (W)w, ++periodiccnt); 1372 ev_start (EV_A_ (W)w, ++periodiccnt);
1143 array_needsize (periodics, periodicmax, periodiccnt, ); 1373 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1144 periodics [periodiccnt - 1] = w; 1374 periodics [periodiccnt - 1] = w;
1145 upheap ((WT *)periodics, periodiccnt - 1); 1375 upheap ((WT *)periodics, periodiccnt - 1);
1376
1377 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1146} 1378}
1147 1379
1148void 1380void
1149ev_periodic_stop (EV_P_ struct ev_periodic *w) 1381ev_periodic_stop (EV_P_ struct ev_periodic *w)
1150{ 1382{
1151 ev_clear_pending (EV_A_ (W)w); 1383 ev_clear_pending (EV_A_ (W)w);
1152 if (!ev_is_active (w)) 1384 if (!ev_is_active (w))
1153 return; 1385 return;
1154 1386
1387 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1388
1155 if (w->active < periodiccnt--) 1389 if (((W)w)->active < periodiccnt--)
1156 { 1390 {
1157 periodics [w->active - 1] = periodics [periodiccnt]; 1391 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1158 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1392 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1159 } 1393 }
1160 1394
1161 ev_stop (EV_A_ (W)w); 1395 ev_stop (EV_A_ (W)w);
1162} 1396}
1163 1397
1164void 1398void
1399ev_periodic_again (EV_P_ struct ev_periodic *w)
1400{
1401 /* TODO: use adjustheap and recalculation */
1402 ev_periodic_stop (EV_A_ w);
1403 ev_periodic_start (EV_A_ w);
1404}
1405
1406void
1165ev_idle_start (EV_P_ struct ev_idle *w) 1407ev_idle_start (EV_P_ struct ev_idle *w)
1166{ 1408{
1167 if (ev_is_active (w)) 1409 if (ev_is_active (w))
1168 return; 1410 return;
1169 1411
1170 ev_start (EV_A_ (W)w, ++idlecnt); 1412 ev_start (EV_A_ (W)w, ++idlecnt);
1171 array_needsize (idles, idlemax, idlecnt, ); 1413 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1172 idles [idlecnt - 1] = w; 1414 idles [idlecnt - 1] = w;
1173} 1415}
1174 1416
1175void 1417void
1176ev_idle_stop (EV_P_ struct ev_idle *w) 1418ev_idle_stop (EV_P_ struct ev_idle *w)
1177{ 1419{
1178 ev_clear_pending (EV_A_ (W)w); 1420 ev_clear_pending (EV_A_ (W)w);
1179 if (ev_is_active (w)) 1421 if (ev_is_active (w))
1180 return; 1422 return;
1181 1423
1182 idles [w->active - 1] = idles [--idlecnt]; 1424 idles [((W)w)->active - 1] = idles [--idlecnt];
1183 ev_stop (EV_A_ (W)w); 1425 ev_stop (EV_A_ (W)w);
1184} 1426}
1185 1427
1186void 1428void
1187ev_prepare_start (EV_P_ struct ev_prepare *w) 1429ev_prepare_start (EV_P_ struct ev_prepare *w)
1188{ 1430{
1189 if (ev_is_active (w)) 1431 if (ev_is_active (w))
1190 return; 1432 return;
1191 1433
1192 ev_start (EV_A_ (W)w, ++preparecnt); 1434 ev_start (EV_A_ (W)w, ++preparecnt);
1193 array_needsize (prepares, preparemax, preparecnt, ); 1435 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1194 prepares [preparecnt - 1] = w; 1436 prepares [preparecnt - 1] = w;
1195} 1437}
1196 1438
1197void 1439void
1198ev_prepare_stop (EV_P_ struct ev_prepare *w) 1440ev_prepare_stop (EV_P_ struct ev_prepare *w)
1199{ 1441{
1200 ev_clear_pending (EV_A_ (W)w); 1442 ev_clear_pending (EV_A_ (W)w);
1201 if (ev_is_active (w)) 1443 if (ev_is_active (w))
1202 return; 1444 return;
1203 1445
1204 prepares [w->active - 1] = prepares [--preparecnt]; 1446 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1205 ev_stop (EV_A_ (W)w); 1447 ev_stop (EV_A_ (W)w);
1206} 1448}
1207 1449
1208void 1450void
1209ev_check_start (EV_P_ struct ev_check *w) 1451ev_check_start (EV_P_ struct ev_check *w)
1210{ 1452{
1211 if (ev_is_active (w)) 1453 if (ev_is_active (w))
1212 return; 1454 return;
1213 1455
1214 ev_start (EV_A_ (W)w, ++checkcnt); 1456 ev_start (EV_A_ (W)w, ++checkcnt);
1215 array_needsize (checks, checkmax, checkcnt, ); 1457 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1216 checks [checkcnt - 1] = w; 1458 checks [checkcnt - 1] = w;
1217} 1459}
1218 1460
1219void 1461void
1220ev_check_stop (EV_P_ struct ev_check *w) 1462ev_check_stop (EV_P_ struct ev_check *w)
1221{ 1463{
1222 ev_clear_pending (EV_A_ (W)w); 1464 ev_clear_pending (EV_A_ (W)w);
1223 if (ev_is_active (w)) 1465 if (ev_is_active (w))
1224 return; 1466 return;
1225 1467
1226 checks [w->active - 1] = checks [--checkcnt]; 1468 checks [((W)w)->active - 1] = checks [--checkcnt];
1227 ev_stop (EV_A_ (W)w); 1469 ev_stop (EV_A_ (W)w);
1228} 1470}
1229 1471
1230#ifndef SA_RESTART 1472#ifndef SA_RESTART
1231# define SA_RESTART 0 1473# define SA_RESTART 0
1241 return; 1483 return;
1242 1484
1243 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1485 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1244 1486
1245 ev_start (EV_A_ (W)w, 1); 1487 ev_start (EV_A_ (W)w, 1);
1246 array_needsize (signals, signalmax, w->signum, signals_init); 1488 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1247 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1489 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1248 1490
1249 if (!w->next) 1491 if (!((WL)w)->next)
1250 { 1492 {
1493#if WIN32
1494 signal (w->signum, sighandler);
1495#else
1251 struct sigaction sa; 1496 struct sigaction sa;
1252 sa.sa_handler = sighandler; 1497 sa.sa_handler = sighandler;
1253 sigfillset (&sa.sa_mask); 1498 sigfillset (&sa.sa_mask);
1254 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1499 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1255 sigaction (w->signum, &sa, 0); 1500 sigaction (w->signum, &sa, 0);
1501#endif
1256 } 1502 }
1257} 1503}
1258 1504
1259void 1505void
1260ev_signal_stop (EV_P_ struct ev_signal *w) 1506ev_signal_stop (EV_P_ struct ev_signal *w)
1310 void (*cb)(int revents, void *arg) = once->cb; 1556 void (*cb)(int revents, void *arg) = once->cb;
1311 void *arg = once->arg; 1557 void *arg = once->arg;
1312 1558
1313 ev_io_stop (EV_A_ &once->io); 1559 ev_io_stop (EV_A_ &once->io);
1314 ev_timer_stop (EV_A_ &once->to); 1560 ev_timer_stop (EV_A_ &once->to);
1315 free (once); 1561 ev_free (once);
1316 1562
1317 cb (revents, arg); 1563 cb (revents, arg);
1318} 1564}
1319 1565
1320static void 1566static void
1330} 1576}
1331 1577
1332void 1578void
1333ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1579ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1334{ 1580{
1335 struct ev_once *once = malloc (sizeof (struct ev_once)); 1581 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1336 1582
1337 if (!once) 1583 if (!once)
1338 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1584 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1339 else 1585 else
1340 { 1586 {
1341 once->cb = cb; 1587 once->cb = cb;
1342 once->arg = arg; 1588 once->arg = arg;
1343 1589
1344 ev_watcher_init (&once->io, once_cb_io); 1590 ev_init (&once->io, once_cb_io);
1345 if (fd >= 0) 1591 if (fd >= 0)
1346 { 1592 {
1347 ev_io_set (&once->io, fd, events); 1593 ev_io_set (&once->io, fd, events);
1348 ev_io_start (EV_A_ &once->io); 1594 ev_io_start (EV_A_ &once->io);
1349 } 1595 }
1350 1596
1351 ev_watcher_init (&once->to, once_cb_to); 1597 ev_init (&once->to, once_cb_to);
1352 if (timeout >= 0.) 1598 if (timeout >= 0.)
1353 { 1599 {
1354 ev_timer_set (&once->to, timeout, 0.); 1600 ev_timer_set (&once->to, timeout, 0.);
1355 ev_timer_start (EV_A_ &once->to); 1601 ev_timer_start (EV_A_ &once->to);
1356 } 1602 }
1357 } 1603 }
1358} 1604}
1359 1605
1606#ifdef __cplusplus
1607}
1608#endif
1609

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines