ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.65 by root, Sun Nov 4 23:29:48 2007 UTC vs.
Revision 1.89 by root, Sat Nov 10 19:48:44 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1 40# define EV_USE_MONOTONIC 1
46 51
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 53# define EV_USE_EPOLL 1
49# endif 54# endif
50 55
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 56# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 57# define EV_USE_KQUEUE 1
53# endif 58# endif
54 59
55#endif 60#endif
56 61
57#include <math.h> 62#include <math.h>
58#include <stdlib.h> 63#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 64#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 65#include <stddef.h>
63 66
64#include <stdio.h> 67#include <stdio.h>
65 68
66#include <assert.h> 69#include <assert.h>
67#include <errno.h> 70#include <errno.h>
68#include <sys/types.h> 71#include <sys/types.h>
72#include <time.h>
73
74#include <signal.h>
75
69#ifndef WIN32 76#ifndef WIN32
77# include <unistd.h>
78# include <sys/time.h>
70# include <sys/wait.h> 79# include <sys/wait.h>
71#endif 80#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 81/**/
76 82
77#ifndef EV_USE_MONOTONIC 83#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 84# define EV_USE_MONOTONIC 1
79#endif 85#endif
94# define EV_USE_KQUEUE 0 100# define EV_USE_KQUEUE 0
95#endif 101#endif
96 102
97#ifndef EV_USE_WIN32 103#ifndef EV_USE_WIN32
98# ifdef WIN32 104# ifdef WIN32
105# define EV_USE_WIN32 0 /* it does not exist, use select */
106# undef EV_USE_SELECT
99# define EV_USE_WIN32 1 107# define EV_USE_SELECT 1
100# else 108# else
101# define EV_USE_WIN32 0 109# define EV_USE_WIN32 0
102# endif 110# endif
103#endif 111#endif
104 112
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 135
136#ifdef EV_H
137# include EV_H
138#else
128#include "ev.h" 139# include "ev.h"
140#endif
129 141
130#if __GNUC__ >= 3 142#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 143# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 144# define inline inline
133#else 145#else
145typedef struct ev_watcher_list *WL; 157typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 158typedef struct ev_watcher_time *WT;
147 159
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 160static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 161
162#include "ev_win32.c"
163
150/*****************************************************************************/ 164/*****************************************************************************/
151 165
166static void (*syserr_cb)(const char *msg);
167
168void ev_set_syserr_cb (void (*cb)(const char *msg))
169{
170 syserr_cb = cb;
171}
172
173static void
174syserr (const char *msg)
175{
176 if (!msg)
177 msg = "(libev) system error";
178
179 if (syserr_cb)
180 syserr_cb (msg);
181 else
182 {
183 perror (msg);
184 abort ();
185 }
186}
187
188static void *(*alloc)(void *ptr, long size);
189
190void ev_set_allocator (void *(*cb)(void *ptr, long size))
191{
192 alloc = cb;
193}
194
195static void *
196ev_realloc (void *ptr, long size)
197{
198 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
199
200 if (!ptr && size)
201 {
202 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
203 abort ();
204 }
205
206 return ptr;
207}
208
209#define ev_malloc(size) ev_realloc (0, (size))
210#define ev_free(ptr) ev_realloc ((ptr), 0)
211
212/*****************************************************************************/
213
152typedef struct 214typedef struct
153{ 215{
154 struct ev_watcher_list *head; 216 WL head;
155 unsigned char events; 217 unsigned char events;
156 unsigned char reify; 218 unsigned char reify;
157} ANFD; 219} ANFD;
158 220
159typedef struct 221typedef struct
162 int events; 224 int events;
163} ANPENDING; 225} ANPENDING;
164 226
165#if EV_MULTIPLICITY 227#if EV_MULTIPLICITY
166 228
167struct ev_loop 229 struct ev_loop
168{ 230 {
231 ev_tstamp ev_rt_now;
169# define VAR(name,decl) decl; 232 #define VAR(name,decl) decl;
170# include "ev_vars.h" 233 #include "ev_vars.h"
171};
172# undef VAR 234 #undef VAR
235 };
173# include "ev_wrap.h" 236 #include "ev_wrap.h"
237
238 struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop;
174 240
175#else 241#else
176 242
243 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 244 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 245 #include "ev_vars.h"
179# undef VAR 246 #undef VAR
247
248 static int default_loop;
180 249
181#endif 250#endif
182 251
183/*****************************************************************************/ 252/*****************************************************************************/
184 253
209#endif 278#endif
210 279
211 return ev_time (); 280 return ev_time ();
212} 281}
213 282
283#if EV_MULTIPLICITY
214ev_tstamp 284ev_tstamp
215ev_now (EV_P) 285ev_now (EV_P)
216{ 286{
217 return rt_now; 287 return ev_rt_now;
218} 288}
289#endif
219 290
220#define array_roundsize(base,n) ((n) | 4 & ~3) 291#define array_roundsize(type,n) ((n) | 4 & ~3)
221 292
222#define array_needsize(base,cur,cnt,init) \ 293#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 294 if (expect_false ((cnt) > cur)) \
224 { \ 295 { \
225 int newcnt = cur; \ 296 int newcnt = cur; \
226 do \ 297 do \
227 { \ 298 { \
228 newcnt = array_roundsize (base, newcnt << 1); \ 299 newcnt = array_roundsize (type, newcnt << 1); \
229 } \ 300 } \
230 while ((cnt) > newcnt); \ 301 while ((cnt) > newcnt); \
231 \ 302 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 303 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
233 init (base + cur, newcnt - cur); \ 304 init (base + cur, newcnt - cur); \
234 cur = newcnt; \ 305 cur = newcnt; \
235 } 306 }
307
308#define array_slim(type,stem) \
309 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
310 { \
311 stem ## max = array_roundsize (stem ## cnt >> 1); \
312 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
313 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
314 }
315
316/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
317/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
318#define array_free_microshit(stem) \
319 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
236 320
237#define array_free(stem, idx) \ 321#define array_free(stem, idx) \
238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 322 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
239 323
240/*****************************************************************************/ 324/*****************************************************************************/
241 325
242static void 326static void
243anfds_init (ANFD *base, int count) 327anfds_init (ANFD *base, int count)
250 334
251 ++base; 335 ++base;
252 } 336 }
253} 337}
254 338
255static void 339void
256event (EV_P_ W w, int events) 340ev_feed_event (EV_P_ void *w, int revents)
257{ 341{
342 W w_ = (W)w;
343
258 if (w->pending) 344 if (w_->pending)
259 { 345 {
260 pendings [ABSPRI (w)][w->pending - 1].events |= events; 346 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
261 return; 347 return;
262 } 348 }
263 349
264 w->pending = ++pendingcnt [ABSPRI (w)]; 350 w_->pending = ++pendingcnt [ABSPRI (w_)];
265 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 351 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
266 pendings [ABSPRI (w)][w->pending - 1].w = w; 352 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
267 pendings [ABSPRI (w)][w->pending - 1].events = events; 353 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
268} 354}
269 355
270static void 356static void
271queue_events (EV_P_ W *events, int eventcnt, int type) 357queue_events (EV_P_ W *events, int eventcnt, int type)
272{ 358{
273 int i; 359 int i;
274 360
275 for (i = 0; i < eventcnt; ++i) 361 for (i = 0; i < eventcnt; ++i)
276 event (EV_A_ events [i], type); 362 ev_feed_event (EV_A_ events [i], type);
277} 363}
278 364
279static void 365inline void
280fd_event (EV_P_ int fd, int events) 366fd_event (EV_P_ int fd, int revents)
281{ 367{
282 ANFD *anfd = anfds + fd; 368 ANFD *anfd = anfds + fd;
283 struct ev_io *w; 369 struct ev_io *w;
284 370
285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
286 { 372 {
287 int ev = w->events & events; 373 int ev = w->events & revents;
288 374
289 if (ev) 375 if (ev)
290 event (EV_A_ (W)w, ev); 376 ev_feed_event (EV_A_ (W)w, ev);
291 } 377 }
378}
379
380void
381ev_feed_fd_event (EV_P_ int fd, int revents)
382{
383 fd_event (EV_A_ fd, revents);
292} 384}
293 385
294/*****************************************************************************/ 386/*****************************************************************************/
295 387
296static void 388static void
319} 411}
320 412
321static void 413static void
322fd_change (EV_P_ int fd) 414fd_change (EV_P_ int fd)
323{ 415{
324 if (anfds [fd].reify || fdchangecnt < 0) 416 if (anfds [fd].reify)
325 return; 417 return;
326 418
327 anfds [fd].reify = 1; 419 anfds [fd].reify = 1;
328 420
329 ++fdchangecnt; 421 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 422 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
331 fdchanges [fdchangecnt - 1] = fd; 423 fdchanges [fdchangecnt - 1] = fd;
332} 424}
333 425
334static void 426static void
335fd_kill (EV_P_ int fd) 427fd_kill (EV_P_ int fd)
337 struct ev_io *w; 429 struct ev_io *w;
338 430
339 while ((w = (struct ev_io *)anfds [fd].head)) 431 while ((w = (struct ev_io *)anfds [fd].head))
340 { 432 {
341 ev_io_stop (EV_A_ w); 433 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 434 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 435 }
436}
437
438static int
439fd_valid (int fd)
440{
441#ifdef WIN32
442 return !!win32_get_osfhandle (fd);
443#else
444 return fcntl (fd, F_GETFD) != -1;
445#endif
344} 446}
345 447
346/* called on EBADF to verify fds */ 448/* called on EBADF to verify fds */
347static void 449static void
348fd_ebadf (EV_P) 450fd_ebadf (EV_P)
349{ 451{
350 int fd; 452 int fd;
351 453
352 for (fd = 0; fd < anfdmax; ++fd) 454 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 455 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 456 if (!fd_valid (fd) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd); 457 fd_kill (EV_A_ fd);
356} 458}
357 459
358/* called on ENOMEM in select/poll to kill some fds and retry */ 460/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 461static void
362 int fd; 464 int fd;
363 465
364 for (fd = anfdmax; fd--; ) 466 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 467 if (anfds [fd].events)
366 { 468 {
367 close (fd);
368 fd_kill (EV_A_ fd); 469 fd_kill (EV_A_ fd);
369 return; 470 return;
370 } 471 }
371} 472}
372 473
373/* susually called after fork if method needs to re-arm all fds from scratch */ 474/* usually called after fork if method needs to re-arm all fds from scratch */
374static void 475static void
375fd_rearm_all (EV_P) 476fd_rearm_all (EV_P)
376{ 477{
377 int fd; 478 int fd;
378 479
426 527
427 heap [k] = w; 528 heap [k] = w;
428 ((W)heap [k])->active = k + 1; 529 ((W)heap [k])->active = k + 1;
429} 530}
430 531
532inline void
533adjustheap (WT *heap, int N, int k, ev_tstamp at)
534{
535 ev_tstamp old_at = heap [k]->at;
536 heap [k]->at = at;
537
538 if (old_at < at)
539 downheap (heap, N, k);
540 else
541 upheap (heap, k);
542}
543
431/*****************************************************************************/ 544/*****************************************************************************/
432 545
433typedef struct 546typedef struct
434{ 547{
435 struct ev_watcher_list *head; 548 WL head;
436 sig_atomic_t volatile gotsig; 549 sig_atomic_t volatile gotsig;
437} ANSIG; 550} ANSIG;
438 551
439static ANSIG *signals; 552static ANSIG *signals;
440static int signalmax; 553static int signalmax;
456} 569}
457 570
458static void 571static void
459sighandler (int signum) 572sighandler (int signum)
460{ 573{
574#if WIN32
575 signal (signum, sighandler);
576#endif
577
461 signals [signum - 1].gotsig = 1; 578 signals [signum - 1].gotsig = 1;
462 579
463 if (!gotsig) 580 if (!gotsig)
464 { 581 {
465 int old_errno = errno; 582 int old_errno = errno;
466 gotsig = 1; 583 gotsig = 1;
584#ifdef WIN32
585 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
586#else
467 write (sigpipe [1], &signum, 1); 587 write (sigpipe [1], &signum, 1);
588#endif
468 errno = old_errno; 589 errno = old_errno;
469 } 590 }
470} 591}
471 592
593void
594ev_feed_signal_event (EV_P_ int signum)
595{
596 WL w;
597
598#if EV_MULTIPLICITY
599 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
600#endif
601
602 --signum;
603
604 if (signum < 0 || signum >= signalmax)
605 return;
606
607 signals [signum].gotsig = 0;
608
609 for (w = signals [signum].head; w; w = w->next)
610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
611}
612
472static void 613static void
473sigcb (EV_P_ struct ev_io *iow, int revents) 614sigcb (EV_P_ struct ev_io *iow, int revents)
474{ 615{
475 struct ev_watcher_list *w;
476 int signum; 616 int signum;
477 617
618#ifdef WIN32
619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
620#else
478 read (sigpipe [0], &revents, 1); 621 read (sigpipe [0], &revents, 1);
622#endif
479 gotsig = 0; 623 gotsig = 0;
480 624
481 for (signum = signalmax; signum--; ) 625 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig) 626 if (signals [signum].gotsig)
483 { 627 ev_feed_signal_event (EV_A_ signum + 1);
484 signals [signum].gotsig = 0;
485
486 for (w = signals [signum].head; w; w = w->next)
487 event (EV_A_ (W)w, EV_SIGNAL);
488 }
489} 628}
490 629
491static void 630static void
492siginit (EV_P) 631siginit (EV_P)
493{ 632{
505 ev_unref (EV_A); /* child watcher should not keep loop alive */ 644 ev_unref (EV_A); /* child watcher should not keep loop alive */
506} 645}
507 646
508/*****************************************************************************/ 647/*****************************************************************************/
509 648
649static struct ev_child *childs [PID_HASHSIZE];
650
510#ifndef WIN32 651#ifndef WIN32
511 652
512static struct ev_child *childs [PID_HASHSIZE];
513static struct ev_signal childev; 653static struct ev_signal childev;
514 654
515#ifndef WCONTINUED 655#ifndef WCONTINUED
516# define WCONTINUED 0 656# define WCONTINUED 0
517#endif 657#endif
525 if (w->pid == pid || !w->pid) 665 if (w->pid == pid || !w->pid)
526 { 666 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 667 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid; 668 w->rpid = pid;
529 w->rstatus = status; 669 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD); 670 ev_feed_event (EV_A_ (W)w, EV_CHILD);
531 } 671 }
532} 672}
533 673
534static void 674static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 675childcb (EV_P_ struct ev_signal *sw, int revents)
537 int pid, status; 677 int pid, status;
538 678
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 679 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 680 {
541 /* make sure we are called again until all childs have been reaped */ 681 /* make sure we are called again until all childs have been reaped */
542 event (EV_A_ (W)sw, EV_SIGNAL); 682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 683
544 child_reap (EV_A_ sw, pid, pid, status); 684 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 685 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 } 686 }
547} 687}
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 744 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605 have_monotonic = 1; 745 have_monotonic = 1;
606 } 746 }
607#endif 747#endif
608 748
609 rt_now = ev_time (); 749 ev_rt_now = ev_time ();
610 mn_now = get_clock (); 750 mn_now = get_clock ();
611 now_floor = mn_now; 751 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now; 752 rtmn_diff = ev_rt_now - mn_now;
613 753
614 if (methods == EVMETHOD_AUTO) 754 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBEV_METHODS")) 755 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS")); 756 methods = atoi (getenv ("LIBEV_METHODS"));
617 else 757 else
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 771 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632#endif 772#endif
633#if EV_USE_SELECT 773#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635#endif 775#endif
776
777 ev_init (&sigev, sigcb);
778 ev_set_priority (&sigev, EV_MAXPRI);
636 } 779 }
637} 780}
638 781
639void 782void
640loop_destroy (EV_P) 783loop_destroy (EV_P)
658#endif 801#endif
659 802
660 for (i = NUMPRI; i--; ) 803 for (i = NUMPRI; i--; )
661 array_free (pending, [i]); 804 array_free (pending, [i]);
662 805
806 /* have to use the microsoft-never-gets-it-right macro */
663 array_free (fdchange, ); 807 array_free_microshit (fdchange);
664 array_free (timer, ); 808 array_free_microshit (timer);
665 array_free (periodic, ); 809 array_free_microshit (periodic);
666 array_free (idle, ); 810 array_free_microshit (idle);
667 array_free (prepare, ); 811 array_free_microshit (prepare);
668 array_free (check, ); 812 array_free_microshit (check);
669 813
670 method = 0; 814 method = 0;
671 /*TODO*/
672} 815}
673 816
674void 817static void
675loop_fork (EV_P) 818loop_fork (EV_P)
676{ 819{
677 /*TODO*/
678#if EV_USE_EPOLL 820#if EV_USE_EPOLL
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 821 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
680#endif 822#endif
681#if EV_USE_KQUEUE 823#if EV_USE_KQUEUE
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 824 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
683#endif 825#endif
826
827 if (ev_is_active (&sigev))
828 {
829 /* default loop */
830
831 ev_ref (EV_A);
832 ev_io_stop (EV_A_ &sigev);
833 close (sigpipe [0]);
834 close (sigpipe [1]);
835
836 while (pipe (sigpipe))
837 syserr ("(libev) error creating pipe");
838
839 siginit (EV_A);
840 }
841
842 postfork = 0;
684} 843}
685 844
686#if EV_MULTIPLICITY 845#if EV_MULTIPLICITY
687struct ev_loop * 846struct ev_loop *
688ev_loop_new (int methods) 847ev_loop_new (int methods)
689{ 848{
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 849 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
850
851 memset (loop, 0, sizeof (struct ev_loop));
691 852
692 loop_init (EV_A_ methods); 853 loop_init (EV_A_ methods);
693 854
694 if (ev_method (EV_A)) 855 if (ev_method (EV_A))
695 return loop; 856 return loop;
699 860
700void 861void
701ev_loop_destroy (EV_P) 862ev_loop_destroy (EV_P)
702{ 863{
703 loop_destroy (EV_A); 864 loop_destroy (EV_A);
704 free (loop); 865 ev_free (loop);
705} 866}
706 867
707void 868void
708ev_loop_fork (EV_P) 869ev_loop_fork (EV_P)
709{ 870{
710 loop_fork (EV_A); 871 postfork = 1;
711} 872}
712 873
713#endif 874#endif
714 875
715#if EV_MULTIPLICITY 876#if EV_MULTIPLICITY
716struct ev_loop default_loop_struct;
717static struct ev_loop *default_loop;
718
719struct ev_loop * 877struct ev_loop *
720#else 878#else
721static int default_loop;
722
723int 879int
724#endif 880#endif
725ev_default_loop (int methods) 881ev_default_loop (int methods)
726{ 882{
727 if (sigpipe [0] == sigpipe [1]) 883 if (sigpipe [0] == sigpipe [1])
738 894
739 loop_init (EV_A_ methods); 895 loop_init (EV_A_ methods);
740 896
741 if (ev_method (EV_A)) 897 if (ev_method (EV_A))
742 { 898 {
743 ev_watcher_init (&sigev, sigcb);
744 ev_set_priority (&sigev, EV_MAXPRI);
745 siginit (EV_A); 899 siginit (EV_A);
746 900
747#ifndef WIN32 901#ifndef WIN32
748 ev_signal_init (&childev, childcb, SIGCHLD); 902 ev_signal_init (&childev, childcb, SIGCHLD);
749 ev_set_priority (&childev, EV_MAXPRI); 903 ev_set_priority (&childev, EV_MAXPRI);
763{ 917{
764#if EV_MULTIPLICITY 918#if EV_MULTIPLICITY
765 struct ev_loop *loop = default_loop; 919 struct ev_loop *loop = default_loop;
766#endif 920#endif
767 921
922#ifndef WIN32
768 ev_ref (EV_A); /* child watcher */ 923 ev_ref (EV_A); /* child watcher */
769 ev_signal_stop (EV_A_ &childev); 924 ev_signal_stop (EV_A_ &childev);
925#endif
770 926
771 ev_ref (EV_A); /* signal watcher */ 927 ev_ref (EV_A); /* signal watcher */
772 ev_io_stop (EV_A_ &sigev); 928 ev_io_stop (EV_A_ &sigev);
773 929
774 close (sigpipe [0]); sigpipe [0] = 0; 930 close (sigpipe [0]); sigpipe [0] = 0;
782{ 938{
783#if EV_MULTIPLICITY 939#if EV_MULTIPLICITY
784 struct ev_loop *loop = default_loop; 940 struct ev_loop *loop = default_loop;
785#endif 941#endif
786 942
787 loop_fork (EV_A); 943 if (method)
788 944 postfork = 1;
789 ev_io_stop (EV_A_ &sigev);
790 close (sigpipe [0]);
791 close (sigpipe [1]);
792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
795 siginit (EV_A);
796} 945}
797 946
798/*****************************************************************************/ 947/*****************************************************************************/
948
949static int
950any_pending (EV_P)
951{
952 int pri;
953
954 for (pri = NUMPRI; pri--; )
955 if (pendingcnt [pri])
956 return 1;
957
958 return 0;
959}
799 960
800static void 961static void
801call_pending (EV_P) 962call_pending (EV_P)
802{ 963{
803 int pri; 964 int pri;
808 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 969 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
809 970
810 if (p->w) 971 if (p->w)
811 { 972 {
812 p->w->pending = 0; 973 p->w->pending = 0;
813 974 EV_CB_INVOKE (p->w, p->events);
814 ((void (*)(EV_P_ W, int))p->w->cb) (EV_A_ p->w, p->events);
815 } 975 }
816 } 976 }
817} 977}
818 978
819static void 979static void
833 downheap ((WT *)timers, timercnt, 0); 993 downheap ((WT *)timers, timercnt, 0);
834 } 994 }
835 else 995 else
836 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 996 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
837 997
838 event (EV_A_ (W)w, EV_TIMEOUT); 998 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
839 } 999 }
840} 1000}
841 1001
842static void 1002static void
843periodics_reify (EV_P) 1003periodics_reify (EV_P)
844{ 1004{
845 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1005 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
846 { 1006 {
847 struct ev_periodic *w = periodics [0]; 1007 struct ev_periodic *w = periodics [0];
848 1008
849 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1009 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
850 1010
851 /* first reschedule or stop timer */ 1011 /* first reschedule or stop timer */
852 if (w->interval) 1012 if (w->reschedule_cb)
853 { 1013 {
1014 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1015
1016 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1017 downheap ((WT *)periodics, periodiccnt, 0);
1018 }
1019 else if (w->interval)
1020 {
854 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1021 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
855 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1022 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
856 downheap ((WT *)periodics, periodiccnt, 0); 1023 downheap ((WT *)periodics, periodiccnt, 0);
857 } 1024 }
858 else 1025 else
859 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1026 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
860 1027
861 event (EV_A_ (W)w, EV_PERIODIC); 1028 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
862 } 1029 }
863} 1030}
864 1031
865static void 1032static void
866periodics_reschedule (EV_P) 1033periodics_reschedule (EV_P)
870 /* adjust periodics after time jump */ 1037 /* adjust periodics after time jump */
871 for (i = 0; i < periodiccnt; ++i) 1038 for (i = 0; i < periodiccnt; ++i)
872 { 1039 {
873 struct ev_periodic *w = periodics [i]; 1040 struct ev_periodic *w = periodics [i];
874 1041
1042 if (w->reschedule_cb)
1043 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
875 if (w->interval) 1044 else if (w->interval)
876 {
877 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1045 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
878
879 if (fabs (diff) >= 1e-4)
880 {
881 ev_periodic_stop (EV_A_ w);
882 ev_periodic_start (EV_A_ w);
883
884 i = 0; /* restart loop, inefficient, but time jumps should be rare */
885 }
886 }
887 } 1046 }
1047
1048 /* now rebuild the heap */
1049 for (i = periodiccnt >> 1; i--; )
1050 downheap ((WT *)periodics, periodiccnt, i);
888} 1051}
889 1052
890inline int 1053inline int
891time_update_monotonic (EV_P) 1054time_update_monotonic (EV_P)
892{ 1055{
893 mn_now = get_clock (); 1056 mn_now = get_clock ();
894 1057
895 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1058 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
896 { 1059 {
897 rt_now = rtmn_diff + mn_now; 1060 ev_rt_now = rtmn_diff + mn_now;
898 return 0; 1061 return 0;
899 } 1062 }
900 else 1063 else
901 { 1064 {
902 now_floor = mn_now; 1065 now_floor = mn_now;
903 rt_now = ev_time (); 1066 ev_rt_now = ev_time ();
904 return 1; 1067 return 1;
905 } 1068 }
906} 1069}
907 1070
908static void 1071static void
917 { 1080 {
918 ev_tstamp odiff = rtmn_diff; 1081 ev_tstamp odiff = rtmn_diff;
919 1082
920 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1083 for (i = 4; --i; ) /* loop a few times, before making important decisions */
921 { 1084 {
922 rtmn_diff = rt_now - mn_now; 1085 rtmn_diff = ev_rt_now - mn_now;
923 1086
924 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1087 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
925 return; /* all is well */ 1088 return; /* all is well */
926 1089
927 rt_now = ev_time (); 1090 ev_rt_now = ev_time ();
928 mn_now = get_clock (); 1091 mn_now = get_clock ();
929 now_floor = mn_now; 1092 now_floor = mn_now;
930 } 1093 }
931 1094
932 periodics_reschedule (EV_A); 1095 periodics_reschedule (EV_A);
935 } 1098 }
936 } 1099 }
937 else 1100 else
938#endif 1101#endif
939 { 1102 {
940 rt_now = ev_time (); 1103 ev_rt_now = ev_time ();
941 1104
942 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1105 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
943 { 1106 {
944 periodics_reschedule (EV_A); 1107 periodics_reschedule (EV_A);
945 1108
946 /* adjust timers. this is easy, as the offset is the same for all */ 1109 /* adjust timers. this is easy, as the offset is the same for all */
947 for (i = 0; i < timercnt; ++i) 1110 for (i = 0; i < timercnt; ++i)
948 ((WT)timers [i])->at += rt_now - mn_now; 1111 ((WT)timers [i])->at += ev_rt_now - mn_now;
949 } 1112 }
950 1113
951 mn_now = rt_now; 1114 mn_now = ev_rt_now;
952 } 1115 }
953} 1116}
954 1117
955void 1118void
956ev_ref (EV_P) 1119ev_ref (EV_P)
979 { 1142 {
980 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1143 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
981 call_pending (EV_A); 1144 call_pending (EV_A);
982 } 1145 }
983 1146
1147 /* we might have forked, so reify kernel state if necessary */
1148 if (expect_false (postfork))
1149 loop_fork (EV_A);
1150
984 /* update fd-related kernel structures */ 1151 /* update fd-related kernel structures */
985 fd_reify (EV_A); 1152 fd_reify (EV_A);
986 1153
987 /* calculate blocking time */ 1154 /* calculate blocking time */
988 1155
989 /* we only need this for !monotonic clockor timers, but as we basically 1156 /* we only need this for !monotonic clock or timers, but as we basically
990 always have timers, we just calculate it always */ 1157 always have timers, we just calculate it always */
991#if EV_USE_MONOTONIC 1158#if EV_USE_MONOTONIC
992 if (expect_true (have_monotonic)) 1159 if (expect_true (have_monotonic))
993 time_update_monotonic (EV_A); 1160 time_update_monotonic (EV_A);
994 else 1161 else
995#endif 1162#endif
996 { 1163 {
997 rt_now = ev_time (); 1164 ev_rt_now = ev_time ();
998 mn_now = rt_now; 1165 mn_now = ev_rt_now;
999 } 1166 }
1000 1167
1001 if (flags & EVLOOP_NONBLOCK || idlecnt) 1168 if (flags & EVLOOP_NONBLOCK || idlecnt)
1002 block = 0.; 1169 block = 0.;
1003 else 1170 else
1010 if (block > to) block = to; 1177 if (block > to) block = to;
1011 } 1178 }
1012 1179
1013 if (periodiccnt) 1180 if (periodiccnt)
1014 { 1181 {
1015 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1182 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1016 if (block > to) block = to; 1183 if (block > to) block = to;
1017 } 1184 }
1018 1185
1019 if (block < 0.) block = 0.; 1186 if (block < 0.) block = 0.;
1020 } 1187 }
1021 1188
1022 method_poll (EV_A_ block); 1189 method_poll (EV_A_ block);
1023 1190
1024 /* update rt_now, do magic */ 1191 /* update ev_rt_now, do magic */
1025 time_update (EV_A); 1192 time_update (EV_A);
1026 1193
1027 /* queue pending timers and reschedule them */ 1194 /* queue pending timers and reschedule them */
1028 timers_reify (EV_A); /* relative timers called last */ 1195 timers_reify (EV_A); /* relative timers called last */
1029 periodics_reify (EV_A); /* absolute timers called first */ 1196 periodics_reify (EV_A); /* absolute timers called first */
1030 1197
1031 /* queue idle watchers unless io or timers are pending */ 1198 /* queue idle watchers unless io or timers are pending */
1032 if (!pendingcnt) 1199 if (idlecnt && !any_pending (EV_A))
1033 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1200 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1034 1201
1035 /* queue check watchers, to be executed first */ 1202 /* queue check watchers, to be executed first */
1036 if (checkcnt) 1203 if (checkcnt)
1037 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1204 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1112 return; 1279 return;
1113 1280
1114 assert (("ev_io_start called with negative fd", fd >= 0)); 1281 assert (("ev_io_start called with negative fd", fd >= 0));
1115 1282
1116 ev_start (EV_A_ (W)w, 1); 1283 ev_start (EV_A_ (W)w, 1);
1117 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1284 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1118 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1285 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1119 1286
1120 fd_change (EV_A_ fd); 1287 fd_change (EV_A_ fd);
1121} 1288}
1122 1289
1125{ 1292{
1126 ev_clear_pending (EV_A_ (W)w); 1293 ev_clear_pending (EV_A_ (W)w);
1127 if (!ev_is_active (w)) 1294 if (!ev_is_active (w))
1128 return; 1295 return;
1129 1296
1297 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1298
1130 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1299 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1131 ev_stop (EV_A_ (W)w); 1300 ev_stop (EV_A_ (W)w);
1132 1301
1133 fd_change (EV_A_ w->fd); 1302 fd_change (EV_A_ w->fd);
1134} 1303}
1142 ((WT)w)->at += mn_now; 1311 ((WT)w)->at += mn_now;
1143 1312
1144 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1313 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1145 1314
1146 ev_start (EV_A_ (W)w, ++timercnt); 1315 ev_start (EV_A_ (W)w, ++timercnt);
1147 array_needsize (timers, timermax, timercnt, ); 1316 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1148 timers [timercnt - 1] = w; 1317 timers [timercnt - 1] = w;
1149 upheap ((WT *)timers, timercnt - 1); 1318 upheap ((WT *)timers, timercnt - 1);
1150 1319
1151 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1320 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1152} 1321}
1175ev_timer_again (EV_P_ struct ev_timer *w) 1344ev_timer_again (EV_P_ struct ev_timer *w)
1176{ 1345{
1177 if (ev_is_active (w)) 1346 if (ev_is_active (w))
1178 { 1347 {
1179 if (w->repeat) 1348 if (w->repeat)
1180 {
1181 ((WT)w)->at = mn_now + w->repeat;
1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1349 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1183 }
1184 else 1350 else
1185 ev_timer_stop (EV_A_ w); 1351 ev_timer_stop (EV_A_ w);
1186 } 1352 }
1187 else if (w->repeat) 1353 else if (w->repeat)
1188 ev_timer_start (EV_A_ w); 1354 ev_timer_start (EV_A_ w);
1192ev_periodic_start (EV_P_ struct ev_periodic *w) 1358ev_periodic_start (EV_P_ struct ev_periodic *w)
1193{ 1359{
1194 if (ev_is_active (w)) 1360 if (ev_is_active (w))
1195 return; 1361 return;
1196 1362
1363 if (w->reschedule_cb)
1364 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1365 else if (w->interval)
1366 {
1197 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1367 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1198
1199 /* this formula differs from the one in periodic_reify because we do not always round up */ 1368 /* this formula differs from the one in periodic_reify because we do not always round up */
1200 if (w->interval)
1201 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1369 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1370 }
1202 1371
1203 ev_start (EV_A_ (W)w, ++periodiccnt); 1372 ev_start (EV_A_ (W)w, ++periodiccnt);
1204 array_needsize (periodics, periodicmax, periodiccnt, ); 1373 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1205 periodics [periodiccnt - 1] = w; 1374 periodics [periodiccnt - 1] = w;
1206 upheap ((WT *)periodics, periodiccnt - 1); 1375 upheap ((WT *)periodics, periodiccnt - 1);
1207 1376
1208 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1377 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1209} 1378}
1225 1394
1226 ev_stop (EV_A_ (W)w); 1395 ev_stop (EV_A_ (W)w);
1227} 1396}
1228 1397
1229void 1398void
1399ev_periodic_again (EV_P_ struct ev_periodic *w)
1400{
1401 /* TODO: use adjustheap and recalculation */
1402 ev_periodic_stop (EV_A_ w);
1403 ev_periodic_start (EV_A_ w);
1404}
1405
1406void
1230ev_idle_start (EV_P_ struct ev_idle *w) 1407ev_idle_start (EV_P_ struct ev_idle *w)
1231{ 1408{
1232 if (ev_is_active (w)) 1409 if (ev_is_active (w))
1233 return; 1410 return;
1234 1411
1235 ev_start (EV_A_ (W)w, ++idlecnt); 1412 ev_start (EV_A_ (W)w, ++idlecnt);
1236 array_needsize (idles, idlemax, idlecnt, ); 1413 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1237 idles [idlecnt - 1] = w; 1414 idles [idlecnt - 1] = w;
1238} 1415}
1239 1416
1240void 1417void
1241ev_idle_stop (EV_P_ struct ev_idle *w) 1418ev_idle_stop (EV_P_ struct ev_idle *w)
1253{ 1430{
1254 if (ev_is_active (w)) 1431 if (ev_is_active (w))
1255 return; 1432 return;
1256 1433
1257 ev_start (EV_A_ (W)w, ++preparecnt); 1434 ev_start (EV_A_ (W)w, ++preparecnt);
1258 array_needsize (prepares, preparemax, preparecnt, ); 1435 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1259 prepares [preparecnt - 1] = w; 1436 prepares [preparecnt - 1] = w;
1260} 1437}
1261 1438
1262void 1439void
1263ev_prepare_stop (EV_P_ struct ev_prepare *w) 1440ev_prepare_stop (EV_P_ struct ev_prepare *w)
1275{ 1452{
1276 if (ev_is_active (w)) 1453 if (ev_is_active (w))
1277 return; 1454 return;
1278 1455
1279 ev_start (EV_A_ (W)w, ++checkcnt); 1456 ev_start (EV_A_ (W)w, ++checkcnt);
1280 array_needsize (checks, checkmax, checkcnt, ); 1457 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1281 checks [checkcnt - 1] = w; 1458 checks [checkcnt - 1] = w;
1282} 1459}
1283 1460
1284void 1461void
1285ev_check_stop (EV_P_ struct ev_check *w) 1462ev_check_stop (EV_P_ struct ev_check *w)
1306 return; 1483 return;
1307 1484
1308 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1485 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1309 1486
1310 ev_start (EV_A_ (W)w, 1); 1487 ev_start (EV_A_ (W)w, 1);
1311 array_needsize (signals, signalmax, w->signum, signals_init); 1488 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1312 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1489 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1313 1490
1314 if (!((WL)w)->next) 1491 if (!((WL)w)->next)
1315 { 1492 {
1493#if WIN32
1494 signal (w->signum, sighandler);
1495#else
1316 struct sigaction sa; 1496 struct sigaction sa;
1317 sa.sa_handler = sighandler; 1497 sa.sa_handler = sighandler;
1318 sigfillset (&sa.sa_mask); 1498 sigfillset (&sa.sa_mask);
1319 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1499 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1320 sigaction (w->signum, &sa, 0); 1500 sigaction (w->signum, &sa, 0);
1501#endif
1321 } 1502 }
1322} 1503}
1323 1504
1324void 1505void
1325ev_signal_stop (EV_P_ struct ev_signal *w) 1506ev_signal_stop (EV_P_ struct ev_signal *w)
1375 void (*cb)(int revents, void *arg) = once->cb; 1556 void (*cb)(int revents, void *arg) = once->cb;
1376 void *arg = once->arg; 1557 void *arg = once->arg;
1377 1558
1378 ev_io_stop (EV_A_ &once->io); 1559 ev_io_stop (EV_A_ &once->io);
1379 ev_timer_stop (EV_A_ &once->to); 1560 ev_timer_stop (EV_A_ &once->to);
1380 free (once); 1561 ev_free (once);
1381 1562
1382 cb (revents, arg); 1563 cb (revents, arg);
1383} 1564}
1384 1565
1385static void 1566static void
1395} 1576}
1396 1577
1397void 1578void
1398ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1579ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1399{ 1580{
1400 struct ev_once *once = malloc (sizeof (struct ev_once)); 1581 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1401 1582
1402 if (!once) 1583 if (!once)
1403 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1584 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1404 else 1585 else
1405 { 1586 {
1406 once->cb = cb; 1587 once->cb = cb;
1407 once->arg = arg; 1588 once->arg = arg;
1408 1589
1409 ev_watcher_init (&once->io, once_cb_io); 1590 ev_init (&once->io, once_cb_io);
1410 if (fd >= 0) 1591 if (fd >= 0)
1411 { 1592 {
1412 ev_io_set (&once->io, fd, events); 1593 ev_io_set (&once->io, fd, events);
1413 ev_io_start (EV_A_ &once->io); 1594 ev_io_start (EV_A_ &once->io);
1414 } 1595 }
1415 1596
1416 ev_watcher_init (&once->to, once_cb_to); 1597 ev_init (&once->to, once_cb_to);
1417 if (timeout >= 0.) 1598 if (timeout >= 0.)
1418 { 1599 {
1419 ev_timer_set (&once->to, timeout, 0.); 1600 ev_timer_set (&once->to, timeout, 0.);
1420 ev_timer_start (EV_A_ &once->to); 1601 ev_timer_start (EV_A_ &once->to);
1421 } 1602 }
1422 } 1603 }
1423} 1604}
1424 1605
1606#ifdef __cplusplus
1607}
1608#endif
1609

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines