ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.9 by root, Wed Oct 31 07:24:17 2007 UTC vs.
Revision 1.63 by root, Sun Nov 4 22:03:17 2007 UTC

1/*
2 * libev event processing core, watcher management
3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * * Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 *
14 * * Redistributions in binary form must reproduce the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer in the documentation and/or other materials provided
17 * with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
56
1#include <math.h> 57#include <math.h>
2#include <stdlib.h> 58#include <stdlib.h>
3#include <unistd.h> 59#include <unistd.h>
4#include <fcntl.h> 60#include <fcntl.h>
5#include <signal.h> 61#include <signal.h>
62#include <stddef.h>
6 63
7#include <stdio.h> 64#include <stdio.h>
8 65
9#include <assert.h> 66#include <assert.h>
10#include <errno.h> 67#include <errno.h>
68#include <sys/types.h>
69#ifndef WIN32
70# include <sys/wait.h>
71#endif
11#include <sys/time.h> 72#include <sys/time.h>
12#include <time.h> 73#include <time.h>
13 74
75/**/
76
77#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
102# endif
103#endif
104
105#ifndef EV_USE_REALTIME
106# define EV_USE_REALTIME 1
107#endif
108
109/**/
110
14#ifdef CLOCK_MONOTONIC 111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
15# define HAVE_MONOTONIC 1 113# define EV_USE_MONOTONIC 0
16#endif 114#endif
17 115
116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
18#define HAVE_REALTIME 1 118# define EV_USE_REALTIME 0
19#define HAVE_EPOLL 1 119#endif
20#define HAVE_SELECT 1 120
121/**/
21 122
22#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
23#define MAX_BLOCKTIME 60. 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
24 127
25#include "ev.h" 128#include "ev.h"
26 129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
143
27struct ev_watcher { 144typedef struct ev_watcher *W;
28 EV_WATCHER (ev_watcher); 145typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT;
147
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149
150/*****************************************************************************/
151
152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
29}; 171};
172# undef VAR
173# include "ev_wrap.h"
30 174
31struct ev_watcher_list { 175#else
32 EV_WATCHER_LIST (ev_watcher_list);
33};
34 176
35static ev_tstamp now, diff; /* monotonic clock */ 177# define VAR(name,decl) static decl;
36ev_tstamp ev_now; 178# include "ev_vars.h"
37int ev_method; 179# undef VAR
38 180
39static int have_monotonic; /* runtime */ 181#endif
40
41static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
42static void (*method_modify)(int fd, int oev, int nev);
43static void (*method_poll)(ev_tstamp timeout);
44 182
45/*****************************************************************************/ 183/*****************************************************************************/
46 184
47ev_tstamp 185inline ev_tstamp
48ev_time (void) 186ev_time (void)
49{ 187{
50#if HAVE_REALTIME 188#if EV_USE_REALTIME
51 struct timespec ts; 189 struct timespec ts;
52 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
53 return ts.tv_sec + ts.tv_nsec * 1e-9; 191 return ts.tv_sec + ts.tv_nsec * 1e-9;
54#else 192#else
55 struct timeval tv; 193 struct timeval tv;
56 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
57 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
58#endif 196#endif
59} 197}
60 198
61static ev_tstamp 199inline ev_tstamp
62get_clock (void) 200get_clock (void)
63{ 201{
64#if HAVE_MONOTONIC 202#if EV_USE_MONOTONIC
65 if (have_monotonic) 203 if (expect_true (have_monotonic))
66 { 204 {
67 struct timespec ts; 205 struct timespec ts;
68 clock_gettime (CLOCK_MONOTONIC, &ts); 206 clock_gettime (CLOCK_MONOTONIC, &ts);
69 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
70 } 208 }
71#endif 209#endif
72 210
73 return ev_time (); 211 return ev_time ();
74} 212}
75 213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
218}
219
220#define array_roundsize(base,n) ((n) | 4 & ~3)
221
76#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
77 if ((cnt) > cur) \ 223 if (expect_false ((cnt) > cur)) \
78 { \ 224 { \
79 int newcnt = cur ? cur << 1 : 16; \ 225 int newcnt = cur; \
80 fprintf (stderr, "resize(" # base ") from %d to %d\n", cur, newcnt);\ 226 do \
227 { \
228 newcnt = array_roundsize (base, newcnt << 1); \
229 } \
230 while ((cnt) > newcnt); \
231 \
81 base = realloc (base, sizeof (*base) * (newcnt)); \ 232 base = realloc (base, sizeof (*base) * (newcnt)); \
82 init (base + cur, newcnt - cur); \ 233 init (base + cur, newcnt - cur); \
83 cur = newcnt; \ 234 cur = newcnt; \
84 } 235 }
85 236
86/*****************************************************************************/ 237/*****************************************************************************/
87 238
88typedef struct
89{
90 struct ev_io *head;
91 unsigned char wev, rev; /* want, received event set */
92} ANFD;
93
94static ANFD *anfds;
95static int anfdmax;
96
97static int *fdchanges;
98static int fdchangemax, fdchangecnt;
99
100static void 239static void
101anfds_init (ANFD *base, int count) 240anfds_init (ANFD *base, int count)
102{ 241{
103 while (count--) 242 while (count--)
104 { 243 {
105 base->head = 0; 244 base->head = 0;
106 base->wev = base->rev = EV_NONE; 245 base->events = EV_NONE;
246 base->reify = 0;
247
107 ++base; 248 ++base;
108 } 249 }
109} 250}
110 251
111typedef struct
112{
113 struct ev_watcher *w;
114 int events;
115} ANPENDING;
116
117static ANPENDING *pendings;
118static int pendingmax, pendingcnt;
119
120static void 252static void
121event (struct ev_watcher *w, int events) 253event (EV_P_ W w, int events)
122{ 254{
255 if (w->pending)
256 {
257 pendings [ABSPRI (w)][w->pending - 1].events |= events;
258 return;
259 }
260
123 w->pending = ++pendingcnt; 261 w->pending = ++pendingcnt [ABSPRI (w)];
124 array_needsize (pendings, pendingmax, pendingcnt, ); 262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
125 pendings [pendingcnt - 1].w = w; 263 pendings [ABSPRI (w)][w->pending - 1].w = w;
126 pendings [pendingcnt - 1].events = events; 264 pendings [ABSPRI (w)][w->pending - 1].events = events;
127} 265}
128 266
129static void 267static void
268queue_events (EV_P_ W *events, int eventcnt, int type)
269{
270 int i;
271
272 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type);
274}
275
276static void
130fd_event (int fd, int events) 277fd_event (EV_P_ int fd, int events)
131{ 278{
132 ANFD *anfd = anfds + fd; 279 ANFD *anfd = anfds + fd;
133 struct ev_io *w; 280 struct ev_io *w;
134 281
135 for (w = anfd->head; w; w = w->next) 282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
136 { 283 {
137 int ev = w->events & events; 284 int ev = w->events & events;
138 285
139 if (ev) 286 if (ev)
140 event ((struct ev_watcher *)w, ev); 287 event (EV_A_ (W)w, ev);
141 } 288 }
142} 289}
143 290
291/*****************************************************************************/
292
144static void 293static void
145queue_events (struct ev_watcher **events, int eventcnt, int type) 294fd_reify (EV_P)
146{ 295{
147 int i; 296 int i;
148 297
149 for (i = 0; i < eventcnt; ++i) 298 for (i = 0; i < fdchangecnt; ++i)
150 event (events [i], type); 299 {
300 int fd = fdchanges [i];
301 ANFD *anfd = anfds + fd;
302 struct ev_io *w;
303
304 int events = 0;
305
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
307 events |= w->events;
308
309 anfd->reify = 0;
310
311 if (anfd->events != events)
312 {
313 method_modify (EV_A_ fd, anfd->events, events);
314 anfd->events = events;
315 }
316 }
317
318 fdchangecnt = 0;
319}
320
321static void
322fd_change (EV_P_ int fd)
323{
324 if (anfds [fd].reify || fdchangecnt < 0)
325 return;
326
327 anfds [fd].reify = 1;
328
329 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
331 fdchanges [fdchangecnt - 1] = fd;
332}
333
334static void
335fd_kill (EV_P_ int fd)
336{
337 struct ev_io *w;
338
339 while ((w = (struct ev_io *)anfds [fd].head))
340 {
341 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 }
344}
345
346/* called on EBADF to verify fds */
347static void
348fd_ebadf (EV_P)
349{
350 int fd;
351
352 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd);
356}
357
358/* called on ENOMEM in select/poll to kill some fds and retry */
359static void
360fd_enomem (EV_P)
361{
362 int fd;
363
364 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events)
366 {
367 close (fd);
368 fd_kill (EV_A_ fd);
369 return;
370 }
371}
372
373/* susually called after fork if method needs to re-arm all fds from scratch */
374static void
375fd_rearm_all (EV_P)
376{
377 int fd;
378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
151} 386}
152 387
153/*****************************************************************************/ 388/*****************************************************************************/
154 389
155static struct ev_timer **atimers;
156static int atimermax, atimercnt;
157
158static struct ev_timer **rtimers;
159static int rtimermax, rtimercnt;
160
161static void 390static void
162upheap (struct ev_timer **timers, int k) 391upheap (WT *heap, int k)
163{ 392{
164 struct ev_timer *w = timers [k]; 393 WT w = heap [k];
165 394
166 while (k && timers [k >> 1]->at > w->at) 395 while (k && heap [k >> 1]->at > w->at)
167 { 396 {
168 timers [k] = timers [k >> 1]; 397 heap [k] = heap [k >> 1];
169 timers [k]->active = k + 1; 398 ((W)heap [k])->active = k + 1;
170 k >>= 1; 399 k >>= 1;
171 } 400 }
172 401
173 timers [k] = w; 402 heap [k] = w;
174 timers [k]->active = k + 1; 403 ((W)heap [k])->active = k + 1;
175 404
176} 405}
177 406
178static void 407static void
179downheap (struct ev_timer **timers, int N, int k) 408downheap (WT *heap, int N, int k)
180{ 409{
181 struct ev_timer *w = timers [k]; 410 WT w = heap [k];
182 411
183 while (k < (N >> 1)) 412 while (k < (N >> 1))
184 { 413 {
185 int j = k << 1; 414 int j = k << 1;
186 415
187 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
188 ++j; 417 ++j;
189 418
190 if (w->at <= timers [j]->at) 419 if (w->at <= heap [j]->at)
191 break; 420 break;
192 421
193 timers [k] = timers [j]; 422 heap [k] = heap [j];
194 timers [k]->active = k + 1; 423 ((W)heap [k])->active = k + 1;
195 k = j; 424 k = j;
196 } 425 }
197 426
198 timers [k] = w; 427 heap [k] = w;
199 timers [k]->active = k + 1; 428 ((W)heap [k])->active = k + 1;
200} 429}
201 430
202/*****************************************************************************/ 431/*****************************************************************************/
203 432
204typedef struct 433typedef struct
205{ 434{
206 struct ev_signal *head; 435 struct ev_watcher_list *head;
207 sig_atomic_t gotsig; 436 sig_atomic_t volatile gotsig;
208} ANSIG; 437} ANSIG;
209 438
210static ANSIG *signals; 439static ANSIG *signals;
211static int signalmax; 440static int signalmax;
212 441
213static int sigpipe [2]; 442static int sigpipe [2];
214static sig_atomic_t gotsig; 443static sig_atomic_t volatile gotsig;
215static struct ev_io sigev; 444static struct ev_io sigev;
216 445
217static void 446static void
218signals_init (ANSIG *base, int count) 447signals_init (ANSIG *base, int count)
219{ 448{
220 while (count--) 449 while (count--)
221 { 450 {
222 base->head = 0; 451 base->head = 0;
223 base->gotsig = 0; 452 base->gotsig = 0;
453
224 ++base; 454 ++base;
225 } 455 }
226} 456}
227 457
228static void 458static void
230{ 460{
231 signals [signum - 1].gotsig = 1; 461 signals [signum - 1].gotsig = 1;
232 462
233 if (!gotsig) 463 if (!gotsig)
234 { 464 {
465 int old_errno = errno;
235 gotsig = 1; 466 gotsig = 1;
236 write (sigpipe [1], &gotsig, 1); 467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
237 } 469 }
238} 470}
239 471
240static void 472static void
241sigcb (struct ev_io *iow, int revents) 473sigcb (EV_P_ struct ev_io *iow, int revents)
242{ 474{
243 struct ev_signal *w; 475 struct ev_watcher_list *w;
244 int sig; 476 int signum;
245 477
478 read (sigpipe [0], &revents, 1);
246 gotsig = 0; 479 gotsig = 0;
247 read (sigpipe [0], &revents, 1);
248 480
249 for (sig = signalmax; sig--; ) 481 for (signum = signalmax; signum--; )
250 if (signals [sig].gotsig) 482 if (signals [signum].gotsig)
251 { 483 {
252 signals [sig].gotsig = 0; 484 signals [signum].gotsig = 0;
253 485
254 for (w = signals [sig].head; w; w = w->next) 486 for (w = signals [signum].head; w; w = w->next)
255 event ((struct ev_watcher *)w, EV_SIGNAL); 487 event (EV_A_ (W)w, EV_SIGNAL);
256 } 488 }
257} 489}
258 490
259static void 491static void
260siginit (void) 492siginit (EV_P)
261{ 493{
494#ifndef WIN32
262 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
263 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
264 497
265 /* rather than sort out wether we really need nb, set it */ 498 /* rather than sort out wether we really need nb, set it */
266 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
267 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
268 502
269 evio_set (&sigev, sigpipe [0], EV_READ); 503 ev_io_set (&sigev, sigpipe [0], EV_READ);
270 evio_start (&sigev); 504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
271} 506}
272 507
273/*****************************************************************************/ 508/*****************************************************************************/
274 509
275static struct ev_idle **idles; 510#ifndef WIN32
276static int idlemax, idlecnt;
277 511
278static struct ev_check **checks; 512static struct ev_child *childs [PID_HASHSIZE];
279static int checkmax, checkcnt; 513static struct ev_signal childev;
514
515#ifndef WCONTINUED
516# define WCONTINUED 0
517#endif
518
519static void
520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
521{
522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents)
536{
537 int pid, status;
538
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 {
541 /* make sure we are called again until all childs have been reaped */
542 event (EV_A_ (W)sw, EV_SIGNAL);
543
544 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 }
547}
548
549#endif
280 550
281/*****************************************************************************/ 551/*****************************************************************************/
282 552
553#if EV_USE_KQUEUE
554# include "ev_kqueue.c"
555#endif
283#if HAVE_EPOLL 556#if EV_USE_EPOLL
284# include "ev_epoll.c" 557# include "ev_epoll.c"
285#endif 558#endif
559#if EV_USE_POLL
560# include "ev_poll.c"
561#endif
286#if HAVE_SELECT 562#if EV_USE_SELECT
287# include "ev_select.c" 563# include "ev_select.c"
288#endif 564#endif
289 565
290int ev_init (int flags) 566int
567ev_version_major (void)
291{ 568{
569 return EV_VERSION_MAJOR;
570}
571
572int
573ev_version_minor (void)
574{
575 return EV_VERSION_MINOR;
576}
577
578/* return true if we are running with elevated privileges and should ignore env variables */
579static int
580enable_secure (void)
581{
582#ifdef WIN32
583 return 0;
584#else
585 return getuid () != geteuid ()
586 || getgid () != getegid ();
587#endif
588}
589
590int
591ev_method (EV_P)
592{
593 return method;
594}
595
596static void
597loop_init (EV_P_ int methods)
598{
599 if (!method)
600 {
292#if HAVE_MONOTONIC 601#if EV_USE_MONOTONIC
293 { 602 {
294 struct timespec ts; 603 struct timespec ts;
295 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
296 have_monotonic = 1; 605 have_monotonic = 1;
297 } 606 }
298#endif 607#endif
299 608
300 ev_now = ev_time (); 609 rt_now = ev_time ();
301 now = get_clock (); 610 mn_now = get_clock ();
302 diff = ev_now - now; 611 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now;
303 613
614 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS"));
617 else
618 methods = EVMETHOD_ANY;
619
620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
624#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626#endif
627#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
629#endif
630#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632#endif
633#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635#endif
636 }
637}
638
639void
640loop_destroy (EV_P)
641{
642#if EV_USE_WIN32
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
644#endif
645#if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
647#endif
648#if EV_USE_EPOLL
649 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
650#endif
651#if EV_USE_POLL
652 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
653#endif
654#if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
656#endif
657
658 method = 0;
659 /*TODO*/
660}
661
662void
663loop_fork (EV_P)
664{
665 /*TODO*/
666#if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
668#endif
669#if EV_USE_KQUEUE
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
671#endif
672}
673
674#if EV_MULTIPLICITY
675struct ev_loop *
676ev_loop_new (int methods)
677{
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
679
680 loop_init (EV_A_ methods);
681
682 if (ev_method (EV_A))
683 return loop;
684
685 return 0;
686}
687
688void
689ev_loop_destroy (EV_P)
690{
691 loop_destroy (EV_A);
692 free (loop);
693}
694
695void
696ev_loop_fork (EV_P)
697{
698 loop_fork (EV_A);
699}
700
701#endif
702
703#if EV_MULTIPLICITY
704struct ev_loop default_loop_struct;
705static struct ev_loop *default_loop;
706
707struct ev_loop *
708#else
709static int default_loop;
710
711int
712#endif
713ev_default_loop (int methods)
714{
715 if (sigpipe [0] == sigpipe [1])
304 if (pipe (sigpipe)) 716 if (pipe (sigpipe))
305 return 0; 717 return 0;
306 718
307 ev_method = EVMETHOD_NONE; 719 if (!default_loop)
308#if HAVE_EPOLL
309 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
310#endif
311#if HAVE_SELECT
312 if (ev_method == EVMETHOD_NONE) select_init (flags);
313#endif
314
315 if (ev_method)
316 { 720 {
721#if EV_MULTIPLICITY
722 struct ev_loop *loop = default_loop = &default_loop_struct;
723#else
724 default_loop = 1;
725#endif
726
727 loop_init (EV_A_ methods);
728
729 if (ev_method (EV_A))
730 {
317 evw_init (&sigev, sigcb, 0); 731 ev_watcher_init (&sigev, sigcb);
732 ev_set_priority (&sigev, EV_MAXPRI);
318 siginit (); 733 siginit (EV_A);
319 }
320 734
321 return ev_method; 735#ifndef WIN32
322} 736 ev_signal_init (&childev, childcb, SIGCHLD);
323 737 ev_set_priority (&childev, EV_MAXPRI);
324/*****************************************************************************/ 738 ev_signal_start (EV_A_ &childev);
325 739 ev_unref (EV_A); /* child watcher should not keep loop alive */
326void ev_prefork (void)
327{
328}
329
330void ev_postfork_parent (void)
331{
332}
333
334void ev_postfork_child (void)
335{
336#if HAVE_EPOLL
337 if (ev_method == EVMETHOD_EPOLL)
338 epoll_postfork_child ();
339#endif 740#endif
741 }
742 else
743 default_loop = 0;
744 }
340 745
746 return default_loop;
747}
748
749void
750ev_default_destroy (void)
751{
752#if EV_MULTIPLICITY
753 struct ev_loop *loop = default_loop;
754#endif
755
756 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev);
758
759 ev_ref (EV_A); /* signal watcher */
341 evio_stop (&sigev); 760 ev_io_stop (EV_A_ &sigev);
761
762 close (sigpipe [0]); sigpipe [0] = 0;
763 close (sigpipe [1]); sigpipe [1] = 0;
764
765 loop_destroy (EV_A);
766}
767
768void
769ev_default_fork (void)
770{
771#if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop;
773#endif
774
775 loop_fork (EV_A);
776
777 ev_io_stop (EV_A_ &sigev);
342 close (sigpipe [0]); 778 close (sigpipe [0]);
343 close (sigpipe [1]); 779 close (sigpipe [1]);
344 pipe (sigpipe); 780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
345 siginit (); 783 siginit (EV_A);
346} 784}
347 785
348/*****************************************************************************/ 786/*****************************************************************************/
349 787
350static void 788static void
351fd_reify (void) 789call_pending (EV_P)
352{ 790{
353 int i; 791 int pri;
354 792
355 for (i = 0; i < fdchangecnt; ++i) 793 for (pri = NUMPRI; pri--; )
356 { 794 while (pendingcnt [pri])
357 int fd = fdchanges [i];
358 ANFD *anfd = anfds + fd;
359 struct ev_io *w;
360
361 int wev = 0;
362
363 for (w = anfd->head; w; w = w->next)
364 wev |= w->events;
365
366 if (anfd->wev != wev)
367 { 795 {
368 method_modify (fd, anfd->wev, wev); 796 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
369 anfd->wev = wev;
370 }
371 }
372 797
373 fdchangecnt = 0;
374}
375
376static void
377call_pending ()
378{
379 int i;
380
381 for (i = 0; i < pendingcnt; ++i)
382 {
383 ANPENDING *p = pendings + i;
384
385 if (p->w) 798 if (p->w)
386 { 799 {
387 p->w->pending = 0; 800 p->w->pending = 0;
388 p->w->cb (p->w, p->events); 801
802 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events);
389 } 803 }
390 } 804 }
391
392 pendingcnt = 0;
393} 805}
394 806
395static void 807static void
396timers_reify (struct ev_timer **timers, int timercnt, ev_tstamp now) 808timers_reify (EV_P)
397{ 809{
398 while (timercnt && timers [0]->at <= now) 810 while (timercnt && ((WT)timers [0])->at <= mn_now)
399 { 811 {
400 struct ev_timer *w = timers [0]; 812 struct ev_timer *w = timers [0];
813
814 assert (("inactive timer on timer heap detected", ev_is_active (w)));
401 815
402 /* first reschedule or stop timer */ 816 /* first reschedule or stop timer */
403 if (w->repeat) 817 if (w->repeat)
404 { 818 {
405 if (w->is_abs) 819 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
406 w->at += floor ((now - w->at) / w->repeat + 1.) * w->repeat;
407 else
408 w->at = now + w->repeat; 820 ((WT)w)->at = mn_now + w->repeat;
409
410 assert (w->at > now);
411
412 downheap (timers, timercnt, 0); 821 downheap ((WT *)timers, timercnt, 0);
413 } 822 }
414 else 823 else
824 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
825
826 event (EV_A_ (W)w, EV_TIMEOUT);
827 }
828}
829
830static void
831periodics_reify (EV_P)
832{
833 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
834 {
835 struct ev_periodic *w = periodics [0];
836
837 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
838
839 /* first reschedule or stop timer */
840 if (w->interval)
415 { 841 {
416 evtimer_stop (w); /* nonrepeating: stop timer */ 842 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
417 --timercnt; /* maybe pass by reference instead? */ 843 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
844 downheap ((WT *)periodics, periodiccnt, 0);
418 } 845 }
846 else
847 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
419 848
420 event ((struct ev_watcher *)w, EV_TIMEOUT); 849 event (EV_A_ (W)w, EV_PERIODIC);
421 } 850 }
422} 851}
423 852
424static void 853static void
425time_update () 854periodics_reschedule (EV_P)
426{ 855{
427 int i; 856 int i;
428 ev_now = ev_time ();
429 857
430 if (have_monotonic) 858 /* adjust periodics after time jump */
859 for (i = 0; i < periodiccnt; ++i)
431 { 860 {
432 ev_tstamp odiff = diff; 861 struct ev_periodic *w = periodics [i];
433 862
434 /* detecting time jumps is much more difficult */ 863 if (w->interval)
435 for (i = 2; --i; ) /* loop a few times, before making important decisions */
436 { 864 {
437 now = get_clock (); 865 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
438 diff = ev_now - now;
439 866
440 if (fabs (odiff - diff) < MIN_TIMEJUMP) 867 if (fabs (diff) >= 1e-4)
441 return; /* all is well */ 868 {
869 ev_periodic_stop (EV_A_ w);
870 ev_periodic_start (EV_A_ w);
442 871
443 ev_now = ev_time (); 872 i = 0; /* restart loop, inefficient, but time jumps should be rare */
873 }
444 } 874 }
875 }
876}
445 877
446 /* time jump detected, reschedule atimers */ 878inline int
447 for (i = 0; i < atimercnt; ++i) 879time_update_monotonic (EV_P)
880{
881 mn_now = get_clock ();
882
883 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
884 {
885 rt_now = rtmn_diff + mn_now;
886 return 0;
887 }
888 else
889 {
890 now_floor = mn_now;
891 rt_now = ev_time ();
892 return 1;
893 }
894}
895
896static void
897time_update (EV_P)
898{
899 int i;
900
901#if EV_USE_MONOTONIC
902 if (expect_true (have_monotonic))
903 {
904 if (time_update_monotonic (EV_A))
448 { 905 {
449 struct ev_timer *w = atimers [i]; 906 ev_tstamp odiff = rtmn_diff;
450 w->at += ceil ((ev_now - w->at) / w->repeat + 1.) * w->repeat; 907
908 for (i = 4; --i; ) /* loop a few times, before making important decisions */
909 {
910 rtmn_diff = rt_now - mn_now;
911
912 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
913 return; /* all is well */
914
915 rt_now = ev_time ();
916 mn_now = get_clock ();
917 now_floor = mn_now;
918 }
919
920 periodics_reschedule (EV_A);
921 /* no timer adjustment, as the monotonic clock doesn't jump */
922 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
451 } 923 }
452 } 924 }
453 else 925 else
926#endif
454 { 927 {
455 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 928 rt_now = ev_time ();
456 /* time jump detected, adjust rtimers */ 929
930 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
931 {
932 periodics_reschedule (EV_A);
933
934 /* adjust timers. this is easy, as the offset is the same for all */
457 for (i = 0; i < rtimercnt; ++i) 935 for (i = 0; i < timercnt; ++i)
458 rtimers [i]->at += ev_now - now; 936 ((WT)timers [i])->at += rt_now - mn_now;
937 }
459 938
460 now = ev_now; 939 mn_now = rt_now;
461 } 940 }
462} 941}
463 942
464int ev_loop_done; 943void
944ev_ref (EV_P)
945{
946 ++activecnt;
947}
465 948
949void
950ev_unref (EV_P)
951{
952 --activecnt;
953}
954
955static int loop_done;
956
957void
466void ev_loop (int flags) 958ev_loop (EV_P_ int flags)
467{ 959{
468 double block; 960 double block;
469 ev_loop_done = flags & EVLOOP_ONESHOT; 961 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
470
471 if (checkcnt)
472 {
473 queue_events (checks, checkcnt, EV_CHECK);
474 call_pending ();
475 }
476 962
477 do 963 do
478 { 964 {
965 /* queue check watchers (and execute them) */
966 if (expect_false (preparecnt))
967 {
968 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
969 call_pending (EV_A);
970 }
971
479 /* update fd-related kernel structures */ 972 /* update fd-related kernel structures */
480 fd_reify (); 973 fd_reify (EV_A);
481 974
482 /* calculate blocking time */ 975 /* calculate blocking time */
976
977 /* we only need this for !monotonic clockor timers, but as we basically
978 always have timers, we just calculate it always */
979#if EV_USE_MONOTONIC
980 if (expect_true (have_monotonic))
981 time_update_monotonic (EV_A);
982 else
983#endif
984 {
985 rt_now = ev_time ();
986 mn_now = rt_now;
987 }
988
483 if (flags & EVLOOP_NONBLOCK || idlecnt) 989 if (flags & EVLOOP_NONBLOCK || idlecnt)
484 block = 0.; 990 block = 0.;
485 else 991 else
486 { 992 {
487 block = MAX_BLOCKTIME; 993 block = MAX_BLOCKTIME;
488 994
489 if (rtimercnt) 995 if (timercnt)
490 { 996 {
491 ev_tstamp to = rtimers [0]->at - get_clock () + method_fudge; 997 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
492 if (block > to) block = to; 998 if (block > to) block = to;
493 } 999 }
494 1000
495 if (atimercnt) 1001 if (periodiccnt)
496 { 1002 {
497 ev_tstamp to = atimers [0]->at - ev_time () + method_fudge; 1003 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
498 if (block > to) block = to; 1004 if (block > to) block = to;
499 } 1005 }
500 1006
501 if (block < 0.) block = 0.; 1007 if (block < 0.) block = 0.;
502 } 1008 }
503 1009
504 method_poll (block); 1010 method_poll (EV_A_ block);
505 1011
506 /* update ev_now, do magic */ 1012 /* update rt_now, do magic */
507 time_update (); 1013 time_update (EV_A);
508 1014
509 /* queue pending timers and reschedule them */ 1015 /* queue pending timers and reschedule them */
510 /* absolute timers first */ 1016 timers_reify (EV_A); /* relative timers called last */
511 timers_reify (atimers, atimercnt, ev_now); 1017 periodics_reify (EV_A); /* absolute timers called first */
512 /* relative timers second */
513 timers_reify (rtimers, rtimercnt, now);
514 1018
515 /* queue idle watchers unless io or timers are pending */ 1019 /* queue idle watchers unless io or timers are pending */
516 if (!pendingcnt) 1020 if (!pendingcnt)
517 queue_events (idles, idlecnt, EV_IDLE); 1021 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
518 1022
519 /* queue check and possibly idle watchers */ 1023 /* queue check watchers, to be executed first */
1024 if (checkcnt)
520 queue_events (checks, checkcnt, EV_CHECK); 1025 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
521 1026
522 call_pending (); 1027 call_pending (EV_A);
523 } 1028 }
524 while (!ev_loop_done); 1029 while (activecnt && !loop_done);
1030
1031 if (loop_done != 2)
1032 loop_done = 0;
1033}
1034
1035void
1036ev_unloop (EV_P_ int how)
1037{
1038 loop_done = how;
525} 1039}
526 1040
527/*****************************************************************************/ 1041/*****************************************************************************/
528 1042
529static void 1043inline void
530wlist_add (struct ev_watcher_list **head, struct ev_watcher_list *elem) 1044wlist_add (WL *head, WL elem)
531{ 1045{
532 elem->next = *head; 1046 elem->next = *head;
533 *head = elem; 1047 *head = elem;
534} 1048}
535 1049
536static void 1050inline void
537wlist_del (struct ev_watcher_list **head, struct ev_watcher_list *elem) 1051wlist_del (WL *head, WL elem)
538{ 1052{
539 while (*head) 1053 while (*head)
540 { 1054 {
541 if (*head == elem) 1055 if (*head == elem)
542 { 1056 {
546 1060
547 head = &(*head)->next; 1061 head = &(*head)->next;
548 } 1062 }
549} 1063}
550 1064
551static void 1065inline void
552ev_start (struct ev_watcher *w, int active) 1066ev_clear_pending (EV_P_ W w)
553{ 1067{
1068 if (w->pending)
1069 {
1070 pendings [ABSPRI (w)][w->pending - 1].w = 0;
554 w->pending = 0; 1071 w->pending = 0;
1072 }
1073}
1074
1075inline void
1076ev_start (EV_P_ W w, int active)
1077{
1078 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1079 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1080
555 w->active = active; 1081 w->active = active;
1082 ev_ref (EV_A);
556} 1083}
557 1084
558static void 1085inline void
559ev_stop (struct ev_watcher *w) 1086ev_stop (EV_P_ W w)
560{ 1087{
561 if (w->pending) 1088 ev_unref (EV_A);
562 pendings [w->pending - 1].w = 0;
563
564 w->active = 0; 1089 w->active = 0;
565 /* nop */
566} 1090}
567 1091
568/*****************************************************************************/ 1092/*****************************************************************************/
569 1093
570void 1094void
571evio_start (struct ev_io *w) 1095ev_io_start (EV_P_ struct ev_io *w)
572{ 1096{
1097 int fd = w->fd;
1098
573 if (ev_is_active (w)) 1099 if (ev_is_active (w))
574 return; 1100 return;
575 1101
576 int fd = w->fd; 1102 assert (("ev_io_start called with negative fd", fd >= 0));
577 1103
578 ev_start ((struct ev_watcher *)w, 1); 1104 ev_start (EV_A_ (W)w, 1);
579 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1105 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
580 wlist_add ((struct ev_watcher_list **)&anfds[fd].head, (struct ev_watcher_list *)w); 1106 wlist_add ((WL *)&anfds[fd].head, (WL)w);
581 1107
582 ++fdchangecnt; 1108 fd_change (EV_A_ fd);
583 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
584 fdchanges [fdchangecnt - 1] = fd;
585} 1109}
586 1110
587void 1111void
588evio_stop (struct ev_io *w) 1112ev_io_stop (EV_P_ struct ev_io *w)
589{ 1113{
1114 ev_clear_pending (EV_A_ (W)w);
590 if (!ev_is_active (w)) 1115 if (!ev_is_active (w))
591 return; 1116 return;
592 1117
593 wlist_del ((struct ev_watcher_list **)&anfds[w->fd].head, (struct ev_watcher_list *)w); 1118 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
594 ev_stop ((struct ev_watcher *)w); 1119 ev_stop (EV_A_ (W)w);
595 1120
596 ++fdchangecnt; 1121 fd_change (EV_A_ w->fd);
597 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
598 fdchanges [fdchangecnt - 1] = w->fd;
599} 1122}
600 1123
601void 1124void
602evtimer_start (struct ev_timer *w) 1125ev_timer_start (EV_P_ struct ev_timer *w)
603{ 1126{
604 if (ev_is_active (w)) 1127 if (ev_is_active (w))
605 return; 1128 return;
606 1129
607 if (w->is_abs) 1130 ((WT)w)->at += mn_now;
1131
1132 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1133
1134 ev_start (EV_A_ (W)w, ++timercnt);
1135 array_needsize (timers, timermax, timercnt, );
1136 timers [timercnt - 1] = w;
1137 upheap ((WT *)timers, timercnt - 1);
1138
1139 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1140}
1141
1142void
1143ev_timer_stop (EV_P_ struct ev_timer *w)
1144{
1145 ev_clear_pending (EV_A_ (W)w);
1146 if (!ev_is_active (w))
1147 return;
1148
1149 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1150
1151 if (((W)w)->active < timercnt--)
1152 {
1153 timers [((W)w)->active - 1] = timers [timercnt];
1154 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
608 { 1155 }
609 /* this formula differs from the one in timer_reify becuse we do not round up */ 1156
1157 ((WT)w)->at = w->repeat;
1158
1159 ev_stop (EV_A_ (W)w);
1160}
1161
1162void
1163ev_timer_again (EV_P_ struct ev_timer *w)
1164{
1165 if (ev_is_active (w))
1166 {
610 if (w->repeat) 1167 if (w->repeat)
611 w->at += ceil ((ev_now - w->at) / w->repeat) * w->repeat; 1168 {
612 1169 ((WT)w)->at = mn_now + w->repeat;
613 ev_start ((struct ev_watcher *)w, ++atimercnt); 1170 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
614 array_needsize (atimers, atimermax, atimercnt, ); 1171 }
615 atimers [atimercnt - 1] = w;
616 upheap (atimers, atimercnt - 1);
617 }
618 else 1172 else
1173 ev_timer_stop (EV_A_ w);
619 { 1174 }
620 w->at += now; 1175 else if (w->repeat)
621 1176 ev_timer_start (EV_A_ w);
622 ev_start ((struct ev_watcher *)w, ++rtimercnt);
623 array_needsize (rtimers, rtimermax, rtimercnt, );
624 rtimers [rtimercnt - 1] = w;
625 upheap (rtimers, rtimercnt - 1);
626 }
627
628} 1177}
629 1178
630void 1179void
631evtimer_stop (struct ev_timer *w) 1180ev_periodic_start (EV_P_ struct ev_periodic *w)
632{ 1181{
1182 if (ev_is_active (w))
1183 return;
1184
1185 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1186
1187 /* this formula differs from the one in periodic_reify because we do not always round up */
1188 if (w->interval)
1189 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1190
1191 ev_start (EV_A_ (W)w, ++periodiccnt);
1192 array_needsize (periodics, periodicmax, periodiccnt, );
1193 periodics [periodiccnt - 1] = w;
1194 upheap ((WT *)periodics, periodiccnt - 1);
1195
1196 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1197}
1198
1199void
1200ev_periodic_stop (EV_P_ struct ev_periodic *w)
1201{
1202 ev_clear_pending (EV_A_ (W)w);
633 if (!ev_is_active (w)) 1203 if (!ev_is_active (w))
634 return; 1204 return;
635 1205
636 if (w->is_abs) 1206 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
637 { 1207
638 if (w->active < atimercnt--) 1208 if (((W)w)->active < periodiccnt--)
639 {
640 atimers [w->active - 1] = atimers [atimercnt];
641 downheap (atimers, atimercnt, w->active - 1);
642 }
643 } 1209 {
644 else 1210 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1211 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
645 { 1212 }
646 if (w->active < rtimercnt--)
647 {
648 rtimers [w->active - 1] = rtimers [rtimercnt];
649 downheap (rtimers, rtimercnt, w->active - 1);
650 }
651 }
652 1213
653 ev_stop ((struct ev_watcher *)w); 1214 ev_stop (EV_A_ (W)w);
654} 1215}
655 1216
656void 1217void
657evsignal_start (struct ev_signal *w) 1218ev_idle_start (EV_P_ struct ev_idle *w)
658{ 1219{
659 if (ev_is_active (w)) 1220 if (ev_is_active (w))
660 return; 1221 return;
661 1222
662 ev_start ((struct ev_watcher *)w, 1); 1223 ev_start (EV_A_ (W)w, ++idlecnt);
1224 array_needsize (idles, idlemax, idlecnt, );
1225 idles [idlecnt - 1] = w;
1226}
1227
1228void
1229ev_idle_stop (EV_P_ struct ev_idle *w)
1230{
1231 ev_clear_pending (EV_A_ (W)w);
1232 if (ev_is_active (w))
1233 return;
1234
1235 idles [((W)w)->active - 1] = idles [--idlecnt];
1236 ev_stop (EV_A_ (W)w);
1237}
1238
1239void
1240ev_prepare_start (EV_P_ struct ev_prepare *w)
1241{
1242 if (ev_is_active (w))
1243 return;
1244
1245 ev_start (EV_A_ (W)w, ++preparecnt);
1246 array_needsize (prepares, preparemax, preparecnt, );
1247 prepares [preparecnt - 1] = w;
1248}
1249
1250void
1251ev_prepare_stop (EV_P_ struct ev_prepare *w)
1252{
1253 ev_clear_pending (EV_A_ (W)w);
1254 if (ev_is_active (w))
1255 return;
1256
1257 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1258 ev_stop (EV_A_ (W)w);
1259}
1260
1261void
1262ev_check_start (EV_P_ struct ev_check *w)
1263{
1264 if (ev_is_active (w))
1265 return;
1266
1267 ev_start (EV_A_ (W)w, ++checkcnt);
1268 array_needsize (checks, checkmax, checkcnt, );
1269 checks [checkcnt - 1] = w;
1270}
1271
1272void
1273ev_check_stop (EV_P_ struct ev_check *w)
1274{
1275 ev_clear_pending (EV_A_ (W)w);
1276 if (ev_is_active (w))
1277 return;
1278
1279 checks [((W)w)->active - 1] = checks [--checkcnt];
1280 ev_stop (EV_A_ (W)w);
1281}
1282
1283#ifndef SA_RESTART
1284# define SA_RESTART 0
1285#endif
1286
1287void
1288ev_signal_start (EV_P_ struct ev_signal *w)
1289{
1290#if EV_MULTIPLICITY
1291 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1292#endif
1293 if (ev_is_active (w))
1294 return;
1295
1296 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1297
1298 ev_start (EV_A_ (W)w, 1);
663 array_needsize (signals, signalmax, w->signum, signals_init); 1299 array_needsize (signals, signalmax, w->signum, signals_init);
664 wlist_add ((struct ev_watcher_list **)&signals [w->signum - 1].head, (struct ev_watcher_list *)w); 1300 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
665 1301
666 if (!w->next) 1302 if (!((WL)w)->next)
667 { 1303 {
668 struct sigaction sa; 1304 struct sigaction sa;
669 sa.sa_handler = sighandler; 1305 sa.sa_handler = sighandler;
670 sigfillset (&sa.sa_mask); 1306 sigfillset (&sa.sa_mask);
671 sa.sa_flags = 0; 1307 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
672 sigaction (w->signum, &sa, 0); 1308 sigaction (w->signum, &sa, 0);
673 } 1309 }
674} 1310}
675 1311
676void 1312void
677evsignal_stop (struct ev_signal *w) 1313ev_signal_stop (EV_P_ struct ev_signal *w)
678{ 1314{
1315 ev_clear_pending (EV_A_ (W)w);
679 if (!ev_is_active (w)) 1316 if (!ev_is_active (w))
680 return; 1317 return;
681 1318
682 wlist_del ((struct ev_watcher_list **)&signals [w->signum - 1].head, (struct ev_watcher_list *)w); 1319 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
683 ev_stop ((struct ev_watcher *)w); 1320 ev_stop (EV_A_ (W)w);
684 1321
685 if (!signals [w->signum - 1].head) 1322 if (!signals [w->signum - 1].head)
686 signal (w->signum, SIG_DFL); 1323 signal (w->signum, SIG_DFL);
687} 1324}
688 1325
689void evidle_start (struct ev_idle *w) 1326void
1327ev_child_start (EV_P_ struct ev_child *w)
690{ 1328{
1329#if EV_MULTIPLICITY
1330 assert (("child watchers are only supported in the default loop", loop == default_loop));
1331#endif
691 if (ev_is_active (w)) 1332 if (ev_is_active (w))
692 return; 1333 return;
693 1334
694 ev_start ((struct ev_watcher *)w, ++idlecnt); 1335 ev_start (EV_A_ (W)w, 1);
695 array_needsize (idles, idlemax, idlecnt, ); 1336 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
696 idles [idlecnt - 1] = w;
697} 1337}
698 1338
699void evidle_stop (struct ev_idle *w) 1339void
1340ev_child_stop (EV_P_ struct ev_child *w)
700{ 1341{
701 idles [w->active - 1] = idles [--idlecnt]; 1342 ev_clear_pending (EV_A_ (W)w);
702 ev_stop ((struct ev_watcher *)w);
703}
704
705void evcheck_start (struct ev_check *w)
706{
707 if (ev_is_active (w)) 1343 if (ev_is_active (w))
708 return; 1344 return;
709 1345
710 ev_start ((struct ev_watcher *)w, ++checkcnt); 1346 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
711 array_needsize (checks, checkmax, checkcnt, ); 1347 ev_stop (EV_A_ (W)w);
712 checks [checkcnt - 1] = w;
713}
714
715void evcheck_stop (struct ev_check *w)
716{
717 checks [w->active - 1] = checks [--checkcnt];
718 ev_stop ((struct ev_watcher *)w);
719} 1348}
720 1349
721/*****************************************************************************/ 1350/*****************************************************************************/
722#if 1
723 1351
724static void 1352struct ev_once
725sin_cb (struct ev_io *w, int revents)
726{ 1353{
727 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
728}
729
730static void
731ocb (struct ev_timer *w, int revents)
732{
733 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
734 evtimer_stop (w);
735 evtimer_start (w);
736}
737
738static void
739scb (struct ev_signal *w, int revents)
740{
741 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
742}
743
744static void
745gcb (struct ev_signal *w, int revents)
746{
747 fprintf (stderr, "generic %x\n", revents);
748}
749
750int main (void)
751{
752 struct ev_io sin; 1354 struct ev_io io;
753
754 ev_init (0);
755
756 evw_init (&sin, sin_cb, 55);
757 evio_set (&sin, 0, EV_READ);
758 evio_start (&sin);
759
760 struct ev_timer t[10000];
761
762#if 0
763 int i;
764 for (i = 0; i < 10000; ++i)
765 {
766 struct ev_timer *w = t + i;
767 evw_init (w, ocb, i);
768 evtimer_set_abs (w, drand48 (), 0.99775533);
769 evtimer_start (w);
770 if (drand48 () < 0.5)
771 evtimer_stop (w);
772 }
773#endif
774
775 struct ev_timer t1; 1355 struct ev_timer to;
776 evw_init (&t1, ocb, 0); 1356 void (*cb)(int revents, void *arg);
777 evtimer_set_abs (&t1, 5, 10); 1357 void *arg;
778 evtimer_start (&t1); 1358};
779 1359
780 struct ev_signal sig; 1360static void
781 evw_init (&sig, scb, 65535); 1361once_cb (EV_P_ struct ev_once *once, int revents)
782 evsignal_set (&sig, SIGQUIT); 1362{
783 evsignal_start (&sig); 1363 void (*cb)(int revents, void *arg) = once->cb;
1364 void *arg = once->arg;
784 1365
785 struct ev_check cw; 1366 ev_io_stop (EV_A_ &once->io);
786 evw_init (&cw, gcb, 0); 1367 ev_timer_stop (EV_A_ &once->to);
787 evcheck_start (&cw); 1368 free (once);
788 1369
789 struct ev_idle iw; 1370 cb (revents, arg);
790 evw_init (&iw, gcb, 0);
791 evidle_start (&iw);
792
793 ev_loop (0);
794
795 return 0;
796} 1371}
797 1372
798#endif 1373static void
1374once_cb_io (EV_P_ struct ev_io *w, int revents)
1375{
1376 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1377}
799 1378
1379static void
1380once_cb_to (EV_P_ struct ev_timer *w, int revents)
1381{
1382 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1383}
800 1384
1385void
1386ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1387{
1388 struct ev_once *once = malloc (sizeof (struct ev_once));
801 1389
1390 if (!once)
1391 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1392 else
1393 {
1394 once->cb = cb;
1395 once->arg = arg;
802 1396
1397 ev_watcher_init (&once->io, once_cb_io);
1398 if (fd >= 0)
1399 {
1400 ev_io_set (&once->io, fd, events);
1401 ev_io_start (EV_A_ &once->io);
1402 }
1403
1404 ev_watcher_init (&once->to, once_cb_to);
1405 if (timeout >= 0.)
1406 {
1407 ev_timer_set (&once->to, timeout, 0.);
1408 ev_timer_start (EV_A_ &once->to);
1409 }
1410 }
1411}
1412

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines