ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.90 by root, Sun Nov 11 00:05:59 2007 UTC vs.
Revision 1.303 by root, Sun Jul 19 01:36:34 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
67# ifndef EV_USE_MONOTONIC
40# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
69# endif
70# ifndef EV_USE_REALTIME
41# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
42# endif 80# endif
43 81
44# if HAVE_SELECT && HAVE_SYS_SELECT_H 82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
45# define EV_USE_SELECT 1 84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
46# endif 88# endif
47 89
48# if HAVE_POLL && HAVE_POLL_H 90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
49# define EV_USE_POLL 1 92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
95# endif
50# endif 96# endif
51 97
52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
53# define EV_USE_EPOLL 1 100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
103# endif
54# endif 104# endif
55 105
56# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
57# define EV_USE_KQUEUE 1 108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
111# endif
58# endif 112# endif
113
114# ifndef EV_USE_KQUEUE
115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
59 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
60#endif 154#endif
61 155
62#include <math.h> 156#include <math.h>
63#include <stdlib.h> 157#include <stdlib.h>
64#include <fcntl.h> 158#include <fcntl.h>
71#include <sys/types.h> 165#include <sys/types.h>
72#include <time.h> 166#include <time.h>
73 167
74#include <signal.h> 168#include <signal.h>
75 169
76#ifndef WIN32
77# include <unistd.h>
78# include <sys/time.h>
79# include <sys/wait.h>
80#endif
81/**/
82
83#ifndef EV_USE_MONOTONIC
84# define EV_USE_MONOTONIC 1
85#endif
86
87#ifndef EV_USE_SELECT
88# define EV_USE_SELECT 1
89#endif
90
91#ifndef EV_USE_POLL
92# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
93#endif
94
95#ifndef EV_USE_EPOLL
96# define EV_USE_EPOLL 0
97#endif
98
99#ifndef EV_USE_KQUEUE
100# define EV_USE_KQUEUE 0
101#endif
102
103#ifndef EV_USE_WIN32
104# ifdef WIN32
105# define EV_USE_WIN32 0 /* it does not exist, use select */
106# undef EV_USE_SELECT
107# define EV_USE_SELECT 1
108# else
109# define EV_USE_WIN32 0
110# endif
111#endif
112
113#ifndef EV_USE_REALTIME
114# define EV_USE_REALTIME 1
115#endif
116
117/**/
118
119#ifndef CLOCK_MONOTONIC
120# undef EV_USE_MONOTONIC
121# define EV_USE_MONOTONIC 0
122#endif
123
124#ifndef CLOCK_REALTIME
125# undef EV_USE_REALTIME
126# define EV_USE_REALTIME 0
127#endif
128
129/**/
130
131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
135
136#ifdef EV_H 170#ifdef EV_H
137# include EV_H 171# include EV_H
138#else 172#else
139# include "ev.h" 173# include "ev.h"
140#endif 174#endif
141 175
176#ifndef _WIN32
177# include <sys/time.h>
178# include <sys/wait.h>
179# include <unistd.h>
180#else
181# include <io.h>
182# define WIN32_LEAN_AND_MEAN
183# include <windows.h>
184# ifndef EV_SELECT_IS_WINSOCKET
185# define EV_SELECT_IS_WINSOCKET 1
186# endif
187#endif
188
189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191#ifndef EV_USE_CLOCK_SYSCALL
192# if __linux && __GLIBC__ >= 2
193# define EV_USE_CLOCK_SYSCALL 1
194# else
195# define EV_USE_CLOCK_SYSCALL 0
196# endif
197#endif
198
199#ifndef EV_USE_MONOTONIC
200# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
201# define EV_USE_MONOTONIC 1
202# else
203# define EV_USE_MONOTONIC 0
204# endif
205#endif
206
207#ifndef EV_USE_REALTIME
208# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
209#endif
210
211#ifndef EV_USE_NANOSLEEP
212# if _POSIX_C_SOURCE >= 199309L
213# define EV_USE_NANOSLEEP 1
214# else
215# define EV_USE_NANOSLEEP 0
216# endif
217#endif
218
219#ifndef EV_USE_SELECT
220# define EV_USE_SELECT 1
221#endif
222
223#ifndef EV_USE_POLL
224# ifdef _WIN32
225# define EV_USE_POLL 0
226# else
227# define EV_USE_POLL 1
228# endif
229#endif
230
231#ifndef EV_USE_EPOLL
232# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
233# define EV_USE_EPOLL 1
234# else
235# define EV_USE_EPOLL 0
236# endif
237#endif
238
239#ifndef EV_USE_KQUEUE
240# define EV_USE_KQUEUE 0
241#endif
242
243#ifndef EV_USE_PORT
244# define EV_USE_PORT 0
245#endif
246
247#ifndef EV_USE_INOTIFY
248# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
249# define EV_USE_INOTIFY 1
250# else
251# define EV_USE_INOTIFY 0
252# endif
253#endif
254
255#ifndef EV_PID_HASHSIZE
256# if EV_MINIMAL
257# define EV_PID_HASHSIZE 1
258# else
259# define EV_PID_HASHSIZE 16
260# endif
261#endif
262
263#ifndef EV_INOTIFY_HASHSIZE
264# if EV_MINIMAL
265# define EV_INOTIFY_HASHSIZE 1
266# else
267# define EV_INOTIFY_HASHSIZE 16
268# endif
269#endif
270
271#ifndef EV_USE_EVENTFD
272# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
273# define EV_USE_EVENTFD 1
274# else
275# define EV_USE_EVENTFD 0
276# endif
277#endif
278
279#ifndef EV_USE_SIGNALFD
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
281# define EV_USE_SIGNALFD 1
282# else
283# define EV_USE_SIGNALFD 0
284# endif
285#endif
286
287#if 0 /* debugging */
288# define EV_VERIFY 3
289# define EV_USE_4HEAP 1
290# define EV_HEAP_CACHE_AT 1
291#endif
292
293#ifndef EV_VERIFY
294# define EV_VERIFY !EV_MINIMAL
295#endif
296
297#ifndef EV_USE_4HEAP
298# define EV_USE_4HEAP !EV_MINIMAL
299#endif
300
301#ifndef EV_HEAP_CACHE_AT
302# define EV_HEAP_CACHE_AT !EV_MINIMAL
303#endif
304
305/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
306/* which makes programs even slower. might work on other unices, too. */
307#if EV_USE_CLOCK_SYSCALL
308# include <syscall.h>
309# ifdef SYS_clock_gettime
310# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
311# undef EV_USE_MONOTONIC
312# define EV_USE_MONOTONIC 1
313# else
314# undef EV_USE_CLOCK_SYSCALL
315# define EV_USE_CLOCK_SYSCALL 0
316# endif
317#endif
318
319/* this block fixes any misconfiguration where we know we run into trouble otherwise */
320
321#ifndef CLOCK_MONOTONIC
322# undef EV_USE_MONOTONIC
323# define EV_USE_MONOTONIC 0
324#endif
325
326#ifndef CLOCK_REALTIME
327# undef EV_USE_REALTIME
328# define EV_USE_REALTIME 0
329#endif
330
331#if !EV_STAT_ENABLE
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334#endif
335
336#if !EV_USE_NANOSLEEP
337# ifndef _WIN32
338# include <sys/select.h>
339# endif
340#endif
341
342#if EV_USE_INOTIFY
343# include <sys/utsname.h>
344# include <sys/statfs.h>
345# include <sys/inotify.h>
346/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
347# ifndef IN_DONT_FOLLOW
348# undef EV_USE_INOTIFY
349# define EV_USE_INOTIFY 0
350# endif
351#endif
352
353#if EV_SELECT_IS_WINSOCKET
354# include <winsock.h>
355#endif
356
357#if EV_USE_EVENTFD
358/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
359# include <stdint.h>
360# ifndef EFD_NONBLOCK
361# define EFD_NONBLOCK O_NONBLOCK
362# endif
363# ifndef EFD_CLOEXEC
364# define EFD_CLOEXEC O_CLOEXEC
365# endif
366# ifdef __cplusplus
367extern "C" {
368# endif
369int eventfd (unsigned int initval, int flags);
370# ifdef __cplusplus
371}
372# endif
373#endif
374
375#if EV_USE_SIGNALFD
376# include <sys/signalfd.h>
377#endif
378
379/**/
380
381#if EV_VERIFY >= 3
382# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
383#else
384# define EV_FREQUENT_CHECK do { } while (0)
385#endif
386
387/*
388 * This is used to avoid floating point rounding problems.
389 * It is added to ev_rt_now when scheduling periodics
390 * to ensure progress, time-wise, even when rounding
391 * errors are against us.
392 * This value is good at least till the year 4000.
393 * Better solutions welcome.
394 */
395#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
396
397#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
398#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
399/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
400
142#if __GNUC__ >= 3 401#if __GNUC__ >= 4
143# define expect(expr,value) __builtin_expect ((expr),(value)) 402# define expect(expr,value) __builtin_expect ((expr),(value))
144# define inline inline 403# define noinline __attribute__ ((noinline))
145#else 404#else
146# define expect(expr,value) (expr) 405# define expect(expr,value) (expr)
147# define inline static 406# define noinline
407# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
408# define inline
409# endif
148#endif 410#endif
149 411
150#define expect_false(expr) expect ((expr) != 0, 0) 412#define expect_false(expr) expect ((expr) != 0, 0)
151#define expect_true(expr) expect ((expr) != 0, 1) 413#define expect_true(expr) expect ((expr) != 0, 1)
414#define inline_size static inline
152 415
416#if EV_MINIMAL
417# define inline_speed static noinline
418#else
419# define inline_speed static inline
420#endif
421
153#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 422#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
423
424#if EV_MINPRI == EV_MAXPRI
425# define ABSPRI(w) (((W)w), 0)
426#else
154#define ABSPRI(w) ((w)->priority - EV_MINPRI) 427# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
428#endif
155 429
430#define EMPTY /* required for microsofts broken pseudo-c compiler */
431#define EMPTY2(a,b) /* used to suppress some warnings */
432
156typedef struct ev_watcher *W; 433typedef ev_watcher *W;
157typedef struct ev_watcher_list *WL; 434typedef ev_watcher_list *WL;
158typedef struct ev_watcher_time *WT; 435typedef ev_watcher_time *WT;
159 436
437#define ev_active(w) ((W)(w))->active
438#define ev_at(w) ((WT)(w))->at
439
440#if EV_USE_REALTIME
441/* sig_atomic_t is used to avoid per-thread variables or locking but still */
442/* giving it a reasonably high chance of working on typical architetcures */
443static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
444#endif
445
446#if EV_USE_MONOTONIC
160static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 447static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
448#endif
161 449
450#ifdef _WIN32
162#include "ev_win32.c" 451# include "ev_win32.c"
452#endif
163 453
164/*****************************************************************************/ 454/*****************************************************************************/
165 455
166static void (*syserr_cb)(const char *msg); 456static void (*syserr_cb)(const char *msg);
167 457
458void
168void ev_set_syserr_cb (void (*cb)(const char *msg)) 459ev_set_syserr_cb (void (*cb)(const char *msg))
169{ 460{
170 syserr_cb = cb; 461 syserr_cb = cb;
171} 462}
172 463
173static void 464static void noinline
174syserr (const char *msg) 465ev_syserr (const char *msg)
175{ 466{
176 if (!msg) 467 if (!msg)
177 msg = "(libev) system error"; 468 msg = "(libev) system error";
178 469
179 if (syserr_cb) 470 if (syserr_cb)
183 perror (msg); 474 perror (msg);
184 abort (); 475 abort ();
185 } 476 }
186} 477}
187 478
479static void *
480ev_realloc_emul (void *ptr, long size)
481{
482 /* some systems, notably openbsd and darwin, fail to properly
483 * implement realloc (x, 0) (as required by both ansi c-98 and
484 * the single unix specification, so work around them here.
485 */
486
487 if (size)
488 return realloc (ptr, size);
489
490 free (ptr);
491 return 0;
492}
493
188static void *(*alloc)(void *ptr, long size); 494static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
189 495
496void
190void ev_set_allocator (void *(*cb)(void *ptr, long size)) 497ev_set_allocator (void *(*cb)(void *ptr, long size))
191{ 498{
192 alloc = cb; 499 alloc = cb;
193} 500}
194 501
195static void * 502inline_speed void *
196ev_realloc (void *ptr, long size) 503ev_realloc (void *ptr, long size)
197{ 504{
198 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 505 ptr = alloc (ptr, size);
199 506
200 if (!ptr && size) 507 if (!ptr && size)
201 { 508 {
202 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 509 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
203 abort (); 510 abort ();
209#define ev_malloc(size) ev_realloc (0, (size)) 516#define ev_malloc(size) ev_realloc (0, (size))
210#define ev_free(ptr) ev_realloc ((ptr), 0) 517#define ev_free(ptr) ev_realloc ((ptr), 0)
211 518
212/*****************************************************************************/ 519/*****************************************************************************/
213 520
521/* set in reify when reification needed */
522#define EV_ANFD_REIFY 1
523
524/* file descriptor info structure */
214typedef struct 525typedef struct
215{ 526{
216 WL head; 527 WL head;
217 unsigned char events; 528 unsigned char events; /* the events watched for */
529 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
530 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
218 unsigned char reify; 531 unsigned char unused;
532#if EV_USE_EPOLL
533 unsigned int egen; /* generation counter to counter epoll bugs */
534#endif
535#if EV_SELECT_IS_WINSOCKET
536 SOCKET handle;
537#endif
219} ANFD; 538} ANFD;
220 539
540/* stores the pending event set for a given watcher */
221typedef struct 541typedef struct
222{ 542{
223 W w; 543 W w;
224 int events; 544 int events; /* the pending event set for the given watcher */
225} ANPENDING; 545} ANPENDING;
546
547#if EV_USE_INOTIFY
548/* hash table entry per inotify-id */
549typedef struct
550{
551 WL head;
552} ANFS;
553#endif
554
555/* Heap Entry */
556#if EV_HEAP_CACHE_AT
557 /* a heap element */
558 typedef struct {
559 ev_tstamp at;
560 WT w;
561 } ANHE;
562
563 #define ANHE_w(he) (he).w /* access watcher, read-write */
564 #define ANHE_at(he) (he).at /* access cached at, read-only */
565 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
566#else
567 /* a heap element */
568 typedef WT ANHE;
569
570 #define ANHE_w(he) (he)
571 #define ANHE_at(he) (he)->at
572 #define ANHE_at_cache(he)
573#endif
226 574
227#if EV_MULTIPLICITY 575#if EV_MULTIPLICITY
228 576
229 struct ev_loop 577 struct ev_loop
230 { 578 {
231 ev_tstamp ev_rt_now; 579 ev_tstamp ev_rt_now;
580 #define ev_rt_now ((loop)->ev_rt_now)
232 #define VAR(name,decl) decl; 581 #define VAR(name,decl) decl;
233 #include "ev_vars.h" 582 #include "ev_vars.h"
234 #undef VAR 583 #undef VAR
235 }; 584 };
236 #include "ev_wrap.h" 585 #include "ev_wrap.h"
237 586
238 struct ev_loop default_loop_struct; 587 static struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop; 588 struct ev_loop *ev_default_loop_ptr;
240 589
241#else 590#else
242 591
243 ev_tstamp ev_rt_now; 592 ev_tstamp ev_rt_now;
244 #define VAR(name,decl) static decl; 593 #define VAR(name,decl) static decl;
245 #include "ev_vars.h" 594 #include "ev_vars.h"
246 #undef VAR 595 #undef VAR
247 596
248 static int default_loop; 597 static int ev_default_loop_ptr;
249 598
250#endif 599#endif
600
601#if EV_MINIMAL < 2
602# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
603# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
604# define EV_INVOKE_PENDING invoke_cb (EV_A)
605#else
606# define EV_RELEASE_CB (void)0
607# define EV_ACQUIRE_CB (void)0
608# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
609#endif
610
611#define EVUNLOOP_RECURSE 0x80
251 612
252/*****************************************************************************/ 613/*****************************************************************************/
253 614
254inline ev_tstamp 615#ifndef EV_HAVE_EV_TIME
616ev_tstamp
255ev_time (void) 617ev_time (void)
256{ 618{
257#if EV_USE_REALTIME 619#if EV_USE_REALTIME
620 if (expect_true (have_realtime))
621 {
258 struct timespec ts; 622 struct timespec ts;
259 clock_gettime (CLOCK_REALTIME, &ts); 623 clock_gettime (CLOCK_REALTIME, &ts);
260 return ts.tv_sec + ts.tv_nsec * 1e-9; 624 return ts.tv_sec + ts.tv_nsec * 1e-9;
261#else 625 }
626#endif
627
262 struct timeval tv; 628 struct timeval tv;
263 gettimeofday (&tv, 0); 629 gettimeofday (&tv, 0);
264 return tv.tv_sec + tv.tv_usec * 1e-6; 630 return tv.tv_sec + tv.tv_usec * 1e-6;
265#endif
266} 631}
632#endif
267 633
268inline ev_tstamp 634inline_size ev_tstamp
269get_clock (void) 635get_clock (void)
270{ 636{
271#if EV_USE_MONOTONIC 637#if EV_USE_MONOTONIC
272 if (expect_true (have_monotonic)) 638 if (expect_true (have_monotonic))
273 { 639 {
286{ 652{
287 return ev_rt_now; 653 return ev_rt_now;
288} 654}
289#endif 655#endif
290 656
291#define array_roundsize(type,n) ((n) | 4 & ~3) 657void
658ev_sleep (ev_tstamp delay)
659{
660 if (delay > 0.)
661 {
662#if EV_USE_NANOSLEEP
663 struct timespec ts;
664
665 ts.tv_sec = (time_t)delay;
666 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
667
668 nanosleep (&ts, 0);
669#elif defined(_WIN32)
670 Sleep ((unsigned long)(delay * 1e3));
671#else
672 struct timeval tv;
673
674 tv.tv_sec = (time_t)delay;
675 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
676
677 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
678 /* something not guaranteed by newer posix versions, but guaranteed */
679 /* by older ones */
680 select (0, 0, 0, 0, &tv);
681#endif
682 }
683}
684
685/*****************************************************************************/
686
687#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
688
689/* find a suitable new size for the given array, */
690/* hopefully by rounding to a ncie-to-malloc size */
691inline_size int
692array_nextsize (int elem, int cur, int cnt)
693{
694 int ncur = cur + 1;
695
696 do
697 ncur <<= 1;
698 while (cnt > ncur);
699
700 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
701 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
702 {
703 ncur *= elem;
704 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
705 ncur = ncur - sizeof (void *) * 4;
706 ncur /= elem;
707 }
708
709 return ncur;
710}
711
712static noinline void *
713array_realloc (int elem, void *base, int *cur, int cnt)
714{
715 *cur = array_nextsize (elem, *cur, cnt);
716 return ev_realloc (base, elem * *cur);
717}
718
719#define array_init_zero(base,count) \
720 memset ((void *)(base), 0, sizeof (*(base)) * (count))
292 721
293#define array_needsize(type,base,cur,cnt,init) \ 722#define array_needsize(type,base,cur,cnt,init) \
294 if (expect_false ((cnt) > cur)) \ 723 if (expect_false ((cnt) > (cur))) \
295 { \ 724 { \
296 int newcnt = cur; \ 725 int ocur_ = (cur); \
297 do \ 726 (base) = (type *)array_realloc \
298 { \ 727 (sizeof (type), (base), &(cur), (cnt)); \
299 newcnt = array_roundsize (type, newcnt << 1); \ 728 init ((base) + (ocur_), (cur) - ocur_); \
300 } \
301 while ((cnt) > newcnt); \
302 \
303 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
304 init (base + cur, newcnt - cur); \
305 cur = newcnt; \
306 } 729 }
307 730
731#if 0
308#define array_slim(type,stem) \ 732#define array_slim(type,stem) \
309 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 733 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
310 { \ 734 { \
311 stem ## max = array_roundsize (stem ## cnt >> 1); \ 735 stem ## max = array_roundsize (stem ## cnt >> 1); \
312 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 736 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
313 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 737 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
314 } 738 }
315 739#endif
316/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
317/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
318#define array_free_microshit(stem) \
319 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
320 740
321#define array_free(stem, idx) \ 741#define array_free(stem, idx) \
322 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 742 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
323 743
324/*****************************************************************************/ 744/*****************************************************************************/
325 745
326static void 746/* dummy callback for pending events */
327anfds_init (ANFD *base, int count) 747static void noinline
748pendingcb (EV_P_ ev_prepare *w, int revents)
328{ 749{
329 while (count--)
330 {
331 base->head = 0;
332 base->events = EV_NONE;
333 base->reify = 0;
334
335 ++base;
336 }
337} 750}
338 751
339void 752void noinline
340ev_feed_event (EV_P_ void *w, int revents) 753ev_feed_event (EV_P_ void *w, int revents)
341{ 754{
342 W w_ = (W)w; 755 W w_ = (W)w;
756 int pri = ABSPRI (w_);
343 757
344 if (w_->pending) 758 if (expect_false (w_->pending))
759 pendings [pri][w_->pending - 1].events |= revents;
760 else
345 { 761 {
762 w_->pending = ++pendingcnt [pri];
763 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
764 pendings [pri][w_->pending - 1].w = w_;
346 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 765 pendings [pri][w_->pending - 1].events = revents;
347 return;
348 } 766 }
349
350 w_->pending = ++pendingcnt [ABSPRI (w_)];
351 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
352 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
353 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
354} 767}
355 768
356static void 769inline_speed void
770feed_reverse (EV_P_ W w)
771{
772 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
773 rfeeds [rfeedcnt++] = w;
774}
775
776inline_size void
777feed_reverse_done (EV_P_ int revents)
778{
779 do
780 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
781 while (rfeedcnt);
782}
783
784inline_speed void
357queue_events (EV_P_ W *events, int eventcnt, int type) 785queue_events (EV_P_ W *events, int eventcnt, int type)
358{ 786{
359 int i; 787 int i;
360 788
361 for (i = 0; i < eventcnt; ++i) 789 for (i = 0; i < eventcnt; ++i)
362 ev_feed_event (EV_A_ events [i], type); 790 ev_feed_event (EV_A_ events [i], type);
363} 791}
364 792
793/*****************************************************************************/
794
365inline void 795inline_speed void
366fd_event (EV_P_ int fd, int revents) 796fd_event_nc (EV_P_ int fd, int revents)
367{ 797{
368 ANFD *anfd = anfds + fd; 798 ANFD *anfd = anfds + fd;
369 struct ev_io *w; 799 ev_io *w;
370 800
371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 801 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
372 { 802 {
373 int ev = w->events & revents; 803 int ev = w->events & revents;
374 804
375 if (ev) 805 if (ev)
376 ev_feed_event (EV_A_ (W)w, ev); 806 ev_feed_event (EV_A_ (W)w, ev);
377 } 807 }
378} 808}
379 809
810/* do not submit kernel events for fds that have reify set */
811/* because that means they changed while we were polling for new events */
812inline_speed void
813fd_event (EV_P_ int fd, int revents)
814{
815 ANFD *anfd = anfds + fd;
816
817 if (expect_true (!anfd->reify))
818 fd_event_nc (EV_A_ fd, revents);
819}
820
380void 821void
381ev_feed_fd_event (EV_P_ int fd, int revents) 822ev_feed_fd_event (EV_P_ int fd, int revents)
382{ 823{
824 if (fd >= 0 && fd < anfdmax)
383 fd_event (EV_A_ fd, revents); 825 fd_event_nc (EV_A_ fd, revents);
384} 826}
385 827
386/*****************************************************************************/ 828/* make sure the external fd watch events are in-sync */
387 829/* with the kernel/libev internal state */
388static void 830inline_size void
389fd_reify (EV_P) 831fd_reify (EV_P)
390{ 832{
391 int i; 833 int i;
392 834
393 for (i = 0; i < fdchangecnt; ++i) 835 for (i = 0; i < fdchangecnt; ++i)
394 { 836 {
395 int fd = fdchanges [i]; 837 int fd = fdchanges [i];
396 ANFD *anfd = anfds + fd; 838 ANFD *anfd = anfds + fd;
397 struct ev_io *w; 839 ev_io *w;
398 840
399 int events = 0; 841 unsigned char events = 0;
400 842
401 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 843 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
402 events |= w->events; 844 events |= (unsigned char)w->events;
403 845
846#if EV_SELECT_IS_WINSOCKET
847 if (events)
848 {
849 unsigned long arg;
850 #ifdef EV_FD_TO_WIN32_HANDLE
851 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
852 #else
853 anfd->handle = _get_osfhandle (fd);
854 #endif
855 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
856 }
857#endif
858
859 {
860 unsigned char o_events = anfd->events;
861 unsigned char o_reify = anfd->reify;
862
404 anfd->reify = 0; 863 anfd->reify = 0;
405
406 method_modify (EV_A_ fd, anfd->events, events);
407 anfd->events = events; 864 anfd->events = events;
865
866 if (o_events != events || o_reify & EV__IOFDSET)
867 backend_modify (EV_A_ fd, o_events, events);
868 }
408 } 869 }
409 870
410 fdchangecnt = 0; 871 fdchangecnt = 0;
411} 872}
412 873
413static void 874/* something about the given fd changed */
875inline_size void
414fd_change (EV_P_ int fd) 876fd_change (EV_P_ int fd, int flags)
415{ 877{
416 if (anfds [fd].reify) 878 unsigned char reify = anfds [fd].reify;
417 return;
418
419 anfds [fd].reify = 1; 879 anfds [fd].reify |= flags;
420 880
881 if (expect_true (!reify))
882 {
421 ++fdchangecnt; 883 ++fdchangecnt;
422 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 884 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
423 fdchanges [fdchangecnt - 1] = fd; 885 fdchanges [fdchangecnt - 1] = fd;
886 }
424} 887}
425 888
426static void 889/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
890inline_speed void
427fd_kill (EV_P_ int fd) 891fd_kill (EV_P_ int fd)
428{ 892{
429 struct ev_io *w; 893 ev_io *w;
430 894
431 while ((w = (struct ev_io *)anfds [fd].head)) 895 while ((w = (ev_io *)anfds [fd].head))
432 { 896 {
433 ev_io_stop (EV_A_ w); 897 ev_io_stop (EV_A_ w);
434 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 898 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
435 } 899 }
436} 900}
437 901
438static int 902/* check whether the given fd is atcually valid, for error recovery */
903inline_size int
439fd_valid (int fd) 904fd_valid (int fd)
440{ 905{
441#ifdef WIN32 906#ifdef _WIN32
442 return !!win32_get_osfhandle (fd); 907 return _get_osfhandle (fd) != -1;
443#else 908#else
444 return fcntl (fd, F_GETFD) != -1; 909 return fcntl (fd, F_GETFD) != -1;
445#endif 910#endif
446} 911}
447 912
448/* called on EBADF to verify fds */ 913/* called on EBADF to verify fds */
449static void 914static void noinline
450fd_ebadf (EV_P) 915fd_ebadf (EV_P)
451{ 916{
452 int fd; 917 int fd;
453 918
454 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
455 if (anfds [fd].events) 920 if (anfds [fd].events)
456 if (!fd_valid (fd) == -1 && errno == EBADF) 921 if (!fd_valid (fd) && errno == EBADF)
457 fd_kill (EV_A_ fd); 922 fd_kill (EV_A_ fd);
458} 923}
459 924
460/* called on ENOMEM in select/poll to kill some fds and retry */ 925/* called on ENOMEM in select/poll to kill some fds and retry */
461static void 926static void noinline
462fd_enomem (EV_P) 927fd_enomem (EV_P)
463{ 928{
464 int fd; 929 int fd;
465 930
466 for (fd = anfdmax; fd--; ) 931 for (fd = anfdmax; fd--; )
469 fd_kill (EV_A_ fd); 934 fd_kill (EV_A_ fd);
470 return; 935 return;
471 } 936 }
472} 937}
473 938
474/* usually called after fork if method needs to re-arm all fds from scratch */ 939/* usually called after fork if backend needs to re-arm all fds from scratch */
475static void 940static void noinline
476fd_rearm_all (EV_P) 941fd_rearm_all (EV_P)
477{ 942{
478 int fd; 943 int fd;
479 944
480 /* this should be highly optimised to not do anything but set a flag */
481 for (fd = 0; fd < anfdmax; ++fd) 945 for (fd = 0; fd < anfdmax; ++fd)
482 if (anfds [fd].events) 946 if (anfds [fd].events)
483 { 947 {
484 anfds [fd].events = 0; 948 anfds [fd].events = 0;
485 fd_change (EV_A_ fd); 949 anfds [fd].emask = 0;
950 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
486 } 951 }
487} 952}
488 953
489/*****************************************************************************/ 954/*****************************************************************************/
490 955
491static void 956/*
492upheap (WT *heap, int k) 957 * the heap functions want a real array index. array index 0 uis guaranteed to not
493{ 958 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
494 WT w = heap [k]; 959 * the branching factor of the d-tree.
960 */
495 961
496 while (k && heap [k >> 1]->at > w->at) 962/*
497 { 963 * at the moment we allow libev the luxury of two heaps,
498 heap [k] = heap [k >> 1]; 964 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
499 ((W)heap [k])->active = k + 1; 965 * which is more cache-efficient.
500 k >>= 1; 966 * the difference is about 5% with 50000+ watchers.
501 } 967 */
968#if EV_USE_4HEAP
502 969
503 heap [k] = w; 970#define DHEAP 4
504 ((W)heap [k])->active = k + 1; 971#define HEAP0 (DHEAP - 1) /* index of first element in heap */
972#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
973#define UPHEAP_DONE(p,k) ((p) == (k))
505 974
506} 975/* away from the root */
507 976inline_speed void
508static void
509downheap (WT *heap, int N, int k) 977downheap (ANHE *heap, int N, int k)
510{ 978{
511 WT w = heap [k]; 979 ANHE he = heap [k];
980 ANHE *E = heap + N + HEAP0;
512 981
513 while (k < (N >> 1)) 982 for (;;)
514 { 983 {
515 int j = k << 1; 984 ev_tstamp minat;
985 ANHE *minpos;
986 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
516 987
517 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 988 /* find minimum child */
989 if (expect_true (pos + DHEAP - 1 < E))
518 ++j; 990 {
519 991 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
520 if (w->at <= heap [j]->at) 992 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
993 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
994 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
995 }
996 else if (pos < E)
997 {
998 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
999 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1000 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1001 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1002 }
1003 else
521 break; 1004 break;
522 1005
1006 if (ANHE_at (he) <= minat)
1007 break;
1008
1009 heap [k] = *minpos;
1010 ev_active (ANHE_w (*minpos)) = k;
1011
1012 k = minpos - heap;
1013 }
1014
1015 heap [k] = he;
1016 ev_active (ANHE_w (he)) = k;
1017}
1018
1019#else /* 4HEAP */
1020
1021#define HEAP0 1
1022#define HPARENT(k) ((k) >> 1)
1023#define UPHEAP_DONE(p,k) (!(p))
1024
1025/* away from the root */
1026inline_speed void
1027downheap (ANHE *heap, int N, int k)
1028{
1029 ANHE he = heap [k];
1030
1031 for (;;)
1032 {
1033 int c = k << 1;
1034
1035 if (c > N + HEAP0 - 1)
1036 break;
1037
1038 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1039 ? 1 : 0;
1040
1041 if (ANHE_at (he) <= ANHE_at (heap [c]))
1042 break;
1043
523 heap [k] = heap [j]; 1044 heap [k] = heap [c];
524 ((W)heap [k])->active = k + 1; 1045 ev_active (ANHE_w (heap [k])) = k;
1046
525 k = j; 1047 k = c;
526 } 1048 }
527 1049
528 heap [k] = w; 1050 heap [k] = he;
529 ((W)heap [k])->active = k + 1; 1051 ev_active (ANHE_w (he)) = k;
530} 1052}
1053#endif
531 1054
1055/* towards the root */
1056inline_speed void
1057upheap (ANHE *heap, int k)
1058{
1059 ANHE he = heap [k];
1060
1061 for (;;)
1062 {
1063 int p = HPARENT (k);
1064
1065 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1066 break;
1067
1068 heap [k] = heap [p];
1069 ev_active (ANHE_w (heap [k])) = k;
1070 k = p;
1071 }
1072
1073 heap [k] = he;
1074 ev_active (ANHE_w (he)) = k;
1075}
1076
1077/* move an element suitably so it is in a correct place */
532inline void 1078inline_size void
533adjustheap (WT *heap, int N, int k, ev_tstamp at) 1079adjustheap (ANHE *heap, int N, int k)
534{ 1080{
535 ev_tstamp old_at = heap [k]->at; 1081 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
536 heap [k]->at = at; 1082 upheap (heap, k);
537 1083 else
538 if (old_at < at)
539 downheap (heap, N, k); 1084 downheap (heap, N, k);
540 else 1085}
1086
1087/* rebuild the heap: this function is used only once and executed rarely */
1088inline_size void
1089reheap (ANHE *heap, int N)
1090{
1091 int i;
1092
1093 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1094 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1095 for (i = 0; i < N; ++i)
541 upheap (heap, k); 1096 upheap (heap, i + HEAP0);
542} 1097}
543 1098
544/*****************************************************************************/ 1099/*****************************************************************************/
545 1100
1101/* associate signal watchers to a signal signal */
546typedef struct 1102typedef struct
547{ 1103{
548 WL head; 1104 WL head;
549 sig_atomic_t volatile gotsig; 1105 EV_ATOMIC_T gotsig;
550} ANSIG; 1106} ANSIG;
551 1107
552static ANSIG *signals; 1108static ANSIG *signals;
553static int signalmax; 1109static int signalmax;
554 1110
555static int sigpipe [2]; 1111static EV_ATOMIC_T gotsig;
556static sig_atomic_t volatile gotsig;
557static struct ev_io sigev;
558 1112
1113/*****************************************************************************/
1114
1115/* used to prepare libev internal fd's */
1116/* this is not fork-safe */
1117inline_speed void
1118fd_intern (int fd)
1119{
1120#ifdef _WIN32
1121 unsigned long arg = 1;
1122 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1123#else
1124 fcntl (fd, F_SETFD, FD_CLOEXEC);
1125 fcntl (fd, F_SETFL, O_NONBLOCK);
1126#endif
1127}
1128
1129static void noinline
1130evpipe_init (EV_P)
1131{
1132 if (!ev_is_active (&pipe_w))
1133 {
1134#if EV_USE_EVENTFD
1135 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1136 if (evfd < 0 && errno == EINVAL)
1137 evfd = eventfd (0, 0);
1138
1139 if (evfd >= 0)
1140 {
1141 evpipe [0] = -1;
1142 fd_intern (evfd); /* doing it twice doesn't hurt */
1143 ev_io_set (&pipe_w, evfd, EV_READ);
1144 }
1145 else
1146#endif
1147 {
1148 while (pipe (evpipe))
1149 ev_syserr ("(libev) error creating signal/async pipe");
1150
1151 fd_intern (evpipe [0]);
1152 fd_intern (evpipe [1]);
1153 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1154 }
1155
1156 ev_io_start (EV_A_ &pipe_w);
1157 ev_unref (EV_A); /* watcher should not keep loop alive */
1158 }
1159}
1160
1161inline_size void
1162evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1163{
1164 if (!*flag)
1165 {
1166 int old_errno = errno; /* save errno because write might clobber it */
1167
1168 *flag = 1;
1169
1170#if EV_USE_EVENTFD
1171 if (evfd >= 0)
1172 {
1173 uint64_t counter = 1;
1174 write (evfd, &counter, sizeof (uint64_t));
1175 }
1176 else
1177#endif
1178 write (evpipe [1], &old_errno, 1);
1179
1180 errno = old_errno;
1181 }
1182}
1183
1184/* called whenever the libev signal pipe */
1185/* got some events (signal, async) */
559static void 1186static void
560signals_init (ANSIG *base, int count) 1187pipecb (EV_P_ ev_io *iow, int revents)
561{ 1188{
562 while (count--) 1189#if EV_USE_EVENTFD
1190 if (evfd >= 0)
1191 {
1192 uint64_t counter;
1193 read (evfd, &counter, sizeof (uint64_t));
563 { 1194 }
564 base->head = 0; 1195 else
1196#endif
1197 {
1198 char dummy;
1199 read (evpipe [0], &dummy, 1);
1200 }
1201
1202 if (gotsig && ev_is_default_loop (EV_A))
1203 {
1204 int signum;
565 base->gotsig = 0; 1205 gotsig = 0;
566 1206
567 ++base; 1207 for (signum = signalmax; signum--; )
1208 if (signals [signum].gotsig)
1209 ev_feed_signal_event (EV_A_ signum + 1);
1210 }
1211
1212#if EV_ASYNC_ENABLE
1213 if (gotasync)
568 } 1214 {
1215 int i;
1216 gotasync = 0;
1217
1218 for (i = asynccnt; i--; )
1219 if (asyncs [i]->sent)
1220 {
1221 asyncs [i]->sent = 0;
1222 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1223 }
1224 }
1225#endif
569} 1226}
1227
1228/*****************************************************************************/
570 1229
571static void 1230static void
572sighandler (int signum) 1231ev_sighandler (int signum)
573{ 1232{
1233#if EV_MULTIPLICITY
1234 struct ev_loop *loop = &default_loop_struct;
1235#endif
1236
574#if WIN32 1237#if _WIN32
575 signal (signum, sighandler); 1238 signal (signum, ev_sighandler);
576#endif 1239#endif
577 1240
578 signals [signum - 1].gotsig = 1; 1241 signals [signum - 1].gotsig = 1;
579 1242 evpipe_write (EV_A_ &gotsig);
580 if (!gotsig)
581 {
582 int old_errno = errno;
583 gotsig = 1;
584#ifdef WIN32
585 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
586#else
587 write (sigpipe [1], &signum, 1);
588#endif
589 errno = old_errno;
590 }
591} 1243}
592 1244
593void 1245void noinline
594ev_feed_signal_event (EV_P_ int signum) 1246ev_feed_signal_event (EV_P_ int signum)
595{ 1247{
596 WL w; 1248 WL w;
597 1249
598#if EV_MULTIPLICITY 1250#if EV_MULTIPLICITY
599 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 1251 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
600#endif 1252#endif
601 1253
602 --signum; 1254 --signum;
603 1255
604 if (signum < 0 || signum >= signalmax) 1256 if (signum < 0 || signum >= signalmax)
608 1260
609 for (w = signals [signum].head; w; w = w->next) 1261 for (w = signals [signum].head; w; w = w->next)
610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1262 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
611} 1263}
612 1264
1265#if EV_USE_SIGNALFD
613static void 1266static void
614sigcb (EV_P_ struct ev_io *iow, int revents) 1267sigfdcb (EV_P_ ev_io *iow, int revents)
615{ 1268{
616 int signum; 1269 struct signalfd_siginfo si[4], *sip;
617 1270
618#ifdef WIN32 1271 for (;;)
619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 1272 {
620#else 1273 ssize_t res = read (sigfd, si, sizeof (si));
621 read (sigpipe [0], &revents, 1);
622#endif
623 gotsig = 0;
624 1274
625 for (signum = signalmax; signum--; ) 1275 /* not ISO-C, as res might be -1, but works with SuS */
626 if (signals [signum].gotsig) 1276 for (sip = si; (char *)sip < (char *)si + res; ++sip)
627 ev_feed_signal_event (EV_A_ signum + 1); 1277 ev_feed_signal_event (EV_A_ sip->ssi_signo);
628}
629 1278
630static void 1279 if (res < (ssize_t)sizeof (si))
631siginit (EV_P) 1280 break;
632{ 1281 }
633#ifndef WIN32
634 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
635 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
636
637 /* rather than sort out wether we really need nb, set it */
638 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
639 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
640#endif
641
642 ev_io_set (&sigev, sigpipe [0], EV_READ);
643 ev_io_start (EV_A_ &sigev);
644 ev_unref (EV_A); /* child watcher should not keep loop alive */
645} 1282}
1283#endif
646 1284
647/*****************************************************************************/ 1285/*****************************************************************************/
648 1286
649static struct ev_child *childs [PID_HASHSIZE]; 1287static WL childs [EV_PID_HASHSIZE];
650 1288
651#ifndef WIN32 1289#ifndef _WIN32
652 1290
653static struct ev_signal childev; 1291static ev_signal childev;
1292
1293#ifndef WIFCONTINUED
1294# define WIFCONTINUED(status) 0
1295#endif
1296
1297/* handle a single child status event */
1298inline_speed void
1299child_reap (EV_P_ int chain, int pid, int status)
1300{
1301 ev_child *w;
1302 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1303
1304 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1305 {
1306 if ((w->pid == pid || !w->pid)
1307 && (!traced || (w->flags & 1)))
1308 {
1309 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1310 w->rpid = pid;
1311 w->rstatus = status;
1312 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1313 }
1314 }
1315}
654 1316
655#ifndef WCONTINUED 1317#ifndef WCONTINUED
656# define WCONTINUED 0 1318# define WCONTINUED 0
657#endif 1319#endif
658 1320
1321/* called on sigchld etc., calls waitpid */
659static void 1322static void
660child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
661{
662 struct ev_child *w;
663
664 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
665 if (w->pid == pid || !w->pid)
666 {
667 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
668 w->rpid = pid;
669 w->rstatus = status;
670 ev_feed_event (EV_A_ (W)w, EV_CHILD);
671 }
672}
673
674static void
675childcb (EV_P_ struct ev_signal *sw, int revents) 1323childcb (EV_P_ ev_signal *sw, int revents)
676{ 1324{
677 int pid, status; 1325 int pid, status;
678 1326
1327 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
679 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1328 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
680 { 1329 if (!WCONTINUED
1330 || errno != EINVAL
1331 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1332 return;
1333
681 /* make sure we are called again until all childs have been reaped */ 1334 /* make sure we are called again until all children have been reaped */
1335 /* we need to do it this way so that the callback gets called before we continue */
682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1336 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
683 1337
684 child_reap (EV_A_ sw, pid, pid, status); 1338 child_reap (EV_A_ pid, pid, status);
1339 if (EV_PID_HASHSIZE > 1)
685 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1340 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
686 }
687} 1341}
688 1342
689#endif 1343#endif
690 1344
691/*****************************************************************************/ 1345/*****************************************************************************/
692 1346
1347#if EV_USE_PORT
1348# include "ev_port.c"
1349#endif
693#if EV_USE_KQUEUE 1350#if EV_USE_KQUEUE
694# include "ev_kqueue.c" 1351# include "ev_kqueue.c"
695#endif 1352#endif
696#if EV_USE_EPOLL 1353#if EV_USE_EPOLL
697# include "ev_epoll.c" 1354# include "ev_epoll.c"
714{ 1371{
715 return EV_VERSION_MINOR; 1372 return EV_VERSION_MINOR;
716} 1373}
717 1374
718/* return true if we are running with elevated privileges and should ignore env variables */ 1375/* return true if we are running with elevated privileges and should ignore env variables */
719static int 1376int inline_size
720enable_secure (void) 1377enable_secure (void)
721{ 1378{
722#ifdef WIN32 1379#ifdef _WIN32
723 return 0; 1380 return 0;
724#else 1381#else
725 return getuid () != geteuid () 1382 return getuid () != geteuid ()
726 || getgid () != getegid (); 1383 || getgid () != getegid ();
727#endif 1384#endif
728} 1385}
729 1386
730int 1387unsigned int
731ev_method (EV_P) 1388ev_supported_backends (void)
732{ 1389{
733 return method; 1390 unsigned int flags = 0;
734}
735 1391
736static void 1392 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
737loop_init (EV_P_ int methods) 1393 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1394 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1395 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1396 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1397
1398 return flags;
1399}
1400
1401unsigned int
1402ev_recommended_backends (void)
738{ 1403{
739 if (!method) 1404 unsigned int flags = ev_supported_backends ();
1405
1406#ifndef __NetBSD__
1407 /* kqueue is borked on everything but netbsd apparently */
1408 /* it usually doesn't work correctly on anything but sockets and pipes */
1409 flags &= ~EVBACKEND_KQUEUE;
1410#endif
1411#ifdef __APPLE__
1412 /* only select works correctly on that "unix-certified" platform */
1413 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1414 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1415#endif
1416
1417 return flags;
1418}
1419
1420unsigned int
1421ev_embeddable_backends (void)
1422{
1423 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1424
1425 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1426 /* please fix it and tell me how to detect the fix */
1427 flags &= ~EVBACKEND_EPOLL;
1428
1429 return flags;
1430}
1431
1432unsigned int
1433ev_backend (EV_P)
1434{
1435 return backend;
1436}
1437
1438#if EV_MINIMAL < 2
1439unsigned int
1440ev_loop_count (EV_P)
1441{
1442 return loop_count;
1443}
1444
1445unsigned int
1446ev_loop_depth (EV_P)
1447{
1448 return loop_depth;
1449}
1450
1451void
1452ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1453{
1454 io_blocktime = interval;
1455}
1456
1457void
1458ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1459{
1460 timeout_blocktime = interval;
1461}
1462
1463void
1464ev_set_userdata (EV_P_ void *data)
1465{
1466 userdata = data;
1467}
1468
1469void *
1470ev_userdata (EV_P)
1471{
1472 return userdata;
1473}
1474
1475void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1476{
1477 invoke_cb = invoke_pending_cb;
1478}
1479
1480void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1481{
1482 release_cb = release;
1483 acquire_cb = acquire;
1484}
1485#endif
1486
1487/* initialise a loop structure, must be zero-initialised */
1488static void noinline
1489loop_init (EV_P_ unsigned int flags)
1490{
1491 if (!backend)
740 { 1492 {
1493#if EV_USE_REALTIME
1494 if (!have_realtime)
1495 {
1496 struct timespec ts;
1497
1498 if (!clock_gettime (CLOCK_REALTIME, &ts))
1499 have_realtime = 1;
1500 }
1501#endif
1502
741#if EV_USE_MONOTONIC 1503#if EV_USE_MONOTONIC
1504 if (!have_monotonic)
1505 {
1506 struct timespec ts;
1507
1508 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1509 have_monotonic = 1;
1510 }
1511#endif
1512
1513 ev_rt_now = ev_time ();
1514 mn_now = get_clock ();
1515 now_floor = mn_now;
1516 rtmn_diff = ev_rt_now - mn_now;
1517#if EV_MINIMAL < 2
1518 invoke_cb = ev_invoke_pending;
1519#endif
1520
1521 io_blocktime = 0.;
1522 timeout_blocktime = 0.;
1523 backend = 0;
1524 backend_fd = -1;
1525 gotasync = 0;
1526#if EV_USE_INOTIFY
1527 fs_fd = -2;
1528#endif
1529#if EV_USE_SIGNALFD
1530 sigfd = -2;
1531#endif
1532
1533 /* pid check not overridable via env */
1534#ifndef _WIN32
1535 if (flags & EVFLAG_FORKCHECK)
1536 curpid = getpid ();
1537#endif
1538
1539 if (!(flags & EVFLAG_NOENV)
1540 && !enable_secure ()
1541 && getenv ("LIBEV_FLAGS"))
1542 flags = atoi (getenv ("LIBEV_FLAGS"));
1543
1544 if (!(flags & 0x0000ffffU))
1545 flags |= ev_recommended_backends ();
1546
1547#if EV_USE_PORT
1548 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1549#endif
1550#if EV_USE_KQUEUE
1551 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1552#endif
1553#if EV_USE_EPOLL
1554 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1555#endif
1556#if EV_USE_POLL
1557 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1558#endif
1559#if EV_USE_SELECT
1560 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1561#endif
1562
1563 ev_prepare_init (&pending_w, pendingcb);
1564
1565 ev_init (&pipe_w, pipecb);
1566 ev_set_priority (&pipe_w, EV_MAXPRI);
1567 }
1568}
1569
1570/* free up a loop structure */
1571static void noinline
1572loop_destroy (EV_P)
1573{
1574 int i;
1575
1576 if (ev_is_active (&pipe_w))
1577 {
1578 /*ev_ref (EV_A);*/
1579 /*ev_io_stop (EV_A_ &pipe_w);*/
1580
1581#if EV_USE_EVENTFD
1582 if (evfd >= 0)
1583 close (evfd);
1584#endif
1585
1586 if (evpipe [0] >= 0)
1587 {
1588 close (evpipe [0]);
1589 close (evpipe [1]);
1590 }
1591 }
1592
1593#if EV_USE_SIGNALFD
1594 if (ev_is_active (&sigfd_w))
1595 {
1596 /*ev_ref (EV_A);*/
1597 /*ev_io_stop (EV_A_ &sigfd_w);*/
1598
1599 close (sigfd);
1600 }
1601#endif
1602
1603#if EV_USE_INOTIFY
1604 if (fs_fd >= 0)
1605 close (fs_fd);
1606#endif
1607
1608 if (backend_fd >= 0)
1609 close (backend_fd);
1610
1611#if EV_USE_PORT
1612 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1613#endif
1614#if EV_USE_KQUEUE
1615 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1616#endif
1617#if EV_USE_EPOLL
1618 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1619#endif
1620#if EV_USE_POLL
1621 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1622#endif
1623#if EV_USE_SELECT
1624 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1625#endif
1626
1627 for (i = NUMPRI; i--; )
1628 {
1629 array_free (pending, [i]);
1630#if EV_IDLE_ENABLE
1631 array_free (idle, [i]);
1632#endif
1633 }
1634
1635 ev_free (anfds); anfdmax = 0;
1636
1637 /* have to use the microsoft-never-gets-it-right macro */
1638 array_free (rfeed, EMPTY);
1639 array_free (fdchange, EMPTY);
1640 array_free (timer, EMPTY);
1641#if EV_PERIODIC_ENABLE
1642 array_free (periodic, EMPTY);
1643#endif
1644#if EV_FORK_ENABLE
1645 array_free (fork, EMPTY);
1646#endif
1647 array_free (prepare, EMPTY);
1648 array_free (check, EMPTY);
1649#if EV_ASYNC_ENABLE
1650 array_free (async, EMPTY);
1651#endif
1652
1653 backend = 0;
1654}
1655
1656#if EV_USE_INOTIFY
1657inline_size void infy_fork (EV_P);
1658#endif
1659
1660inline_size void
1661loop_fork (EV_P)
1662{
1663#if EV_USE_PORT
1664 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1665#endif
1666#if EV_USE_KQUEUE
1667 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1668#endif
1669#if EV_USE_EPOLL
1670 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1671#endif
1672#if EV_USE_INOTIFY
1673 infy_fork (EV_A);
1674#endif
1675
1676 if (ev_is_active (&pipe_w))
1677 {
1678 /* this "locks" the handlers against writing to the pipe */
1679 /* while we modify the fd vars */
1680 gotsig = 1;
1681#if EV_ASYNC_ENABLE
1682 gotasync = 1;
1683#endif
1684
1685 ev_ref (EV_A);
1686 ev_io_stop (EV_A_ &pipe_w);
1687
1688#if EV_USE_EVENTFD
1689 if (evfd >= 0)
1690 close (evfd);
1691#endif
1692
1693 if (evpipe [0] >= 0)
1694 {
1695 close (evpipe [0]);
1696 close (evpipe [1]);
1697 }
1698
1699 evpipe_init (EV_A);
1700 /* now iterate over everything, in case we missed something */
1701 pipecb (EV_A_ &pipe_w, EV_READ);
1702 }
1703
1704 postfork = 0;
1705}
1706
1707#if EV_MULTIPLICITY
1708
1709struct ev_loop *
1710ev_loop_new (unsigned int flags)
1711{
1712 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1713
1714 memset (loop, 0, sizeof (struct ev_loop));
1715 loop_init (EV_A_ flags);
1716
1717 if (ev_backend (EV_A))
1718 return loop;
1719
1720 return 0;
1721}
1722
1723void
1724ev_loop_destroy (EV_P)
1725{
1726 loop_destroy (EV_A);
1727 ev_free (loop);
1728}
1729
1730void
1731ev_loop_fork (EV_P)
1732{
1733 postfork = 1; /* must be in line with ev_default_fork */
1734}
1735#endif /* multiplicity */
1736
1737#if EV_VERIFY
1738static void noinline
1739verify_watcher (EV_P_ W w)
1740{
1741 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1742
1743 if (w->pending)
1744 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1745}
1746
1747static void noinline
1748verify_heap (EV_P_ ANHE *heap, int N)
1749{
1750 int i;
1751
1752 for (i = HEAP0; i < N + HEAP0; ++i)
1753 {
1754 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1755 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1756 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1757
1758 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1759 }
1760}
1761
1762static void noinline
1763array_verify (EV_P_ W *ws, int cnt)
1764{
1765 while (cnt--)
1766 {
1767 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1768 verify_watcher (EV_A_ ws [cnt]);
1769 }
1770}
1771#endif
1772
1773#if EV_MINIMAL < 2
1774void
1775ev_loop_verify (EV_P)
1776{
1777#if EV_VERIFY
1778 int i;
1779 WL w;
1780
1781 assert (activecnt >= -1);
1782
1783 assert (fdchangemax >= fdchangecnt);
1784 for (i = 0; i < fdchangecnt; ++i)
1785 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1786
1787 assert (anfdmax >= 0);
1788 for (i = 0; i < anfdmax; ++i)
1789 for (w = anfds [i].head; w; w = w->next)
742 { 1790 {
743 struct timespec ts; 1791 verify_watcher (EV_A_ (W)w);
744 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1792 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
745 have_monotonic = 1; 1793 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
746 } 1794 }
747#endif
748 1795
749 ev_rt_now = ev_time (); 1796 assert (timermax >= timercnt);
750 mn_now = get_clock (); 1797 verify_heap (EV_A_ timers, timercnt);
751 now_floor = mn_now;
752 rtmn_diff = ev_rt_now - mn_now;
753 1798
754 if (methods == EVMETHOD_AUTO) 1799#if EV_PERIODIC_ENABLE
755 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1800 assert (periodicmax >= periodiccnt);
756 methods = atoi (getenv ("LIBEV_METHODS")); 1801 verify_heap (EV_A_ periodics, periodiccnt);
757 else
758 methods = EVMETHOD_ANY;
759
760 method = 0;
761#if EV_USE_WIN32
762 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
763#endif
764#if EV_USE_KQUEUE
765 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
766#endif
767#if EV_USE_EPOLL
768 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
769#endif
770#if EV_USE_POLL
771 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
772#endif
773#if EV_USE_SELECT
774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
775#endif
776
777 ev_init (&sigev, sigcb);
778 ev_set_priority (&sigev, EV_MAXPRI);
779 }
780}
781
782void
783loop_destroy (EV_P)
784{
785 int i;
786
787#if EV_USE_WIN32
788 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
789#endif
790#if EV_USE_KQUEUE
791 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
792#endif
793#if EV_USE_EPOLL
794 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
795#endif
796#if EV_USE_POLL
797 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
798#endif
799#if EV_USE_SELECT
800 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
801#endif 1802#endif
802 1803
803 for (i = NUMPRI; i--; ) 1804 for (i = NUMPRI; i--; )
804 array_free (pending, [i]); 1805 {
1806 assert (pendingmax [i] >= pendingcnt [i]);
1807#if EV_IDLE_ENABLE
1808 assert (idleall >= 0);
1809 assert (idlemax [i] >= idlecnt [i]);
1810 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1811#endif
1812 }
805 1813
806 /* have to use the microsoft-never-gets-it-right macro */ 1814#if EV_FORK_ENABLE
807 array_free_microshit (fdchange); 1815 assert (forkmax >= forkcnt);
808 array_free_microshit (timer); 1816 array_verify (EV_A_ (W *)forks, forkcnt);
809 array_free_microshit (periodic); 1817#endif
810 array_free_microshit (idle);
811 array_free_microshit (prepare);
812 array_free_microshit (check);
813 1818
814 method = 0; 1819#if EV_ASYNC_ENABLE
815} 1820 assert (asyncmax >= asynccnt);
1821 array_verify (EV_A_ (W *)asyncs, asynccnt);
1822#endif
816 1823
817static void 1824 assert (preparemax >= preparecnt);
818loop_fork (EV_P) 1825 array_verify (EV_A_ (W *)prepares, preparecnt);
819{ 1826
820#if EV_USE_EPOLL 1827 assert (checkmax >= checkcnt);
821 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1828 array_verify (EV_A_ (W *)checks, checkcnt);
1829
1830# if 0
1831 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1832 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
822#endif 1833# endif
823#if EV_USE_KQUEUE
824 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
825#endif 1834#endif
826
827 if (ev_is_active (&sigev))
828 {
829 /* default loop */
830
831 ev_ref (EV_A);
832 ev_io_stop (EV_A_ &sigev);
833 close (sigpipe [0]);
834 close (sigpipe [1]);
835
836 while (pipe (sigpipe))
837 syserr ("(libev) error creating pipe");
838
839 siginit (EV_A);
840 }
841
842 postfork = 0;
843} 1835}
1836#endif
844 1837
845#if EV_MULTIPLICITY 1838#if EV_MULTIPLICITY
846struct ev_loop * 1839struct ev_loop *
847ev_loop_new (int methods) 1840ev_default_loop_init (unsigned int flags)
848{
849 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
850
851 memset (loop, 0, sizeof (struct ev_loop));
852
853 loop_init (EV_A_ methods);
854
855 if (ev_method (EV_A))
856 return loop;
857
858 return 0;
859}
860
861void
862ev_loop_destroy (EV_P)
863{
864 loop_destroy (EV_A);
865 ev_free (loop);
866}
867
868void
869ev_loop_fork (EV_P)
870{
871 postfork = 1;
872}
873
874#endif
875
876#if EV_MULTIPLICITY
877struct ev_loop *
878#else 1841#else
879int 1842int
1843ev_default_loop (unsigned int flags)
880#endif 1844#endif
881ev_default_loop (int methods)
882{ 1845{
883 if (sigpipe [0] == sigpipe [1])
884 if (pipe (sigpipe))
885 return 0;
886
887 if (!default_loop) 1846 if (!ev_default_loop_ptr)
888 { 1847 {
889#if EV_MULTIPLICITY 1848#if EV_MULTIPLICITY
890 struct ev_loop *loop = default_loop = &default_loop_struct; 1849 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
891#else 1850#else
892 default_loop = 1; 1851 ev_default_loop_ptr = 1;
893#endif 1852#endif
894 1853
895 loop_init (EV_A_ methods); 1854 loop_init (EV_A_ flags);
896 1855
897 if (ev_method (EV_A)) 1856 if (ev_backend (EV_A))
898 { 1857 {
899 siginit (EV_A);
900
901#ifndef WIN32 1858#ifndef _WIN32
902 ev_signal_init (&childev, childcb, SIGCHLD); 1859 ev_signal_init (&childev, childcb, SIGCHLD);
903 ev_set_priority (&childev, EV_MAXPRI); 1860 ev_set_priority (&childev, EV_MAXPRI);
904 ev_signal_start (EV_A_ &childev); 1861 ev_signal_start (EV_A_ &childev);
905 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1862 ev_unref (EV_A); /* child watcher should not keep loop alive */
906#endif 1863#endif
907 } 1864 }
908 else 1865 else
909 default_loop = 0; 1866 ev_default_loop_ptr = 0;
910 } 1867 }
911 1868
912 return default_loop; 1869 return ev_default_loop_ptr;
913} 1870}
914 1871
915void 1872void
916ev_default_destroy (void) 1873ev_default_destroy (void)
917{ 1874{
918#if EV_MULTIPLICITY 1875#if EV_MULTIPLICITY
919 struct ev_loop *loop = default_loop; 1876 struct ev_loop *loop = ev_default_loop_ptr;
920#endif 1877#endif
921 1878
1879 ev_default_loop_ptr = 0;
1880
922#ifndef WIN32 1881#ifndef _WIN32
923 ev_ref (EV_A); /* child watcher */ 1882 ev_ref (EV_A); /* child watcher */
924 ev_signal_stop (EV_A_ &childev); 1883 ev_signal_stop (EV_A_ &childev);
925#endif 1884#endif
926 1885
927 ev_ref (EV_A); /* signal watcher */
928 ev_io_stop (EV_A_ &sigev);
929
930 close (sigpipe [0]); sigpipe [0] = 0;
931 close (sigpipe [1]); sigpipe [1] = 0;
932
933 loop_destroy (EV_A); 1886 loop_destroy (EV_A);
934} 1887}
935 1888
936void 1889void
937ev_default_fork (void) 1890ev_default_fork (void)
938{ 1891{
939#if EV_MULTIPLICITY 1892#if EV_MULTIPLICITY
940 struct ev_loop *loop = default_loop; 1893 struct ev_loop *loop = ev_default_loop_ptr;
941#endif 1894#endif
942 1895
943 if (method) 1896 postfork = 1; /* must be in line with ev_loop_fork */
944 postfork = 1;
945} 1897}
946 1898
947/*****************************************************************************/ 1899/*****************************************************************************/
948 1900
949static int 1901void
950any_pending (EV_P) 1902ev_invoke (EV_P_ void *w, int revents)
1903{
1904 EV_CB_INVOKE ((W)w, revents);
1905}
1906
1907unsigned int
1908ev_pending_count (EV_P)
951{ 1909{
952 int pri; 1910 int pri;
1911 unsigned int count = 0;
953 1912
954 for (pri = NUMPRI; pri--; ) 1913 for (pri = NUMPRI; pri--; )
955 if (pendingcnt [pri]) 1914 count += pendingcnt [pri];
956 return 1;
957 1915
958 return 0; 1916 return count;
959} 1917}
960 1918
961static void 1919void noinline
962call_pending (EV_P) 1920ev_invoke_pending (EV_P)
963{ 1921{
964 int pri; 1922 int pri;
965 1923
966 for (pri = NUMPRI; pri--; ) 1924 for (pri = NUMPRI; pri--; )
967 while (pendingcnt [pri]) 1925 while (pendingcnt [pri])
968 { 1926 {
969 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1927 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
970 1928
971 if (p->w) 1929 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
972 { 1930 /* ^ this is no longer true, as pending_w could be here */
1931
973 p->w->pending = 0; 1932 p->w->pending = 0;
974 EV_CB_INVOKE (p->w, p->events); 1933 EV_CB_INVOKE (p->w, p->events);
975 } 1934 EV_FREQUENT_CHECK;
976 } 1935 }
977} 1936}
978 1937
979static void 1938#if EV_IDLE_ENABLE
1939/* make idle watchers pending. this handles the "call-idle */
1940/* only when higher priorities are idle" logic */
1941inline_size void
1942idle_reify (EV_P)
1943{
1944 if (expect_false (idleall))
1945 {
1946 int pri;
1947
1948 for (pri = NUMPRI; pri--; )
1949 {
1950 if (pendingcnt [pri])
1951 break;
1952
1953 if (idlecnt [pri])
1954 {
1955 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1956 break;
1957 }
1958 }
1959 }
1960}
1961#endif
1962
1963/* make timers pending */
1964inline_size void
980timers_reify (EV_P) 1965timers_reify (EV_P)
981{ 1966{
1967 EV_FREQUENT_CHECK;
1968
982 while (timercnt && ((WT)timers [0])->at <= mn_now) 1969 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
983 { 1970 {
984 struct ev_timer *w = timers [0]; 1971 do
985
986 assert (("inactive timer on timer heap detected", ev_is_active (w)));
987
988 /* first reschedule or stop timer */
989 if (w->repeat)
990 { 1972 {
1973 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1974
1975 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1976
1977 /* first reschedule or stop timer */
1978 if (w->repeat)
1979 {
1980 ev_at (w) += w->repeat;
1981 if (ev_at (w) < mn_now)
1982 ev_at (w) = mn_now;
1983
991 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1984 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
992 1985
993 ((WT)w)->at += w->repeat; 1986 ANHE_at_cache (timers [HEAP0]);
994 if (((WT)w)->at < mn_now)
995 ((WT)w)->at = mn_now;
996
997 downheap ((WT *)timers, timercnt, 0); 1987 downheap (timers, timercnt, HEAP0);
1988 }
1989 else
1990 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1991
1992 EV_FREQUENT_CHECK;
1993 feed_reverse (EV_A_ (W)w);
998 } 1994 }
999 else 1995 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1000 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1001 1996
1002 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1997 feed_reverse_done (EV_A_ EV_TIMEOUT);
1003 } 1998 }
1004} 1999}
1005 2000
1006static void 2001#if EV_PERIODIC_ENABLE
2002/* make periodics pending */
2003inline_size void
1007periodics_reify (EV_P) 2004periodics_reify (EV_P)
1008{ 2005{
2006 EV_FREQUENT_CHECK;
2007
1009 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2008 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1010 { 2009 {
1011 struct ev_periodic *w = periodics [0]; 2010 int feed_count = 0;
1012 2011
2012 do
2013 {
2014 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2015
1013 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2016 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1014 2017
1015 /* first reschedule or stop timer */ 2018 /* first reschedule or stop timer */
2019 if (w->reschedule_cb)
2020 {
2021 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2022
2023 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2024
2025 ANHE_at_cache (periodics [HEAP0]);
2026 downheap (periodics, periodiccnt, HEAP0);
2027 }
2028 else if (w->interval)
2029 {
2030 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2031 /* if next trigger time is not sufficiently in the future, put it there */
2032 /* this might happen because of floating point inexactness */
2033 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2034 {
2035 ev_at (w) += w->interval;
2036
2037 /* if interval is unreasonably low we might still have a time in the past */
2038 /* so correct this. this will make the periodic very inexact, but the user */
2039 /* has effectively asked to get triggered more often than possible */
2040 if (ev_at (w) < ev_rt_now)
2041 ev_at (w) = ev_rt_now;
2042 }
2043
2044 ANHE_at_cache (periodics [HEAP0]);
2045 downheap (periodics, periodiccnt, HEAP0);
2046 }
2047 else
2048 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2049
2050 EV_FREQUENT_CHECK;
2051 feed_reverse (EV_A_ (W)w);
2052 }
2053 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2054
2055 feed_reverse_done (EV_A_ EV_PERIODIC);
2056 }
2057}
2058
2059/* simply recalculate all periodics */
2060/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2061static void noinline
2062periodics_reschedule (EV_P)
2063{
2064 int i;
2065
2066 /* adjust periodics after time jump */
2067 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2068 {
2069 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2070
1016 if (w->reschedule_cb) 2071 if (w->reschedule_cb)
2072 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2073 else if (w->interval)
2074 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2075
2076 ANHE_at_cache (periodics [i]);
2077 }
2078
2079 reheap (periodics, periodiccnt);
2080}
2081#endif
2082
2083/* adjust all timers by a given offset */
2084static void noinline
2085timers_reschedule (EV_P_ ev_tstamp adjust)
2086{
2087 int i;
2088
2089 for (i = 0; i < timercnt; ++i)
2090 {
2091 ANHE *he = timers + i + HEAP0;
2092 ANHE_w (*he)->at += adjust;
2093 ANHE_at_cache (*he);
2094 }
2095}
2096
2097/* fetch new monotonic and realtime times from the kernel */
2098/* also detetc if there was a timejump, and act accordingly */
2099inline_speed void
2100time_update (EV_P_ ev_tstamp max_block)
2101{
2102#if EV_USE_MONOTONIC
2103 if (expect_true (have_monotonic))
2104 {
2105 int i;
2106 ev_tstamp odiff = rtmn_diff;
2107
2108 mn_now = get_clock ();
2109
2110 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2111 /* interpolate in the meantime */
2112 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1017 { 2113 {
1018 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2114 ev_rt_now = rtmn_diff + mn_now;
1019 2115 return;
1020 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1021 downheap ((WT *)periodics, periodiccnt, 0);
1022 } 2116 }
1023 else if (w->interval)
1024 {
1025 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1026 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1027 downheap ((WT *)periodics, periodiccnt, 0);
1028 }
1029 else
1030 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1031 2117
1032 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1033 }
1034}
1035
1036static void
1037periodics_reschedule (EV_P)
1038{
1039 int i;
1040
1041 /* adjust periodics after time jump */
1042 for (i = 0; i < periodiccnt; ++i)
1043 {
1044 struct ev_periodic *w = periodics [i];
1045
1046 if (w->reschedule_cb)
1047 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1048 else if (w->interval)
1049 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1050 }
1051
1052 /* now rebuild the heap */
1053 for (i = periodiccnt >> 1; i--; )
1054 downheap ((WT *)periodics, periodiccnt, i);
1055}
1056
1057inline int
1058time_update_monotonic (EV_P)
1059{
1060 mn_now = get_clock ();
1061
1062 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1063 {
1064 ev_rt_now = rtmn_diff + mn_now;
1065 return 0;
1066 }
1067 else
1068 {
1069 now_floor = mn_now; 2118 now_floor = mn_now;
1070 ev_rt_now = ev_time (); 2119 ev_rt_now = ev_time ();
1071 return 1;
1072 }
1073}
1074 2120
1075static void 2121 /* loop a few times, before making important decisions.
1076time_update (EV_P) 2122 * on the choice of "4": one iteration isn't enough,
1077{ 2123 * in case we get preempted during the calls to
1078 int i; 2124 * ev_time and get_clock. a second call is almost guaranteed
1079 2125 * to succeed in that case, though. and looping a few more times
1080#if EV_USE_MONOTONIC 2126 * doesn't hurt either as we only do this on time-jumps or
1081 if (expect_true (have_monotonic)) 2127 * in the unlikely event of having been preempted here.
1082 { 2128 */
1083 if (time_update_monotonic (EV_A)) 2129 for (i = 4; --i; )
1084 { 2130 {
1085 ev_tstamp odiff = rtmn_diff;
1086
1087 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1088 {
1089 rtmn_diff = ev_rt_now - mn_now; 2131 rtmn_diff = ev_rt_now - mn_now;
1090 2132
1091 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2133 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1092 return; /* all is well */ 2134 return; /* all is well */
1093 2135
1094 ev_rt_now = ev_time (); 2136 ev_rt_now = ev_time ();
1095 mn_now = get_clock (); 2137 mn_now = get_clock ();
1096 now_floor = mn_now; 2138 now_floor = mn_now;
1097 } 2139 }
1098 2140
2141 /* no timer adjustment, as the monotonic clock doesn't jump */
2142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
2143# if EV_PERIODIC_ENABLE
2144 periodics_reschedule (EV_A);
2145# endif
2146 }
2147 else
2148#endif
2149 {
2150 ev_rt_now = ev_time ();
2151
2152 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2153 {
2154 /* adjust timers. this is easy, as the offset is the same for all of them */
2155 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2156#if EV_PERIODIC_ENABLE
1099 periodics_reschedule (EV_A); 2157 periodics_reschedule (EV_A);
1100 /* no timer adjustment, as the monotonic clock doesn't jump */ 2158#endif
1101 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1102 } 2159 }
1103 }
1104 else
1105#endif
1106 {
1107 ev_rt_now = ev_time ();
1108
1109 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1110 {
1111 periodics_reschedule (EV_A);
1112
1113 /* adjust timers. this is easy, as the offset is the same for all */
1114 for (i = 0; i < timercnt; ++i)
1115 ((WT)timers [i])->at += ev_rt_now - mn_now;
1116 }
1117 2160
1118 mn_now = ev_rt_now; 2161 mn_now = ev_rt_now;
1119 } 2162 }
1120} 2163}
1121 2164
1122void 2165void
1123ev_ref (EV_P)
1124{
1125 ++activecnt;
1126}
1127
1128void
1129ev_unref (EV_P)
1130{
1131 --activecnt;
1132}
1133
1134static int loop_done;
1135
1136void
1137ev_loop (EV_P_ int flags) 2166ev_loop (EV_P_ int flags)
1138{ 2167{
1139 double block; 2168#if EV_MINIMAL < 2
1140 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2169 ++loop_depth;
2170#endif
2171
2172 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2173
2174 loop_done = EVUNLOOP_CANCEL;
2175
2176 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1141 2177
1142 do 2178 do
1143 { 2179 {
2180#if EV_VERIFY >= 2
2181 ev_loop_verify (EV_A);
2182#endif
2183
2184#ifndef _WIN32
2185 if (expect_false (curpid)) /* penalise the forking check even more */
2186 if (expect_false (getpid () != curpid))
2187 {
2188 curpid = getpid ();
2189 postfork = 1;
2190 }
2191#endif
2192
2193#if EV_FORK_ENABLE
2194 /* we might have forked, so queue fork handlers */
2195 if (expect_false (postfork))
2196 if (forkcnt)
2197 {
2198 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2199 EV_INVOKE_PENDING;
2200 }
2201#endif
2202
1144 /* queue check watchers (and execute them) */ 2203 /* queue prepare watchers (and execute them) */
1145 if (expect_false (preparecnt)) 2204 if (expect_false (preparecnt))
1146 { 2205 {
1147 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2206 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1148 call_pending (EV_A); 2207 EV_INVOKE_PENDING;
1149 } 2208 }
2209
2210 if (expect_false (loop_done))
2211 break;
1150 2212
1151 /* we might have forked, so reify kernel state if necessary */ 2213 /* we might have forked, so reify kernel state if necessary */
1152 if (expect_false (postfork)) 2214 if (expect_false (postfork))
1153 loop_fork (EV_A); 2215 loop_fork (EV_A);
1154 2216
1155 /* update fd-related kernel structures */ 2217 /* update fd-related kernel structures */
1156 fd_reify (EV_A); 2218 fd_reify (EV_A);
1157 2219
1158 /* calculate blocking time */ 2220 /* calculate blocking time */
2221 {
2222 ev_tstamp waittime = 0.;
2223 ev_tstamp sleeptime = 0.;
1159 2224
1160 /* we only need this for !monotonic clock or timers, but as we basically 2225 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1161 always have timers, we just calculate it always */
1162#if EV_USE_MONOTONIC
1163 if (expect_true (have_monotonic))
1164 time_update_monotonic (EV_A);
1165 else
1166#endif
1167 { 2226 {
1168 ev_rt_now = ev_time (); 2227 /* remember old timestamp for io_blocktime calculation */
1169 mn_now = ev_rt_now; 2228 ev_tstamp prev_mn_now = mn_now;
1170 }
1171 2229
1172 if (flags & EVLOOP_NONBLOCK || idlecnt) 2230 /* update time to cancel out callback processing overhead */
1173 block = 0.; 2231 time_update (EV_A_ 1e100);
1174 else 2232
1175 {
1176 block = MAX_BLOCKTIME; 2233 waittime = MAX_BLOCKTIME;
1177 2234
1178 if (timercnt) 2235 if (timercnt)
1179 { 2236 {
1180 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2237 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1181 if (block > to) block = to; 2238 if (waittime > to) waittime = to;
1182 } 2239 }
1183 2240
2241#if EV_PERIODIC_ENABLE
1184 if (periodiccnt) 2242 if (periodiccnt)
1185 { 2243 {
1186 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2244 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1187 if (block > to) block = to; 2245 if (waittime > to) waittime = to;
1188 } 2246 }
2247#endif
1189 2248
1190 if (block < 0.) block = 0.; 2249 /* don't let timeouts decrease the waittime below timeout_blocktime */
2250 if (expect_false (waittime < timeout_blocktime))
2251 waittime = timeout_blocktime;
2252
2253 /* extra check because io_blocktime is commonly 0 */
2254 if (expect_false (io_blocktime))
2255 {
2256 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2257
2258 if (sleeptime > waittime - backend_fudge)
2259 sleeptime = waittime - backend_fudge;
2260
2261 if (expect_true (sleeptime > 0.))
2262 {
2263 ev_sleep (sleeptime);
2264 waittime -= sleeptime;
2265 }
2266 }
1191 } 2267 }
1192 2268
1193 method_poll (EV_A_ block); 2269#if EV_MINIMAL < 2
2270 ++loop_count;
2271#endif
2272 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2273 backend_poll (EV_A_ waittime);
2274 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1194 2275
1195 /* update ev_rt_now, do magic */ 2276 /* update ev_rt_now, do magic */
1196 time_update (EV_A); 2277 time_update (EV_A_ waittime + sleeptime);
2278 }
1197 2279
1198 /* queue pending timers and reschedule them */ 2280 /* queue pending timers and reschedule them */
1199 timers_reify (EV_A); /* relative timers called last */ 2281 timers_reify (EV_A); /* relative timers called last */
2282#if EV_PERIODIC_ENABLE
1200 periodics_reify (EV_A); /* absolute timers called first */ 2283 periodics_reify (EV_A); /* absolute timers called first */
2284#endif
1201 2285
2286#if EV_IDLE_ENABLE
1202 /* queue idle watchers unless io or timers are pending */ 2287 /* queue idle watchers unless other events are pending */
1203 if (idlecnt && !any_pending (EV_A)) 2288 idle_reify (EV_A);
1204 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2289#endif
1205 2290
1206 /* queue check watchers, to be executed first */ 2291 /* queue check watchers, to be executed first */
1207 if (checkcnt) 2292 if (expect_false (checkcnt))
1208 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2293 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1209 2294
1210 call_pending (EV_A); 2295 EV_INVOKE_PENDING;
1211 } 2296 }
1212 while (activecnt && !loop_done); 2297 while (expect_true (
2298 activecnt
2299 && !loop_done
2300 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2301 ));
1213 2302
1214 if (loop_done != 2) 2303 if (loop_done == EVUNLOOP_ONE)
1215 loop_done = 0; 2304 loop_done = EVUNLOOP_CANCEL;
2305
2306#if EV_MINIMAL < 2
2307 --loop_depth;
2308#endif
1216} 2309}
1217 2310
1218void 2311void
1219ev_unloop (EV_P_ int how) 2312ev_unloop (EV_P_ int how)
1220{ 2313{
1221 loop_done = how; 2314 loop_done = how;
1222} 2315}
1223 2316
2317void
2318ev_ref (EV_P)
2319{
2320 ++activecnt;
2321}
2322
2323void
2324ev_unref (EV_P)
2325{
2326 --activecnt;
2327}
2328
2329void
2330ev_now_update (EV_P)
2331{
2332 time_update (EV_A_ 1e100);
2333}
2334
2335void
2336ev_suspend (EV_P)
2337{
2338 ev_now_update (EV_A);
2339}
2340
2341void
2342ev_resume (EV_P)
2343{
2344 ev_tstamp mn_prev = mn_now;
2345
2346 ev_now_update (EV_A);
2347 timers_reschedule (EV_A_ mn_now - mn_prev);
2348#if EV_PERIODIC_ENABLE
2349 /* TODO: really do this? */
2350 periodics_reschedule (EV_A);
2351#endif
2352}
2353
1224/*****************************************************************************/ 2354/*****************************************************************************/
2355/* singly-linked list management, used when the expected list length is short */
1225 2356
1226inline void 2357inline_size void
1227wlist_add (WL *head, WL elem) 2358wlist_add (WL *head, WL elem)
1228{ 2359{
1229 elem->next = *head; 2360 elem->next = *head;
1230 *head = elem; 2361 *head = elem;
1231} 2362}
1232 2363
1233inline void 2364inline_size void
1234wlist_del (WL *head, WL elem) 2365wlist_del (WL *head, WL elem)
1235{ 2366{
1236 while (*head) 2367 while (*head)
1237 { 2368 {
1238 if (*head == elem) 2369 if (*head == elem)
1243 2374
1244 head = &(*head)->next; 2375 head = &(*head)->next;
1245 } 2376 }
1246} 2377}
1247 2378
2379/* internal, faster, version of ev_clear_pending */
1248inline void 2380inline_speed void
1249ev_clear_pending (EV_P_ W w) 2381clear_pending (EV_P_ W w)
1250{ 2382{
1251 if (w->pending) 2383 if (w->pending)
1252 { 2384 {
1253 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2385 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1254 w->pending = 0; 2386 w->pending = 0;
1255 } 2387 }
1256} 2388}
1257 2389
2390int
2391ev_clear_pending (EV_P_ void *w)
2392{
2393 W w_ = (W)w;
2394 int pending = w_->pending;
2395
2396 if (expect_true (pending))
2397 {
2398 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2399 p->w = (W)&pending_w;
2400 w_->pending = 0;
2401 return p->events;
2402 }
2403 else
2404 return 0;
2405}
2406
1258inline void 2407inline_size void
2408pri_adjust (EV_P_ W w)
2409{
2410 int pri = ev_priority (w);
2411 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2412 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2413 ev_set_priority (w, pri);
2414}
2415
2416inline_speed void
1259ev_start (EV_P_ W w, int active) 2417ev_start (EV_P_ W w, int active)
1260{ 2418{
1261 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2419 pri_adjust (EV_A_ w);
1262 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1263
1264 w->active = active; 2420 w->active = active;
1265 ev_ref (EV_A); 2421 ev_ref (EV_A);
1266} 2422}
1267 2423
1268inline void 2424inline_size void
1269ev_stop (EV_P_ W w) 2425ev_stop (EV_P_ W w)
1270{ 2426{
1271 ev_unref (EV_A); 2427 ev_unref (EV_A);
1272 w->active = 0; 2428 w->active = 0;
1273} 2429}
1274 2430
1275/*****************************************************************************/ 2431/*****************************************************************************/
1276 2432
1277void 2433void noinline
1278ev_io_start (EV_P_ struct ev_io *w) 2434ev_io_start (EV_P_ ev_io *w)
1279{ 2435{
1280 int fd = w->fd; 2436 int fd = w->fd;
1281 2437
2438 if (expect_false (ev_is_active (w)))
2439 return;
2440
2441 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2442 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2443
2444 EV_FREQUENT_CHECK;
2445
2446 ev_start (EV_A_ (W)w, 1);
2447 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2448 wlist_add (&anfds[fd].head, (WL)w);
2449
2450 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2451 w->events &= ~EV__IOFDSET;
2452
2453 EV_FREQUENT_CHECK;
2454}
2455
2456void noinline
2457ev_io_stop (EV_P_ ev_io *w)
2458{
2459 clear_pending (EV_A_ (W)w);
2460 if (expect_false (!ev_is_active (w)))
2461 return;
2462
2463 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2464
2465 EV_FREQUENT_CHECK;
2466
2467 wlist_del (&anfds[w->fd].head, (WL)w);
2468 ev_stop (EV_A_ (W)w);
2469
2470 fd_change (EV_A_ w->fd, 1);
2471
2472 EV_FREQUENT_CHECK;
2473}
2474
2475void noinline
2476ev_timer_start (EV_P_ ev_timer *w)
2477{
2478 if (expect_false (ev_is_active (w)))
2479 return;
2480
2481 ev_at (w) += mn_now;
2482
2483 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2484
2485 EV_FREQUENT_CHECK;
2486
2487 ++timercnt;
2488 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2489 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2490 ANHE_w (timers [ev_active (w)]) = (WT)w;
2491 ANHE_at_cache (timers [ev_active (w)]);
2492 upheap (timers, ev_active (w));
2493
2494 EV_FREQUENT_CHECK;
2495
2496 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2497}
2498
2499void noinline
2500ev_timer_stop (EV_P_ ev_timer *w)
2501{
2502 clear_pending (EV_A_ (W)w);
2503 if (expect_false (!ev_is_active (w)))
2504 return;
2505
2506 EV_FREQUENT_CHECK;
2507
2508 {
2509 int active = ev_active (w);
2510
2511 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2512
2513 --timercnt;
2514
2515 if (expect_true (active < timercnt + HEAP0))
2516 {
2517 timers [active] = timers [timercnt + HEAP0];
2518 adjustheap (timers, timercnt, active);
2519 }
2520 }
2521
2522 EV_FREQUENT_CHECK;
2523
2524 ev_at (w) -= mn_now;
2525
2526 ev_stop (EV_A_ (W)w);
2527}
2528
2529void noinline
2530ev_timer_again (EV_P_ ev_timer *w)
2531{
2532 EV_FREQUENT_CHECK;
2533
1282 if (ev_is_active (w)) 2534 if (ev_is_active (w))
1283 return;
1284
1285 assert (("ev_io_start called with negative fd", fd >= 0));
1286
1287 ev_start (EV_A_ (W)w, 1);
1288 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1289 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1290
1291 fd_change (EV_A_ fd);
1292}
1293
1294void
1295ev_io_stop (EV_P_ struct ev_io *w)
1296{
1297 ev_clear_pending (EV_A_ (W)w);
1298 if (!ev_is_active (w))
1299 return;
1300
1301 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1302
1303 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1304 ev_stop (EV_A_ (W)w);
1305
1306 fd_change (EV_A_ w->fd);
1307}
1308
1309void
1310ev_timer_start (EV_P_ struct ev_timer *w)
1311{
1312 if (ev_is_active (w))
1313 return;
1314
1315 ((WT)w)->at += mn_now;
1316
1317 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1318
1319 ev_start (EV_A_ (W)w, ++timercnt);
1320 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1321 timers [timercnt - 1] = w;
1322 upheap ((WT *)timers, timercnt - 1);
1323
1324 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1325}
1326
1327void
1328ev_timer_stop (EV_P_ struct ev_timer *w)
1329{
1330 ev_clear_pending (EV_A_ (W)w);
1331 if (!ev_is_active (w))
1332 return;
1333
1334 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1335
1336 if (((W)w)->active < timercnt--)
1337 {
1338 timers [((W)w)->active - 1] = timers [timercnt];
1339 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1340 }
1341
1342 ((WT)w)->at = w->repeat;
1343
1344 ev_stop (EV_A_ (W)w);
1345}
1346
1347void
1348ev_timer_again (EV_P_ struct ev_timer *w)
1349{
1350 if (ev_is_active (w))
1351 { 2535 {
1352 if (w->repeat) 2536 if (w->repeat)
1353 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat); 2537 {
2538 ev_at (w) = mn_now + w->repeat;
2539 ANHE_at_cache (timers [ev_active (w)]);
2540 adjustheap (timers, timercnt, ev_active (w));
2541 }
1354 else 2542 else
1355 ev_timer_stop (EV_A_ w); 2543 ev_timer_stop (EV_A_ w);
1356 } 2544 }
1357 else if (w->repeat) 2545 else if (w->repeat)
2546 {
2547 ev_at (w) = w->repeat;
1358 ev_timer_start (EV_A_ w); 2548 ev_timer_start (EV_A_ w);
1359} 2549 }
1360 2550
1361void 2551 EV_FREQUENT_CHECK;
2552}
2553
2554ev_tstamp
2555ev_timer_remaining (EV_P_ ev_timer *w)
2556{
2557 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2558}
2559
2560#if EV_PERIODIC_ENABLE
2561void noinline
1362ev_periodic_start (EV_P_ struct ev_periodic *w) 2562ev_periodic_start (EV_P_ ev_periodic *w)
1363{ 2563{
1364 if (ev_is_active (w)) 2564 if (expect_false (ev_is_active (w)))
1365 return; 2565 return;
1366 2566
1367 if (w->reschedule_cb) 2567 if (w->reschedule_cb)
1368 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2568 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1369 else if (w->interval) 2569 else if (w->interval)
1370 { 2570 {
1371 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2571 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1372 /* this formula differs from the one in periodic_reify because we do not always round up */ 2572 /* this formula differs from the one in periodic_reify because we do not always round up */
1373 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2573 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1374 } 2574 }
2575 else
2576 ev_at (w) = w->offset;
1375 2577
2578 EV_FREQUENT_CHECK;
2579
2580 ++periodiccnt;
1376 ev_start (EV_A_ (W)w, ++periodiccnt); 2581 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1377 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2582 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1378 periodics [periodiccnt - 1] = w; 2583 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1379 upheap ((WT *)periodics, periodiccnt - 1); 2584 ANHE_at_cache (periodics [ev_active (w)]);
2585 upheap (periodics, ev_active (w));
1380 2586
2587 EV_FREQUENT_CHECK;
2588
1381 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2589 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1382} 2590}
1383 2591
1384void 2592void noinline
1385ev_periodic_stop (EV_P_ struct ev_periodic *w) 2593ev_periodic_stop (EV_P_ ev_periodic *w)
1386{ 2594{
1387 ev_clear_pending (EV_A_ (W)w); 2595 clear_pending (EV_A_ (W)w);
1388 if (!ev_is_active (w)) 2596 if (expect_false (!ev_is_active (w)))
1389 return; 2597 return;
1390 2598
2599 EV_FREQUENT_CHECK;
2600
2601 {
2602 int active = ev_active (w);
2603
1391 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2604 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1392 2605
1393 if (((W)w)->active < periodiccnt--) 2606 --periodiccnt;
2607
2608 if (expect_true (active < periodiccnt + HEAP0))
1394 { 2609 {
1395 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2610 periodics [active] = periodics [periodiccnt + HEAP0];
1396 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2611 adjustheap (periodics, periodiccnt, active);
1397 } 2612 }
2613 }
2614
2615 EV_FREQUENT_CHECK;
1398 2616
1399 ev_stop (EV_A_ (W)w); 2617 ev_stop (EV_A_ (W)w);
1400} 2618}
1401 2619
1402void 2620void noinline
1403ev_periodic_again (EV_P_ struct ev_periodic *w) 2621ev_periodic_again (EV_P_ ev_periodic *w)
1404{ 2622{
1405 /* TODO: use adjustheap and recalculation */ 2623 /* TODO: use adjustheap and recalculation */
1406 ev_periodic_stop (EV_A_ w); 2624 ev_periodic_stop (EV_A_ w);
1407 ev_periodic_start (EV_A_ w); 2625 ev_periodic_start (EV_A_ w);
1408} 2626}
1409 2627#endif
1410void
1411ev_idle_start (EV_P_ struct ev_idle *w)
1412{
1413 if (ev_is_active (w))
1414 return;
1415
1416 ev_start (EV_A_ (W)w, ++idlecnt);
1417 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1418 idles [idlecnt - 1] = w;
1419}
1420
1421void
1422ev_idle_stop (EV_P_ struct ev_idle *w)
1423{
1424 ev_clear_pending (EV_A_ (W)w);
1425 if (ev_is_active (w))
1426 return;
1427
1428 idles [((W)w)->active - 1] = idles [--idlecnt];
1429 ev_stop (EV_A_ (W)w);
1430}
1431
1432void
1433ev_prepare_start (EV_P_ struct ev_prepare *w)
1434{
1435 if (ev_is_active (w))
1436 return;
1437
1438 ev_start (EV_A_ (W)w, ++preparecnt);
1439 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1440 prepares [preparecnt - 1] = w;
1441}
1442
1443void
1444ev_prepare_stop (EV_P_ struct ev_prepare *w)
1445{
1446 ev_clear_pending (EV_A_ (W)w);
1447 if (ev_is_active (w))
1448 return;
1449
1450 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1451 ev_stop (EV_A_ (W)w);
1452}
1453
1454void
1455ev_check_start (EV_P_ struct ev_check *w)
1456{
1457 if (ev_is_active (w))
1458 return;
1459
1460 ev_start (EV_A_ (W)w, ++checkcnt);
1461 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1462 checks [checkcnt - 1] = w;
1463}
1464
1465void
1466ev_check_stop (EV_P_ struct ev_check *w)
1467{
1468 ev_clear_pending (EV_A_ (W)w);
1469 if (ev_is_active (w))
1470 return;
1471
1472 checks [((W)w)->active - 1] = checks [--checkcnt];
1473 ev_stop (EV_A_ (W)w);
1474}
1475 2628
1476#ifndef SA_RESTART 2629#ifndef SA_RESTART
1477# define SA_RESTART 0 2630# define SA_RESTART 0
1478#endif 2631#endif
1479 2632
1480void 2633void noinline
1481ev_signal_start (EV_P_ struct ev_signal *w) 2634ev_signal_start (EV_P_ ev_signal *w)
1482{ 2635{
1483#if EV_MULTIPLICITY 2636#if EV_MULTIPLICITY
1484 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2637 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1485#endif 2638#endif
1486 if (ev_is_active (w)) 2639 if (expect_false (ev_is_active (w)))
1487 return; 2640 return;
1488 2641
1489 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2642 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2643
2644 EV_FREQUENT_CHECK;
2645
2646#if EV_USE_SIGNALFD
2647 if (sigfd == -2)
2648 {
2649 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2650 if (sigfd < 0 && errno == EINVAL)
2651 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2652
2653 if (sigfd >= 0)
2654 {
2655 fd_intern (sigfd); /* doing it twice will not hurt */
2656
2657 sigemptyset (&sigfd_set);
2658
2659 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2660 ev_set_priority (&sigfd_w, EV_MAXPRI);
2661 ev_io_start (EV_A_ &sigfd_w);
2662 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2663 }
2664 }
2665
2666 if (sigfd >= 0)
2667 {
2668 /* TODO: check .head */
2669 sigaddset (&sigfd_set, w->signum);
2670 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2671
2672 signalfd (sigfd, &sigfd_set, 0);
2673 }
2674 else
2675#endif
2676 evpipe_init (EV_A);
2677
2678 {
2679#ifndef _WIN32
2680 sigset_t full, prev;
2681 sigfillset (&full);
2682 sigprocmask (SIG_SETMASK, &full, &prev);
2683#endif
2684
2685 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2686
2687#ifndef _WIN32
2688 if (sigfd < 0)/*TODO*/
2689 sigdelset (&prev, w->signum);
2690 sigprocmask (SIG_SETMASK, &prev, 0);
2691#endif
2692 }
1490 2693
1491 ev_start (EV_A_ (W)w, 1); 2694 ev_start (EV_A_ (W)w, 1);
1492 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1493 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2695 wlist_add (&signals [w->signum - 1].head, (WL)w);
1494 2696
1495 if (!((WL)w)->next) 2697 if (!((WL)w)->next)
1496 { 2698 {
1497#if WIN32 2699#if _WIN32
1498 signal (w->signum, sighandler); 2700 signal (w->signum, ev_sighandler);
1499#else 2701#else
2702 if (sigfd < 0) /*TODO*/
2703 {
1500 struct sigaction sa; 2704 struct sigaction sa = { };
1501 sa.sa_handler = sighandler; 2705 sa.sa_handler = ev_sighandler;
1502 sigfillset (&sa.sa_mask); 2706 sigfillset (&sa.sa_mask);
1503 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2707 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1504 sigaction (w->signum, &sa, 0); 2708 sigaction (w->signum, &sa, 0);
2709 }
1505#endif 2710#endif
1506 } 2711 }
1507}
1508 2712
1509void 2713 EV_FREQUENT_CHECK;
2714}
2715
2716void noinline
1510ev_signal_stop (EV_P_ struct ev_signal *w) 2717ev_signal_stop (EV_P_ ev_signal *w)
1511{ 2718{
1512 ev_clear_pending (EV_A_ (W)w); 2719 clear_pending (EV_A_ (W)w);
1513 if (!ev_is_active (w)) 2720 if (expect_false (!ev_is_active (w)))
1514 return; 2721 return;
1515 2722
2723 EV_FREQUENT_CHECK;
2724
1516 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2725 wlist_del (&signals [w->signum - 1].head, (WL)w);
1517 ev_stop (EV_A_ (W)w); 2726 ev_stop (EV_A_ (W)w);
1518 2727
1519 if (!signals [w->signum - 1].head) 2728 if (!signals [w->signum - 1].head)
2729#if EV_USE_SIGNALFD
2730 if (sigfd >= 0)
2731 {
2732 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2733 sigdelset (&sigfd_set, w->signum);
2734 signalfd (sigfd, &sigfd_set, 0);
2735 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2736 /*TODO: maybe unblock signal? */
2737 }
2738 else
2739#endif
1520 signal (w->signum, SIG_DFL); 2740 signal (w->signum, SIG_DFL);
1521}
1522 2741
2742 EV_FREQUENT_CHECK;
2743}
2744
1523void 2745void
1524ev_child_start (EV_P_ struct ev_child *w) 2746ev_child_start (EV_P_ ev_child *w)
1525{ 2747{
1526#if EV_MULTIPLICITY 2748#if EV_MULTIPLICITY
1527 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2749 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1528#endif 2750#endif
1529 if (ev_is_active (w)) 2751 if (expect_false (ev_is_active (w)))
1530 return; 2752 return;
1531 2753
2754 EV_FREQUENT_CHECK;
2755
1532 ev_start (EV_A_ (W)w, 1); 2756 ev_start (EV_A_ (W)w, 1);
1533 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2757 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1534}
1535 2758
2759 EV_FREQUENT_CHECK;
2760}
2761
1536void 2762void
1537ev_child_stop (EV_P_ struct ev_child *w) 2763ev_child_stop (EV_P_ ev_child *w)
1538{ 2764{
1539 ev_clear_pending (EV_A_ (W)w); 2765 clear_pending (EV_A_ (W)w);
1540 if (ev_is_active (w)) 2766 if (expect_false (!ev_is_active (w)))
1541 return; 2767 return;
1542 2768
2769 EV_FREQUENT_CHECK;
2770
1543 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2771 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1544 ev_stop (EV_A_ (W)w); 2772 ev_stop (EV_A_ (W)w);
2773
2774 EV_FREQUENT_CHECK;
1545} 2775}
2776
2777#if EV_STAT_ENABLE
2778
2779# ifdef _WIN32
2780# undef lstat
2781# define lstat(a,b) _stati64 (a,b)
2782# endif
2783
2784#define DEF_STAT_INTERVAL 5.0074891
2785#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2786#define MIN_STAT_INTERVAL 0.1074891
2787
2788static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2789
2790#if EV_USE_INOTIFY
2791# define EV_INOTIFY_BUFSIZE 8192
2792
2793static void noinline
2794infy_add (EV_P_ ev_stat *w)
2795{
2796 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2797
2798 if (w->wd < 0)
2799 {
2800 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2801 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2802
2803 /* monitor some parent directory for speedup hints */
2804 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2805 /* but an efficiency issue only */
2806 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2807 {
2808 char path [4096];
2809 strcpy (path, w->path);
2810
2811 do
2812 {
2813 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2814 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2815
2816 char *pend = strrchr (path, '/');
2817
2818 if (!pend || pend == path)
2819 break;
2820
2821 *pend = 0;
2822 w->wd = inotify_add_watch (fs_fd, path, mask);
2823 }
2824 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2825 }
2826 }
2827
2828 if (w->wd >= 0)
2829 {
2830 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2831
2832 /* now local changes will be tracked by inotify, but remote changes won't */
2833 /* unless the filesystem it known to be local, we therefore still poll */
2834 /* also do poll on <2.6.25, but with normal frequency */
2835 struct statfs sfs;
2836
2837 if (fs_2625 && !statfs (w->path, &sfs))
2838 if (sfs.f_type == 0x1373 /* devfs */
2839 || sfs.f_type == 0xEF53 /* ext2/3 */
2840 || sfs.f_type == 0x3153464a /* jfs */
2841 || sfs.f_type == 0x52654973 /* reiser3 */
2842 || sfs.f_type == 0x01021994 /* tempfs */
2843 || sfs.f_type == 0x58465342 /* xfs */)
2844 return;
2845
2846 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2847 ev_timer_again (EV_A_ &w->timer);
2848 }
2849}
2850
2851static void noinline
2852infy_del (EV_P_ ev_stat *w)
2853{
2854 int slot;
2855 int wd = w->wd;
2856
2857 if (wd < 0)
2858 return;
2859
2860 w->wd = -2;
2861 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2862 wlist_del (&fs_hash [slot].head, (WL)w);
2863
2864 /* remove this watcher, if others are watching it, they will rearm */
2865 inotify_rm_watch (fs_fd, wd);
2866}
2867
2868static void noinline
2869infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2870{
2871 if (slot < 0)
2872 /* overflow, need to check for all hash slots */
2873 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2874 infy_wd (EV_A_ slot, wd, ev);
2875 else
2876 {
2877 WL w_;
2878
2879 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2880 {
2881 ev_stat *w = (ev_stat *)w_;
2882 w_ = w_->next; /* lets us remove this watcher and all before it */
2883
2884 if (w->wd == wd || wd == -1)
2885 {
2886 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2887 {
2888 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2889 w->wd = -1;
2890 infy_add (EV_A_ w); /* re-add, no matter what */
2891 }
2892
2893 stat_timer_cb (EV_A_ &w->timer, 0);
2894 }
2895 }
2896 }
2897}
2898
2899static void
2900infy_cb (EV_P_ ev_io *w, int revents)
2901{
2902 char buf [EV_INOTIFY_BUFSIZE];
2903 struct inotify_event *ev = (struct inotify_event *)buf;
2904 int ofs;
2905 int len = read (fs_fd, buf, sizeof (buf));
2906
2907 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2908 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2909}
2910
2911inline_size void
2912check_2625 (EV_P)
2913{
2914 /* kernels < 2.6.25 are borked
2915 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2916 */
2917 struct utsname buf;
2918 int major, minor, micro;
2919
2920 if (uname (&buf))
2921 return;
2922
2923 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2924 return;
2925
2926 if (major < 2
2927 || (major == 2 && minor < 6)
2928 || (major == 2 && minor == 6 && micro < 25))
2929 return;
2930
2931 fs_2625 = 1;
2932}
2933
2934inline_size void
2935infy_init (EV_P)
2936{
2937 if (fs_fd != -2)
2938 return;
2939
2940 fs_fd = -1;
2941
2942 check_2625 (EV_A);
2943
2944 fs_fd = inotify_init ();
2945
2946 if (fs_fd >= 0)
2947 {
2948 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2949 ev_set_priority (&fs_w, EV_MAXPRI);
2950 ev_io_start (EV_A_ &fs_w);
2951 }
2952}
2953
2954inline_size void
2955infy_fork (EV_P)
2956{
2957 int slot;
2958
2959 if (fs_fd < 0)
2960 return;
2961
2962 close (fs_fd);
2963 fs_fd = inotify_init ();
2964
2965 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2966 {
2967 WL w_ = fs_hash [slot].head;
2968 fs_hash [slot].head = 0;
2969
2970 while (w_)
2971 {
2972 ev_stat *w = (ev_stat *)w_;
2973 w_ = w_->next; /* lets us add this watcher */
2974
2975 w->wd = -1;
2976
2977 if (fs_fd >= 0)
2978 infy_add (EV_A_ w); /* re-add, no matter what */
2979 else
2980 ev_timer_again (EV_A_ &w->timer);
2981 }
2982 }
2983}
2984
2985#endif
2986
2987#ifdef _WIN32
2988# define EV_LSTAT(p,b) _stati64 (p, b)
2989#else
2990# define EV_LSTAT(p,b) lstat (p, b)
2991#endif
2992
2993void
2994ev_stat_stat (EV_P_ ev_stat *w)
2995{
2996 if (lstat (w->path, &w->attr) < 0)
2997 w->attr.st_nlink = 0;
2998 else if (!w->attr.st_nlink)
2999 w->attr.st_nlink = 1;
3000}
3001
3002static void noinline
3003stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3004{
3005 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3006
3007 /* we copy this here each the time so that */
3008 /* prev has the old value when the callback gets invoked */
3009 w->prev = w->attr;
3010 ev_stat_stat (EV_A_ w);
3011
3012 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3013 if (
3014 w->prev.st_dev != w->attr.st_dev
3015 || w->prev.st_ino != w->attr.st_ino
3016 || w->prev.st_mode != w->attr.st_mode
3017 || w->prev.st_nlink != w->attr.st_nlink
3018 || w->prev.st_uid != w->attr.st_uid
3019 || w->prev.st_gid != w->attr.st_gid
3020 || w->prev.st_rdev != w->attr.st_rdev
3021 || w->prev.st_size != w->attr.st_size
3022 || w->prev.st_atime != w->attr.st_atime
3023 || w->prev.st_mtime != w->attr.st_mtime
3024 || w->prev.st_ctime != w->attr.st_ctime
3025 ) {
3026 #if EV_USE_INOTIFY
3027 if (fs_fd >= 0)
3028 {
3029 infy_del (EV_A_ w);
3030 infy_add (EV_A_ w);
3031 ev_stat_stat (EV_A_ w); /* avoid race... */
3032 }
3033 #endif
3034
3035 ev_feed_event (EV_A_ w, EV_STAT);
3036 }
3037}
3038
3039void
3040ev_stat_start (EV_P_ ev_stat *w)
3041{
3042 if (expect_false (ev_is_active (w)))
3043 return;
3044
3045 ev_stat_stat (EV_A_ w);
3046
3047 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3048 w->interval = MIN_STAT_INTERVAL;
3049
3050 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3051 ev_set_priority (&w->timer, ev_priority (w));
3052
3053#if EV_USE_INOTIFY
3054 infy_init (EV_A);
3055
3056 if (fs_fd >= 0)
3057 infy_add (EV_A_ w);
3058 else
3059#endif
3060 ev_timer_again (EV_A_ &w->timer);
3061
3062 ev_start (EV_A_ (W)w, 1);
3063
3064 EV_FREQUENT_CHECK;
3065}
3066
3067void
3068ev_stat_stop (EV_P_ ev_stat *w)
3069{
3070 clear_pending (EV_A_ (W)w);
3071 if (expect_false (!ev_is_active (w)))
3072 return;
3073
3074 EV_FREQUENT_CHECK;
3075
3076#if EV_USE_INOTIFY
3077 infy_del (EV_A_ w);
3078#endif
3079 ev_timer_stop (EV_A_ &w->timer);
3080
3081 ev_stop (EV_A_ (W)w);
3082
3083 EV_FREQUENT_CHECK;
3084}
3085#endif
3086
3087#if EV_IDLE_ENABLE
3088void
3089ev_idle_start (EV_P_ ev_idle *w)
3090{
3091 if (expect_false (ev_is_active (w)))
3092 return;
3093
3094 pri_adjust (EV_A_ (W)w);
3095
3096 EV_FREQUENT_CHECK;
3097
3098 {
3099 int active = ++idlecnt [ABSPRI (w)];
3100
3101 ++idleall;
3102 ev_start (EV_A_ (W)w, active);
3103
3104 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3105 idles [ABSPRI (w)][active - 1] = w;
3106 }
3107
3108 EV_FREQUENT_CHECK;
3109}
3110
3111void
3112ev_idle_stop (EV_P_ ev_idle *w)
3113{
3114 clear_pending (EV_A_ (W)w);
3115 if (expect_false (!ev_is_active (w)))
3116 return;
3117
3118 EV_FREQUENT_CHECK;
3119
3120 {
3121 int active = ev_active (w);
3122
3123 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3124 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3125
3126 ev_stop (EV_A_ (W)w);
3127 --idleall;
3128 }
3129
3130 EV_FREQUENT_CHECK;
3131}
3132#endif
3133
3134void
3135ev_prepare_start (EV_P_ ev_prepare *w)
3136{
3137 if (expect_false (ev_is_active (w)))
3138 return;
3139
3140 EV_FREQUENT_CHECK;
3141
3142 ev_start (EV_A_ (W)w, ++preparecnt);
3143 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3144 prepares [preparecnt - 1] = w;
3145
3146 EV_FREQUENT_CHECK;
3147}
3148
3149void
3150ev_prepare_stop (EV_P_ ev_prepare *w)
3151{
3152 clear_pending (EV_A_ (W)w);
3153 if (expect_false (!ev_is_active (w)))
3154 return;
3155
3156 EV_FREQUENT_CHECK;
3157
3158 {
3159 int active = ev_active (w);
3160
3161 prepares [active - 1] = prepares [--preparecnt];
3162 ev_active (prepares [active - 1]) = active;
3163 }
3164
3165 ev_stop (EV_A_ (W)w);
3166
3167 EV_FREQUENT_CHECK;
3168}
3169
3170void
3171ev_check_start (EV_P_ ev_check *w)
3172{
3173 if (expect_false (ev_is_active (w)))
3174 return;
3175
3176 EV_FREQUENT_CHECK;
3177
3178 ev_start (EV_A_ (W)w, ++checkcnt);
3179 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3180 checks [checkcnt - 1] = w;
3181
3182 EV_FREQUENT_CHECK;
3183}
3184
3185void
3186ev_check_stop (EV_P_ ev_check *w)
3187{
3188 clear_pending (EV_A_ (W)w);
3189 if (expect_false (!ev_is_active (w)))
3190 return;
3191
3192 EV_FREQUENT_CHECK;
3193
3194 {
3195 int active = ev_active (w);
3196
3197 checks [active - 1] = checks [--checkcnt];
3198 ev_active (checks [active - 1]) = active;
3199 }
3200
3201 ev_stop (EV_A_ (W)w);
3202
3203 EV_FREQUENT_CHECK;
3204}
3205
3206#if EV_EMBED_ENABLE
3207void noinline
3208ev_embed_sweep (EV_P_ ev_embed *w)
3209{
3210 ev_loop (w->other, EVLOOP_NONBLOCK);
3211}
3212
3213static void
3214embed_io_cb (EV_P_ ev_io *io, int revents)
3215{
3216 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3217
3218 if (ev_cb (w))
3219 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3220 else
3221 ev_loop (w->other, EVLOOP_NONBLOCK);
3222}
3223
3224static void
3225embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3226{
3227 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3228
3229 {
3230 struct ev_loop *loop = w->other;
3231
3232 while (fdchangecnt)
3233 {
3234 fd_reify (EV_A);
3235 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3236 }
3237 }
3238}
3239
3240static void
3241embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3242{
3243 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3244
3245 ev_embed_stop (EV_A_ w);
3246
3247 {
3248 struct ev_loop *loop = w->other;
3249
3250 ev_loop_fork (EV_A);
3251 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3252 }
3253
3254 ev_embed_start (EV_A_ w);
3255}
3256
3257#if 0
3258static void
3259embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3260{
3261 ev_idle_stop (EV_A_ idle);
3262}
3263#endif
3264
3265void
3266ev_embed_start (EV_P_ ev_embed *w)
3267{
3268 if (expect_false (ev_is_active (w)))
3269 return;
3270
3271 {
3272 struct ev_loop *loop = w->other;
3273 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3274 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3275 }
3276
3277 EV_FREQUENT_CHECK;
3278
3279 ev_set_priority (&w->io, ev_priority (w));
3280 ev_io_start (EV_A_ &w->io);
3281
3282 ev_prepare_init (&w->prepare, embed_prepare_cb);
3283 ev_set_priority (&w->prepare, EV_MINPRI);
3284 ev_prepare_start (EV_A_ &w->prepare);
3285
3286 ev_fork_init (&w->fork, embed_fork_cb);
3287 ev_fork_start (EV_A_ &w->fork);
3288
3289 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3290
3291 ev_start (EV_A_ (W)w, 1);
3292
3293 EV_FREQUENT_CHECK;
3294}
3295
3296void
3297ev_embed_stop (EV_P_ ev_embed *w)
3298{
3299 clear_pending (EV_A_ (W)w);
3300 if (expect_false (!ev_is_active (w)))
3301 return;
3302
3303 EV_FREQUENT_CHECK;
3304
3305 ev_io_stop (EV_A_ &w->io);
3306 ev_prepare_stop (EV_A_ &w->prepare);
3307 ev_fork_stop (EV_A_ &w->fork);
3308
3309 EV_FREQUENT_CHECK;
3310}
3311#endif
3312
3313#if EV_FORK_ENABLE
3314void
3315ev_fork_start (EV_P_ ev_fork *w)
3316{
3317 if (expect_false (ev_is_active (w)))
3318 return;
3319
3320 EV_FREQUENT_CHECK;
3321
3322 ev_start (EV_A_ (W)w, ++forkcnt);
3323 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3324 forks [forkcnt - 1] = w;
3325
3326 EV_FREQUENT_CHECK;
3327}
3328
3329void
3330ev_fork_stop (EV_P_ ev_fork *w)
3331{
3332 clear_pending (EV_A_ (W)w);
3333 if (expect_false (!ev_is_active (w)))
3334 return;
3335
3336 EV_FREQUENT_CHECK;
3337
3338 {
3339 int active = ev_active (w);
3340
3341 forks [active - 1] = forks [--forkcnt];
3342 ev_active (forks [active - 1]) = active;
3343 }
3344
3345 ev_stop (EV_A_ (W)w);
3346
3347 EV_FREQUENT_CHECK;
3348}
3349#endif
3350
3351#if EV_ASYNC_ENABLE
3352void
3353ev_async_start (EV_P_ ev_async *w)
3354{
3355 if (expect_false (ev_is_active (w)))
3356 return;
3357
3358 evpipe_init (EV_A);
3359
3360 EV_FREQUENT_CHECK;
3361
3362 ev_start (EV_A_ (W)w, ++asynccnt);
3363 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3364 asyncs [asynccnt - 1] = w;
3365
3366 EV_FREQUENT_CHECK;
3367}
3368
3369void
3370ev_async_stop (EV_P_ ev_async *w)
3371{
3372 clear_pending (EV_A_ (W)w);
3373 if (expect_false (!ev_is_active (w)))
3374 return;
3375
3376 EV_FREQUENT_CHECK;
3377
3378 {
3379 int active = ev_active (w);
3380
3381 asyncs [active - 1] = asyncs [--asynccnt];
3382 ev_active (asyncs [active - 1]) = active;
3383 }
3384
3385 ev_stop (EV_A_ (W)w);
3386
3387 EV_FREQUENT_CHECK;
3388}
3389
3390void
3391ev_async_send (EV_P_ ev_async *w)
3392{
3393 w->sent = 1;
3394 evpipe_write (EV_A_ &gotasync);
3395}
3396#endif
1546 3397
1547/*****************************************************************************/ 3398/*****************************************************************************/
1548 3399
1549struct ev_once 3400struct ev_once
1550{ 3401{
1551 struct ev_io io; 3402 ev_io io;
1552 struct ev_timer to; 3403 ev_timer to;
1553 void (*cb)(int revents, void *arg); 3404 void (*cb)(int revents, void *arg);
1554 void *arg; 3405 void *arg;
1555}; 3406};
1556 3407
1557static void 3408static void
1558once_cb (EV_P_ struct ev_once *once, int revents) 3409once_cb (EV_P_ struct ev_once *once, int revents)
1559{ 3410{
1560 void (*cb)(int revents, void *arg) = once->cb; 3411 void (*cb)(int revents, void *arg) = once->cb;
1561 void *arg = once->arg; 3412 void *arg = once->arg;
1562 3413
1563 ev_io_stop (EV_A_ &once->io); 3414 ev_io_stop (EV_A_ &once->io);
1564 ev_timer_stop (EV_A_ &once->to); 3415 ev_timer_stop (EV_A_ &once->to);
1565 ev_free (once); 3416 ev_free (once);
1566 3417
1567 cb (revents, arg); 3418 cb (revents, arg);
1568} 3419}
1569 3420
1570static void 3421static void
1571once_cb_io (EV_P_ struct ev_io *w, int revents) 3422once_cb_io (EV_P_ ev_io *w, int revents)
1572{ 3423{
1573 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3424 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3425
3426 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1574} 3427}
1575 3428
1576static void 3429static void
1577once_cb_to (EV_P_ struct ev_timer *w, int revents) 3430once_cb_to (EV_P_ ev_timer *w, int revents)
1578{ 3431{
1579 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3432 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3433
3434 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1580} 3435}
1581 3436
1582void 3437void
1583ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3438ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1584{ 3439{
1585 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3440 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1586 3441
1587 if (!once) 3442 if (expect_false (!once))
3443 {
1588 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3444 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1589 else 3445 return;
1590 { 3446 }
3447
1591 once->cb = cb; 3448 once->cb = cb;
1592 once->arg = arg; 3449 once->arg = arg;
1593 3450
1594 ev_init (&once->io, once_cb_io); 3451 ev_init (&once->io, once_cb_io);
1595 if (fd >= 0) 3452 if (fd >= 0)
3453 {
3454 ev_io_set (&once->io, fd, events);
3455 ev_io_start (EV_A_ &once->io);
3456 }
3457
3458 ev_init (&once->to, once_cb_to);
3459 if (timeout >= 0.)
3460 {
3461 ev_timer_set (&once->to, timeout, 0.);
3462 ev_timer_start (EV_A_ &once->to);
3463 }
3464}
3465
3466/*****************************************************************************/
3467
3468#if EV_WALK_ENABLE
3469void
3470ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3471{
3472 int i, j;
3473 ev_watcher_list *wl, *wn;
3474
3475 if (types & (EV_IO | EV_EMBED))
3476 for (i = 0; i < anfdmax; ++i)
3477 for (wl = anfds [i].head; wl; )
1596 { 3478 {
1597 ev_io_set (&once->io, fd, events); 3479 wn = wl->next;
1598 ev_io_start (EV_A_ &once->io); 3480
3481#if EV_EMBED_ENABLE
3482 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3483 {
3484 if (types & EV_EMBED)
3485 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3486 }
3487 else
3488#endif
3489#if EV_USE_INOTIFY
3490 if (ev_cb ((ev_io *)wl) == infy_cb)
3491 ;
3492 else
3493#endif
3494 if ((ev_io *)wl != &pipe_w)
3495 if (types & EV_IO)
3496 cb (EV_A_ EV_IO, wl);
3497
3498 wl = wn;
1599 } 3499 }
1600 3500
1601 ev_init (&once->to, once_cb_to); 3501 if (types & (EV_TIMER | EV_STAT))
1602 if (timeout >= 0.) 3502 for (i = timercnt + HEAP0; i-- > HEAP0; )
3503#if EV_STAT_ENABLE
3504 /*TODO: timer is not always active*/
3505 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1603 { 3506 {
1604 ev_timer_set (&once->to, timeout, 0.); 3507 if (types & EV_STAT)
1605 ev_timer_start (EV_A_ &once->to); 3508 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1606 } 3509 }
1607 } 3510 else
3511#endif
3512 if (types & EV_TIMER)
3513 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3514
3515#if EV_PERIODIC_ENABLE
3516 if (types & EV_PERIODIC)
3517 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3518 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3519#endif
3520
3521#if EV_IDLE_ENABLE
3522 if (types & EV_IDLE)
3523 for (j = NUMPRI; i--; )
3524 for (i = idlecnt [j]; i--; )
3525 cb (EV_A_ EV_IDLE, idles [j][i]);
3526#endif
3527
3528#if EV_FORK_ENABLE
3529 if (types & EV_FORK)
3530 for (i = forkcnt; i--; )
3531 if (ev_cb (forks [i]) != embed_fork_cb)
3532 cb (EV_A_ EV_FORK, forks [i]);
3533#endif
3534
3535#if EV_ASYNC_ENABLE
3536 if (types & EV_ASYNC)
3537 for (i = asynccnt; i--; )
3538 cb (EV_A_ EV_ASYNC, asyncs [i]);
3539#endif
3540
3541 if (types & EV_PREPARE)
3542 for (i = preparecnt; i--; )
3543#if EV_EMBED_ENABLE
3544 if (ev_cb (prepares [i]) != embed_prepare_cb)
3545#endif
3546 cb (EV_A_ EV_PREPARE, prepares [i]);
3547
3548 if (types & EV_CHECK)
3549 for (i = checkcnt; i--; )
3550 cb (EV_A_ EV_CHECK, checks [i]);
3551
3552 if (types & EV_SIGNAL)
3553 for (i = 0; i < signalmax; ++i)
3554 for (wl = signals [i].head; wl; )
3555 {
3556 wn = wl->next;
3557 cb (EV_A_ EV_SIGNAL, wl);
3558 wl = wn;
3559 }
3560
3561 if (types & EV_CHILD)
3562 for (i = EV_PID_HASHSIZE; i--; )
3563 for (wl = childs [i]; wl; )
3564 {
3565 wn = wl->next;
3566 cb (EV_A_ EV_CHILD, wl);
3567 wl = wn;
3568 }
3569/* EV_STAT 0x00001000 /* stat data changed */
3570/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1608} 3571}
3572#endif
3573
3574#if EV_MULTIPLICITY
3575 #include "ev_wrap.h"
3576#endif
1609 3577
1610#ifdef __cplusplus 3578#ifdef __cplusplus
1611} 3579}
1612#endif 3580#endif
1613 3581

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines