ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.68 by root, Mon Nov 5 20:19:00 2007 UTC vs.
Revision 1.92 by root, Sun Nov 11 00:08:54 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1 40# define EV_USE_MONOTONIC 1
46 51
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 53# define EV_USE_EPOLL 1
49# endif 54# endif
50 55
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 56# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 57# define EV_USE_KQUEUE 1
53# endif 58# endif
54 59
55#endif 60#endif
56 61
57#include <math.h> 62#include <math.h>
58#include <stdlib.h> 63#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 64#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 65#include <stddef.h>
63 66
64#include <stdio.h> 67#include <stdio.h>
65 68
66#include <assert.h> 69#include <assert.h>
67#include <errno.h> 70#include <errno.h>
68#include <sys/types.h> 71#include <sys/types.h>
72#include <time.h>
73
74#include <signal.h>
75
69#ifndef WIN32 76#ifndef WIN32
77# include <unistd.h>
78# include <sys/time.h>
70# include <sys/wait.h> 79# include <sys/wait.h>
71#endif 80#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 81/**/
76 82
77#ifndef EV_USE_MONOTONIC 83#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 84# define EV_USE_MONOTONIC 1
79#endif 85#endif
94# define EV_USE_KQUEUE 0 100# define EV_USE_KQUEUE 0
95#endif 101#endif
96 102
97#ifndef EV_USE_WIN32 103#ifndef EV_USE_WIN32
98# ifdef WIN32 104# ifdef WIN32
105# define EV_USE_WIN32 0 /* it does not exist, use select */
106# undef EV_USE_SELECT
99# define EV_USE_WIN32 1 107# define EV_USE_SELECT 1
100# else 108# else
101# define EV_USE_WIN32 0 109# define EV_USE_WIN32 0
102# endif 110# endif
103#endif 111#endif
104 112
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 135
136#ifdef EV_H
137# include EV_H
138#else
128#include "ev.h" 139# include "ev.h"
140#endif
129 141
130#if __GNUC__ >= 3 142#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 143# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 144# define inline inline
133#else 145#else
145typedef struct ev_watcher_list *WL; 157typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 158typedef struct ev_watcher_time *WT;
147 159
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 160static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 161
150#if WIN32 162#include "ev_win32.c"
151/* note: the comment below could not be substantiated, but what would I care */ 163
152/* MSDN says this is required to handle SIGFPE */ 164/*****************************************************************************/
153volatile double SIGFPE_REQ = 0.0f; 165
154#endif 166static void (*syserr_cb)(const char *msg);
167
168void ev_set_syserr_cb (void (*cb)(const char *msg))
169{
170 syserr_cb = cb;
171}
172
173static void
174syserr (const char *msg)
175{
176 if (!msg)
177 msg = "(libev) system error";
178
179 if (syserr_cb)
180 syserr_cb (msg);
181 else
182 {
183 perror (msg);
184 abort ();
185 }
186}
187
188static void *(*alloc)(void *ptr, long size);
189
190void ev_set_allocator (void *(*cb)(void *ptr, long size))
191{
192 alloc = cb;
193}
194
195static void *
196ev_realloc (void *ptr, long size)
197{
198 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
199
200 if (!ptr && size)
201 {
202 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
203 abort ();
204 }
205
206 return ptr;
207}
208
209#define ev_malloc(size) ev_realloc (0, (size))
210#define ev_free(ptr) ev_realloc ((ptr), 0)
155 211
156/*****************************************************************************/ 212/*****************************************************************************/
157 213
158typedef struct 214typedef struct
159{ 215{
168 int events; 224 int events;
169} ANPENDING; 225} ANPENDING;
170 226
171#if EV_MULTIPLICITY 227#if EV_MULTIPLICITY
172 228
173struct ev_loop 229 struct ev_loop
174{ 230 {
231 ev_tstamp ev_rt_now;
175# define VAR(name,decl) decl; 232 #define VAR(name,decl) decl;
176# include "ev_vars.h" 233 #include "ev_vars.h"
177};
178# undef VAR 234 #undef VAR
235 };
179# include "ev_wrap.h" 236 #include "ev_wrap.h"
237
238 struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop;
180 240
181#else 241#else
182 242
243 ev_tstamp ev_rt_now;
183# define VAR(name,decl) static decl; 244 #define VAR(name,decl) static decl;
184# include "ev_vars.h" 245 #include "ev_vars.h"
185# undef VAR 246 #undef VAR
247
248 static int default_loop;
186 249
187#endif 250#endif
188 251
189/*****************************************************************************/ 252/*****************************************************************************/
190 253
191inline ev_tstamp 254ev_tstamp
192ev_time (void) 255ev_time (void)
193{ 256{
194#if EV_USE_REALTIME 257#if EV_USE_REALTIME
195 struct timespec ts; 258 struct timespec ts;
196 clock_gettime (CLOCK_REALTIME, &ts); 259 clock_gettime (CLOCK_REALTIME, &ts);
215#endif 278#endif
216 279
217 return ev_time (); 280 return ev_time ();
218} 281}
219 282
283#if EV_MULTIPLICITY
220ev_tstamp 284ev_tstamp
221ev_now (EV_P) 285ev_now (EV_P)
222{ 286{
223 return rt_now; 287 return ev_rt_now;
224} 288}
289#endif
225 290
226#define array_roundsize(base,n) ((n) | 4 & ~3) 291#define array_roundsize(type,n) ((n) | 4 & ~3)
227 292
228#define array_needsize(base,cur,cnt,init) \ 293#define array_needsize(type,base,cur,cnt,init) \
229 if (expect_false ((cnt) > cur)) \ 294 if (expect_false ((cnt) > cur)) \
230 { \ 295 { \
231 int newcnt = cur; \ 296 int newcnt = cur; \
232 do \ 297 do \
233 { \ 298 { \
234 newcnt = array_roundsize (base, newcnt << 1); \ 299 newcnt = array_roundsize (type, newcnt << 1); \
235 } \ 300 } \
236 while ((cnt) > newcnt); \ 301 while ((cnt) > newcnt); \
237 \ 302 \
238 base = realloc (base, sizeof (*base) * (newcnt)); \ 303 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
239 init (base + cur, newcnt - cur); \ 304 init (base + cur, newcnt - cur); \
240 cur = newcnt; \ 305 cur = newcnt; \
241 } 306 }
242 307
243#define array_slim(stem) \ 308#define array_slim(type,stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 309 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \ 310 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \ 311 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \ 312 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 313 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 } 314 }
250 315
316/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
317/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
318#define array_free_microshit(stem) \
319 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
320
251#define array_free(stem, idx) \ 321#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 322 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253 323
254/*****************************************************************************/ 324/*****************************************************************************/
255 325
256static void 326static void
257anfds_init (ANFD *base, int count) 327anfds_init (ANFD *base, int count)
264 334
265 ++base; 335 ++base;
266 } 336 }
267} 337}
268 338
269static void 339void
270event (EV_P_ W w, int events) 340ev_feed_event (EV_P_ void *w, int revents)
271{ 341{
342 W w_ = (W)w;
343
272 if (w->pending) 344 if (w_->pending)
273 { 345 {
274 pendings [ABSPRI (w)][w->pending - 1].events |= events; 346 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
275 return; 347 return;
276 } 348 }
277 349
278 w->pending = ++pendingcnt [ABSPRI (w)]; 350 w_->pending = ++pendingcnt [ABSPRI (w_)];
279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 351 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
280 pendings [ABSPRI (w)][w->pending - 1].w = w; 352 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
281 pendings [ABSPRI (w)][w->pending - 1].events = events; 353 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
282} 354}
283 355
284static void 356static void
285queue_events (EV_P_ W *events, int eventcnt, int type) 357queue_events (EV_P_ W *events, int eventcnt, int type)
286{ 358{
287 int i; 359 int i;
288 360
289 for (i = 0; i < eventcnt; ++i) 361 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type); 362 ev_feed_event (EV_A_ events [i], type);
291} 363}
292 364
293static void 365inline void
294fd_event (EV_P_ int fd, int events) 366fd_event (EV_P_ int fd, int revents)
295{ 367{
296 ANFD *anfd = anfds + fd; 368 ANFD *anfd = anfds + fd;
297 struct ev_io *w; 369 struct ev_io *w;
298 370
299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
300 { 372 {
301 int ev = w->events & events; 373 int ev = w->events & revents;
302 374
303 if (ev) 375 if (ev)
304 event (EV_A_ (W)w, ev); 376 ev_feed_event (EV_A_ (W)w, ev);
305 } 377 }
378}
379
380void
381ev_feed_fd_event (EV_P_ int fd, int revents)
382{
383 fd_event (EV_A_ fd, revents);
306} 384}
307 385
308/*****************************************************************************/ 386/*****************************************************************************/
309 387
310static void 388static void
333} 411}
334 412
335static void 413static void
336fd_change (EV_P_ int fd) 414fd_change (EV_P_ int fd)
337{ 415{
338 if (anfds [fd].reify || fdchangecnt < 0) 416 if (anfds [fd].reify)
339 return; 417 return;
340 418
341 anfds [fd].reify = 1; 419 anfds [fd].reify = 1;
342 420
343 ++fdchangecnt; 421 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 422 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
345 fdchanges [fdchangecnt - 1] = fd; 423 fdchanges [fdchangecnt - 1] = fd;
346} 424}
347 425
348static void 426static void
349fd_kill (EV_P_ int fd) 427fd_kill (EV_P_ int fd)
351 struct ev_io *w; 429 struct ev_io *w;
352 430
353 while ((w = (struct ev_io *)anfds [fd].head)) 431 while ((w = (struct ev_io *)anfds [fd].head))
354 { 432 {
355 ev_io_stop (EV_A_ w); 433 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 434 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 } 435 }
436}
437
438static int
439fd_valid (int fd)
440{
441#ifdef WIN32
442 return !!win32_get_osfhandle (fd);
443#else
444 return fcntl (fd, F_GETFD) != -1;
445#endif
358} 446}
359 447
360/* called on EBADF to verify fds */ 448/* called on EBADF to verify fds */
361static void 449static void
362fd_ebadf (EV_P) 450fd_ebadf (EV_P)
363{ 451{
364 int fd; 452 int fd;
365 453
366 for (fd = 0; fd < anfdmax; ++fd) 454 for (fd = 0; fd < anfdmax; ++fd)
367 if (anfds [fd].events) 455 if (anfds [fd].events)
368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 456 if (!fd_valid (fd) == -1 && errno == EBADF)
369 fd_kill (EV_A_ fd); 457 fd_kill (EV_A_ fd);
370} 458}
371 459
372/* called on ENOMEM in select/poll to kill some fds and retry */ 460/* called on ENOMEM in select/poll to kill some fds and retry */
373static void 461static void
381 fd_kill (EV_A_ fd); 469 fd_kill (EV_A_ fd);
382 return; 470 return;
383 } 471 }
384} 472}
385 473
386/* susually called after fork if method needs to re-arm all fds from scratch */ 474/* usually called after fork if method needs to re-arm all fds from scratch */
387static void 475static void
388fd_rearm_all (EV_P) 476fd_rearm_all (EV_P)
389{ 477{
390 int fd; 478 int fd;
391 479
439 527
440 heap [k] = w; 528 heap [k] = w;
441 ((W)heap [k])->active = k + 1; 529 ((W)heap [k])->active = k + 1;
442} 530}
443 531
532inline void
533adjustheap (WT *heap, int N, int k, ev_tstamp at)
534{
535 ev_tstamp old_at = heap [k]->at;
536 heap [k]->at = at;
537
538 if (old_at < at)
539 downheap (heap, N, k);
540 else
541 upheap (heap, k);
542}
543
444/*****************************************************************************/ 544/*****************************************************************************/
445 545
446typedef struct 546typedef struct
447{ 547{
448 WL head; 548 WL head;
479 579
480 if (!gotsig) 580 if (!gotsig)
481 { 581 {
482 int old_errno = errno; 582 int old_errno = errno;
483 gotsig = 1; 583 gotsig = 1;
584#ifdef WIN32
585 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
586#else
484 write (sigpipe [1], &signum, 1); 587 write (sigpipe [1], &signum, 1);
588#endif
485 errno = old_errno; 589 errno = old_errno;
486 } 590 }
487} 591}
488 592
593void
594ev_feed_signal_event (EV_P_ int signum)
595{
596 WL w;
597
598#if EV_MULTIPLICITY
599 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
600#endif
601
602 --signum;
603
604 if (signum < 0 || signum >= signalmax)
605 return;
606
607 signals [signum].gotsig = 0;
608
609 for (w = signals [signum].head; w; w = w->next)
610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
611}
612
489static void 613static void
490sigcb (EV_P_ struct ev_io *iow, int revents) 614sigcb (EV_P_ struct ev_io *iow, int revents)
491{ 615{
492 WL w;
493 int signum; 616 int signum;
494 617
618#ifdef WIN32
619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
620#else
495 read (sigpipe [0], &revents, 1); 621 read (sigpipe [0], &revents, 1);
622#endif
496 gotsig = 0; 623 gotsig = 0;
497 624
498 for (signum = signalmax; signum--; ) 625 for (signum = signalmax; signum--; )
499 if (signals [signum].gotsig) 626 if (signals [signum].gotsig)
500 { 627 ev_feed_signal_event (EV_A_ signum + 1);
501 signals [signum].gotsig = 0;
502
503 for (w = signals [signum].head; w; w = w->next)
504 event (EV_A_ (W)w, EV_SIGNAL);
505 }
506} 628}
507 629
508static void 630static void
509siginit (EV_P) 631siginit (EV_P)
510{ 632{
522 ev_unref (EV_A); /* child watcher should not keep loop alive */ 644 ev_unref (EV_A); /* child watcher should not keep loop alive */
523} 645}
524 646
525/*****************************************************************************/ 647/*****************************************************************************/
526 648
649static struct ev_child *childs [PID_HASHSIZE];
650
527#ifndef WIN32 651#ifndef WIN32
528 652
529static struct ev_child *childs [PID_HASHSIZE];
530static struct ev_signal childev; 653static struct ev_signal childev;
531 654
532#ifndef WCONTINUED 655#ifndef WCONTINUED
533# define WCONTINUED 0 656# define WCONTINUED 0
534#endif 657#endif
542 if (w->pid == pid || !w->pid) 665 if (w->pid == pid || !w->pid)
543 { 666 {
544 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 667 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
545 w->rpid = pid; 668 w->rpid = pid;
546 w->rstatus = status; 669 w->rstatus = status;
547 event (EV_A_ (W)w, EV_CHILD); 670 ev_feed_event (EV_A_ (W)w, EV_CHILD);
548 } 671 }
549} 672}
550 673
551static void 674static void
552childcb (EV_P_ struct ev_signal *sw, int revents) 675childcb (EV_P_ struct ev_signal *sw, int revents)
554 int pid, status; 677 int pid, status;
555 678
556 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 679 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
557 { 680 {
558 /* make sure we are called again until all childs have been reaped */ 681 /* make sure we are called again until all childs have been reaped */
559 event (EV_A_ (W)sw, EV_SIGNAL); 682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
560 683
561 child_reap (EV_A_ sw, pid, pid, status); 684 child_reap (EV_A_ sw, pid, pid, status);
562 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 685 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
563 } 686 }
564} 687}
621 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 744 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
622 have_monotonic = 1; 745 have_monotonic = 1;
623 } 746 }
624#endif 747#endif
625 748
626 rt_now = ev_time (); 749 ev_rt_now = ev_time ();
627 mn_now = get_clock (); 750 mn_now = get_clock ();
628 now_floor = mn_now; 751 now_floor = mn_now;
629 rtmn_diff = rt_now - mn_now; 752 rtmn_diff = ev_rt_now - mn_now;
630 753
631 if (methods == EVMETHOD_AUTO) 754 if (methods == EVMETHOD_AUTO)
632 if (!enable_secure () && getenv ("LIBEV_METHODS")) 755 if (!enable_secure () && getenv ("LIBEV_METHODS"))
633 methods = atoi (getenv ("LIBEV_METHODS")); 756 methods = atoi (getenv ("LIBEV_METHODS"));
634 else 757 else
648 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 771 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
649#endif 772#endif
650#if EV_USE_SELECT 773#if EV_USE_SELECT
651 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
652#endif 775#endif
776
777 ev_init (&sigev, sigcb);
778 ev_set_priority (&sigev, EV_MAXPRI);
653 } 779 }
654} 780}
655 781
656void 782void
657loop_destroy (EV_P) 783loop_destroy (EV_P)
675#endif 801#endif
676 802
677 for (i = NUMPRI; i--; ) 803 for (i = NUMPRI; i--; )
678 array_free (pending, [i]); 804 array_free (pending, [i]);
679 805
806 /* have to use the microsoft-never-gets-it-right macro */
680 array_free (fdchange, ); 807 array_free_microshit (fdchange);
681 array_free (timer, ); 808 array_free_microshit (timer);
682 array_free (periodic, ); 809 array_free_microshit (periodic);
683 array_free (idle, ); 810 array_free_microshit (idle);
684 array_free (prepare, ); 811 array_free_microshit (prepare);
685 array_free (check, ); 812 array_free_microshit (check);
686 813
687 method = 0; 814 method = 0;
688 /*TODO*/
689} 815}
690 816
691void 817static void
692loop_fork (EV_P) 818loop_fork (EV_P)
693{ 819{
694 /*TODO*/
695#if EV_USE_EPOLL 820#if EV_USE_EPOLL
696 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 821 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
697#endif 822#endif
698#if EV_USE_KQUEUE 823#if EV_USE_KQUEUE
699 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 824 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
700#endif 825#endif
826
827 if (ev_is_active (&sigev))
828 {
829 /* default loop */
830
831 ev_ref (EV_A);
832 ev_io_stop (EV_A_ &sigev);
833 close (sigpipe [0]);
834 close (sigpipe [1]);
835
836 while (pipe (sigpipe))
837 syserr ("(libev) error creating pipe");
838
839 siginit (EV_A);
840 }
841
842 postfork = 0;
701} 843}
702 844
703#if EV_MULTIPLICITY 845#if EV_MULTIPLICITY
704struct ev_loop * 846struct ev_loop *
705ev_loop_new (int methods) 847ev_loop_new (int methods)
706{ 848{
707 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 849 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
850
851 memset (loop, 0, sizeof (struct ev_loop));
708 852
709 loop_init (EV_A_ methods); 853 loop_init (EV_A_ methods);
710 854
711 if (ev_method (EV_A)) 855 if (ev_method (EV_A))
712 return loop; 856 return loop;
716 860
717void 861void
718ev_loop_destroy (EV_P) 862ev_loop_destroy (EV_P)
719{ 863{
720 loop_destroy (EV_A); 864 loop_destroy (EV_A);
721 free (loop); 865 ev_free (loop);
722} 866}
723 867
724void 868void
725ev_loop_fork (EV_P) 869ev_loop_fork (EV_P)
726{ 870{
727 loop_fork (EV_A); 871 postfork = 1;
728} 872}
729 873
730#endif 874#endif
731 875
732#if EV_MULTIPLICITY 876#if EV_MULTIPLICITY
733struct ev_loop default_loop_struct;
734static struct ev_loop *default_loop;
735
736struct ev_loop * 877struct ev_loop *
737#else 878#else
738static int default_loop;
739
740int 879int
741#endif 880#endif
742ev_default_loop (int methods) 881ev_default_loop (int methods)
743{ 882{
744 if (sigpipe [0] == sigpipe [1]) 883 if (sigpipe [0] == sigpipe [1])
755 894
756 loop_init (EV_A_ methods); 895 loop_init (EV_A_ methods);
757 896
758 if (ev_method (EV_A)) 897 if (ev_method (EV_A))
759 { 898 {
760 ev_watcher_init (&sigev, sigcb);
761 ev_set_priority (&sigev, EV_MAXPRI);
762 siginit (EV_A); 899 siginit (EV_A);
763 900
764#ifndef WIN32 901#ifndef WIN32
765 ev_signal_init (&childev, childcb, SIGCHLD); 902 ev_signal_init (&childev, childcb, SIGCHLD);
766 ev_set_priority (&childev, EV_MAXPRI); 903 ev_set_priority (&childev, EV_MAXPRI);
780{ 917{
781#if EV_MULTIPLICITY 918#if EV_MULTIPLICITY
782 struct ev_loop *loop = default_loop; 919 struct ev_loop *loop = default_loop;
783#endif 920#endif
784 921
922#ifndef WIN32
785 ev_ref (EV_A); /* child watcher */ 923 ev_ref (EV_A); /* child watcher */
786 ev_signal_stop (EV_A_ &childev); 924 ev_signal_stop (EV_A_ &childev);
925#endif
787 926
788 ev_ref (EV_A); /* signal watcher */ 927 ev_ref (EV_A); /* signal watcher */
789 ev_io_stop (EV_A_ &sigev); 928 ev_io_stop (EV_A_ &sigev);
790 929
791 close (sigpipe [0]); sigpipe [0] = 0; 930 close (sigpipe [0]); sigpipe [0] = 0;
799{ 938{
800#if EV_MULTIPLICITY 939#if EV_MULTIPLICITY
801 struct ev_loop *loop = default_loop; 940 struct ev_loop *loop = default_loop;
802#endif 941#endif
803 942
804 loop_fork (EV_A); 943 if (method)
805 944 postfork = 1;
806 ev_io_stop (EV_A_ &sigev);
807 close (sigpipe [0]);
808 close (sigpipe [1]);
809 pipe (sigpipe);
810
811 ev_ref (EV_A); /* signal watcher */
812 siginit (EV_A);
813} 945}
814 946
815/*****************************************************************************/ 947/*****************************************************************************/
948
949static int
950any_pending (EV_P)
951{
952 int pri;
953
954 for (pri = NUMPRI; pri--; )
955 if (pendingcnt [pri])
956 return 1;
957
958 return 0;
959}
816 960
817static void 961static void
818call_pending (EV_P) 962call_pending (EV_P)
819{ 963{
820 int pri; 964 int pri;
825 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 969 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
826 970
827 if (p->w) 971 if (p->w)
828 { 972 {
829 p->w->pending = 0; 973 p->w->pending = 0;
830 p->w->cb (EV_A_ p->w, p->events); 974 EV_CB_INVOKE (p->w, p->events);
831 } 975 }
832 } 976 }
833} 977}
834 978
835static void 979static void
843 987
844 /* first reschedule or stop timer */ 988 /* first reschedule or stop timer */
845 if (w->repeat) 989 if (w->repeat)
846 { 990 {
847 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 991 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
992
848 ((WT)w)->at = mn_now + w->repeat; 993 ((WT)w)->at += w->repeat;
994 if (((WT)w)->at < mn_now)
995 ((WT)w)->at = mn_now;
996
849 downheap ((WT *)timers, timercnt, 0); 997 downheap ((WT *)timers, timercnt, 0);
850 } 998 }
851 else 999 else
852 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1000 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
853 1001
854 event (EV_A_ (W)w, EV_TIMEOUT); 1002 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
855 } 1003 }
856} 1004}
857 1005
858static void 1006static void
859periodics_reify (EV_P) 1007periodics_reify (EV_P)
860{ 1008{
861 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1009 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
862 { 1010 {
863 struct ev_periodic *w = periodics [0]; 1011 struct ev_periodic *w = periodics [0];
864 1012
865 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1013 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
866 1014
867 /* first reschedule or stop timer */ 1015 /* first reschedule or stop timer */
868 if (w->interval) 1016 if (w->reschedule_cb)
869 { 1017 {
1018 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1019
1020 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1021 downheap ((WT *)periodics, periodiccnt, 0);
1022 }
1023 else if (w->interval)
1024 {
870 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1025 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
871 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1026 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
872 downheap ((WT *)periodics, periodiccnt, 0); 1027 downheap ((WT *)periodics, periodiccnt, 0);
873 } 1028 }
874 else 1029 else
875 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1030 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
876 1031
877 event (EV_A_ (W)w, EV_PERIODIC); 1032 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
878 } 1033 }
879} 1034}
880 1035
881static void 1036static void
882periodics_reschedule (EV_P) 1037periodics_reschedule (EV_P)
886 /* adjust periodics after time jump */ 1041 /* adjust periodics after time jump */
887 for (i = 0; i < periodiccnt; ++i) 1042 for (i = 0; i < periodiccnt; ++i)
888 { 1043 {
889 struct ev_periodic *w = periodics [i]; 1044 struct ev_periodic *w = periodics [i];
890 1045
1046 if (w->reschedule_cb)
1047 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
891 if (w->interval) 1048 else if (w->interval)
892 {
893 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1049 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
894
895 if (fabs (diff) >= 1e-4)
896 {
897 ev_periodic_stop (EV_A_ w);
898 ev_periodic_start (EV_A_ w);
899
900 i = 0; /* restart loop, inefficient, but time jumps should be rare */
901 }
902 }
903 } 1050 }
1051
1052 /* now rebuild the heap */
1053 for (i = periodiccnt >> 1; i--; )
1054 downheap ((WT *)periodics, periodiccnt, i);
904} 1055}
905 1056
906inline int 1057inline int
907time_update_monotonic (EV_P) 1058time_update_monotonic (EV_P)
908{ 1059{
909 mn_now = get_clock (); 1060 mn_now = get_clock ();
910 1061
911 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1062 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
912 { 1063 {
913 rt_now = rtmn_diff + mn_now; 1064 ev_rt_now = rtmn_diff + mn_now;
914 return 0; 1065 return 0;
915 } 1066 }
916 else 1067 else
917 { 1068 {
918 now_floor = mn_now; 1069 now_floor = mn_now;
919 rt_now = ev_time (); 1070 ev_rt_now = ev_time ();
920 return 1; 1071 return 1;
921 } 1072 }
922} 1073}
923 1074
924static void 1075static void
933 { 1084 {
934 ev_tstamp odiff = rtmn_diff; 1085 ev_tstamp odiff = rtmn_diff;
935 1086
936 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1087 for (i = 4; --i; ) /* loop a few times, before making important decisions */
937 { 1088 {
938 rtmn_diff = rt_now - mn_now; 1089 rtmn_diff = ev_rt_now - mn_now;
939 1090
940 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1091 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
941 return; /* all is well */ 1092 return; /* all is well */
942 1093
943 rt_now = ev_time (); 1094 ev_rt_now = ev_time ();
944 mn_now = get_clock (); 1095 mn_now = get_clock ();
945 now_floor = mn_now; 1096 now_floor = mn_now;
946 } 1097 }
947 1098
948 periodics_reschedule (EV_A); 1099 periodics_reschedule (EV_A);
951 } 1102 }
952 } 1103 }
953 else 1104 else
954#endif 1105#endif
955 { 1106 {
956 rt_now = ev_time (); 1107 ev_rt_now = ev_time ();
957 1108
958 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1109 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
959 { 1110 {
960 periodics_reschedule (EV_A); 1111 periodics_reschedule (EV_A);
961 1112
962 /* adjust timers. this is easy, as the offset is the same for all */ 1113 /* adjust timers. this is easy, as the offset is the same for all */
963 for (i = 0; i < timercnt; ++i) 1114 for (i = 0; i < timercnt; ++i)
964 ((WT)timers [i])->at += rt_now - mn_now; 1115 ((WT)timers [i])->at += ev_rt_now - mn_now;
965 } 1116 }
966 1117
967 mn_now = rt_now; 1118 mn_now = ev_rt_now;
968 } 1119 }
969} 1120}
970 1121
971void 1122void
972ev_ref (EV_P) 1123ev_ref (EV_P)
995 { 1146 {
996 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1147 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
997 call_pending (EV_A); 1148 call_pending (EV_A);
998 } 1149 }
999 1150
1151 /* we might have forked, so reify kernel state if necessary */
1152 if (expect_false (postfork))
1153 loop_fork (EV_A);
1154
1000 /* update fd-related kernel structures */ 1155 /* update fd-related kernel structures */
1001 fd_reify (EV_A); 1156 fd_reify (EV_A);
1002 1157
1003 /* calculate blocking time */ 1158 /* calculate blocking time */
1004 1159
1005 /* we only need this for !monotonic clockor timers, but as we basically 1160 /* we only need this for !monotonic clock or timers, but as we basically
1006 always have timers, we just calculate it always */ 1161 always have timers, we just calculate it always */
1007#if EV_USE_MONOTONIC 1162#if EV_USE_MONOTONIC
1008 if (expect_true (have_monotonic)) 1163 if (expect_true (have_monotonic))
1009 time_update_monotonic (EV_A); 1164 time_update_monotonic (EV_A);
1010 else 1165 else
1011#endif 1166#endif
1012 { 1167 {
1013 rt_now = ev_time (); 1168 ev_rt_now = ev_time ();
1014 mn_now = rt_now; 1169 mn_now = ev_rt_now;
1015 } 1170 }
1016 1171
1017 if (flags & EVLOOP_NONBLOCK || idlecnt) 1172 if (flags & EVLOOP_NONBLOCK || idlecnt)
1018 block = 0.; 1173 block = 0.;
1019 else 1174 else
1026 if (block > to) block = to; 1181 if (block > to) block = to;
1027 } 1182 }
1028 1183
1029 if (periodiccnt) 1184 if (periodiccnt)
1030 { 1185 {
1031 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1186 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1032 if (block > to) block = to; 1187 if (block > to) block = to;
1033 } 1188 }
1034 1189
1035 if (block < 0.) block = 0.; 1190 if (block < 0.) block = 0.;
1036 } 1191 }
1037 1192
1038 method_poll (EV_A_ block); 1193 method_poll (EV_A_ block);
1039 1194
1040 /* update rt_now, do magic */ 1195 /* update ev_rt_now, do magic */
1041 time_update (EV_A); 1196 time_update (EV_A);
1042 1197
1043 /* queue pending timers and reschedule them */ 1198 /* queue pending timers and reschedule them */
1044 timers_reify (EV_A); /* relative timers called last */ 1199 timers_reify (EV_A); /* relative timers called last */
1045 periodics_reify (EV_A); /* absolute timers called first */ 1200 periodics_reify (EV_A); /* absolute timers called first */
1046 1201
1047 /* queue idle watchers unless io or timers are pending */ 1202 /* queue idle watchers unless io or timers are pending */
1048 if (!pendingcnt) 1203 if (idlecnt && !any_pending (EV_A))
1049 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1204 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1050 1205
1051 /* queue check watchers, to be executed first */ 1206 /* queue check watchers, to be executed first */
1052 if (checkcnt) 1207 if (checkcnt)
1053 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1208 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1128 return; 1283 return;
1129 1284
1130 assert (("ev_io_start called with negative fd", fd >= 0)); 1285 assert (("ev_io_start called with negative fd", fd >= 0));
1131 1286
1132 ev_start (EV_A_ (W)w, 1); 1287 ev_start (EV_A_ (W)w, 1);
1133 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1288 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1134 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1289 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1135 1290
1136 fd_change (EV_A_ fd); 1291 fd_change (EV_A_ fd);
1137} 1292}
1138 1293
1141{ 1296{
1142 ev_clear_pending (EV_A_ (W)w); 1297 ev_clear_pending (EV_A_ (W)w);
1143 if (!ev_is_active (w)) 1298 if (!ev_is_active (w))
1144 return; 1299 return;
1145 1300
1301 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1302
1146 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1303 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1147 ev_stop (EV_A_ (W)w); 1304 ev_stop (EV_A_ (W)w);
1148 1305
1149 fd_change (EV_A_ w->fd); 1306 fd_change (EV_A_ w->fd);
1150} 1307}
1158 ((WT)w)->at += mn_now; 1315 ((WT)w)->at += mn_now;
1159 1316
1160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1317 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1161 1318
1162 ev_start (EV_A_ (W)w, ++timercnt); 1319 ev_start (EV_A_ (W)w, ++timercnt);
1163 array_needsize (timers, timermax, timercnt, ); 1320 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1164 timers [timercnt - 1] = w; 1321 timers [timercnt - 1] = w;
1165 upheap ((WT *)timers, timercnt - 1); 1322 upheap ((WT *)timers, timercnt - 1);
1166 1323
1167 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1324 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1168} 1325}
1180 { 1337 {
1181 timers [((W)w)->active - 1] = timers [timercnt]; 1338 timers [((W)w)->active - 1] = timers [timercnt];
1182 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1339 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1183 } 1340 }
1184 1341
1185 ((WT)w)->at = w->repeat; 1342 ((WT)w)->at -= mn_now;
1186 1343
1187 ev_stop (EV_A_ (W)w); 1344 ev_stop (EV_A_ (W)w);
1188} 1345}
1189 1346
1190void 1347void
1191ev_timer_again (EV_P_ struct ev_timer *w) 1348ev_timer_again (EV_P_ struct ev_timer *w)
1192{ 1349{
1193 if (ev_is_active (w)) 1350 if (ev_is_active (w))
1194 { 1351 {
1195 if (w->repeat) 1352 if (w->repeat)
1196 {
1197 ((WT)w)->at = mn_now + w->repeat;
1198 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1353 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1199 }
1200 else 1354 else
1201 ev_timer_stop (EV_A_ w); 1355 ev_timer_stop (EV_A_ w);
1202 } 1356 }
1203 else if (w->repeat) 1357 else if (w->repeat)
1204 ev_timer_start (EV_A_ w); 1358 ev_timer_start (EV_A_ w);
1208ev_periodic_start (EV_P_ struct ev_periodic *w) 1362ev_periodic_start (EV_P_ struct ev_periodic *w)
1209{ 1363{
1210 if (ev_is_active (w)) 1364 if (ev_is_active (w))
1211 return; 1365 return;
1212 1366
1367 if (w->reschedule_cb)
1368 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1369 else if (w->interval)
1370 {
1213 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1371 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1214
1215 /* this formula differs from the one in periodic_reify because we do not always round up */ 1372 /* this formula differs from the one in periodic_reify because we do not always round up */
1216 if (w->interval)
1217 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1373 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1374 }
1218 1375
1219 ev_start (EV_A_ (W)w, ++periodiccnt); 1376 ev_start (EV_A_ (W)w, ++periodiccnt);
1220 array_needsize (periodics, periodicmax, periodiccnt, ); 1377 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1221 periodics [periodiccnt - 1] = w; 1378 periodics [periodiccnt - 1] = w;
1222 upheap ((WT *)periodics, periodiccnt - 1); 1379 upheap ((WT *)periodics, periodiccnt - 1);
1223 1380
1224 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1381 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1225} 1382}
1241 1398
1242 ev_stop (EV_A_ (W)w); 1399 ev_stop (EV_A_ (W)w);
1243} 1400}
1244 1401
1245void 1402void
1403ev_periodic_again (EV_P_ struct ev_periodic *w)
1404{
1405 /* TODO: use adjustheap and recalculation */
1406 ev_periodic_stop (EV_A_ w);
1407 ev_periodic_start (EV_A_ w);
1408}
1409
1410void
1246ev_idle_start (EV_P_ struct ev_idle *w) 1411ev_idle_start (EV_P_ struct ev_idle *w)
1247{ 1412{
1248 if (ev_is_active (w)) 1413 if (ev_is_active (w))
1249 return; 1414 return;
1250 1415
1251 ev_start (EV_A_ (W)w, ++idlecnt); 1416 ev_start (EV_A_ (W)w, ++idlecnt);
1252 array_needsize (idles, idlemax, idlecnt, ); 1417 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1253 idles [idlecnt - 1] = w; 1418 idles [idlecnt - 1] = w;
1254} 1419}
1255 1420
1256void 1421void
1257ev_idle_stop (EV_P_ struct ev_idle *w) 1422ev_idle_stop (EV_P_ struct ev_idle *w)
1269{ 1434{
1270 if (ev_is_active (w)) 1435 if (ev_is_active (w))
1271 return; 1436 return;
1272 1437
1273 ev_start (EV_A_ (W)w, ++preparecnt); 1438 ev_start (EV_A_ (W)w, ++preparecnt);
1274 array_needsize (prepares, preparemax, preparecnt, ); 1439 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1275 prepares [preparecnt - 1] = w; 1440 prepares [preparecnt - 1] = w;
1276} 1441}
1277 1442
1278void 1443void
1279ev_prepare_stop (EV_P_ struct ev_prepare *w) 1444ev_prepare_stop (EV_P_ struct ev_prepare *w)
1291{ 1456{
1292 if (ev_is_active (w)) 1457 if (ev_is_active (w))
1293 return; 1458 return;
1294 1459
1295 ev_start (EV_A_ (W)w, ++checkcnt); 1460 ev_start (EV_A_ (W)w, ++checkcnt);
1296 array_needsize (checks, checkmax, checkcnt, ); 1461 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1297 checks [checkcnt - 1] = w; 1462 checks [checkcnt - 1] = w;
1298} 1463}
1299 1464
1300void 1465void
1301ev_check_stop (EV_P_ struct ev_check *w) 1466ev_check_stop (EV_P_ struct ev_check *w)
1322 return; 1487 return;
1323 1488
1324 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1489 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1325 1490
1326 ev_start (EV_A_ (W)w, 1); 1491 ev_start (EV_A_ (W)w, 1);
1327 array_needsize (signals, signalmax, w->signum, signals_init); 1492 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1328 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1493 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1329 1494
1330 if (!((WL)w)->next) 1495 if (!((WL)w)->next)
1331 { 1496 {
1332#if WIN32 1497#if WIN32
1395 void (*cb)(int revents, void *arg) = once->cb; 1560 void (*cb)(int revents, void *arg) = once->cb;
1396 void *arg = once->arg; 1561 void *arg = once->arg;
1397 1562
1398 ev_io_stop (EV_A_ &once->io); 1563 ev_io_stop (EV_A_ &once->io);
1399 ev_timer_stop (EV_A_ &once->to); 1564 ev_timer_stop (EV_A_ &once->to);
1400 free (once); 1565 ev_free (once);
1401 1566
1402 cb (revents, arg); 1567 cb (revents, arg);
1403} 1568}
1404 1569
1405static void 1570static void
1415} 1580}
1416 1581
1417void 1582void
1418ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1583ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1419{ 1584{
1420 struct ev_once *once = malloc (sizeof (struct ev_once)); 1585 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1421 1586
1422 if (!once) 1587 if (!once)
1423 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1588 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1424 else 1589 else
1425 { 1590 {
1426 once->cb = cb; 1591 once->cb = cb;
1427 once->arg = arg; 1592 once->arg = arg;
1428 1593
1429 ev_watcher_init (&once->io, once_cb_io); 1594 ev_init (&once->io, once_cb_io);
1430 if (fd >= 0) 1595 if (fd >= 0)
1431 { 1596 {
1432 ev_io_set (&once->io, fd, events); 1597 ev_io_set (&once->io, fd, events);
1433 ev_io_start (EV_A_ &once->io); 1598 ev_io_start (EV_A_ &once->io);
1434 } 1599 }
1435 1600
1436 ev_watcher_init (&once->to, once_cb_to); 1601 ev_init (&once->to, once_cb_to);
1437 if (timeout >= 0.) 1602 if (timeout >= 0.)
1438 { 1603 {
1439 ev_timer_set (&once->to, timeout, 0.); 1604 ev_timer_set (&once->to, timeout, 0.);
1440 ev_timer_start (EV_A_ &once->to); 1605 ev_timer_start (EV_A_ &once->to);
1441 } 1606 }
1442 } 1607 }
1443} 1608}
1444 1609
1610#ifdef __cplusplus
1611}
1612#endif
1613

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines