ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.72 by root, Tue Nov 6 16:09:37 2007 UTC vs.
Revision 1.93 by root, Sun Nov 11 01:07:35 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1 40# define EV_USE_MONOTONIC 1
46 51
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 53# define EV_USE_EPOLL 1
49# endif 54# endif
50 55
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 56# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 57# define EV_USE_KQUEUE 1
53# endif 58# endif
54 59
55#endif 60#endif
56 61
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 135
136#ifdef EV_H
137# include EV_H
138#else
131#include "ev.h" 139# include "ev.h"
140#endif
132 141
133#if __GNUC__ >= 3 142#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value)) 143# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 144# define inline inline
136#else 145#else
148typedef struct ev_watcher_list *WL; 157typedef struct ev_watcher_list *WL;
149typedef struct ev_watcher_time *WT; 158typedef struct ev_watcher_time *WT;
150 159
151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 160static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
152 161
153#if WIN32 162#include "ev_win32.c"
154/* note: the comment below could not be substantiated, but what would I care */
155/* MSDN says this is required to handle SIGFPE */
156volatile double SIGFPE_REQ = 0.0f;
157
158static int
159ev_socketpair_tcp (int filedes [2])
160{
161 struct sockaddr_in addr = { 0 };
162 int addr_size = sizeof (addr);
163 SOCKET listener;
164 SOCKET sock [2] = { -1, -1 };
165
166 if ((listener = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
167 return -1;
168
169 addr.sin_family = AF_INET;
170 addr.sin_addr.s_addr = htonl (INADDR_LOOPBACK);
171 addr.sin_port = 0;
172
173 if (bind (listener, (struct sockaddr *)&addr, addr_size))
174 goto fail;
175
176 if (getsockname(listener, (struct sockaddr *)&addr, &addr_size))
177 goto fail;
178
179 if (listen (listener, 1))
180 goto fail;
181
182 if ((sock [0] = socket (AF_INET, SOCK_STREAM, 0)) == INVALID_SOCKET)
183 goto fail;
184
185 if (connect (sock[0], (struct sockaddr *)&addr, addr_size))
186 goto fail;
187
188 if ((sock[1] = accept (listener, 0, 0)) < 0)
189 goto fail;
190
191 closesocket (listener);
192
193 filedes [0] = sock [0];
194 filedes [1] = sock [1];
195
196 return 0;
197
198fail:
199 closesocket (listener);
200
201 if (sock [0] != INVALID_SOCKET) closesocket (sock [0]);
202 if (sock [1] != INVALID_SOCKET) closesocket (sock [1]);
203
204 return -1;
205}
206
207# define ev_pipe(filedes) ev_socketpair_tcp (filedes)
208#else
209# define ev_pipe(filedes) pipe (filedes)
210#endif
211 163
212/*****************************************************************************/ 164/*****************************************************************************/
213 165
214static void (*syserr_cb)(const char *msg); 166static void (*syserr_cb)(const char *msg);
215 167
272 int events; 224 int events;
273} ANPENDING; 225} ANPENDING;
274 226
275#if EV_MULTIPLICITY 227#if EV_MULTIPLICITY
276 228
277struct ev_loop 229 struct ev_loop
278{ 230 {
231 ev_tstamp ev_rt_now;
279# define VAR(name,decl) decl; 232 #define VAR(name,decl) decl;
280# include "ev_vars.h" 233 #include "ev_vars.h"
281};
282# undef VAR 234 #undef VAR
235 };
283# include "ev_wrap.h" 236 #include "ev_wrap.h"
237
238 struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop;
284 240
285#else 241#else
286 242
243 ev_tstamp ev_rt_now;
287# define VAR(name,decl) static decl; 244 #define VAR(name,decl) static decl;
288# include "ev_vars.h" 245 #include "ev_vars.h"
289# undef VAR 246 #undef VAR
247
248 static int default_loop;
290 249
291#endif 250#endif
292 251
293/*****************************************************************************/ 252/*****************************************************************************/
294 253
295inline ev_tstamp 254ev_tstamp
296ev_time (void) 255ev_time (void)
297{ 256{
298#if EV_USE_REALTIME 257#if EV_USE_REALTIME
299 struct timespec ts; 258 struct timespec ts;
300 clock_gettime (CLOCK_REALTIME, &ts); 259 clock_gettime (CLOCK_REALTIME, &ts);
319#endif 278#endif
320 279
321 return ev_time (); 280 return ev_time ();
322} 281}
323 282
283#if EV_MULTIPLICITY
324ev_tstamp 284ev_tstamp
325ev_now (EV_P) 285ev_now (EV_P)
326{ 286{
327 return rt_now; 287 return ev_rt_now;
328} 288}
289#endif
329 290
330#define array_roundsize(base,n) ((n) | 4 & ~3) 291#define array_roundsize(type,n) ((n) | 4 & ~3)
331 292
332#define array_needsize(base,cur,cnt,init) \ 293#define array_needsize(type,base,cur,cnt,init) \
333 if (expect_false ((cnt) > cur)) \ 294 if (expect_false ((cnt) > cur)) \
334 { \ 295 { \
335 int newcnt = cur; \ 296 int newcnt = cur; \
336 do \ 297 do \
337 { \ 298 { \
338 newcnt = array_roundsize (base, newcnt << 1); \ 299 newcnt = array_roundsize (type, newcnt << 1); \
339 } \ 300 } \
340 while ((cnt) > newcnt); \ 301 while ((cnt) > newcnt); \
341 \ 302 \
342 base = ev_realloc (base, sizeof (*base) * (newcnt)); \ 303 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
343 init (base + cur, newcnt - cur); \ 304 init (base + cur, newcnt - cur); \
344 cur = newcnt; \ 305 cur = newcnt; \
345 } 306 }
346 307
347#define array_slim(stem) \ 308#define array_slim(type,stem) \
348 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 309 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
349 { \ 310 { \
350 stem ## max = array_roundsize (stem ## cnt >> 1); \ 311 stem ## max = array_roundsize (stem ## cnt >> 1); \
351 base = ev_realloc (base, sizeof (*base) * (stem ## max)); \ 312 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
352 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 313 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
353 } 314 }
354 315
355/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */ 316/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
356/* bringing us everlasting joy in form of stupid extra macros that are not required in C */ 317/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
373 334
374 ++base; 335 ++base;
375 } 336 }
376} 337}
377 338
378static void 339void
379event (EV_P_ W w, int events) 340ev_feed_event (EV_P_ void *w, int revents)
380{ 341{
342 W w_ = (W)w;
343
381 if (w->pending) 344 if (w_->pending)
382 { 345 {
383 pendings [ABSPRI (w)][w->pending - 1].events |= events; 346 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
384 return; 347 return;
385 } 348 }
386 349
387 w->pending = ++pendingcnt [ABSPRI (w)]; 350 w_->pending = ++pendingcnt [ABSPRI (w_)];
388 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 351 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
389 pendings [ABSPRI (w)][w->pending - 1].w = w; 352 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
390 pendings [ABSPRI (w)][w->pending - 1].events = events; 353 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
391} 354}
392 355
393static void 356static void
394queue_events (EV_P_ W *events, int eventcnt, int type) 357queue_events (EV_P_ W *events, int eventcnt, int type)
395{ 358{
396 int i; 359 int i;
397 360
398 for (i = 0; i < eventcnt; ++i) 361 for (i = 0; i < eventcnt; ++i)
399 event (EV_A_ events [i], type); 362 ev_feed_event (EV_A_ events [i], type);
400} 363}
401 364
402static void 365inline void
403fd_event (EV_P_ int fd, int events) 366fd_event (EV_P_ int fd, int revents)
404{ 367{
405 ANFD *anfd = anfds + fd; 368 ANFD *anfd = anfds + fd;
406 struct ev_io *w; 369 struct ev_io *w;
407 370
408 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
409 { 372 {
410 int ev = w->events & events; 373 int ev = w->events & revents;
411 374
412 if (ev) 375 if (ev)
413 event (EV_A_ (W)w, ev); 376 ev_feed_event (EV_A_ (W)w, ev);
414 } 377 }
378}
379
380void
381ev_feed_fd_event (EV_P_ int fd, int revents)
382{
383 fd_event (EV_A_ fd, revents);
415} 384}
416 385
417/*****************************************************************************/ 386/*****************************************************************************/
418 387
419static void 388static void
448 return; 417 return;
449 418
450 anfds [fd].reify = 1; 419 anfds [fd].reify = 1;
451 420
452 ++fdchangecnt; 421 ++fdchangecnt;
453 array_needsize (fdchanges, fdchangemax, fdchangecnt, (void)); 422 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
454 fdchanges [fdchangecnt - 1] = fd; 423 fdchanges [fdchangecnt - 1] = fd;
455} 424}
456 425
457static void 426static void
458fd_kill (EV_P_ int fd) 427fd_kill (EV_P_ int fd)
460 struct ev_io *w; 429 struct ev_io *w;
461 430
462 while ((w = (struct ev_io *)anfds [fd].head)) 431 while ((w = (struct ev_io *)anfds [fd].head))
463 { 432 {
464 ev_io_stop (EV_A_ w); 433 ev_io_stop (EV_A_ w);
465 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 434 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
466 } 435 }
467} 436}
468 437
469static int 438static int
470fd_valid (int fd) 439fd_valid (int fd)
558 527
559 heap [k] = w; 528 heap [k] = w;
560 ((W)heap [k])->active = k + 1; 529 ((W)heap [k])->active = k + 1;
561} 530}
562 531
532inline void
533adjustheap (WT *heap, int N, int k, ev_tstamp at)
534{
535 ev_tstamp old_at = heap [k]->at;
536 heap [k]->at = at;
537
538 if (old_at < at)
539 downheap (heap, N, k);
540 else
541 upheap (heap, k);
542}
543
563/*****************************************************************************/ 544/*****************************************************************************/
564 545
565typedef struct 546typedef struct
566{ 547{
567 WL head; 548 WL head;
598 579
599 if (!gotsig) 580 if (!gotsig)
600 { 581 {
601 int old_errno = errno; 582 int old_errno = errno;
602 gotsig = 1; 583 gotsig = 1;
584#ifdef WIN32
585 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
586#else
603 write (sigpipe [1], &signum, 1); 587 write (sigpipe [1], &signum, 1);
588#endif
604 errno = old_errno; 589 errno = old_errno;
605 } 590 }
606} 591}
607 592
593void
594ev_feed_signal_event (EV_P_ int signum)
595{
596 WL w;
597
598#if EV_MULTIPLICITY
599 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
600#endif
601
602 --signum;
603
604 if (signum < 0 || signum >= signalmax)
605 return;
606
607 signals [signum].gotsig = 0;
608
609 for (w = signals [signum].head; w; w = w->next)
610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
611}
612
608static void 613static void
609sigcb (EV_P_ struct ev_io *iow, int revents) 614sigcb (EV_P_ struct ev_io *iow, int revents)
610{ 615{
611 WL w;
612 int signum; 616 int signum;
613 617
618#ifdef WIN32
619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
620#else
614 read (sigpipe [0], &revents, 1); 621 read (sigpipe [0], &revents, 1);
622#endif
615 gotsig = 0; 623 gotsig = 0;
616 624
617 for (signum = signalmax; signum--; ) 625 for (signum = signalmax; signum--; )
618 if (signals [signum].gotsig) 626 if (signals [signum].gotsig)
619 { 627 ev_feed_signal_event (EV_A_ signum + 1);
620 signals [signum].gotsig = 0;
621
622 for (w = signals [signum].head; w; w = w->next)
623 event (EV_A_ (W)w, EV_SIGNAL);
624 }
625} 628}
626 629
627static void 630static void
628siginit (EV_P) 631siginit (EV_P)
629{ 632{
662 if (w->pid == pid || !w->pid) 665 if (w->pid == pid || !w->pid)
663 { 666 {
664 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 667 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
665 w->rpid = pid; 668 w->rpid = pid;
666 w->rstatus = status; 669 w->rstatus = status;
667 event (EV_A_ (W)w, EV_CHILD); 670 ev_feed_event (EV_A_ (W)w, EV_CHILD);
668 } 671 }
669} 672}
670 673
671static void 674static void
672childcb (EV_P_ struct ev_signal *sw, int revents) 675childcb (EV_P_ struct ev_signal *sw, int revents)
674 int pid, status; 677 int pid, status;
675 678
676 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 679 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
677 { 680 {
678 /* make sure we are called again until all childs have been reaped */ 681 /* make sure we are called again until all childs have been reaped */
679 event (EV_A_ (W)sw, EV_SIGNAL); 682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
680 683
681 child_reap (EV_A_ sw, pid, pid, status); 684 child_reap (EV_A_ sw, pid, pid, status);
682 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 685 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
683 } 686 }
684} 687}
741 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 744 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
742 have_monotonic = 1; 745 have_monotonic = 1;
743 } 746 }
744#endif 747#endif
745 748
746 rt_now = ev_time (); 749 ev_rt_now = ev_time ();
747 mn_now = get_clock (); 750 mn_now = get_clock ();
748 now_floor = mn_now; 751 now_floor = mn_now;
749 rtmn_diff = rt_now - mn_now; 752 rtmn_diff = ev_rt_now - mn_now;
750 753
751 if (methods == EVMETHOD_AUTO) 754 if (methods == EVMETHOD_AUTO)
752 if (!enable_secure () && getenv ("LIBEV_METHODS")) 755 if (!enable_secure () && getenv ("LIBEV_METHODS"))
753 methods = atoi (getenv ("LIBEV_METHODS")); 756 methods = atoi (getenv ("LIBEV_METHODS"));
754 else 757 else
769#endif 772#endif
770#if EV_USE_SELECT 773#if EV_USE_SELECT
771 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
772#endif 775#endif
773 776
774 ev_watcher_init (&sigev, sigcb); 777 ev_init (&sigev, sigcb);
775 ev_set_priority (&sigev, EV_MAXPRI); 778 ev_set_priority (&sigev, EV_MAXPRI);
776 } 779 }
777} 780}
778 781
779void 782void
801 array_free (pending, [i]); 804 array_free (pending, [i]);
802 805
803 /* have to use the microsoft-never-gets-it-right macro */ 806 /* have to use the microsoft-never-gets-it-right macro */
804 array_free_microshit (fdchange); 807 array_free_microshit (fdchange);
805 array_free_microshit (timer); 808 array_free_microshit (timer);
809#if EV_PERIODICS
806 array_free_microshit (periodic); 810 array_free_microshit (periodic);
811#endif
807 array_free_microshit (idle); 812 array_free_microshit (idle);
808 array_free_microshit (prepare); 813 array_free_microshit (prepare);
809 array_free_microshit (check); 814 array_free_microshit (check);
810 815
811 method = 0; 816 method = 0;
828 ev_ref (EV_A); 833 ev_ref (EV_A);
829 ev_io_stop (EV_A_ &sigev); 834 ev_io_stop (EV_A_ &sigev);
830 close (sigpipe [0]); 835 close (sigpipe [0]);
831 close (sigpipe [1]); 836 close (sigpipe [1]);
832 837
833 while (ev_pipe (sigpipe)) 838 while (pipe (sigpipe))
834 syserr ("(libev) error creating pipe"); 839 syserr ("(libev) error creating pipe");
835 840
836 siginit (EV_A); 841 siginit (EV_A);
837 } 842 }
838 843
869} 874}
870 875
871#endif 876#endif
872 877
873#if EV_MULTIPLICITY 878#if EV_MULTIPLICITY
874struct ev_loop default_loop_struct;
875static struct ev_loop *default_loop;
876
877struct ev_loop * 879struct ev_loop *
878#else 880#else
879static int default_loop;
880
881int 881int
882#endif 882#endif
883ev_default_loop (int methods) 883ev_default_loop (int methods)
884{ 884{
885 if (sigpipe [0] == sigpipe [1]) 885 if (sigpipe [0] == sigpipe [1])
886 if (ev_pipe (sigpipe)) 886 if (pipe (sigpipe))
887 return 0; 887 return 0;
888 888
889 if (!default_loop) 889 if (!default_loop)
890 { 890 {
891#if EV_MULTIPLICITY 891#if EV_MULTIPLICITY
946 postfork = 1; 946 postfork = 1;
947} 947}
948 948
949/*****************************************************************************/ 949/*****************************************************************************/
950 950
951static int
952any_pending (EV_P)
953{
954 int pri;
955
956 for (pri = NUMPRI; pri--; )
957 if (pendingcnt [pri])
958 return 1;
959
960 return 0;
961}
962
951static void 963static void
952call_pending (EV_P) 964call_pending (EV_P)
953{ 965{
954 int pri; 966 int pri;
955 967
959 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 971 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
960 972
961 if (p->w) 973 if (p->w)
962 { 974 {
963 p->w->pending = 0; 975 p->w->pending = 0;
964 p->w->cb (EV_A_ p->w, p->events); 976 EV_CB_INVOKE (p->w, p->events);
965 } 977 }
966 } 978 }
967} 979}
968 980
969static void 981static void
977 989
978 /* first reschedule or stop timer */ 990 /* first reschedule or stop timer */
979 if (w->repeat) 991 if (w->repeat)
980 { 992 {
981 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 993 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
994
982 ((WT)w)->at = mn_now + w->repeat; 995 ((WT)w)->at += w->repeat;
996 if (((WT)w)->at < mn_now)
997 ((WT)w)->at = mn_now;
998
983 downheap ((WT *)timers, timercnt, 0); 999 downheap ((WT *)timers, timercnt, 0);
984 } 1000 }
985 else 1001 else
986 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1002 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
987 1003
988 event (EV_A_ (W)w, EV_TIMEOUT); 1004 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
989 } 1005 }
990} 1006}
991 1007
1008#if EV_PERIODICS
992static void 1009static void
993periodics_reify (EV_P) 1010periodics_reify (EV_P)
994{ 1011{
995 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1012 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
996 { 1013 {
997 struct ev_periodic *w = periodics [0]; 1014 struct ev_periodic *w = periodics [0];
998 1015
999 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1016 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1000 1017
1001 /* first reschedule or stop timer */ 1018 /* first reschedule or stop timer */
1002 if (w->interval) 1019 if (w->reschedule_cb)
1003 { 1020 {
1021 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1022
1023 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1024 downheap ((WT *)periodics, periodiccnt, 0);
1025 }
1026 else if (w->interval)
1027 {
1004 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1028 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1005 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1029 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1006 downheap ((WT *)periodics, periodiccnt, 0); 1030 downheap ((WT *)periodics, periodiccnt, 0);
1007 } 1031 }
1008 else 1032 else
1009 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1033 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1010 1034
1011 event (EV_A_ (W)w, EV_PERIODIC); 1035 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1012 } 1036 }
1013} 1037}
1014 1038
1015static void 1039static void
1016periodics_reschedule (EV_P) 1040periodics_reschedule (EV_P)
1020 /* adjust periodics after time jump */ 1044 /* adjust periodics after time jump */
1021 for (i = 0; i < periodiccnt; ++i) 1045 for (i = 0; i < periodiccnt; ++i)
1022 { 1046 {
1023 struct ev_periodic *w = periodics [i]; 1047 struct ev_periodic *w = periodics [i];
1024 1048
1049 if (w->reschedule_cb)
1050 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1025 if (w->interval) 1051 else if (w->interval)
1026 {
1027 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1052 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1028
1029 if (fabs (diff) >= 1e-4)
1030 {
1031 ev_periodic_stop (EV_A_ w);
1032 ev_periodic_start (EV_A_ w);
1033
1034 i = 0; /* restart loop, inefficient, but time jumps should be rare */
1035 }
1036 }
1037 } 1053 }
1054
1055 /* now rebuild the heap */
1056 for (i = periodiccnt >> 1; i--; )
1057 downheap ((WT *)periodics, periodiccnt, i);
1038} 1058}
1059#endif
1039 1060
1040inline int 1061inline int
1041time_update_monotonic (EV_P) 1062time_update_monotonic (EV_P)
1042{ 1063{
1043 mn_now = get_clock (); 1064 mn_now = get_clock ();
1044 1065
1045 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1066 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1046 { 1067 {
1047 rt_now = rtmn_diff + mn_now; 1068 ev_rt_now = rtmn_diff + mn_now;
1048 return 0; 1069 return 0;
1049 } 1070 }
1050 else 1071 else
1051 { 1072 {
1052 now_floor = mn_now; 1073 now_floor = mn_now;
1053 rt_now = ev_time (); 1074 ev_rt_now = ev_time ();
1054 return 1; 1075 return 1;
1055 } 1076 }
1056} 1077}
1057 1078
1058static void 1079static void
1067 { 1088 {
1068 ev_tstamp odiff = rtmn_diff; 1089 ev_tstamp odiff = rtmn_diff;
1069 1090
1070 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1091 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1071 { 1092 {
1072 rtmn_diff = rt_now - mn_now; 1093 rtmn_diff = ev_rt_now - mn_now;
1073 1094
1074 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1095 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1075 return; /* all is well */ 1096 return; /* all is well */
1076 1097
1077 rt_now = ev_time (); 1098 ev_rt_now = ev_time ();
1078 mn_now = get_clock (); 1099 mn_now = get_clock ();
1079 now_floor = mn_now; 1100 now_floor = mn_now;
1080 } 1101 }
1081 1102
1103# if EV_PERIODICS
1082 periodics_reschedule (EV_A); 1104 periodics_reschedule (EV_A);
1105# endif
1083 /* no timer adjustment, as the monotonic clock doesn't jump */ 1106 /* no timer adjustment, as the monotonic clock doesn't jump */
1084 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1107 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1085 } 1108 }
1086 } 1109 }
1087 else 1110 else
1088#endif 1111#endif
1089 { 1112 {
1090 rt_now = ev_time (); 1113 ev_rt_now = ev_time ();
1091 1114
1092 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1115 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1093 { 1116 {
1117#if EV_PERIODICS
1094 periodics_reschedule (EV_A); 1118 periodics_reschedule (EV_A);
1119#endif
1095 1120
1096 /* adjust timers. this is easy, as the offset is the same for all */ 1121 /* adjust timers. this is easy, as the offset is the same for all */
1097 for (i = 0; i < timercnt; ++i) 1122 for (i = 0; i < timercnt; ++i)
1098 ((WT)timers [i])->at += rt_now - mn_now; 1123 ((WT)timers [i])->at += ev_rt_now - mn_now;
1099 } 1124 }
1100 1125
1101 mn_now = rt_now; 1126 mn_now = ev_rt_now;
1102 } 1127 }
1103} 1128}
1104 1129
1105void 1130void
1106ev_ref (EV_P) 1131ev_ref (EV_P)
1138 /* update fd-related kernel structures */ 1163 /* update fd-related kernel structures */
1139 fd_reify (EV_A); 1164 fd_reify (EV_A);
1140 1165
1141 /* calculate blocking time */ 1166 /* calculate blocking time */
1142 1167
1143 /* we only need this for !monotonic clockor timers, but as we basically 1168 /* we only need this for !monotonic clock or timers, but as we basically
1144 always have timers, we just calculate it always */ 1169 always have timers, we just calculate it always */
1145#if EV_USE_MONOTONIC 1170#if EV_USE_MONOTONIC
1146 if (expect_true (have_monotonic)) 1171 if (expect_true (have_monotonic))
1147 time_update_monotonic (EV_A); 1172 time_update_monotonic (EV_A);
1148 else 1173 else
1149#endif 1174#endif
1150 { 1175 {
1151 rt_now = ev_time (); 1176 ev_rt_now = ev_time ();
1152 mn_now = rt_now; 1177 mn_now = ev_rt_now;
1153 } 1178 }
1154 1179
1155 if (flags & EVLOOP_NONBLOCK || idlecnt) 1180 if (flags & EVLOOP_NONBLOCK || idlecnt)
1156 block = 0.; 1181 block = 0.;
1157 else 1182 else
1162 { 1187 {
1163 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1188 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1164 if (block > to) block = to; 1189 if (block > to) block = to;
1165 } 1190 }
1166 1191
1192#if EV_PERIODICS
1167 if (periodiccnt) 1193 if (periodiccnt)
1168 { 1194 {
1169 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1195 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1170 if (block > to) block = to; 1196 if (block > to) block = to;
1171 } 1197 }
1198#endif
1172 1199
1173 if (block < 0.) block = 0.; 1200 if (block < 0.) block = 0.;
1174 } 1201 }
1175 1202
1176 method_poll (EV_A_ block); 1203 method_poll (EV_A_ block);
1177 1204
1178 /* update rt_now, do magic */ 1205 /* update ev_rt_now, do magic */
1179 time_update (EV_A); 1206 time_update (EV_A);
1180 1207
1181 /* queue pending timers and reschedule them */ 1208 /* queue pending timers and reschedule them */
1182 timers_reify (EV_A); /* relative timers called last */ 1209 timers_reify (EV_A); /* relative timers called last */
1210#if EV_PERIODICS
1183 periodics_reify (EV_A); /* absolute timers called first */ 1211 periodics_reify (EV_A); /* absolute timers called first */
1212#endif
1184 1213
1185 /* queue idle watchers unless io or timers are pending */ 1214 /* queue idle watchers unless io or timers are pending */
1186 if (!pendingcnt) 1215 if (idlecnt && !any_pending (EV_A))
1187 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1216 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1188 1217
1189 /* queue check watchers, to be executed first */ 1218 /* queue check watchers, to be executed first */
1190 if (checkcnt) 1219 if (checkcnt)
1191 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1220 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1266 return; 1295 return;
1267 1296
1268 assert (("ev_io_start called with negative fd", fd >= 0)); 1297 assert (("ev_io_start called with negative fd", fd >= 0));
1269 1298
1270 ev_start (EV_A_ (W)w, 1); 1299 ev_start (EV_A_ (W)w, 1);
1271 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1300 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1272 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1301 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1273 1302
1274 fd_change (EV_A_ fd); 1303 fd_change (EV_A_ fd);
1275} 1304}
1276 1305
1279{ 1308{
1280 ev_clear_pending (EV_A_ (W)w); 1309 ev_clear_pending (EV_A_ (W)w);
1281 if (!ev_is_active (w)) 1310 if (!ev_is_active (w))
1282 return; 1311 return;
1283 1312
1313 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1314
1284 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1315 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1285 ev_stop (EV_A_ (W)w); 1316 ev_stop (EV_A_ (W)w);
1286 1317
1287 fd_change (EV_A_ w->fd); 1318 fd_change (EV_A_ w->fd);
1288} 1319}
1296 ((WT)w)->at += mn_now; 1327 ((WT)w)->at += mn_now;
1297 1328
1298 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1329 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1299 1330
1300 ev_start (EV_A_ (W)w, ++timercnt); 1331 ev_start (EV_A_ (W)w, ++timercnt);
1301 array_needsize (timers, timermax, timercnt, (void)); 1332 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1302 timers [timercnt - 1] = w; 1333 timers [timercnt - 1] = w;
1303 upheap ((WT *)timers, timercnt - 1); 1334 upheap ((WT *)timers, timercnt - 1);
1304 1335
1305 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1336 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1306} 1337}
1318 { 1349 {
1319 timers [((W)w)->active - 1] = timers [timercnt]; 1350 timers [((W)w)->active - 1] = timers [timercnt];
1320 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1351 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1321 } 1352 }
1322 1353
1323 ((WT)w)->at = w->repeat; 1354 ((WT)w)->at -= mn_now;
1324 1355
1325 ev_stop (EV_A_ (W)w); 1356 ev_stop (EV_A_ (W)w);
1326} 1357}
1327 1358
1328void 1359void
1329ev_timer_again (EV_P_ struct ev_timer *w) 1360ev_timer_again (EV_P_ struct ev_timer *w)
1330{ 1361{
1331 if (ev_is_active (w)) 1362 if (ev_is_active (w))
1332 { 1363 {
1333 if (w->repeat) 1364 if (w->repeat)
1334 {
1335 ((WT)w)->at = mn_now + w->repeat;
1336 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1365 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1337 }
1338 else 1366 else
1339 ev_timer_stop (EV_A_ w); 1367 ev_timer_stop (EV_A_ w);
1340 } 1368 }
1341 else if (w->repeat) 1369 else if (w->repeat)
1342 ev_timer_start (EV_A_ w); 1370 ev_timer_start (EV_A_ w);
1343} 1371}
1344 1372
1373#if EV_PERIODICS
1345void 1374void
1346ev_periodic_start (EV_P_ struct ev_periodic *w) 1375ev_periodic_start (EV_P_ struct ev_periodic *w)
1347{ 1376{
1348 if (ev_is_active (w)) 1377 if (ev_is_active (w))
1349 return; 1378 return;
1350 1379
1380 if (w->reschedule_cb)
1381 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1382 else if (w->interval)
1383 {
1351 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1384 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1352
1353 /* this formula differs from the one in periodic_reify because we do not always round up */ 1385 /* this formula differs from the one in periodic_reify because we do not always round up */
1354 if (w->interval)
1355 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1386 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1387 }
1356 1388
1357 ev_start (EV_A_ (W)w, ++periodiccnt); 1389 ev_start (EV_A_ (W)w, ++periodiccnt);
1358 array_needsize (periodics, periodicmax, periodiccnt, (void)); 1390 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1359 periodics [periodiccnt - 1] = w; 1391 periodics [periodiccnt - 1] = w;
1360 upheap ((WT *)periodics, periodiccnt - 1); 1392 upheap ((WT *)periodics, periodiccnt - 1);
1361 1393
1362 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1394 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1363} 1395}
1379 1411
1380 ev_stop (EV_A_ (W)w); 1412 ev_stop (EV_A_ (W)w);
1381} 1413}
1382 1414
1383void 1415void
1416ev_periodic_again (EV_P_ struct ev_periodic *w)
1417{
1418 /* TODO: use adjustheap and recalculation */
1419 ev_periodic_stop (EV_A_ w);
1420 ev_periodic_start (EV_A_ w);
1421}
1422#endif
1423
1424void
1384ev_idle_start (EV_P_ struct ev_idle *w) 1425ev_idle_start (EV_P_ struct ev_idle *w)
1385{ 1426{
1386 if (ev_is_active (w)) 1427 if (ev_is_active (w))
1387 return; 1428 return;
1388 1429
1389 ev_start (EV_A_ (W)w, ++idlecnt); 1430 ev_start (EV_A_ (W)w, ++idlecnt);
1390 array_needsize (idles, idlemax, idlecnt, (void)); 1431 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1391 idles [idlecnt - 1] = w; 1432 idles [idlecnt - 1] = w;
1392} 1433}
1393 1434
1394void 1435void
1395ev_idle_stop (EV_P_ struct ev_idle *w) 1436ev_idle_stop (EV_P_ struct ev_idle *w)
1407{ 1448{
1408 if (ev_is_active (w)) 1449 if (ev_is_active (w))
1409 return; 1450 return;
1410 1451
1411 ev_start (EV_A_ (W)w, ++preparecnt); 1452 ev_start (EV_A_ (W)w, ++preparecnt);
1412 array_needsize (prepares, preparemax, preparecnt, (void)); 1453 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1413 prepares [preparecnt - 1] = w; 1454 prepares [preparecnt - 1] = w;
1414} 1455}
1415 1456
1416void 1457void
1417ev_prepare_stop (EV_P_ struct ev_prepare *w) 1458ev_prepare_stop (EV_P_ struct ev_prepare *w)
1429{ 1470{
1430 if (ev_is_active (w)) 1471 if (ev_is_active (w))
1431 return; 1472 return;
1432 1473
1433 ev_start (EV_A_ (W)w, ++checkcnt); 1474 ev_start (EV_A_ (W)w, ++checkcnt);
1434 array_needsize (checks, checkmax, checkcnt, (void)); 1475 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1435 checks [checkcnt - 1] = w; 1476 checks [checkcnt - 1] = w;
1436} 1477}
1437 1478
1438void 1479void
1439ev_check_stop (EV_P_ struct ev_check *w) 1480ev_check_stop (EV_P_ struct ev_check *w)
1460 return; 1501 return;
1461 1502
1462 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1503 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1463 1504
1464 ev_start (EV_A_ (W)w, 1); 1505 ev_start (EV_A_ (W)w, 1);
1465 array_needsize (signals, signalmax, w->signum, signals_init); 1506 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1466 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1507 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1467 1508
1468 if (!((WL)w)->next) 1509 if (!((WL)w)->next)
1469 { 1510 {
1470#if WIN32 1511#if WIN32
1553} 1594}
1554 1595
1555void 1596void
1556ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1597ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1557{ 1598{
1558 struct ev_once *once = ev_malloc (sizeof (struct ev_once)); 1599 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1559 1600
1560 if (!once) 1601 if (!once)
1561 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1602 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1562 else 1603 else
1563 { 1604 {
1564 once->cb = cb; 1605 once->cb = cb;
1565 once->arg = arg; 1606 once->arg = arg;
1566 1607
1567 ev_watcher_init (&once->io, once_cb_io); 1608 ev_init (&once->io, once_cb_io);
1568 if (fd >= 0) 1609 if (fd >= 0)
1569 { 1610 {
1570 ev_io_set (&once->io, fd, events); 1611 ev_io_set (&once->io, fd, events);
1571 ev_io_start (EV_A_ &once->io); 1612 ev_io_start (EV_A_ &once->io);
1572 } 1613 }
1573 1614
1574 ev_watcher_init (&once->to, once_cb_to); 1615 ev_init (&once->to, once_cb_to);
1575 if (timeout >= 0.) 1616 if (timeout >= 0.)
1576 { 1617 {
1577 ev_timer_set (&once->to, timeout, 0.); 1618 ev_timer_set (&once->to, timeout, 0.);
1578 ev_timer_start (EV_A_ &once->to); 1619 ev_timer_start (EV_A_ &once->to);
1579 } 1620 }
1580 } 1621 }
1581} 1622}
1582 1623
1624#ifdef __cplusplus
1625}
1626#endif
1627

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines