ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.77 by root, Thu Nov 8 00:44:17 2007 UTC vs.
Revision 1.93 by root, Sun Nov 11 01:07:35 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1 40# define EV_USE_MONOTONIC 1
46 51
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 53# define EV_USE_EPOLL 1
49# endif 54# endif
50 55
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 56# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 57# define EV_USE_KQUEUE 1
53# endif 58# endif
54 59
55#endif 60#endif
56 61
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 135
136#ifdef EV_H
137# include EV_H
138#else
131#include "ev.h" 139# include "ev.h"
140#endif
132 141
133#if __GNUC__ >= 3 142#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value)) 143# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 144# define inline inline
136#else 145#else
215 int events; 224 int events;
216} ANPENDING; 225} ANPENDING;
217 226
218#if EV_MULTIPLICITY 227#if EV_MULTIPLICITY
219 228
220struct ev_loop 229 struct ev_loop
221{ 230 {
231 ev_tstamp ev_rt_now;
222# define VAR(name,decl) decl; 232 #define VAR(name,decl) decl;
223# include "ev_vars.h" 233 #include "ev_vars.h"
224};
225# undef VAR 234 #undef VAR
235 };
226# include "ev_wrap.h" 236 #include "ev_wrap.h"
237
238 struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop;
227 240
228#else 241#else
229 242
243 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 244 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 245 #include "ev_vars.h"
232# undef VAR 246 #undef VAR
247
248 static int default_loop;
233 249
234#endif 250#endif
235 251
236/*****************************************************************************/ 252/*****************************************************************************/
237 253
238inline ev_tstamp 254ev_tstamp
239ev_time (void) 255ev_time (void)
240{ 256{
241#if EV_USE_REALTIME 257#if EV_USE_REALTIME
242 struct timespec ts; 258 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 259 clock_gettime (CLOCK_REALTIME, &ts);
262#endif 278#endif
263 279
264 return ev_time (); 280 return ev_time ();
265} 281}
266 282
283#if EV_MULTIPLICITY
267ev_tstamp 284ev_tstamp
268ev_now (EV_P) 285ev_now (EV_P)
269{ 286{
270 return rt_now; 287 return ev_rt_now;
271} 288}
289#endif
272 290
273#define array_roundsize(type,n) ((n) | 4 & ~3) 291#define array_roundsize(type,n) ((n) | 4 & ~3)
274 292
275#define array_needsize(type,base,cur,cnt,init) \ 293#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 294 if (expect_false ((cnt) > cur)) \
316 334
317 ++base; 335 ++base;
318 } 336 }
319} 337}
320 338
321static void 339void
322event (EV_P_ W w, int events) 340ev_feed_event (EV_P_ void *w, int revents)
323{ 341{
342 W w_ = (W)w;
343
324 if (w->pending) 344 if (w_->pending)
325 { 345 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events; 346 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
327 return; 347 return;
328 } 348 }
329 349
330 w->pending = ++pendingcnt [ABSPRI (w)]; 350 w_->pending = ++pendingcnt [ABSPRI (w_)];
331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 351 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
332 pendings [ABSPRI (w)][w->pending - 1].w = w; 352 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
333 pendings [ABSPRI (w)][w->pending - 1].events = events; 353 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
334} 354}
335 355
336static void 356static void
337queue_events (EV_P_ W *events, int eventcnt, int type) 357queue_events (EV_P_ W *events, int eventcnt, int type)
338{ 358{
339 int i; 359 int i;
340 360
341 for (i = 0; i < eventcnt; ++i) 361 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type); 362 ev_feed_event (EV_A_ events [i], type);
343} 363}
344 364
345static void 365inline void
346fd_event (EV_P_ int fd, int events) 366fd_event (EV_P_ int fd, int revents)
347{ 367{
348 ANFD *anfd = anfds + fd; 368 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 369 struct ev_io *w;
350 370
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
352 { 372 {
353 int ev = w->events & events; 373 int ev = w->events & revents;
354 374
355 if (ev) 375 if (ev)
356 event (EV_A_ (W)w, ev); 376 ev_feed_event (EV_A_ (W)w, ev);
357 } 377 }
378}
379
380void
381ev_feed_fd_event (EV_P_ int fd, int revents)
382{
383 fd_event (EV_A_ fd, revents);
358} 384}
359 385
360/*****************************************************************************/ 386/*****************************************************************************/
361 387
362static void 388static void
403 struct ev_io *w; 429 struct ev_io *w;
404 430
405 while ((w = (struct ev_io *)anfds [fd].head)) 431 while ((w = (struct ev_io *)anfds [fd].head))
406 { 432 {
407 ev_io_stop (EV_A_ w); 433 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 434 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 435 }
410} 436}
411 437
412static int 438static int
413fd_valid (int fd) 439fd_valid (int fd)
501 527
502 heap [k] = w; 528 heap [k] = w;
503 ((W)heap [k])->active = k + 1; 529 ((W)heap [k])->active = k + 1;
504} 530}
505 531
532inline void
533adjustheap (WT *heap, int N, int k, ev_tstamp at)
534{
535 ev_tstamp old_at = heap [k]->at;
536 heap [k]->at = at;
537
538 if (old_at < at)
539 downheap (heap, N, k);
540 else
541 upheap (heap, k);
542}
543
506/*****************************************************************************/ 544/*****************************************************************************/
507 545
508typedef struct 546typedef struct
509{ 547{
510 WL head; 548 WL head;
550#endif 588#endif
551 errno = old_errno; 589 errno = old_errno;
552 } 590 }
553} 591}
554 592
593void
594ev_feed_signal_event (EV_P_ int signum)
595{
596 WL w;
597
598#if EV_MULTIPLICITY
599 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
600#endif
601
602 --signum;
603
604 if (signum < 0 || signum >= signalmax)
605 return;
606
607 signals [signum].gotsig = 0;
608
609 for (w = signals [signum].head; w; w = w->next)
610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
611}
612
555static void 613static void
556sigcb (EV_P_ struct ev_io *iow, int revents) 614sigcb (EV_P_ struct ev_io *iow, int revents)
557{ 615{
558 WL w;
559 int signum; 616 int signum;
560 617
561#ifdef WIN32 618#ifdef WIN32
562 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
563#else 620#else
565#endif 622#endif
566 gotsig = 0; 623 gotsig = 0;
567 624
568 for (signum = signalmax; signum--; ) 625 for (signum = signalmax; signum--; )
569 if (signals [signum].gotsig) 626 if (signals [signum].gotsig)
570 { 627 ev_feed_signal_event (EV_A_ signum + 1);
571 signals [signum].gotsig = 0;
572
573 for (w = signals [signum].head; w; w = w->next)
574 event (EV_A_ (W)w, EV_SIGNAL);
575 }
576} 628}
577 629
578static void 630static void
579siginit (EV_P) 631siginit (EV_P)
580{ 632{
613 if (w->pid == pid || !w->pid) 665 if (w->pid == pid || !w->pid)
614 { 666 {
615 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 667 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
616 w->rpid = pid; 668 w->rpid = pid;
617 w->rstatus = status; 669 w->rstatus = status;
618 event (EV_A_ (W)w, EV_CHILD); 670 ev_feed_event (EV_A_ (W)w, EV_CHILD);
619 } 671 }
620} 672}
621 673
622static void 674static void
623childcb (EV_P_ struct ev_signal *sw, int revents) 675childcb (EV_P_ struct ev_signal *sw, int revents)
625 int pid, status; 677 int pid, status;
626 678
627 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 679 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
628 { 680 {
629 /* make sure we are called again until all childs have been reaped */ 681 /* make sure we are called again until all childs have been reaped */
630 event (EV_A_ (W)sw, EV_SIGNAL); 682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
631 683
632 child_reap (EV_A_ sw, pid, pid, status); 684 child_reap (EV_A_ sw, pid, pid, status);
633 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 685 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
634 } 686 }
635} 687}
692 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 744 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
693 have_monotonic = 1; 745 have_monotonic = 1;
694 } 746 }
695#endif 747#endif
696 748
697 rt_now = ev_time (); 749 ev_rt_now = ev_time ();
698 mn_now = get_clock (); 750 mn_now = get_clock ();
699 now_floor = mn_now; 751 now_floor = mn_now;
700 rtmn_diff = rt_now - mn_now; 752 rtmn_diff = ev_rt_now - mn_now;
701 753
702 if (methods == EVMETHOD_AUTO) 754 if (methods == EVMETHOD_AUTO)
703 if (!enable_secure () && getenv ("LIBEV_METHODS")) 755 if (!enable_secure () && getenv ("LIBEV_METHODS"))
704 methods = atoi (getenv ("LIBEV_METHODS")); 756 methods = atoi (getenv ("LIBEV_METHODS"));
705 else 757 else
720#endif 772#endif
721#if EV_USE_SELECT 773#if EV_USE_SELECT
722 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
723#endif 775#endif
724 776
725 ev_watcher_init (&sigev, sigcb); 777 ev_init (&sigev, sigcb);
726 ev_set_priority (&sigev, EV_MAXPRI); 778 ev_set_priority (&sigev, EV_MAXPRI);
727 } 779 }
728} 780}
729 781
730void 782void
752 array_free (pending, [i]); 804 array_free (pending, [i]);
753 805
754 /* have to use the microsoft-never-gets-it-right macro */ 806 /* have to use the microsoft-never-gets-it-right macro */
755 array_free_microshit (fdchange); 807 array_free_microshit (fdchange);
756 array_free_microshit (timer); 808 array_free_microshit (timer);
809#if EV_PERIODICS
757 array_free_microshit (periodic); 810 array_free_microshit (periodic);
811#endif
758 array_free_microshit (idle); 812 array_free_microshit (idle);
759 array_free_microshit (prepare); 813 array_free_microshit (prepare);
760 array_free_microshit (check); 814 array_free_microshit (check);
761 815
762 method = 0; 816 method = 0;
820} 874}
821 875
822#endif 876#endif
823 877
824#if EV_MULTIPLICITY 878#if EV_MULTIPLICITY
825struct ev_loop default_loop_struct;
826static struct ev_loop *default_loop;
827
828struct ev_loop * 879struct ev_loop *
829#else 880#else
830static int default_loop;
831
832int 881int
833#endif 882#endif
834ev_default_loop (int methods) 883ev_default_loop (int methods)
835{ 884{
836 if (sigpipe [0] == sigpipe [1]) 885 if (sigpipe [0] == sigpipe [1])
922 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 971 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
923 972
924 if (p->w) 973 if (p->w)
925 { 974 {
926 p->w->pending = 0; 975 p->w->pending = 0;
927 p->w->cb (EV_A_ p->w, p->events); 976 EV_CB_INVOKE (p->w, p->events);
928 } 977 }
929 } 978 }
930} 979}
931 980
932static void 981static void
940 989
941 /* first reschedule or stop timer */ 990 /* first reschedule or stop timer */
942 if (w->repeat) 991 if (w->repeat)
943 { 992 {
944 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 993 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
994
945 ((WT)w)->at = mn_now + w->repeat; 995 ((WT)w)->at += w->repeat;
996 if (((WT)w)->at < mn_now)
997 ((WT)w)->at = mn_now;
998
946 downheap ((WT *)timers, timercnt, 0); 999 downheap ((WT *)timers, timercnt, 0);
947 } 1000 }
948 else 1001 else
949 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1002 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
950 1003
951 event (EV_A_ (W)w, EV_TIMEOUT); 1004 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
952 } 1005 }
953} 1006}
954 1007
1008#if EV_PERIODICS
955static void 1009static void
956periodics_reify (EV_P) 1010periodics_reify (EV_P)
957{ 1011{
958 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1012 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
959 { 1013 {
960 struct ev_periodic *w = periodics [0]; 1014 struct ev_periodic *w = periodics [0];
961 1015
962 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1016 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
963 1017
964 /* first reschedule or stop timer */ 1018 /* first reschedule or stop timer */
965 if (w->reschedule_cb) 1019 if (w->reschedule_cb)
966 { 1020 {
967 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001); 1021 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
968 1022
969 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now)); 1023 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
970 downheap ((WT *)periodics, periodiccnt, 0); 1024 downheap ((WT *)periodics, periodiccnt, 0);
971 } 1025 }
972 else if (w->interval) 1026 else if (w->interval)
973 { 1027 {
974 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1028 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
975 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1029 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
976 downheap ((WT *)periodics, periodiccnt, 0); 1030 downheap ((WT *)periodics, periodiccnt, 0);
977 } 1031 }
978 else 1032 else
979 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1033 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
980 1034
981 event (EV_A_ (W)w, EV_PERIODIC); 1035 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
982 } 1036 }
983} 1037}
984 1038
985static void 1039static void
986periodics_reschedule (EV_P) 1040periodics_reschedule (EV_P)
991 for (i = 0; i < periodiccnt; ++i) 1045 for (i = 0; i < periodiccnt; ++i)
992 { 1046 {
993 struct ev_periodic *w = periodics [i]; 1047 struct ev_periodic *w = periodics [i];
994 1048
995 if (w->reschedule_cb) 1049 if (w->reschedule_cb)
996 ((WT)w)->at = w->reschedule_cb (w, rt_now); 1050 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
997 else if (w->interval) 1051 else if (w->interval)
998 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1052 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
999 } 1053 }
1000 1054
1001 /* now rebuild the heap */ 1055 /* now rebuild the heap */
1002 for (i = periodiccnt >> 1; i--; ) 1056 for (i = periodiccnt >> 1; i--; )
1003 downheap ((WT *)periodics, periodiccnt, i); 1057 downheap ((WT *)periodics, periodiccnt, i);
1004} 1058}
1059#endif
1005 1060
1006inline int 1061inline int
1007time_update_monotonic (EV_P) 1062time_update_monotonic (EV_P)
1008{ 1063{
1009 mn_now = get_clock (); 1064 mn_now = get_clock ();
1010 1065
1011 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1066 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1012 { 1067 {
1013 rt_now = rtmn_diff + mn_now; 1068 ev_rt_now = rtmn_diff + mn_now;
1014 return 0; 1069 return 0;
1015 } 1070 }
1016 else 1071 else
1017 { 1072 {
1018 now_floor = mn_now; 1073 now_floor = mn_now;
1019 rt_now = ev_time (); 1074 ev_rt_now = ev_time ();
1020 return 1; 1075 return 1;
1021 } 1076 }
1022} 1077}
1023 1078
1024static void 1079static void
1033 { 1088 {
1034 ev_tstamp odiff = rtmn_diff; 1089 ev_tstamp odiff = rtmn_diff;
1035 1090
1036 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1091 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1037 { 1092 {
1038 rtmn_diff = rt_now - mn_now; 1093 rtmn_diff = ev_rt_now - mn_now;
1039 1094
1040 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1095 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1041 return; /* all is well */ 1096 return; /* all is well */
1042 1097
1043 rt_now = ev_time (); 1098 ev_rt_now = ev_time ();
1044 mn_now = get_clock (); 1099 mn_now = get_clock ();
1045 now_floor = mn_now; 1100 now_floor = mn_now;
1046 } 1101 }
1047 1102
1103# if EV_PERIODICS
1048 periodics_reschedule (EV_A); 1104 periodics_reschedule (EV_A);
1105# endif
1049 /* no timer adjustment, as the monotonic clock doesn't jump */ 1106 /* no timer adjustment, as the monotonic clock doesn't jump */
1050 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1107 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1051 } 1108 }
1052 } 1109 }
1053 else 1110 else
1054#endif 1111#endif
1055 { 1112 {
1056 rt_now = ev_time (); 1113 ev_rt_now = ev_time ();
1057 1114
1058 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1115 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1059 { 1116 {
1117#if EV_PERIODICS
1060 periodics_reschedule (EV_A); 1118 periodics_reschedule (EV_A);
1119#endif
1061 1120
1062 /* adjust timers. this is easy, as the offset is the same for all */ 1121 /* adjust timers. this is easy, as the offset is the same for all */
1063 for (i = 0; i < timercnt; ++i) 1122 for (i = 0; i < timercnt; ++i)
1064 ((WT)timers [i])->at += rt_now - mn_now; 1123 ((WT)timers [i])->at += ev_rt_now - mn_now;
1065 } 1124 }
1066 1125
1067 mn_now = rt_now; 1126 mn_now = ev_rt_now;
1068 } 1127 }
1069} 1128}
1070 1129
1071void 1130void
1072ev_ref (EV_P) 1131ev_ref (EV_P)
1112 if (expect_true (have_monotonic)) 1171 if (expect_true (have_monotonic))
1113 time_update_monotonic (EV_A); 1172 time_update_monotonic (EV_A);
1114 else 1173 else
1115#endif 1174#endif
1116 { 1175 {
1117 rt_now = ev_time (); 1176 ev_rt_now = ev_time ();
1118 mn_now = rt_now; 1177 mn_now = ev_rt_now;
1119 } 1178 }
1120 1179
1121 if (flags & EVLOOP_NONBLOCK || idlecnt) 1180 if (flags & EVLOOP_NONBLOCK || idlecnt)
1122 block = 0.; 1181 block = 0.;
1123 else 1182 else
1128 { 1187 {
1129 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1188 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1130 if (block > to) block = to; 1189 if (block > to) block = to;
1131 } 1190 }
1132 1191
1192#if EV_PERIODICS
1133 if (periodiccnt) 1193 if (periodiccnt)
1134 { 1194 {
1135 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1195 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1136 if (block > to) block = to; 1196 if (block > to) block = to;
1137 } 1197 }
1198#endif
1138 1199
1139 if (block < 0.) block = 0.; 1200 if (block < 0.) block = 0.;
1140 } 1201 }
1141 1202
1142 method_poll (EV_A_ block); 1203 method_poll (EV_A_ block);
1143 1204
1144 /* update rt_now, do magic */ 1205 /* update ev_rt_now, do magic */
1145 time_update (EV_A); 1206 time_update (EV_A);
1146 1207
1147 /* queue pending timers and reschedule them */ 1208 /* queue pending timers and reschedule them */
1148 timers_reify (EV_A); /* relative timers called last */ 1209 timers_reify (EV_A); /* relative timers called last */
1210#if EV_PERIODICS
1149 periodics_reify (EV_A); /* absolute timers called first */ 1211 periodics_reify (EV_A); /* absolute timers called first */
1212#endif
1150 1213
1151 /* queue idle watchers unless io or timers are pending */ 1214 /* queue idle watchers unless io or timers are pending */
1152 if (idlecnt && !any_pending (EV_A)) 1215 if (idlecnt && !any_pending (EV_A))
1153 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1216 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1154 1217
1245{ 1308{
1246 ev_clear_pending (EV_A_ (W)w); 1309 ev_clear_pending (EV_A_ (W)w);
1247 if (!ev_is_active (w)) 1310 if (!ev_is_active (w))
1248 return; 1311 return;
1249 1312
1313 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1314
1250 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1315 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1251 ev_stop (EV_A_ (W)w); 1316 ev_stop (EV_A_ (W)w);
1252 1317
1253 fd_change (EV_A_ w->fd); 1318 fd_change (EV_A_ w->fd);
1254} 1319}
1284 { 1349 {
1285 timers [((W)w)->active - 1] = timers [timercnt]; 1350 timers [((W)w)->active - 1] = timers [timercnt];
1286 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1351 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1287 } 1352 }
1288 1353
1289 ((WT)w)->at = w->repeat; 1354 ((WT)w)->at -= mn_now;
1290 1355
1291 ev_stop (EV_A_ (W)w); 1356 ev_stop (EV_A_ (W)w);
1292} 1357}
1293 1358
1294void 1359void
1295ev_timer_again (EV_P_ struct ev_timer *w) 1360ev_timer_again (EV_P_ struct ev_timer *w)
1296{ 1361{
1297 if (ev_is_active (w)) 1362 if (ev_is_active (w))
1298 { 1363 {
1299 if (w->repeat) 1364 if (w->repeat)
1300 {
1301 ((WT)w)->at = mn_now + w->repeat;
1302 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1365 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1303 }
1304 else 1366 else
1305 ev_timer_stop (EV_A_ w); 1367 ev_timer_stop (EV_A_ w);
1306 } 1368 }
1307 else if (w->repeat) 1369 else if (w->repeat)
1308 ev_timer_start (EV_A_ w); 1370 ev_timer_start (EV_A_ w);
1309} 1371}
1310 1372
1373#if EV_PERIODICS
1311void 1374void
1312ev_periodic_start (EV_P_ struct ev_periodic *w) 1375ev_periodic_start (EV_P_ struct ev_periodic *w)
1313{ 1376{
1314 if (ev_is_active (w)) 1377 if (ev_is_active (w))
1315 return; 1378 return;
1316 1379
1317 if (w->reschedule_cb) 1380 if (w->reschedule_cb)
1318 ((WT)w)->at = w->reschedule_cb (w, rt_now); 1381 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1319 else if (w->interval) 1382 else if (w->interval)
1320 { 1383 {
1321 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1384 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1322 /* this formula differs from the one in periodic_reify because we do not always round up */ 1385 /* this formula differs from the one in periodic_reify because we do not always round up */
1323 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1386 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1324 } 1387 }
1325 1388
1326 ev_start (EV_A_ (W)w, ++periodiccnt); 1389 ev_start (EV_A_ (W)w, ++periodiccnt);
1327 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1390 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1328 periodics [periodiccnt - 1] = w; 1391 periodics [periodiccnt - 1] = w;
1350} 1413}
1351 1414
1352void 1415void
1353ev_periodic_again (EV_P_ struct ev_periodic *w) 1416ev_periodic_again (EV_P_ struct ev_periodic *w)
1354{ 1417{
1418 /* TODO: use adjustheap and recalculation */
1355 ev_periodic_stop (EV_A_ w); 1419 ev_periodic_stop (EV_A_ w);
1356 ev_periodic_start (EV_A_ w); 1420 ev_periodic_start (EV_A_ w);
1357} 1421}
1422#endif
1358 1423
1359void 1424void
1360ev_idle_start (EV_P_ struct ev_idle *w) 1425ev_idle_start (EV_P_ struct ev_idle *w)
1361{ 1426{
1362 if (ev_is_active (w)) 1427 if (ev_is_active (w))
1538 else 1603 else
1539 { 1604 {
1540 once->cb = cb; 1605 once->cb = cb;
1541 once->arg = arg; 1606 once->arg = arg;
1542 1607
1543 ev_watcher_init (&once->io, once_cb_io); 1608 ev_init (&once->io, once_cb_io);
1544 if (fd >= 0) 1609 if (fd >= 0)
1545 { 1610 {
1546 ev_io_set (&once->io, fd, events); 1611 ev_io_set (&once->io, fd, events);
1547 ev_io_start (EV_A_ &once->io); 1612 ev_io_start (EV_A_ &once->io);
1548 } 1613 }
1549 1614
1550 ev_watcher_init (&once->to, once_cb_to); 1615 ev_init (&once->to, once_cb_to);
1551 if (timeout >= 0.) 1616 if (timeout >= 0.)
1552 { 1617 {
1553 ev_timer_set (&once->to, timeout, 0.); 1618 ev_timer_set (&once->to, timeout, 0.);
1554 ev_timer_start (EV_A_ &once->to); 1619 ev_timer_start (EV_A_ &once->to);
1555 } 1620 }
1556 } 1621 }
1557} 1622}
1558 1623
1624#ifdef __cplusplus
1625}
1626#endif
1627

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines