ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.58 by root, Sun Nov 4 16:52:52 2007 UTC vs.
Revision 1.94 by root, Sun Nov 11 01:29:49 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#ifndef EV_EMBED 31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
38
39# if HAVE_CLOCK_GETTIME
40# define EV_USE_MONOTONIC 1
41# define EV_USE_REALTIME 1
42# endif
43
44# if HAVE_SELECT && HAVE_SYS_SELECT_H
45# define EV_USE_SELECT 1
46# endif
47
48# if HAVE_POLL && HAVE_POLL_H
49# define EV_USE_POLL 1
50# endif
51
52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
53# define EV_USE_EPOLL 1
54# endif
55
56# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
57# define EV_USE_KQUEUE 1
58# endif
59
33#endif 60#endif
34 61
35#include <math.h> 62#include <math.h>
36#include <stdlib.h> 63#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 64#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 65#include <stddef.h>
41 66
42#include <stdio.h> 67#include <stdio.h>
43 68
44#include <assert.h> 69#include <assert.h>
45#include <errno.h> 70#include <errno.h>
46#include <sys/types.h> 71#include <sys/types.h>
72#include <time.h>
73
74#include <signal.h>
75
47#ifndef WIN32 76#ifndef WIN32
77# include <unistd.h>
78# include <sys/time.h>
48# include <sys/wait.h> 79# include <sys/wait.h>
49#endif 80#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 81/**/
54 82
55#ifndef EV_USE_MONOTONIC 83#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 84# define EV_USE_MONOTONIC 1
57#endif 85#endif
58 86
59#ifndef EV_USE_SELECT 87#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 88# define EV_USE_SELECT 1
61#endif 89#endif
62 90
63#ifndef EV_USEV_POLL 91#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 92# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif 93#endif
66 94
67#ifndef EV_USE_EPOLL 95#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 96# define EV_USE_EPOLL 0
69#endif 97#endif
70 98
71#ifndef EV_USE_KQUEUE 99#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 100# define EV_USE_KQUEUE 0
101#endif
102
103#ifndef EV_USE_WIN32
104# ifdef WIN32
105# define EV_USE_WIN32 0 /* it does not exist, use select */
106# undef EV_USE_SELECT
107# define EV_USE_SELECT 1
108# else
109# define EV_USE_WIN32 0
110# endif
73#endif 111#endif
74 112
75#ifndef EV_USE_REALTIME 113#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 114# define EV_USE_REALTIME 1
77#endif 115#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 135
98#ifndef EV_EMBED 136#ifdef EV_H
137# include EV_H
138#else
99# include "ev.h" 139# include "ev.h"
100#endif 140#endif
101 141
102#if __GNUC__ >= 3 142#if __GNUC__ >= 3
103# define expect(expr,value) __builtin_expect ((expr),(value)) 143# define expect(expr,value) __builtin_expect ((expr),(value))
117typedef struct ev_watcher_list *WL; 157typedef struct ev_watcher_list *WL;
118typedef struct ev_watcher_time *WT; 158typedef struct ev_watcher_time *WT;
119 159
120static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 160static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
121 161
162#include "ev_win32.c"
163
122/*****************************************************************************/ 164/*****************************************************************************/
123 165
166static void (*syserr_cb)(const char *msg);
167
168void ev_set_syserr_cb (void (*cb)(const char *msg))
169{
170 syserr_cb = cb;
171}
172
173static void
174syserr (const char *msg)
175{
176 if (!msg)
177 msg = "(libev) system error";
178
179 if (syserr_cb)
180 syserr_cb (msg);
181 else
182 {
183 perror (msg);
184 abort ();
185 }
186}
187
188static void *(*alloc)(void *ptr, long size);
189
190void ev_set_allocator (void *(*cb)(void *ptr, long size))
191{
192 alloc = cb;
193}
194
195static void *
196ev_realloc (void *ptr, long size)
197{
198 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
199
200 if (!ptr && size)
201 {
202 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
203 abort ();
204 }
205
206 return ptr;
207}
208
209#define ev_malloc(size) ev_realloc (0, (size))
210#define ev_free(ptr) ev_realloc ((ptr), 0)
211
212/*****************************************************************************/
213
124typedef struct 214typedef struct
125{ 215{
126 struct ev_watcher_list *head; 216 WL head;
127 unsigned char events; 217 unsigned char events;
128 unsigned char reify; 218 unsigned char reify;
129} ANFD; 219} ANFD;
130 220
131typedef struct 221typedef struct
134 int events; 224 int events;
135} ANPENDING; 225} ANPENDING;
136 226
137#if EV_MULTIPLICITY 227#if EV_MULTIPLICITY
138 228
139struct ev_loop 229 struct ev_loop
140{ 230 {
231 ev_tstamp ev_rt_now;
141# define VAR(name,decl) decl; 232 #define VAR(name,decl) decl;
142# include "ev_vars.h" 233 #include "ev_vars.h"
143};
144# undef VAR 234 #undef VAR
235 };
145# include "ev_wrap.h" 236 #include "ev_wrap.h"
237
238 struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop;
146 240
147#else 241#else
148 242
243 ev_tstamp ev_rt_now;
149# define VAR(name,decl) static decl; 244 #define VAR(name,decl) static decl;
150# include "ev_vars.h" 245 #include "ev_vars.h"
151# undef VAR 246 #undef VAR
247
248 static int default_loop;
152 249
153#endif 250#endif
154 251
155/*****************************************************************************/ 252/*****************************************************************************/
156 253
157inline ev_tstamp 254ev_tstamp
158ev_time (void) 255ev_time (void)
159{ 256{
160#if EV_USE_REALTIME 257#if EV_USE_REALTIME
161 struct timespec ts; 258 struct timespec ts;
162 clock_gettime (CLOCK_REALTIME, &ts); 259 clock_gettime (CLOCK_REALTIME, &ts);
181#endif 278#endif
182 279
183 return ev_time (); 280 return ev_time ();
184} 281}
185 282
283#if EV_MULTIPLICITY
186ev_tstamp 284ev_tstamp
187ev_now (EV_P) 285ev_now (EV_P)
188{ 286{
189 return rt_now; 287 return ev_rt_now;
190} 288}
289#endif
191 290
192#define array_roundsize(base,n) ((n) | 4 & ~3) 291#define array_roundsize(type,n) ((n) | 4 & ~3)
193 292
194#define array_needsize(base,cur,cnt,init) \ 293#define array_needsize(type,base,cur,cnt,init) \
195 if (expect_false ((cnt) > cur)) \ 294 if (expect_false ((cnt) > cur)) \
196 { \ 295 { \
197 int newcnt = cur; \ 296 int newcnt = cur; \
198 do \ 297 do \
199 { \ 298 { \
200 newcnt = array_roundsize (base, newcnt << 1); \ 299 newcnt = array_roundsize (type, newcnt << 1); \
201 } \ 300 } \
202 while ((cnt) > newcnt); \ 301 while ((cnt) > newcnt); \
203 \ 302 \
204 base = realloc (base, sizeof (*base) * (newcnt)); \ 303 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
205 init (base + cur, newcnt - cur); \ 304 init (base + cur, newcnt - cur); \
206 cur = newcnt; \ 305 cur = newcnt; \
207 } 306 }
307
308#define array_slim(type,stem) \
309 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
310 { \
311 stem ## max = array_roundsize (stem ## cnt >> 1); \
312 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
313 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
314 }
315
316/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
317/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
318#define array_free_microshit(stem) \
319 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
320
321#define array_free(stem, idx) \
322 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
208 323
209/*****************************************************************************/ 324/*****************************************************************************/
210 325
211static void 326static void
212anfds_init (ANFD *base, int count) 327anfds_init (ANFD *base, int count)
219 334
220 ++base; 335 ++base;
221 } 336 }
222} 337}
223 338
224static void 339void
225event (EV_P_ W w, int events) 340ev_feed_event (EV_P_ void *w, int revents)
226{ 341{
342 W w_ = (W)w;
343
227 if (w->pending) 344 if (w_->pending)
228 { 345 {
229 pendings [ABSPRI (w)][w->pending - 1].events |= events; 346 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
230 return; 347 return;
231 } 348 }
232 349
233 w->pending = ++pendingcnt [ABSPRI (w)]; 350 w_->pending = ++pendingcnt [ABSPRI (w_)];
234 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 351 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
235 pendings [ABSPRI (w)][w->pending - 1].w = w; 352 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
236 pendings [ABSPRI (w)][w->pending - 1].events = events; 353 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
237} 354}
238 355
239static void 356static void
240queue_events (EV_P_ W *events, int eventcnt, int type) 357queue_events (EV_P_ W *events, int eventcnt, int type)
241{ 358{
242 int i; 359 int i;
243 360
244 for (i = 0; i < eventcnt; ++i) 361 for (i = 0; i < eventcnt; ++i)
245 event (EV_A_ events [i], type); 362 ev_feed_event (EV_A_ events [i], type);
246} 363}
247 364
248static void 365inline void
249fd_event (EV_P_ int fd, int events) 366fd_event (EV_P_ int fd, int revents)
250{ 367{
251 ANFD *anfd = anfds + fd; 368 ANFD *anfd = anfds + fd;
252 struct ev_io *w; 369 struct ev_io *w;
253 370
254 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
255 { 372 {
256 int ev = w->events & events; 373 int ev = w->events & revents;
257 374
258 if (ev) 375 if (ev)
259 event (EV_A_ (W)w, ev); 376 ev_feed_event (EV_A_ (W)w, ev);
260 } 377 }
378}
379
380void
381ev_feed_fd_event (EV_P_ int fd, int revents)
382{
383 fd_event (EV_A_ fd, revents);
261} 384}
262 385
263/*****************************************************************************/ 386/*****************************************************************************/
264 387
265static void 388static void
278 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 401 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
279 events |= w->events; 402 events |= w->events;
280 403
281 anfd->reify = 0; 404 anfd->reify = 0;
282 405
283 if (anfd->events != events)
284 {
285 method_modify (EV_A_ fd, anfd->events, events); 406 method_modify (EV_A_ fd, anfd->events, events);
286 anfd->events = events; 407 anfd->events = events;
287 }
288 } 408 }
289 409
290 fdchangecnt = 0; 410 fdchangecnt = 0;
291} 411}
292 412
293static void 413static void
294fd_change (EV_P_ int fd) 414fd_change (EV_P_ int fd)
295{ 415{
296 if (anfds [fd].reify || fdchangecnt < 0) 416 if (anfds [fd].reify)
297 return; 417 return;
298 418
299 anfds [fd].reify = 1; 419 anfds [fd].reify = 1;
300 420
301 ++fdchangecnt; 421 ++fdchangecnt;
302 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 422 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
303 fdchanges [fdchangecnt - 1] = fd; 423 fdchanges [fdchangecnt - 1] = fd;
304} 424}
305 425
306static void 426static void
307fd_kill (EV_P_ int fd) 427fd_kill (EV_P_ int fd)
309 struct ev_io *w; 429 struct ev_io *w;
310 430
311 while ((w = (struct ev_io *)anfds [fd].head)) 431 while ((w = (struct ev_io *)anfds [fd].head))
312 { 432 {
313 ev_io_stop (EV_A_ w); 433 ev_io_stop (EV_A_ w);
314 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 434 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
315 } 435 }
436}
437
438static int
439fd_valid (int fd)
440{
441#ifdef WIN32
442 return !!win32_get_osfhandle (fd);
443#else
444 return fcntl (fd, F_GETFD) != -1;
445#endif
316} 446}
317 447
318/* called on EBADF to verify fds */ 448/* called on EBADF to verify fds */
319static void 449static void
320fd_ebadf (EV_P) 450fd_ebadf (EV_P)
321{ 451{
322 int fd; 452 int fd;
323 453
324 for (fd = 0; fd < anfdmax; ++fd) 454 for (fd = 0; fd < anfdmax; ++fd)
325 if (anfds [fd].events) 455 if (anfds [fd].events)
326 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 456 if (!fd_valid (fd) == -1 && errno == EBADF)
327 fd_kill (EV_A_ fd); 457 fd_kill (EV_A_ fd);
328} 458}
329 459
330/* called on ENOMEM in select/poll to kill some fds and retry */ 460/* called on ENOMEM in select/poll to kill some fds and retry */
331static void 461static void
332fd_enomem (EV_P) 462fd_enomem (EV_P)
333{ 463{
334 int fd = anfdmax; 464 int fd;
335 465
336 while (fd--) 466 for (fd = anfdmax; fd--; )
337 if (anfds [fd].events) 467 if (anfds [fd].events)
338 { 468 {
339 close (fd);
340 fd_kill (EV_A_ fd); 469 fd_kill (EV_A_ fd);
341 return; 470 return;
342 } 471 }
343} 472}
344 473
345/* susually called after fork if method needs to re-arm all fds from scratch */ 474/* usually called after fork if method needs to re-arm all fds from scratch */
346static void 475static void
347fd_rearm_all (EV_P) 476fd_rearm_all (EV_P)
348{ 477{
349 int fd; 478 int fd;
350 479
351 /* this should be highly optimised to not do anything but set a flag */ 480 /* this should be highly optimised to not do anything but set a flag */
352 for (fd = 0; fd < anfdmax; ++fd) 481 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 482 if (anfds [fd].events)
354 { 483 {
355 anfds [fd].events = 0; 484 anfds [fd].events = 0;
356 fd_change (fd); 485 fd_change (EV_A_ fd);
357 } 486 }
358} 487}
359 488
360/*****************************************************************************/ 489/*****************************************************************************/
361 490
365 WT w = heap [k]; 494 WT w = heap [k];
366 495
367 while (k && heap [k >> 1]->at > w->at) 496 while (k && heap [k >> 1]->at > w->at)
368 { 497 {
369 heap [k] = heap [k >> 1]; 498 heap [k] = heap [k >> 1];
370 heap [k]->active = k + 1; 499 ((W)heap [k])->active = k + 1;
371 k >>= 1; 500 k >>= 1;
372 } 501 }
373 502
374 heap [k] = w; 503 heap [k] = w;
375 heap [k]->active = k + 1; 504 ((W)heap [k])->active = k + 1;
376 505
377} 506}
378 507
379static void 508static void
380downheap (WT *heap, int N, int k) 509downheap (WT *heap, int N, int k)
390 519
391 if (w->at <= heap [j]->at) 520 if (w->at <= heap [j]->at)
392 break; 521 break;
393 522
394 heap [k] = heap [j]; 523 heap [k] = heap [j];
395 heap [k]->active = k + 1; 524 ((W)heap [k])->active = k + 1;
396 k = j; 525 k = j;
397 } 526 }
398 527
399 heap [k] = w; 528 heap [k] = w;
400 heap [k]->active = k + 1; 529 ((W)heap [k])->active = k + 1;
530}
531
532inline void
533adjustheap (WT *heap, int N, int k, ev_tstamp at)
534{
535 ev_tstamp old_at = heap [k]->at;
536 heap [k]->at = at;
537
538 if (old_at < at)
539 downheap (heap, N, k);
540 else
541 upheap (heap, k);
401} 542}
402 543
403/*****************************************************************************/ 544/*****************************************************************************/
404 545
405typedef struct 546typedef struct
406{ 547{
407 struct ev_watcher_list *head; 548 WL head;
408 sig_atomic_t volatile gotsig; 549 sig_atomic_t volatile gotsig;
409} ANSIG; 550} ANSIG;
410 551
411static ANSIG *signals; 552static ANSIG *signals;
412static int signalmax; 553static int signalmax;
413 554
414static int sigpipe [2]; 555static int sigpipe [2];
415static sig_atomic_t volatile gotsig; 556static sig_atomic_t volatile gotsig;
557static struct ev_io sigev;
416 558
417static void 559static void
418signals_init (ANSIG *base, int count) 560signals_init (ANSIG *base, int count)
419{ 561{
420 while (count--) 562 while (count--)
427} 569}
428 570
429static void 571static void
430sighandler (int signum) 572sighandler (int signum)
431{ 573{
574#if WIN32
575 signal (signum, sighandler);
576#endif
577
432 signals [signum - 1].gotsig = 1; 578 signals [signum - 1].gotsig = 1;
433 579
434 if (!gotsig) 580 if (!gotsig)
435 { 581 {
436 int old_errno = errno; 582 int old_errno = errno;
437 gotsig = 1; 583 gotsig = 1;
584#ifdef WIN32
585 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
586#else
438 write (sigpipe [1], &signum, 1); 587 write (sigpipe [1], &signum, 1);
588#endif
439 errno = old_errno; 589 errno = old_errno;
440 } 590 }
441} 591}
442 592
593void
594ev_feed_signal_event (EV_P_ int signum)
595{
596 WL w;
597
598#if EV_MULTIPLICITY
599 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
600#endif
601
602 --signum;
603
604 if (signum < 0 || signum >= signalmax)
605 return;
606
607 signals [signum].gotsig = 0;
608
609 for (w = signals [signum].head; w; w = w->next)
610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
611}
612
443static void 613static void
444sigcb (EV_P_ struct ev_io *iow, int revents) 614sigcb (EV_P_ struct ev_io *iow, int revents)
445{ 615{
446 struct ev_watcher_list *w;
447 int signum; 616 int signum;
448 617
618#ifdef WIN32
619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
620#else
449 read (sigpipe [0], &revents, 1); 621 read (sigpipe [0], &revents, 1);
622#endif
450 gotsig = 0; 623 gotsig = 0;
451 624
452 for (signum = signalmax; signum--; ) 625 for (signum = signalmax; signum--; )
453 if (signals [signum].gotsig) 626 if (signals [signum].gotsig)
454 { 627 ev_feed_signal_event (EV_A_ signum + 1);
455 signals [signum].gotsig = 0;
456
457 for (w = signals [signum].head; w; w = w->next)
458 event (EV_A_ (W)w, EV_SIGNAL);
459 }
460} 628}
461 629
462static void 630static void
463siginit (EV_P) 631siginit (EV_P)
464{ 632{
476 ev_unref (EV_A); /* child watcher should not keep loop alive */ 644 ev_unref (EV_A); /* child watcher should not keep loop alive */
477} 645}
478 646
479/*****************************************************************************/ 647/*****************************************************************************/
480 648
649static struct ev_child *childs [PID_HASHSIZE];
650
481#ifndef WIN32 651#ifndef WIN32
652
653static struct ev_signal childev;
482 654
483#ifndef WCONTINUED 655#ifndef WCONTINUED
484# define WCONTINUED 0 656# define WCONTINUED 0
485#endif 657#endif
486 658
490 struct ev_child *w; 662 struct ev_child *w;
491 663
492 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 664 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
493 if (w->pid == pid || !w->pid) 665 if (w->pid == pid || !w->pid)
494 { 666 {
495 w->priority = sw->priority; /* need to do it *now* */ 667 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
496 w->rpid = pid; 668 w->rpid = pid;
497 w->rstatus = status; 669 w->rstatus = status;
498 event (EV_A_ (W)w, EV_CHILD); 670 ev_feed_event (EV_A_ (W)w, EV_CHILD);
499 } 671 }
500} 672}
501 673
502static void 674static void
503childcb (EV_P_ struct ev_signal *sw, int revents) 675childcb (EV_P_ struct ev_signal *sw, int revents)
505 int pid, status; 677 int pid, status;
506 678
507 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 679 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
508 { 680 {
509 /* make sure we are called again until all childs have been reaped */ 681 /* make sure we are called again until all childs have been reaped */
510 event (EV_A_ (W)sw, EV_SIGNAL); 682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
511 683
512 child_reap (EV_A_ sw, pid, pid, status); 684 child_reap (EV_A_ sw, pid, pid, status);
513 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 685 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
514 } 686 }
515} 687}
522# include "ev_kqueue.c" 694# include "ev_kqueue.c"
523#endif 695#endif
524#if EV_USE_EPOLL 696#if EV_USE_EPOLL
525# include "ev_epoll.c" 697# include "ev_epoll.c"
526#endif 698#endif
527#if EV_USEV_POLL 699#if EV_USE_POLL
528# include "ev_poll.c" 700# include "ev_poll.c"
529#endif 701#endif
530#if EV_USE_SELECT 702#if EV_USE_SELECT
531# include "ev_select.c" 703# include "ev_select.c"
532#endif 704#endif
572 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 744 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
573 have_monotonic = 1; 745 have_monotonic = 1;
574 } 746 }
575#endif 747#endif
576 748
577 rt_now = ev_time (); 749 ev_rt_now = ev_time ();
578 mn_now = get_clock (); 750 mn_now = get_clock ();
579 now_floor = mn_now; 751 now_floor = mn_now;
580 rtmn_diff = rt_now - mn_now; 752 rtmn_diff = ev_rt_now - mn_now;
581 753
582 if (methods == EVMETHOD_AUTO) 754 if (methods == EVMETHOD_AUTO)
583 if (!enable_secure () && getenv ("LIBEV_METHODS")) 755 if (!enable_secure () && getenv ("LIBEV_METHODS"))
584 methods = atoi (getenv ("LIBEV_METHODS")); 756 methods = atoi (getenv ("LIBEV_METHODS"));
585 else 757 else
586 methods = EVMETHOD_ANY; 758 methods = EVMETHOD_ANY;
587 759
588 method = 0; 760 method = 0;
761#if EV_USE_WIN32
762 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
763#endif
589#if EV_USE_KQUEUE 764#if EV_USE_KQUEUE
590 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 765 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
591#endif 766#endif
592#if EV_USE_EPOLL 767#if EV_USE_EPOLL
593 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 768 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
594#endif 769#endif
595#if EV_USEV_POLL 770#if EV_USE_POLL
596 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 771 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
597#endif 772#endif
598#if EV_USE_SELECT 773#if EV_USE_SELECT
599 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
600#endif 775#endif
776
777 ev_init (&sigev, sigcb);
778 ev_set_priority (&sigev, EV_MAXPRI);
601 } 779 }
602} 780}
603 781
604void 782void
605loop_destroy (EV_P) 783loop_destroy (EV_P)
606{ 784{
785 int i;
786
787#if EV_USE_WIN32
788 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
789#endif
607#if EV_USE_KQUEUE 790#if EV_USE_KQUEUE
608 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 791 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
609#endif 792#endif
610#if EV_USE_EPOLL 793#if EV_USE_EPOLL
611 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 794 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
612#endif 795#endif
613#if EV_USEV_POLL 796#if EV_USE_POLL
614 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 797 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
615#endif 798#endif
616#if EV_USE_SELECT 799#if EV_USE_SELECT
617 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 800 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
618#endif 801#endif
619 802
803 for (i = NUMPRI; i--; )
804 array_free (pending, [i]);
805
806 /* have to use the microsoft-never-gets-it-right macro */
807 array_free_microshit (fdchange);
808 array_free_microshit (timer);
809#if EV_PERIODICS
810 array_free_microshit (periodic);
811#endif
812 array_free_microshit (idle);
813 array_free_microshit (prepare);
814 array_free_microshit (check);
815
620 method = 0; 816 method = 0;
621 /*TODO*/
622} 817}
623 818
624void 819static void
625loop_fork (EV_P) 820loop_fork (EV_P)
626{ 821{
627 /*TODO*/
628#if EV_USE_EPOLL 822#if EV_USE_EPOLL
629 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 823 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
630#endif 824#endif
631#if EV_USE_KQUEUE 825#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 826 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
633#endif 827#endif
828
829 if (ev_is_active (&sigev))
830 {
831 /* default loop */
832
833 ev_ref (EV_A);
834 ev_io_stop (EV_A_ &sigev);
835 close (sigpipe [0]);
836 close (sigpipe [1]);
837
838 while (pipe (sigpipe))
839 syserr ("(libev) error creating pipe");
840
841 siginit (EV_A);
842 }
843
844 postfork = 0;
634} 845}
635 846
636#if EV_MULTIPLICITY 847#if EV_MULTIPLICITY
637struct ev_loop * 848struct ev_loop *
638ev_loop_new (int methods) 849ev_loop_new (int methods)
639{ 850{
640 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 851 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
852
853 memset (loop, 0, sizeof (struct ev_loop));
641 854
642 loop_init (EV_A_ methods); 855 loop_init (EV_A_ methods);
643 856
644 if (ev_methods (EV_A)) 857 if (ev_method (EV_A))
645 return loop; 858 return loop;
646 859
647 return 0; 860 return 0;
648} 861}
649 862
650void 863void
651ev_loop_destroy (EV_P) 864ev_loop_destroy (EV_P)
652{ 865{
653 loop_destroy (EV_A); 866 loop_destroy (EV_A);
654 free (loop); 867 ev_free (loop);
655} 868}
656 869
657void 870void
658ev_loop_fork (EV_P) 871ev_loop_fork (EV_P)
659{ 872{
660 loop_fork (EV_A); 873 postfork = 1;
661} 874}
662 875
663#endif 876#endif
664 877
665#if EV_MULTIPLICITY 878#if EV_MULTIPLICITY
666struct ev_loop default_loop_struct;
667static struct ev_loop *default_loop;
668
669struct ev_loop * 879struct ev_loop *
670#else 880#else
671static int default_loop;
672
673int 881int
674#endif 882#endif
675ev_default_loop (int methods) 883ev_default_loop (int methods)
676{ 884{
677 if (sigpipe [0] == sigpipe [1]) 885 if (sigpipe [0] == sigpipe [1])
688 896
689 loop_init (EV_A_ methods); 897 loop_init (EV_A_ methods);
690 898
691 if (ev_method (EV_A)) 899 if (ev_method (EV_A))
692 { 900 {
693 ev_watcher_init (&sigev, sigcb);
694 ev_set_priority (&sigev, EV_MAXPRI);
695 siginit (EV_A); 901 siginit (EV_A);
696 902
697#ifndef WIN32 903#ifndef WIN32
698 ev_signal_init (&childev, childcb, SIGCHLD); 904 ev_signal_init (&childev, childcb, SIGCHLD);
699 ev_set_priority (&childev, EV_MAXPRI); 905 ev_set_priority (&childev, EV_MAXPRI);
713{ 919{
714#if EV_MULTIPLICITY 920#if EV_MULTIPLICITY
715 struct ev_loop *loop = default_loop; 921 struct ev_loop *loop = default_loop;
716#endif 922#endif
717 923
924#ifndef WIN32
718 ev_ref (EV_A); /* child watcher */ 925 ev_ref (EV_A); /* child watcher */
719 ev_signal_stop (EV_A_ &childev); 926 ev_signal_stop (EV_A_ &childev);
927#endif
720 928
721 ev_ref (EV_A); /* signal watcher */ 929 ev_ref (EV_A); /* signal watcher */
722 ev_io_stop (EV_A_ &sigev); 930 ev_io_stop (EV_A_ &sigev);
723 931
724 close (sigpipe [0]); sigpipe [0] = 0; 932 close (sigpipe [0]); sigpipe [0] = 0;
726 934
727 loop_destroy (EV_A); 935 loop_destroy (EV_A);
728} 936}
729 937
730void 938void
731ev_default_fork (EV_P) 939ev_default_fork (void)
732{ 940{
733 loop_fork (EV_A); 941#if EV_MULTIPLICITY
942 struct ev_loop *loop = default_loop;
943#endif
734 944
735 ev_io_stop (EV_A_ &sigev); 945 if (method)
736 close (sigpipe [0]); 946 postfork = 1;
737 close (sigpipe [1]);
738 pipe (sigpipe);
739
740 ev_ref (EV_A); /* signal watcher */
741 siginit (EV_A);
742} 947}
743 948
744/*****************************************************************************/ 949/*****************************************************************************/
950
951static int
952any_pending (EV_P)
953{
954 int pri;
955
956 for (pri = NUMPRI; pri--; )
957 if (pendingcnt [pri])
958 return 1;
959
960 return 0;
961}
745 962
746static void 963static void
747call_pending (EV_P) 964call_pending (EV_P)
748{ 965{
749 int pri; 966 int pri;
754 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 971 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
755 972
756 if (p->w) 973 if (p->w)
757 { 974 {
758 p->w->pending = 0; 975 p->w->pending = 0;
759 p->w->cb (EV_A_ p->w, p->events); 976 EV_CB_INVOKE (p->w, p->events);
760 } 977 }
761 } 978 }
762} 979}
763 980
764static void 981static void
765timers_reify (EV_P) 982timers_reify (EV_P)
766{ 983{
767 while (timercnt && timers [0]->at <= mn_now) 984 while (timercnt && ((WT)timers [0])->at <= mn_now)
768 { 985 {
769 struct ev_timer *w = timers [0]; 986 struct ev_timer *w = timers [0];
987
988 assert (("inactive timer on timer heap detected", ev_is_active (w)));
770 989
771 /* first reschedule or stop timer */ 990 /* first reschedule or stop timer */
772 if (w->repeat) 991 if (w->repeat)
773 { 992 {
774 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 993 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
994
775 w->at = mn_now + w->repeat; 995 ((WT)w)->at += w->repeat;
996 if (((WT)w)->at < mn_now)
997 ((WT)w)->at = mn_now;
998
776 downheap ((WT *)timers, timercnt, 0); 999 downheap ((WT *)timers, timercnt, 0);
777 } 1000 }
778 else 1001 else
779 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1002 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
780 1003
781 event (EV_A_ (W)w, EV_TIMEOUT); 1004 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
782 } 1005 }
783} 1006}
784 1007
1008#if EV_PERIODICS
785static void 1009static void
786periodics_reify (EV_P) 1010periodics_reify (EV_P)
787{ 1011{
788 while (periodiccnt && periodics [0]->at <= rt_now) 1012 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
789 { 1013 {
790 struct ev_periodic *w = periodics [0]; 1014 struct ev_periodic *w = periodics [0];
791 1015
1016 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1017
792 /* first reschedule or stop timer */ 1018 /* first reschedule or stop timer */
793 if (w->interval) 1019 if (w->reschedule_cb)
794 { 1020 {
1021 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1022
1023 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1024 downheap ((WT *)periodics, periodiccnt, 0);
1025 }
1026 else if (w->interval)
1027 {
795 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1028 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
796 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1029 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
797 downheap ((WT *)periodics, periodiccnt, 0); 1030 downheap ((WT *)periodics, periodiccnt, 0);
798 } 1031 }
799 else 1032 else
800 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1033 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
801 1034
802 event (EV_A_ (W)w, EV_PERIODIC); 1035 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
803 } 1036 }
804} 1037}
805 1038
806static void 1039static void
807periodics_reschedule (EV_P) 1040periodics_reschedule (EV_P)
811 /* adjust periodics after time jump */ 1044 /* adjust periodics after time jump */
812 for (i = 0; i < periodiccnt; ++i) 1045 for (i = 0; i < periodiccnt; ++i)
813 { 1046 {
814 struct ev_periodic *w = periodics [i]; 1047 struct ev_periodic *w = periodics [i];
815 1048
1049 if (w->reschedule_cb)
1050 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
816 if (w->interval) 1051 else if (w->interval)
817 {
818 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1052 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
819
820 if (fabs (diff) >= 1e-4)
821 {
822 ev_periodic_stop (EV_A_ w);
823 ev_periodic_start (EV_A_ w);
824
825 i = 0; /* restart loop, inefficient, but time jumps should be rare */
826 }
827 }
828 } 1053 }
1054
1055 /* now rebuild the heap */
1056 for (i = periodiccnt >> 1; i--; )
1057 downheap ((WT *)periodics, periodiccnt, i);
829} 1058}
1059#endif
830 1060
831inline int 1061inline int
832time_update_monotonic (EV_P) 1062time_update_monotonic (EV_P)
833{ 1063{
834 mn_now = get_clock (); 1064 mn_now = get_clock ();
835 1065
836 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1066 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
837 { 1067 {
838 rt_now = rtmn_diff + mn_now; 1068 ev_rt_now = rtmn_diff + mn_now;
839 return 0; 1069 return 0;
840 } 1070 }
841 else 1071 else
842 { 1072 {
843 now_floor = mn_now; 1073 now_floor = mn_now;
844 rt_now = ev_time (); 1074 ev_rt_now = ev_time ();
845 return 1; 1075 return 1;
846 } 1076 }
847} 1077}
848 1078
849static void 1079static void
858 { 1088 {
859 ev_tstamp odiff = rtmn_diff; 1089 ev_tstamp odiff = rtmn_diff;
860 1090
861 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1091 for (i = 4; --i; ) /* loop a few times, before making important decisions */
862 { 1092 {
863 rtmn_diff = rt_now - mn_now; 1093 rtmn_diff = ev_rt_now - mn_now;
864 1094
865 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1095 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
866 return; /* all is well */ 1096 return; /* all is well */
867 1097
868 rt_now = ev_time (); 1098 ev_rt_now = ev_time ();
869 mn_now = get_clock (); 1099 mn_now = get_clock ();
870 now_floor = mn_now; 1100 now_floor = mn_now;
871 } 1101 }
872 1102
1103# if EV_PERIODICS
873 periodics_reschedule (EV_A); 1104 periodics_reschedule (EV_A);
1105# endif
874 /* no timer adjustment, as the monotonic clock doesn't jump */ 1106 /* no timer adjustment, as the monotonic clock doesn't jump */
875 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1107 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
876 } 1108 }
877 } 1109 }
878 else 1110 else
879#endif 1111#endif
880 { 1112 {
881 rt_now = ev_time (); 1113 ev_rt_now = ev_time ();
882 1114
883 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1115 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
884 { 1116 {
1117#if EV_PERIODICS
885 periodics_reschedule (EV_A); 1118 periodics_reschedule (EV_A);
1119#endif
886 1120
887 /* adjust timers. this is easy, as the offset is the same for all */ 1121 /* adjust timers. this is easy, as the offset is the same for all */
888 for (i = 0; i < timercnt; ++i) 1122 for (i = 0; i < timercnt; ++i)
889 timers [i]->at += rt_now - mn_now; 1123 ((WT)timers [i])->at += ev_rt_now - mn_now;
890 } 1124 }
891 1125
892 mn_now = rt_now; 1126 mn_now = ev_rt_now;
893 } 1127 }
894} 1128}
895 1129
896void 1130void
897ev_ref (EV_P) 1131ev_ref (EV_P)
920 { 1154 {
921 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1155 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
922 call_pending (EV_A); 1156 call_pending (EV_A);
923 } 1157 }
924 1158
1159 /* we might have forked, so reify kernel state if necessary */
1160 if (expect_false (postfork))
1161 loop_fork (EV_A);
1162
925 /* update fd-related kernel structures */ 1163 /* update fd-related kernel structures */
926 fd_reify (EV_A); 1164 fd_reify (EV_A);
927 1165
928 /* calculate blocking time */ 1166 /* calculate blocking time */
929 1167
930 /* we only need this for !monotonic clockor timers, but as we basically 1168 /* we only need this for !monotonic clock or timers, but as we basically
931 always have timers, we just calculate it always */ 1169 always have timers, we just calculate it always */
932#if EV_USE_MONOTONIC 1170#if EV_USE_MONOTONIC
933 if (expect_true (have_monotonic)) 1171 if (expect_true (have_monotonic))
934 time_update_monotonic (EV_A); 1172 time_update_monotonic (EV_A);
935 else 1173 else
936#endif 1174#endif
937 { 1175 {
938 rt_now = ev_time (); 1176 ev_rt_now = ev_time ();
939 mn_now = rt_now; 1177 mn_now = ev_rt_now;
940 } 1178 }
941 1179
942 if (flags & EVLOOP_NONBLOCK || idlecnt) 1180 if (flags & EVLOOP_NONBLOCK || idlecnt)
943 block = 0.; 1181 block = 0.;
944 else 1182 else
945 { 1183 {
946 block = MAX_BLOCKTIME; 1184 block = MAX_BLOCKTIME;
947 1185
948 if (timercnt) 1186 if (timercnt)
949 { 1187 {
950 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1188 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
951 if (block > to) block = to; 1189 if (block > to) block = to;
952 } 1190 }
953 1191
1192#if EV_PERIODICS
954 if (periodiccnt) 1193 if (periodiccnt)
955 { 1194 {
956 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1195 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
957 if (block > to) block = to; 1196 if (block > to) block = to;
958 } 1197 }
1198#endif
959 1199
960 if (block < 0.) block = 0.; 1200 if (block < 0.) block = 0.;
961 } 1201 }
962 1202
963 method_poll (EV_A_ block); 1203 method_poll (EV_A_ block);
964 1204
965 /* update rt_now, do magic */ 1205 /* update ev_rt_now, do magic */
966 time_update (EV_A); 1206 time_update (EV_A);
967 1207
968 /* queue pending timers and reschedule them */ 1208 /* queue pending timers and reschedule them */
969 timers_reify (EV_A); /* relative timers called last */ 1209 timers_reify (EV_A); /* relative timers called last */
1210#if EV_PERIODICS
970 periodics_reify (EV_A); /* absolute timers called first */ 1211 periodics_reify (EV_A); /* absolute timers called first */
1212#endif
971 1213
972 /* queue idle watchers unless io or timers are pending */ 1214 /* queue idle watchers unless io or timers are pending */
973 if (!pendingcnt) 1215 if (idlecnt && !any_pending (EV_A))
974 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1216 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
975 1217
976 /* queue check watchers, to be executed first */ 1218 /* queue check watchers, to be executed first */
977 if (checkcnt) 1219 if (checkcnt)
978 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1220 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1053 return; 1295 return;
1054 1296
1055 assert (("ev_io_start called with negative fd", fd >= 0)); 1297 assert (("ev_io_start called with negative fd", fd >= 0));
1056 1298
1057 ev_start (EV_A_ (W)w, 1); 1299 ev_start (EV_A_ (W)w, 1);
1058 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1300 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1059 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1301 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1060 1302
1061 fd_change (EV_A_ fd); 1303 fd_change (EV_A_ fd);
1062} 1304}
1063 1305
1066{ 1308{
1067 ev_clear_pending (EV_A_ (W)w); 1309 ev_clear_pending (EV_A_ (W)w);
1068 if (!ev_is_active (w)) 1310 if (!ev_is_active (w))
1069 return; 1311 return;
1070 1312
1313 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1314
1071 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1315 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1072 ev_stop (EV_A_ (W)w); 1316 ev_stop (EV_A_ (W)w);
1073 1317
1074 fd_change (EV_A_ w->fd); 1318 fd_change (EV_A_ w->fd);
1075} 1319}
1078ev_timer_start (EV_P_ struct ev_timer *w) 1322ev_timer_start (EV_P_ struct ev_timer *w)
1079{ 1323{
1080 if (ev_is_active (w)) 1324 if (ev_is_active (w))
1081 return; 1325 return;
1082 1326
1083 w->at += mn_now; 1327 ((WT)w)->at += mn_now;
1084 1328
1085 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1329 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1086 1330
1087 ev_start (EV_A_ (W)w, ++timercnt); 1331 ev_start (EV_A_ (W)w, ++timercnt);
1088 array_needsize (timers, timermax, timercnt, ); 1332 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1089 timers [timercnt - 1] = w; 1333 timers [timercnt - 1] = w;
1090 upheap ((WT *)timers, timercnt - 1); 1334 upheap ((WT *)timers, timercnt - 1);
1335
1336 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1091} 1337}
1092 1338
1093void 1339void
1094ev_timer_stop (EV_P_ struct ev_timer *w) 1340ev_timer_stop (EV_P_ struct ev_timer *w)
1095{ 1341{
1096 ev_clear_pending (EV_A_ (W)w); 1342 ev_clear_pending (EV_A_ (W)w);
1097 if (!ev_is_active (w)) 1343 if (!ev_is_active (w))
1098 return; 1344 return;
1099 1345
1346 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1347
1100 if (w->active < timercnt--) 1348 if (((W)w)->active < timercnt--)
1101 { 1349 {
1102 timers [w->active - 1] = timers [timercnt]; 1350 timers [((W)w)->active - 1] = timers [timercnt];
1103 downheap ((WT *)timers, timercnt, w->active - 1); 1351 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1104 } 1352 }
1105 1353
1106 w->at = w->repeat; 1354 ((WT)w)->at -= mn_now;
1107 1355
1108 ev_stop (EV_A_ (W)w); 1356 ev_stop (EV_A_ (W)w);
1109} 1357}
1110 1358
1111void 1359void
1112ev_timer_again (EV_P_ struct ev_timer *w) 1360ev_timer_again (EV_P_ struct ev_timer *w)
1113{ 1361{
1114 if (ev_is_active (w)) 1362 if (ev_is_active (w))
1115 { 1363 {
1116 if (w->repeat) 1364 if (w->repeat)
1117 {
1118 w->at = mn_now + w->repeat;
1119 downheap ((WT *)timers, timercnt, w->active - 1); 1365 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1120 }
1121 else 1366 else
1122 ev_timer_stop (EV_A_ w); 1367 ev_timer_stop (EV_A_ w);
1123 } 1368 }
1124 else if (w->repeat) 1369 else if (w->repeat)
1125 ev_timer_start (EV_A_ w); 1370 ev_timer_start (EV_A_ w);
1126} 1371}
1127 1372
1373#if EV_PERIODICS
1128void 1374void
1129ev_periodic_start (EV_P_ struct ev_periodic *w) 1375ev_periodic_start (EV_P_ struct ev_periodic *w)
1130{ 1376{
1131 if (ev_is_active (w)) 1377 if (ev_is_active (w))
1132 return; 1378 return;
1133 1379
1380 if (w->reschedule_cb)
1381 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1382 else if (w->interval)
1383 {
1134 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1384 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1135
1136 /* this formula differs from the one in periodic_reify because we do not always round up */ 1385 /* this formula differs from the one in periodic_reify because we do not always round up */
1137 if (w->interval)
1138 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1386 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1387 }
1139 1388
1140 ev_start (EV_A_ (W)w, ++periodiccnt); 1389 ev_start (EV_A_ (W)w, ++periodiccnt);
1141 array_needsize (periodics, periodicmax, periodiccnt, ); 1390 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1142 periodics [periodiccnt - 1] = w; 1391 periodics [periodiccnt - 1] = w;
1143 upheap ((WT *)periodics, periodiccnt - 1); 1392 upheap ((WT *)periodics, periodiccnt - 1);
1393
1394 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1144} 1395}
1145 1396
1146void 1397void
1147ev_periodic_stop (EV_P_ struct ev_periodic *w) 1398ev_periodic_stop (EV_P_ struct ev_periodic *w)
1148{ 1399{
1149 ev_clear_pending (EV_A_ (W)w); 1400 ev_clear_pending (EV_A_ (W)w);
1150 if (!ev_is_active (w)) 1401 if (!ev_is_active (w))
1151 return; 1402 return;
1152 1403
1404 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1405
1153 if (w->active < periodiccnt--) 1406 if (((W)w)->active < periodiccnt--)
1154 { 1407 {
1155 periodics [w->active - 1] = periodics [periodiccnt]; 1408 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1156 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1409 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1157 } 1410 }
1158 1411
1159 ev_stop (EV_A_ (W)w); 1412 ev_stop (EV_A_ (W)w);
1160} 1413}
1161 1414
1162void 1415void
1416ev_periodic_again (EV_P_ struct ev_periodic *w)
1417{
1418 /* TODO: use adjustheap and recalculation */
1419 ev_periodic_stop (EV_A_ w);
1420 ev_periodic_start (EV_A_ w);
1421}
1422#endif
1423
1424void
1163ev_idle_start (EV_P_ struct ev_idle *w) 1425ev_idle_start (EV_P_ struct ev_idle *w)
1164{ 1426{
1165 if (ev_is_active (w)) 1427 if (ev_is_active (w))
1166 return; 1428 return;
1167 1429
1168 ev_start (EV_A_ (W)w, ++idlecnt); 1430 ev_start (EV_A_ (W)w, ++idlecnt);
1169 array_needsize (idles, idlemax, idlecnt, ); 1431 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1170 idles [idlecnt - 1] = w; 1432 idles [idlecnt - 1] = w;
1171} 1433}
1172 1434
1173void 1435void
1174ev_idle_stop (EV_P_ struct ev_idle *w) 1436ev_idle_stop (EV_P_ struct ev_idle *w)
1175{ 1437{
1176 ev_clear_pending (EV_A_ (W)w); 1438 ev_clear_pending (EV_A_ (W)w);
1439 if (!ev_is_active (w))
1440 return;
1441
1442 idles [((W)w)->active - 1] = idles [--idlecnt];
1443 ev_stop (EV_A_ (W)w);
1444}
1445
1446void
1447ev_prepare_start (EV_P_ struct ev_prepare *w)
1448{
1177 if (ev_is_active (w)) 1449 if (ev_is_active (w))
1178 return; 1450 return;
1179 1451
1180 idles [w->active - 1] = idles [--idlecnt]; 1452 ev_start (EV_A_ (W)w, ++preparecnt);
1453 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1454 prepares [preparecnt - 1] = w;
1455}
1456
1457void
1458ev_prepare_stop (EV_P_ struct ev_prepare *w)
1459{
1460 ev_clear_pending (EV_A_ (W)w);
1461 if (!ev_is_active (w))
1462 return;
1463
1464 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1181 ev_stop (EV_A_ (W)w); 1465 ev_stop (EV_A_ (W)w);
1182} 1466}
1183 1467
1184void 1468void
1185ev_prepare_start (EV_P_ struct ev_prepare *w) 1469ev_check_start (EV_P_ struct ev_check *w)
1186{ 1470{
1187 if (ev_is_active (w)) 1471 if (ev_is_active (w))
1188 return; 1472 return;
1189 1473
1190 ev_start (EV_A_ (W)w, ++preparecnt); 1474 ev_start (EV_A_ (W)w, ++checkcnt);
1191 array_needsize (prepares, preparemax, preparecnt, ); 1475 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1192 prepares [preparecnt - 1] = w; 1476 checks [checkcnt - 1] = w;
1193} 1477}
1194 1478
1195void 1479void
1196ev_prepare_stop (EV_P_ struct ev_prepare *w) 1480ev_check_stop (EV_P_ struct ev_check *w)
1197{ 1481{
1198 ev_clear_pending (EV_A_ (W)w); 1482 ev_clear_pending (EV_A_ (W)w);
1199 if (ev_is_active (w)) 1483 if (!ev_is_active (w))
1200 return; 1484 return;
1201 1485
1202 prepares [w->active - 1] = prepares [--preparecnt];
1203 ev_stop (EV_A_ (W)w);
1204}
1205
1206void
1207ev_check_start (EV_P_ struct ev_check *w)
1208{
1209 if (ev_is_active (w))
1210 return;
1211
1212 ev_start (EV_A_ (W)w, ++checkcnt);
1213 array_needsize (checks, checkmax, checkcnt, );
1214 checks [checkcnt - 1] = w;
1215}
1216
1217void
1218ev_check_stop (EV_P_ struct ev_check *w)
1219{
1220 ev_clear_pending (EV_A_ (W)w);
1221 if (ev_is_active (w))
1222 return;
1223
1224 checks [w->active - 1] = checks [--checkcnt]; 1486 checks [((W)w)->active - 1] = checks [--checkcnt];
1225 ev_stop (EV_A_ (W)w); 1487 ev_stop (EV_A_ (W)w);
1226} 1488}
1227 1489
1228#ifndef SA_RESTART 1490#ifndef SA_RESTART
1229# define SA_RESTART 0 1491# define SA_RESTART 0
1239 return; 1501 return;
1240 1502
1241 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1503 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1242 1504
1243 ev_start (EV_A_ (W)w, 1); 1505 ev_start (EV_A_ (W)w, 1);
1244 array_needsize (signals, signalmax, w->signum, signals_init); 1506 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1245 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1507 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1246 1508
1247 if (!w->next) 1509 if (!((WL)w)->next)
1248 { 1510 {
1511#if WIN32
1512 signal (w->signum, sighandler);
1513#else
1249 struct sigaction sa; 1514 struct sigaction sa;
1250 sa.sa_handler = sighandler; 1515 sa.sa_handler = sighandler;
1251 sigfillset (&sa.sa_mask); 1516 sigfillset (&sa.sa_mask);
1252 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1517 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1253 sigaction (w->signum, &sa, 0); 1518 sigaction (w->signum, &sa, 0);
1519#endif
1254 } 1520 }
1255} 1521}
1256 1522
1257void 1523void
1258ev_signal_stop (EV_P_ struct ev_signal *w) 1524ev_signal_stop (EV_P_ struct ev_signal *w)
1308 void (*cb)(int revents, void *arg) = once->cb; 1574 void (*cb)(int revents, void *arg) = once->cb;
1309 void *arg = once->arg; 1575 void *arg = once->arg;
1310 1576
1311 ev_io_stop (EV_A_ &once->io); 1577 ev_io_stop (EV_A_ &once->io);
1312 ev_timer_stop (EV_A_ &once->to); 1578 ev_timer_stop (EV_A_ &once->to);
1313 free (once); 1579 ev_free (once);
1314 1580
1315 cb (revents, arg); 1581 cb (revents, arg);
1316} 1582}
1317 1583
1318static void 1584static void
1328} 1594}
1329 1595
1330void 1596void
1331ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1597ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1332{ 1598{
1333 struct ev_once *once = malloc (sizeof (struct ev_once)); 1599 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1334 1600
1335 if (!once) 1601 if (!once)
1336 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1602 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1337 else 1603 else
1338 { 1604 {
1339 once->cb = cb; 1605 once->cb = cb;
1340 once->arg = arg; 1606 once->arg = arg;
1341 1607
1342 ev_watcher_init (&once->io, once_cb_io); 1608 ev_init (&once->io, once_cb_io);
1343 if (fd >= 0) 1609 if (fd >= 0)
1344 { 1610 {
1345 ev_io_set (&once->io, fd, events); 1611 ev_io_set (&once->io, fd, events);
1346 ev_io_start (EV_A_ &once->io); 1612 ev_io_start (EV_A_ &once->io);
1347 } 1613 }
1348 1614
1349 ev_watcher_init (&once->to, once_cb_to); 1615 ev_init (&once->to, once_cb_to);
1350 if (timeout >= 0.) 1616 if (timeout >= 0.)
1351 { 1617 {
1352 ev_timer_set (&once->to, timeout, 0.); 1618 ev_timer_set (&once->to, timeout, 0.);
1353 ev_timer_start (EV_A_ &once->to); 1619 ev_timer_start (EV_A_ &once->to);
1354 } 1620 }
1355 } 1621 }
1356} 1622}
1357 1623
1624#ifdef __cplusplus
1625}
1626#endif
1627

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines