ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.95 by root, Sun Nov 11 01:42:13 2007 UTC vs.
Revision 1.141 by root, Mon Nov 26 20:33:58 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
40# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
41# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
42# endif 57# endif
43 58
59# ifndef EV_USE_SELECT
44# if HAVE_SELECT && HAVE_SYS_SELECT_H 60# if HAVE_SELECT && HAVE_SYS_SELECT_H
45# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
46# endif 65# endif
47 66
67# ifndef EV_USE_POLL
48# if HAVE_POLL && HAVE_POLL_H 68# if HAVE_POLL && HAVE_POLL_H
49# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
50# endif 73# endif
51 74
75# ifndef EV_USE_EPOLL
52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
53# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
54# endif 81# endif
55 82
83# ifndef EV_USE_KQUEUE
56# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
57# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
58# endif 97# endif
59 98
60#endif 99#endif
61 100
62#include <math.h> 101#include <math.h>
71#include <sys/types.h> 110#include <sys/types.h>
72#include <time.h> 111#include <time.h>
73 112
74#include <signal.h> 113#include <signal.h>
75 114
76#ifndef WIN32 115#ifndef _WIN32
77# include <unistd.h>
78# include <sys/time.h> 116# include <sys/time.h>
79# include <sys/wait.h> 117# include <sys/wait.h>
118# include <unistd.h>
119#else
120# define WIN32_LEAN_AND_MEAN
121# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1
80#endif 124# endif
125#endif
126
81/**/ 127/**/
82 128
83#ifndef EV_USE_MONOTONIC 129#ifndef EV_USE_MONOTONIC
84# define EV_USE_MONOTONIC 1 130# define EV_USE_MONOTONIC 0
131#endif
132
133#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0
85#endif 135#endif
86 136
87#ifndef EV_USE_SELECT 137#ifndef EV_USE_SELECT
88# define EV_USE_SELECT 1 138# define EV_USE_SELECT 1
89#endif 139#endif
90 140
91#ifndef EV_USE_POLL 141#ifndef EV_USE_POLL
92# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 142# ifdef _WIN32
143# define EV_USE_POLL 0
144# else
145# define EV_USE_POLL 1
146# endif
93#endif 147#endif
94 148
95#ifndef EV_USE_EPOLL 149#ifndef EV_USE_EPOLL
96# define EV_USE_EPOLL 0 150# define EV_USE_EPOLL 0
97#endif 151#endif
98 152
99#ifndef EV_USE_KQUEUE 153#ifndef EV_USE_KQUEUE
100# define EV_USE_KQUEUE 0 154# define EV_USE_KQUEUE 0
101#endif 155#endif
102 156
103#ifndef EV_USE_WIN32
104# ifdef WIN32
105# define EV_USE_WIN32 0 /* it does not exist, use select */
106# undef EV_USE_SELECT
107# define EV_USE_SELECT 1
108# else
109# define EV_USE_WIN32 0
110# endif
111#endif
112
113#ifndef EV_USE_REALTIME 157#ifndef EV_USE_PORT
114# define EV_USE_REALTIME 1 158# define EV_USE_PORT 0
115#endif 159#endif
116 160
117/**/ 161/**/
118 162
119#ifndef CLOCK_MONOTONIC 163#ifndef CLOCK_MONOTONIC
124#ifndef CLOCK_REALTIME 168#ifndef CLOCK_REALTIME
125# undef EV_USE_REALTIME 169# undef EV_USE_REALTIME
126# define EV_USE_REALTIME 0 170# define EV_USE_REALTIME 0
127#endif 171#endif
128 172
173#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h>
175#endif
176
129/**/ 177/**/
130 178
131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
135 183
136#ifdef EV_H 184#ifdef EV_H
137# include EV_H 185# include EV_H
138#else 186#else
139# include "ev.h" 187# include "ev.h"
140#endif 188#endif
141 189
142#if __GNUC__ >= 3 190#if __GNUC__ >= 3
143# define expect(expr,value) __builtin_expect ((expr),(value)) 191# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
144# define inline inline 194# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
145#else 200#else
146# define expect(expr,value) (expr) 201# define expect(expr,value) (expr)
147# define inline static 202# define inline_speed static
203# define inline_minimal static
204# define noinline
148#endif 205#endif
149 206
150#define expect_false(expr) expect ((expr) != 0, 0) 207#define expect_false(expr) expect ((expr) != 0, 0)
151#define expect_true(expr) expect ((expr) != 0, 1) 208#define expect_true(expr) expect ((expr) != 0, 1)
152 209
153#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
154#define ABSPRI(w) ((w)->priority - EV_MINPRI) 211#define ABSPRI(w) ((w)->priority - EV_MINPRI)
155 212
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */
215
156typedef struct ev_watcher *W; 216typedef ev_watcher *W;
157typedef struct ev_watcher_list *WL; 217typedef ev_watcher_list *WL;
158typedef struct ev_watcher_time *WT; 218typedef ev_watcher_time *WT;
159 219
160static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 220static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
161 221
222#ifdef _WIN32
162#include "ev_win32.c" 223# include "ev_win32.c"
224#endif
163 225
164/*****************************************************************************/ 226/*****************************************************************************/
165 227
166static void (*syserr_cb)(const char *msg); 228static void (*syserr_cb)(const char *msg);
167 229
230void
168void ev_set_syserr_cb (void (*cb)(const char *msg)) 231ev_set_syserr_cb (void (*cb)(const char *msg))
169{ 232{
170 syserr_cb = cb; 233 syserr_cb = cb;
171} 234}
172 235
173static void 236static void noinline
174syserr (const char *msg) 237syserr (const char *msg)
175{ 238{
176 if (!msg) 239 if (!msg)
177 msg = "(libev) system error"; 240 msg = "(libev) system error";
178 241
185 } 248 }
186} 249}
187 250
188static void *(*alloc)(void *ptr, long size); 251static void *(*alloc)(void *ptr, long size);
189 252
253void
190void ev_set_allocator (void *(*cb)(void *ptr, long size)) 254ev_set_allocator (void *(*cb)(void *ptr, long size))
191{ 255{
192 alloc = cb; 256 alloc = cb;
193} 257}
194 258
195static void * 259static void *
214typedef struct 278typedef struct
215{ 279{
216 WL head; 280 WL head;
217 unsigned char events; 281 unsigned char events;
218 unsigned char reify; 282 unsigned char reify;
283#if EV_SELECT_IS_WINSOCKET
284 SOCKET handle;
285#endif
219} ANFD; 286} ANFD;
220 287
221typedef struct 288typedef struct
222{ 289{
223 W w; 290 W w;
227#if EV_MULTIPLICITY 294#if EV_MULTIPLICITY
228 295
229 struct ev_loop 296 struct ev_loop
230 { 297 {
231 ev_tstamp ev_rt_now; 298 ev_tstamp ev_rt_now;
299 #define ev_rt_now ((loop)->ev_rt_now)
232 #define VAR(name,decl) decl; 300 #define VAR(name,decl) decl;
233 #include "ev_vars.h" 301 #include "ev_vars.h"
234 #undef VAR 302 #undef VAR
235 }; 303 };
236 #include "ev_wrap.h" 304 #include "ev_wrap.h"
237 305
238 struct ev_loop default_loop_struct; 306 static struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop; 307 struct ev_loop *ev_default_loop_ptr;
240 308
241#else 309#else
242 310
243 ev_tstamp ev_rt_now; 311 ev_tstamp ev_rt_now;
244 #define VAR(name,decl) static decl; 312 #define VAR(name,decl) static decl;
245 #include "ev_vars.h" 313 #include "ev_vars.h"
246 #undef VAR 314 #undef VAR
247 315
248 static int default_loop; 316 static int ev_default_loop_ptr;
249 317
250#endif 318#endif
251 319
252/*****************************************************************************/ 320/*****************************************************************************/
253 321
263 gettimeofday (&tv, 0); 331 gettimeofday (&tv, 0);
264 return tv.tv_sec + tv.tv_usec * 1e-6; 332 return tv.tv_sec + tv.tv_usec * 1e-6;
265#endif 333#endif
266} 334}
267 335
268inline ev_tstamp 336ev_tstamp inline_size
269get_clock (void) 337get_clock (void)
270{ 338{
271#if EV_USE_MONOTONIC 339#if EV_USE_MONOTONIC
272 if (expect_true (have_monotonic)) 340 if (expect_true (have_monotonic))
273 { 341 {
286{ 354{
287 return ev_rt_now; 355 return ev_rt_now;
288} 356}
289#endif 357#endif
290 358
291#define array_roundsize(type,n) ((n) | 4 & ~3) 359#define array_roundsize(type,n) (((n) | 4) & ~3)
292 360
293#define array_needsize(type,base,cur,cnt,init) \ 361#define array_needsize(type,base,cur,cnt,init) \
294 if (expect_false ((cnt) > cur)) \ 362 if (expect_false ((cnt) > cur)) \
295 { \ 363 { \
296 int newcnt = cur; \ 364 int newcnt = cur; \
311 stem ## max = array_roundsize (stem ## cnt >> 1); \ 379 stem ## max = array_roundsize (stem ## cnt >> 1); \
312 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 380 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
313 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 381 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
314 } 382 }
315 383
316/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
317/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
318#define array_free_microshit(stem) \
319 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
320
321#define array_free(stem, idx) \ 384#define array_free(stem, idx) \
322 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 385 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
323 386
324/*****************************************************************************/ 387/*****************************************************************************/
325 388
326static void 389void noinline
390ev_feed_event (EV_P_ void *w, int revents)
391{
392 W w_ = (W)w;
393
394 if (expect_false (w_->pending))
395 {
396 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
397 return;
398 }
399
400 w_->pending = ++pendingcnt [ABSPRI (w_)];
401 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
402 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
404}
405
406void inline_size
407queue_events (EV_P_ W *events, int eventcnt, int type)
408{
409 int i;
410
411 for (i = 0; i < eventcnt; ++i)
412 ev_feed_event (EV_A_ events [i], type);
413}
414
415/*****************************************************************************/
416
417void inline_size
327anfds_init (ANFD *base, int count) 418anfds_init (ANFD *base, int count)
328{ 419{
329 while (count--) 420 while (count--)
330 { 421 {
331 base->head = 0; 422 base->head = 0;
334 425
335 ++base; 426 ++base;
336 } 427 }
337} 428}
338 429
339void 430void inline_speed
340ev_feed_event (EV_P_ void *w, int revents)
341{
342 W w_ = (W)w;
343
344 if (w_->pending)
345 {
346 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
347 return;
348 }
349
350 w_->pending = ++pendingcnt [ABSPRI (w_)];
351 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
352 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
353 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
354}
355
356static void
357queue_events (EV_P_ W *events, int eventcnt, int type)
358{
359 int i;
360
361 for (i = 0; i < eventcnt; ++i)
362 ev_feed_event (EV_A_ events [i], type);
363}
364
365inline void
366fd_event (EV_P_ int fd, int revents) 431fd_event (EV_P_ int fd, int revents)
367{ 432{
368 ANFD *anfd = anfds + fd; 433 ANFD *anfd = anfds + fd;
369 struct ev_io *w; 434 ev_io *w;
370 435
371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 436 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
372 { 437 {
373 int ev = w->events & revents; 438 int ev = w->events & revents;
374 439
375 if (ev) 440 if (ev)
376 ev_feed_event (EV_A_ (W)w, ev); 441 ev_feed_event (EV_A_ (W)w, ev);
381ev_feed_fd_event (EV_P_ int fd, int revents) 446ev_feed_fd_event (EV_P_ int fd, int revents)
382{ 447{
383 fd_event (EV_A_ fd, revents); 448 fd_event (EV_A_ fd, revents);
384} 449}
385 450
386/*****************************************************************************/ 451void inline_size
387
388static void
389fd_reify (EV_P) 452fd_reify (EV_P)
390{ 453{
391 int i; 454 int i;
392 455
393 for (i = 0; i < fdchangecnt; ++i) 456 for (i = 0; i < fdchangecnt; ++i)
394 { 457 {
395 int fd = fdchanges [i]; 458 int fd = fdchanges [i];
396 ANFD *anfd = anfds + fd; 459 ANFD *anfd = anfds + fd;
397 struct ev_io *w; 460 ev_io *w;
398 461
399 int events = 0; 462 int events = 0;
400 463
401 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 464 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
402 events |= w->events; 465 events |= w->events;
403 466
467#if EV_SELECT_IS_WINSOCKET
468 if (events)
469 {
470 unsigned long argp;
471 anfd->handle = _get_osfhandle (fd);
472 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
473 }
474#endif
475
404 anfd->reify = 0; 476 anfd->reify = 0;
405 477
406 method_modify (EV_A_ fd, anfd->events, events); 478 backend_modify (EV_A_ fd, anfd->events, events);
407 anfd->events = events; 479 anfd->events = events;
408 } 480 }
409 481
410 fdchangecnt = 0; 482 fdchangecnt = 0;
411} 483}
412 484
413static void 485void inline_size
414fd_change (EV_P_ int fd) 486fd_change (EV_P_ int fd)
415{ 487{
416 if (anfds [fd].reify) 488 if (expect_false (anfds [fd].reify))
417 return; 489 return;
418 490
419 anfds [fd].reify = 1; 491 anfds [fd].reify = 1;
420 492
421 ++fdchangecnt; 493 ++fdchangecnt;
422 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 494 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
423 fdchanges [fdchangecnt - 1] = fd; 495 fdchanges [fdchangecnt - 1] = fd;
424} 496}
425 497
426static void 498void inline_speed
427fd_kill (EV_P_ int fd) 499fd_kill (EV_P_ int fd)
428{ 500{
429 struct ev_io *w; 501 ev_io *w;
430 502
431 while ((w = (struct ev_io *)anfds [fd].head)) 503 while ((w = (ev_io *)anfds [fd].head))
432 { 504 {
433 ev_io_stop (EV_A_ w); 505 ev_io_stop (EV_A_ w);
434 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 506 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
435 } 507 }
436} 508}
437 509
438static int 510int inline_size
439fd_valid (int fd) 511fd_valid (int fd)
440{ 512{
441#ifdef WIN32 513#ifdef _WIN32
442 return !!win32_get_osfhandle (fd); 514 return _get_osfhandle (fd) != -1;
443#else 515#else
444 return fcntl (fd, F_GETFD) != -1; 516 return fcntl (fd, F_GETFD) != -1;
445#endif 517#endif
446} 518}
447 519
448/* called on EBADF to verify fds */ 520/* called on EBADF to verify fds */
449static void 521static void noinline
450fd_ebadf (EV_P) 522fd_ebadf (EV_P)
451{ 523{
452 int fd; 524 int fd;
453 525
454 for (fd = 0; fd < anfdmax; ++fd) 526 for (fd = 0; fd < anfdmax; ++fd)
456 if (!fd_valid (fd) == -1 && errno == EBADF) 528 if (!fd_valid (fd) == -1 && errno == EBADF)
457 fd_kill (EV_A_ fd); 529 fd_kill (EV_A_ fd);
458} 530}
459 531
460/* called on ENOMEM in select/poll to kill some fds and retry */ 532/* called on ENOMEM in select/poll to kill some fds and retry */
461static void 533static void noinline
462fd_enomem (EV_P) 534fd_enomem (EV_P)
463{ 535{
464 int fd; 536 int fd;
465 537
466 for (fd = anfdmax; fd--; ) 538 for (fd = anfdmax; fd--; )
469 fd_kill (EV_A_ fd); 541 fd_kill (EV_A_ fd);
470 return; 542 return;
471 } 543 }
472} 544}
473 545
474/* usually called after fork if method needs to re-arm all fds from scratch */ 546/* usually called after fork if backend needs to re-arm all fds from scratch */
475static void 547static void noinline
476fd_rearm_all (EV_P) 548fd_rearm_all (EV_P)
477{ 549{
478 int fd; 550 int fd;
479 551
480 /* this should be highly optimised to not do anything but set a flag */ 552 /* this should be highly optimised to not do anything but set a flag */
486 } 558 }
487} 559}
488 560
489/*****************************************************************************/ 561/*****************************************************************************/
490 562
491static void 563void inline_speed
492upheap (WT *heap, int k) 564upheap (WT *heap, int k)
493{ 565{
494 WT w = heap [k]; 566 WT w = heap [k];
495 567
496 while (k && heap [k >> 1]->at > w->at) 568 while (k && heap [k >> 1]->at > w->at)
503 heap [k] = w; 575 heap [k] = w;
504 ((W)heap [k])->active = k + 1; 576 ((W)heap [k])->active = k + 1;
505 577
506} 578}
507 579
508static void 580void inline_speed
509downheap (WT *heap, int N, int k) 581downheap (WT *heap, int N, int k)
510{ 582{
511 WT w = heap [k]; 583 WT w = heap [k];
512 584
513 while (k < (N >> 1)) 585 while (k < (N >> 1))
527 599
528 heap [k] = w; 600 heap [k] = w;
529 ((W)heap [k])->active = k + 1; 601 ((W)heap [k])->active = k + 1;
530} 602}
531 603
532inline void 604void inline_size
533adjustheap (WT *heap, int N, int k, ev_tstamp at) 605adjustheap (WT *heap, int N, int k)
534{ 606{
535 ev_tstamp old_at = heap [k]->at; 607 upheap (heap, k);
536 heap [k]->at = at;
537
538 if (old_at < at)
539 downheap (heap, N, k); 608 downheap (heap, N, k);
540 else
541 upheap (heap, k);
542} 609}
543 610
544/*****************************************************************************/ 611/*****************************************************************************/
545 612
546typedef struct 613typedef struct
552static ANSIG *signals; 619static ANSIG *signals;
553static int signalmax; 620static int signalmax;
554 621
555static int sigpipe [2]; 622static int sigpipe [2];
556static sig_atomic_t volatile gotsig; 623static sig_atomic_t volatile gotsig;
557static struct ev_io sigev; 624static ev_io sigev;
558 625
559static void 626void inline_size
560signals_init (ANSIG *base, int count) 627signals_init (ANSIG *base, int count)
561{ 628{
562 while (count--) 629 while (count--)
563 { 630 {
564 base->head = 0; 631 base->head = 0;
569} 636}
570 637
571static void 638static void
572sighandler (int signum) 639sighandler (int signum)
573{ 640{
574#if WIN32 641#if _WIN32
575 signal (signum, sighandler); 642 signal (signum, sighandler);
576#endif 643#endif
577 644
578 signals [signum - 1].gotsig = 1; 645 signals [signum - 1].gotsig = 1;
579 646
580 if (!gotsig) 647 if (!gotsig)
581 { 648 {
582 int old_errno = errno; 649 int old_errno = errno;
583 gotsig = 1; 650 gotsig = 1;
584#ifdef WIN32
585 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
586#else
587 write (sigpipe [1], &signum, 1); 651 write (sigpipe [1], &signum, 1);
588#endif
589 errno = old_errno; 652 errno = old_errno;
590 } 653 }
591} 654}
592 655
593void 656void noinline
594ev_feed_signal_event (EV_P_ int signum) 657ev_feed_signal_event (EV_P_ int signum)
595{ 658{
596 WL w; 659 WL w;
597 660
598#if EV_MULTIPLICITY 661#if EV_MULTIPLICITY
599 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 662 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
600#endif 663#endif
601 664
602 --signum; 665 --signum;
603 666
604 if (signum < 0 || signum >= signalmax) 667 if (signum < 0 || signum >= signalmax)
609 for (w = signals [signum].head; w; w = w->next) 672 for (w = signals [signum].head; w; w = w->next)
610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 673 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
611} 674}
612 675
613static void 676static void
614sigcb (EV_P_ struct ev_io *iow, int revents) 677sigcb (EV_P_ ev_io *iow, int revents)
615{ 678{
616 int signum; 679 int signum;
617 680
618#ifdef WIN32
619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
620#else
621 read (sigpipe [0], &revents, 1); 681 read (sigpipe [0], &revents, 1);
622#endif
623 gotsig = 0; 682 gotsig = 0;
624 683
625 for (signum = signalmax; signum--; ) 684 for (signum = signalmax; signum--; )
626 if (signals [signum].gotsig) 685 if (signals [signum].gotsig)
627 ev_feed_signal_event (EV_A_ signum + 1); 686 ev_feed_signal_event (EV_A_ signum + 1);
628} 687}
629 688
630static void 689void inline_size
690fd_intern (int fd)
691{
692#ifdef _WIN32
693 int arg = 1;
694 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
695#else
696 fcntl (fd, F_SETFD, FD_CLOEXEC);
697 fcntl (fd, F_SETFL, O_NONBLOCK);
698#endif
699}
700
701static void noinline
631siginit (EV_P) 702siginit (EV_P)
632{ 703{
633#ifndef WIN32 704 fd_intern (sigpipe [0]);
634 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 705 fd_intern (sigpipe [1]);
635 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
636
637 /* rather than sort out wether we really need nb, set it */
638 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
639 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
640#endif
641 706
642 ev_io_set (&sigev, sigpipe [0], EV_READ); 707 ev_io_set (&sigev, sigpipe [0], EV_READ);
643 ev_io_start (EV_A_ &sigev); 708 ev_io_start (EV_A_ &sigev);
644 ev_unref (EV_A); /* child watcher should not keep loop alive */ 709 ev_unref (EV_A); /* child watcher should not keep loop alive */
645} 710}
646 711
647/*****************************************************************************/ 712/*****************************************************************************/
648 713
649static struct ev_child *childs [PID_HASHSIZE]; 714static ev_child *childs [PID_HASHSIZE];
650 715
651#ifndef WIN32 716#ifndef _WIN32
652 717
653static struct ev_signal childev; 718static ev_signal childev;
654 719
655#ifndef WCONTINUED 720#ifndef WCONTINUED
656# define WCONTINUED 0 721# define WCONTINUED 0
657#endif 722#endif
658 723
659static void 724void inline_speed
660child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status) 725child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
661{ 726{
662 struct ev_child *w; 727 ev_child *w;
663 728
664 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 729 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
665 if (w->pid == pid || !w->pid) 730 if (w->pid == pid || !w->pid)
666 { 731 {
667 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 732 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
668 w->rpid = pid; 733 w->rpid = pid;
669 w->rstatus = status; 734 w->rstatus = status;
670 ev_feed_event (EV_A_ (W)w, EV_CHILD); 735 ev_feed_event (EV_A_ (W)w, EV_CHILD);
671 } 736 }
672} 737}
673 738
674static void 739static void
675childcb (EV_P_ struct ev_signal *sw, int revents) 740childcb (EV_P_ ev_signal *sw, int revents)
676{ 741{
677 int pid, status; 742 int pid, status;
678 743
679 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 744 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
680 { 745 {
681 /* make sure we are called again until all childs have been reaped */ 746 /* make sure we are called again until all childs have been reaped */
747 /* we need to do it this way so that the callback gets called before we continue */
682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 748 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
683 749
684 child_reap (EV_A_ sw, pid, pid, status); 750 child_reap (EV_A_ sw, pid, pid, status);
685 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 751 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
686 } 752 }
687} 753}
688 754
689#endif 755#endif
690 756
691/*****************************************************************************/ 757/*****************************************************************************/
692 758
759#if EV_USE_PORT
760# include "ev_port.c"
761#endif
693#if EV_USE_KQUEUE 762#if EV_USE_KQUEUE
694# include "ev_kqueue.c" 763# include "ev_kqueue.c"
695#endif 764#endif
696#if EV_USE_EPOLL 765#if EV_USE_EPOLL
697# include "ev_epoll.c" 766# include "ev_epoll.c"
714{ 783{
715 return EV_VERSION_MINOR; 784 return EV_VERSION_MINOR;
716} 785}
717 786
718/* return true if we are running with elevated privileges and should ignore env variables */ 787/* return true if we are running with elevated privileges and should ignore env variables */
719static int 788int inline_size
720enable_secure (void) 789enable_secure (void)
721{ 790{
722#ifdef WIN32 791#ifdef _WIN32
723 return 0; 792 return 0;
724#else 793#else
725 return getuid () != geteuid () 794 return getuid () != geteuid ()
726 || getgid () != getegid (); 795 || getgid () != getegid ();
727#endif 796#endif
728} 797}
729 798
730int 799unsigned int
731ev_method (EV_P) 800ev_supported_backends (void)
732{ 801{
733 return method; 802 unsigned int flags = 0;
803
804 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
805 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
806 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
807 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
808 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
809
810 return flags;
811}
812
813unsigned int
814ev_recommended_backends (void)
815{
816 unsigned int flags = ev_supported_backends ();
817
818#ifndef __NetBSD__
819 /* kqueue is borked on everything but netbsd apparently */
820 /* it usually doesn't work correctly on anything but sockets and pipes */
821 flags &= ~EVBACKEND_KQUEUE;
822#endif
823#ifdef __APPLE__
824 // flags &= ~EVBACKEND_KQUEUE; for documentation
825 flags &= ~EVBACKEND_POLL;
826#endif
827
828 return flags;
829}
830
831unsigned int
832ev_embeddable_backends (void)
833{
834 return EVBACKEND_EPOLL
835 | EVBACKEND_KQUEUE
836 | EVBACKEND_PORT;
837}
838
839unsigned int
840ev_backend (EV_P)
841{
842 return backend;
734} 843}
735 844
736static void 845static void
737loop_init (EV_P_ int methods) 846loop_init (EV_P_ unsigned int flags)
738{ 847{
739 if (!method) 848 if (!backend)
740 { 849 {
741#if EV_USE_MONOTONIC 850#if EV_USE_MONOTONIC
742 { 851 {
743 struct timespec ts; 852 struct timespec ts;
744 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 853 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
749 ev_rt_now = ev_time (); 858 ev_rt_now = ev_time ();
750 mn_now = get_clock (); 859 mn_now = get_clock ();
751 now_floor = mn_now; 860 now_floor = mn_now;
752 rtmn_diff = ev_rt_now - mn_now; 861 rtmn_diff = ev_rt_now - mn_now;
753 862
754 if (methods == EVMETHOD_AUTO) 863 if (!(flags & EVFLAG_NOENV)
755 if (!enable_secure () && getenv ("LIBEV_METHODS")) 864 && !enable_secure ()
865 && getenv ("LIBEV_FLAGS"))
756 methods = atoi (getenv ("LIBEV_METHODS")); 866 flags = atoi (getenv ("LIBEV_FLAGS"));
757 else
758 methods = EVMETHOD_ANY;
759 867
760 method = 0; 868 if (!(flags & 0x0000ffffUL))
761#if EV_USE_WIN32 869 flags |= ev_recommended_backends ();
762 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 870
871 backend = 0;
872#if EV_USE_PORT
873 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
763#endif 874#endif
764#if EV_USE_KQUEUE 875#if EV_USE_KQUEUE
765 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 876 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
766#endif 877#endif
767#if EV_USE_EPOLL 878#if EV_USE_EPOLL
768 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 879 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
769#endif 880#endif
770#if EV_USE_POLL 881#if EV_USE_POLL
771 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 882 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
772#endif 883#endif
773#if EV_USE_SELECT 884#if EV_USE_SELECT
774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 885 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
775#endif 886#endif
776 887
777 ev_init (&sigev, sigcb); 888 ev_init (&sigev, sigcb);
778 ev_set_priority (&sigev, EV_MAXPRI); 889 ev_set_priority (&sigev, EV_MAXPRI);
779 } 890 }
780} 891}
781 892
782void 893static void
783loop_destroy (EV_P) 894loop_destroy (EV_P)
784{ 895{
785 int i; 896 int i;
786 897
787#if EV_USE_WIN32 898#if EV_USE_PORT
788 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 899 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
789#endif 900#endif
790#if EV_USE_KQUEUE 901#if EV_USE_KQUEUE
791 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 902 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
792#endif 903#endif
793#if EV_USE_EPOLL 904#if EV_USE_EPOLL
794 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 905 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
795#endif 906#endif
796#if EV_USE_POLL 907#if EV_USE_POLL
797 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 908 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
798#endif 909#endif
799#if EV_USE_SELECT 910#if EV_USE_SELECT
800 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 911 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
801#endif 912#endif
802 913
803 for (i = NUMPRI; i--; ) 914 for (i = NUMPRI; i--; )
804 array_free (pending, [i]); 915 array_free (pending, [i]);
805 916
806 /* have to use the microsoft-never-gets-it-right macro */ 917 /* have to use the microsoft-never-gets-it-right macro */
807 array_free_microshit (fdchange); 918 array_free (fdchange, EMPTY0);
808 array_free_microshit (timer); 919 array_free (timer, EMPTY0);
809#if EV_PERIODICS 920#if EV_PERIODIC_ENABLE
810 array_free_microshit (periodic); 921 array_free (periodic, EMPTY0);
811#endif 922#endif
812 array_free_microshit (idle); 923 array_free (idle, EMPTY0);
813 array_free_microshit (prepare); 924 array_free (prepare, EMPTY0);
814 array_free_microshit (check); 925 array_free (check, EMPTY0);
815 926
816 method = 0; 927 backend = 0;
817} 928}
818 929
819static void 930static void
820loop_fork (EV_P) 931loop_fork (EV_P)
821{ 932{
933#if EV_USE_PORT
934 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
935#endif
936#if EV_USE_KQUEUE
937 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
938#endif
822#if EV_USE_EPOLL 939#if EV_USE_EPOLL
823 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 940 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
824#endif
825#if EV_USE_KQUEUE
826 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
827#endif 941#endif
828 942
829 if (ev_is_active (&sigev)) 943 if (ev_is_active (&sigev))
830 { 944 {
831 /* default loop */ 945 /* default loop */
844 postfork = 0; 958 postfork = 0;
845} 959}
846 960
847#if EV_MULTIPLICITY 961#if EV_MULTIPLICITY
848struct ev_loop * 962struct ev_loop *
849ev_loop_new (int methods) 963ev_loop_new (unsigned int flags)
850{ 964{
851 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 965 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
852 966
853 memset (loop, 0, sizeof (struct ev_loop)); 967 memset (loop, 0, sizeof (struct ev_loop));
854 968
855 loop_init (EV_A_ methods); 969 loop_init (EV_A_ flags);
856 970
857 if (ev_method (EV_A)) 971 if (ev_backend (EV_A))
858 return loop; 972 return loop;
859 973
860 return 0; 974 return 0;
861} 975}
862 976
875 989
876#endif 990#endif
877 991
878#if EV_MULTIPLICITY 992#if EV_MULTIPLICITY
879struct ev_loop * 993struct ev_loop *
994ev_default_loop_init (unsigned int flags)
880#else 995#else
881int 996int
997ev_default_loop (unsigned int flags)
882#endif 998#endif
883ev_default_loop (int methods)
884{ 999{
885 if (sigpipe [0] == sigpipe [1]) 1000 if (sigpipe [0] == sigpipe [1])
886 if (pipe (sigpipe)) 1001 if (pipe (sigpipe))
887 return 0; 1002 return 0;
888 1003
889 if (!default_loop) 1004 if (!ev_default_loop_ptr)
890 { 1005 {
891#if EV_MULTIPLICITY 1006#if EV_MULTIPLICITY
892 struct ev_loop *loop = default_loop = &default_loop_struct; 1007 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
893#else 1008#else
894 default_loop = 1; 1009 ev_default_loop_ptr = 1;
895#endif 1010#endif
896 1011
897 loop_init (EV_A_ methods); 1012 loop_init (EV_A_ flags);
898 1013
899 if (ev_method (EV_A)) 1014 if (ev_backend (EV_A))
900 { 1015 {
901 siginit (EV_A); 1016 siginit (EV_A);
902 1017
903#ifndef WIN32 1018#ifndef _WIN32
904 ev_signal_init (&childev, childcb, SIGCHLD); 1019 ev_signal_init (&childev, childcb, SIGCHLD);
905 ev_set_priority (&childev, EV_MAXPRI); 1020 ev_set_priority (&childev, EV_MAXPRI);
906 ev_signal_start (EV_A_ &childev); 1021 ev_signal_start (EV_A_ &childev);
907 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1022 ev_unref (EV_A); /* child watcher should not keep loop alive */
908#endif 1023#endif
909 } 1024 }
910 else 1025 else
911 default_loop = 0; 1026 ev_default_loop_ptr = 0;
912 } 1027 }
913 1028
914 return default_loop; 1029 return ev_default_loop_ptr;
915} 1030}
916 1031
917void 1032void
918ev_default_destroy (void) 1033ev_default_destroy (void)
919{ 1034{
920#if EV_MULTIPLICITY 1035#if EV_MULTIPLICITY
921 struct ev_loop *loop = default_loop; 1036 struct ev_loop *loop = ev_default_loop_ptr;
922#endif 1037#endif
923 1038
924#ifndef WIN32 1039#ifndef _WIN32
925 ev_ref (EV_A); /* child watcher */ 1040 ev_ref (EV_A); /* child watcher */
926 ev_signal_stop (EV_A_ &childev); 1041 ev_signal_stop (EV_A_ &childev);
927#endif 1042#endif
928 1043
929 ev_ref (EV_A); /* signal watcher */ 1044 ev_ref (EV_A); /* signal watcher */
937 1052
938void 1053void
939ev_default_fork (void) 1054ev_default_fork (void)
940{ 1055{
941#if EV_MULTIPLICITY 1056#if EV_MULTIPLICITY
942 struct ev_loop *loop = default_loop; 1057 struct ev_loop *loop = ev_default_loop_ptr;
943#endif 1058#endif
944 1059
945 if (method) 1060 if (backend)
946 postfork = 1; 1061 postfork = 1;
947} 1062}
948 1063
949/*****************************************************************************/ 1064/*****************************************************************************/
950 1065
951static int 1066int inline_size
952any_pending (EV_P) 1067any_pending (EV_P)
953{ 1068{
954 int pri; 1069 int pri;
955 1070
956 for (pri = NUMPRI; pri--; ) 1071 for (pri = NUMPRI; pri--; )
958 return 1; 1073 return 1;
959 1074
960 return 0; 1075 return 0;
961} 1076}
962 1077
963static void 1078void inline_speed
964call_pending (EV_P) 1079call_pending (EV_P)
965{ 1080{
966 int pri; 1081 int pri;
967 1082
968 for (pri = NUMPRI; pri--; ) 1083 for (pri = NUMPRI; pri--; )
969 while (pendingcnt [pri]) 1084 while (pendingcnt [pri])
970 { 1085 {
971 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1086 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
972 1087
973 if (p->w) 1088 if (expect_true (p->w))
974 { 1089 {
1090 assert (("non-pending watcher on pending list", p->w->pending));
1091
975 p->w->pending = 0; 1092 p->w->pending = 0;
976 EV_CB_INVOKE (p->w, p->events); 1093 EV_CB_INVOKE (p->w, p->events);
977 } 1094 }
978 } 1095 }
979} 1096}
980 1097
981static void 1098void inline_size
982timers_reify (EV_P) 1099timers_reify (EV_P)
983{ 1100{
984 while (timercnt && ((WT)timers [0])->at <= mn_now) 1101 while (timercnt && ((WT)timers [0])->at <= mn_now)
985 { 1102 {
986 struct ev_timer *w = timers [0]; 1103 ev_timer *w = timers [0];
987 1104
988 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1105 assert (("inactive timer on timer heap detected", ev_is_active (w)));
989 1106
990 /* first reschedule or stop timer */ 1107 /* first reschedule or stop timer */
991 if (w->repeat) 1108 if (w->repeat)
1003 1120
1004 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1121 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1005 } 1122 }
1006} 1123}
1007 1124
1008#if EV_PERIODICS 1125#if EV_PERIODIC_ENABLE
1009static void 1126void inline_size
1010periodics_reify (EV_P) 1127periodics_reify (EV_P)
1011{ 1128{
1012 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1129 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1013 { 1130 {
1014 struct ev_periodic *w = periodics [0]; 1131 ev_periodic *w = periodics [0];
1015 1132
1016 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1133 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1017 1134
1018 /* first reschedule or stop timer */ 1135 /* first reschedule or stop timer */
1019 if (w->reschedule_cb) 1136 if (w->reschedule_cb)
1020 { 1137 {
1021 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1138 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1022
1023 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1139 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1024 downheap ((WT *)periodics, periodiccnt, 0); 1140 downheap ((WT *)periodics, periodiccnt, 0);
1025 } 1141 }
1026 else if (w->interval) 1142 else if (w->interval)
1027 { 1143 {
1034 1150
1035 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1151 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1036 } 1152 }
1037} 1153}
1038 1154
1039static void 1155static void noinline
1040periodics_reschedule (EV_P) 1156periodics_reschedule (EV_P)
1041{ 1157{
1042 int i; 1158 int i;
1043 1159
1044 /* adjust periodics after time jump */ 1160 /* adjust periodics after time jump */
1045 for (i = 0; i < periodiccnt; ++i) 1161 for (i = 0; i < periodiccnt; ++i)
1046 { 1162 {
1047 struct ev_periodic *w = periodics [i]; 1163 ev_periodic *w = periodics [i];
1048 1164
1049 if (w->reschedule_cb) 1165 if (w->reschedule_cb)
1050 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1166 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1051 else if (w->interval) 1167 else if (w->interval)
1052 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1168 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1056 for (i = periodiccnt >> 1; i--; ) 1172 for (i = periodiccnt >> 1; i--; )
1057 downheap ((WT *)periodics, periodiccnt, i); 1173 downheap ((WT *)periodics, periodiccnt, i);
1058} 1174}
1059#endif 1175#endif
1060 1176
1061inline int 1177int inline_size
1062time_update_monotonic (EV_P) 1178time_update_monotonic (EV_P)
1063{ 1179{
1064 mn_now = get_clock (); 1180 mn_now = get_clock ();
1065 1181
1066 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1182 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1074 ev_rt_now = ev_time (); 1190 ev_rt_now = ev_time ();
1075 return 1; 1191 return 1;
1076 } 1192 }
1077} 1193}
1078 1194
1079static void 1195void inline_size
1080time_update (EV_P) 1196time_update (EV_P)
1081{ 1197{
1082 int i; 1198 int i;
1083 1199
1084#if EV_USE_MONOTONIC 1200#if EV_USE_MONOTONIC
1086 { 1202 {
1087 if (time_update_monotonic (EV_A)) 1203 if (time_update_monotonic (EV_A))
1088 { 1204 {
1089 ev_tstamp odiff = rtmn_diff; 1205 ev_tstamp odiff = rtmn_diff;
1090 1206
1091 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1207 /* loop a few times, before making important decisions.
1208 * on the choice of "4": one iteration isn't enough,
1209 * in case we get preempted during the calls to
1210 * ev_time and get_clock. a second call is almost guarenteed
1211 * to succeed in that case, though. and looping a few more times
1212 * doesn't hurt either as we only do this on time-jumps or
1213 * in the unlikely event of getting preempted here.
1214 */
1215 for (i = 4; --i; )
1092 { 1216 {
1093 rtmn_diff = ev_rt_now - mn_now; 1217 rtmn_diff = ev_rt_now - mn_now;
1094 1218
1095 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1219 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1096 return; /* all is well */ 1220 return; /* all is well */
1098 ev_rt_now = ev_time (); 1222 ev_rt_now = ev_time ();
1099 mn_now = get_clock (); 1223 mn_now = get_clock ();
1100 now_floor = mn_now; 1224 now_floor = mn_now;
1101 } 1225 }
1102 1226
1103# if EV_PERIODICS 1227# if EV_PERIODIC_ENABLE
1104 periodics_reschedule (EV_A); 1228 periodics_reschedule (EV_A);
1105# endif 1229# endif
1106 /* no timer adjustment, as the monotonic clock doesn't jump */ 1230 /* no timer adjustment, as the monotonic clock doesn't jump */
1107 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1231 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1108 } 1232 }
1112 { 1236 {
1113 ev_rt_now = ev_time (); 1237 ev_rt_now = ev_time ();
1114 1238
1115 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1239 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1116 { 1240 {
1117#if EV_PERIODICS 1241#if EV_PERIODIC_ENABLE
1118 periodics_reschedule (EV_A); 1242 periodics_reschedule (EV_A);
1119#endif 1243#endif
1120 1244
1121 /* adjust timers. this is easy, as the offset is the same for all */ 1245 /* adjust timers. this is easy, as the offset is the same for all */
1122 for (i = 0; i < timercnt; ++i) 1246 for (i = 0; i < timercnt; ++i)
1142static int loop_done; 1266static int loop_done;
1143 1267
1144void 1268void
1145ev_loop (EV_P_ int flags) 1269ev_loop (EV_P_ int flags)
1146{ 1270{
1147 double block;
1148 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1271 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1272 ? EVUNLOOP_ONE
1273 : EVUNLOOP_CANCEL;
1149 1274
1150 do 1275 while (activecnt)
1151 { 1276 {
1152 /* queue check watchers (and execute them) */ 1277 /* queue check watchers (and execute them) */
1153 if (expect_false (preparecnt)) 1278 if (expect_false (preparecnt))
1154 { 1279 {
1155 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1280 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1162 1287
1163 /* update fd-related kernel structures */ 1288 /* update fd-related kernel structures */
1164 fd_reify (EV_A); 1289 fd_reify (EV_A);
1165 1290
1166 /* calculate blocking time */ 1291 /* calculate blocking time */
1292 {
1293 double block;
1167 1294
1168 /* we only need this for !monotonic clock or timers, but as we basically 1295 if (flags & EVLOOP_NONBLOCK || idlecnt)
1169 always have timers, we just calculate it always */ 1296 block = 0.; /* do not block at all */
1297 else
1298 {
1299 /* update time to cancel out callback processing overhead */
1170#if EV_USE_MONOTONIC 1300#if EV_USE_MONOTONIC
1171 if (expect_true (have_monotonic)) 1301 if (expect_true (have_monotonic))
1172 time_update_monotonic (EV_A); 1302 time_update_monotonic (EV_A);
1173 else 1303 else
1174#endif 1304#endif
1175 { 1305 {
1176 ev_rt_now = ev_time (); 1306 ev_rt_now = ev_time ();
1177 mn_now = ev_rt_now; 1307 mn_now = ev_rt_now;
1178 } 1308 }
1179 1309
1180 if (flags & EVLOOP_NONBLOCK || idlecnt)
1181 block = 0.;
1182 else
1183 {
1184 block = MAX_BLOCKTIME; 1310 block = MAX_BLOCKTIME;
1185 1311
1186 if (timercnt) 1312 if (timercnt)
1187 { 1313 {
1188 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1314 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1189 if (block > to) block = to; 1315 if (block > to) block = to;
1190 } 1316 }
1191 1317
1192#if EV_PERIODICS 1318#if EV_PERIODIC_ENABLE
1193 if (periodiccnt) 1319 if (periodiccnt)
1194 { 1320 {
1195 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1321 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1196 if (block > to) block = to; 1322 if (block > to) block = to;
1197 } 1323 }
1198#endif 1324#endif
1199 1325
1200 if (block < 0.) block = 0.; 1326 if (expect_false (block < 0.)) block = 0.;
1201 } 1327 }
1202 1328
1203 method_poll (EV_A_ block); 1329 backend_poll (EV_A_ block);
1330 }
1204 1331
1205 /* update ev_rt_now, do magic */ 1332 /* update ev_rt_now, do magic */
1206 time_update (EV_A); 1333 time_update (EV_A);
1207 1334
1208 /* queue pending timers and reschedule them */ 1335 /* queue pending timers and reschedule them */
1209 timers_reify (EV_A); /* relative timers called last */ 1336 timers_reify (EV_A); /* relative timers called last */
1210#if EV_PERIODICS 1337#if EV_PERIODIC_ENABLE
1211 periodics_reify (EV_A); /* absolute timers called first */ 1338 periodics_reify (EV_A); /* absolute timers called first */
1212#endif 1339#endif
1213 1340
1214 /* queue idle watchers unless io or timers are pending */ 1341 /* queue idle watchers unless other events are pending */
1215 if (idlecnt && !any_pending (EV_A)) 1342 if (idlecnt && !any_pending (EV_A))
1216 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1343 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1217 1344
1218 /* queue check watchers, to be executed first */ 1345 /* queue check watchers, to be executed first */
1219 if (checkcnt) 1346 if (expect_false (checkcnt))
1220 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1347 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1221 1348
1222 call_pending (EV_A); 1349 call_pending (EV_A);
1223 }
1224 while (activecnt && !loop_done);
1225 1350
1226 if (loop_done != 2) 1351 if (expect_false (loop_done))
1227 loop_done = 0; 1352 break;
1353 }
1354
1355 if (loop_done == EVUNLOOP_ONE)
1356 loop_done = EVUNLOOP_CANCEL;
1228} 1357}
1229 1358
1230void 1359void
1231ev_unloop (EV_P_ int how) 1360ev_unloop (EV_P_ int how)
1232{ 1361{
1233 loop_done = how; 1362 loop_done = how;
1234} 1363}
1235 1364
1236/*****************************************************************************/ 1365/*****************************************************************************/
1237 1366
1238inline void 1367void inline_size
1239wlist_add (WL *head, WL elem) 1368wlist_add (WL *head, WL elem)
1240{ 1369{
1241 elem->next = *head; 1370 elem->next = *head;
1242 *head = elem; 1371 *head = elem;
1243} 1372}
1244 1373
1245inline void 1374void inline_size
1246wlist_del (WL *head, WL elem) 1375wlist_del (WL *head, WL elem)
1247{ 1376{
1248 while (*head) 1377 while (*head)
1249 { 1378 {
1250 if (*head == elem) 1379 if (*head == elem)
1255 1384
1256 head = &(*head)->next; 1385 head = &(*head)->next;
1257 } 1386 }
1258} 1387}
1259 1388
1260inline void 1389void inline_speed
1261ev_clear_pending (EV_P_ W w) 1390ev_clear_pending (EV_P_ W w)
1262{ 1391{
1263 if (w->pending) 1392 if (w->pending)
1264 { 1393 {
1265 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1394 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1266 w->pending = 0; 1395 w->pending = 0;
1267 } 1396 }
1268} 1397}
1269 1398
1270inline void 1399void inline_speed
1271ev_start (EV_P_ W w, int active) 1400ev_start (EV_P_ W w, int active)
1272{ 1401{
1273 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1402 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1274 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI; 1403 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1275 1404
1276 w->active = active; 1405 w->active = active;
1277 ev_ref (EV_A); 1406 ev_ref (EV_A);
1278} 1407}
1279 1408
1280inline void 1409void inline_size
1281ev_stop (EV_P_ W w) 1410ev_stop (EV_P_ W w)
1282{ 1411{
1283 ev_unref (EV_A); 1412 ev_unref (EV_A);
1284 w->active = 0; 1413 w->active = 0;
1285} 1414}
1286 1415
1287/*****************************************************************************/ 1416/*****************************************************************************/
1288 1417
1289void 1418void
1290ev_io_start (EV_P_ struct ev_io *w) 1419ev_io_start (EV_P_ ev_io *w)
1291{ 1420{
1292 int fd = w->fd; 1421 int fd = w->fd;
1293 1422
1294 if (ev_is_active (w)) 1423 if (expect_false (ev_is_active (w)))
1295 return; 1424 return;
1296 1425
1297 assert (("ev_io_start called with negative fd", fd >= 0)); 1426 assert (("ev_io_start called with negative fd", fd >= 0));
1298 1427
1299 ev_start (EV_A_ (W)w, 1); 1428 ev_start (EV_A_ (W)w, 1);
1302 1431
1303 fd_change (EV_A_ fd); 1432 fd_change (EV_A_ fd);
1304} 1433}
1305 1434
1306void 1435void
1307ev_io_stop (EV_P_ struct ev_io *w) 1436ev_io_stop (EV_P_ ev_io *w)
1308{ 1437{
1309 ev_clear_pending (EV_A_ (W)w); 1438 ev_clear_pending (EV_A_ (W)w);
1310 if (!ev_is_active (w)) 1439 if (expect_false (!ev_is_active (w)))
1311 return; 1440 return;
1312 1441
1313 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1442 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1314 1443
1315 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1444 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1317 1446
1318 fd_change (EV_A_ w->fd); 1447 fd_change (EV_A_ w->fd);
1319} 1448}
1320 1449
1321void 1450void
1322ev_timer_start (EV_P_ struct ev_timer *w) 1451ev_timer_start (EV_P_ ev_timer *w)
1323{ 1452{
1324 if (ev_is_active (w)) 1453 if (expect_false (ev_is_active (w)))
1325 return; 1454 return;
1326 1455
1327 ((WT)w)->at += mn_now; 1456 ((WT)w)->at += mn_now;
1328 1457
1329 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1458 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1330 1459
1331 ev_start (EV_A_ (W)w, ++timercnt); 1460 ev_start (EV_A_ (W)w, ++timercnt);
1332 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 1461 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1333 timers [timercnt - 1] = w; 1462 timers [timercnt - 1] = w;
1334 upheap ((WT *)timers, timercnt - 1); 1463 upheap ((WT *)timers, timercnt - 1);
1335 1464
1336 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1465 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1337} 1466}
1338 1467
1339void 1468void
1340ev_timer_stop (EV_P_ struct ev_timer *w) 1469ev_timer_stop (EV_P_ ev_timer *w)
1341{ 1470{
1342 ev_clear_pending (EV_A_ (W)w); 1471 ev_clear_pending (EV_A_ (W)w);
1343 if (!ev_is_active (w)) 1472 if (expect_false (!ev_is_active (w)))
1344 return; 1473 return;
1345 1474
1346 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1475 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1347 1476
1348 if (((W)w)->active < timercnt--) 1477 if (expect_true (((W)w)->active < timercnt--))
1349 { 1478 {
1350 timers [((W)w)->active - 1] = timers [timercnt]; 1479 timers [((W)w)->active - 1] = timers [timercnt];
1351 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1480 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1352 } 1481 }
1353 1482
1354 ((WT)w)->at -= mn_now; 1483 ((WT)w)->at -= mn_now;
1355 1484
1356 ev_stop (EV_A_ (W)w); 1485 ev_stop (EV_A_ (W)w);
1357} 1486}
1358 1487
1359void 1488void
1360ev_timer_again (EV_P_ struct ev_timer *w) 1489ev_timer_again (EV_P_ ev_timer *w)
1361{ 1490{
1362 if (ev_is_active (w)) 1491 if (ev_is_active (w))
1363 { 1492 {
1364 if (w->repeat) 1493 if (w->repeat)
1494 {
1495 ((WT)w)->at = mn_now + w->repeat;
1365 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat); 1496 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1497 }
1366 else 1498 else
1367 ev_timer_stop (EV_A_ w); 1499 ev_timer_stop (EV_A_ w);
1368 } 1500 }
1369 else if (w->repeat) 1501 else if (w->repeat)
1502 {
1503 w->at = w->repeat;
1370 ev_timer_start (EV_A_ w); 1504 ev_timer_start (EV_A_ w);
1505 }
1371} 1506}
1372 1507
1373#if EV_PERIODICS 1508#if EV_PERIODIC_ENABLE
1374void 1509void
1375ev_periodic_start (EV_P_ struct ev_periodic *w) 1510ev_periodic_start (EV_P_ ev_periodic *w)
1376{ 1511{
1377 if (ev_is_active (w)) 1512 if (expect_false (ev_is_active (w)))
1378 return; 1513 return;
1379 1514
1380 if (w->reschedule_cb) 1515 if (w->reschedule_cb)
1381 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1516 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1382 else if (w->interval) 1517 else if (w->interval)
1385 /* this formula differs from the one in periodic_reify because we do not always round up */ 1520 /* this formula differs from the one in periodic_reify because we do not always round up */
1386 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1521 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1387 } 1522 }
1388 1523
1389 ev_start (EV_A_ (W)w, ++periodiccnt); 1524 ev_start (EV_A_ (W)w, ++periodiccnt);
1390 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1525 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1391 periodics [periodiccnt - 1] = w; 1526 periodics [periodiccnt - 1] = w;
1392 upheap ((WT *)periodics, periodiccnt - 1); 1527 upheap ((WT *)periodics, periodiccnt - 1);
1393 1528
1394 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1529 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1395} 1530}
1396 1531
1397void 1532void
1398ev_periodic_stop (EV_P_ struct ev_periodic *w) 1533ev_periodic_stop (EV_P_ ev_periodic *w)
1399{ 1534{
1400 ev_clear_pending (EV_A_ (W)w); 1535 ev_clear_pending (EV_A_ (W)w);
1401 if (!ev_is_active (w)) 1536 if (expect_false (!ev_is_active (w)))
1402 return; 1537 return;
1403 1538
1404 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1539 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1405 1540
1406 if (((W)w)->active < periodiccnt--) 1541 if (expect_true (((W)w)->active < periodiccnt--))
1407 { 1542 {
1408 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1543 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1409 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1544 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1410 } 1545 }
1411 1546
1412 ev_stop (EV_A_ (W)w); 1547 ev_stop (EV_A_ (W)w);
1413} 1548}
1414 1549
1415void 1550void
1416ev_periodic_again (EV_P_ struct ev_periodic *w) 1551ev_periodic_again (EV_P_ ev_periodic *w)
1417{ 1552{
1418 /* TODO: use adjustheap and recalculation */ 1553 /* TODO: use adjustheap and recalculation */
1419 ev_periodic_stop (EV_A_ w); 1554 ev_periodic_stop (EV_A_ w);
1420 ev_periodic_start (EV_A_ w); 1555 ev_periodic_start (EV_A_ w);
1421} 1556}
1422#endif 1557#endif
1423 1558
1424void 1559void
1425ev_idle_start (EV_P_ struct ev_idle *w) 1560ev_idle_start (EV_P_ ev_idle *w)
1426{ 1561{
1427 if (ev_is_active (w)) 1562 if (expect_false (ev_is_active (w)))
1428 return; 1563 return;
1429 1564
1430 ev_start (EV_A_ (W)w, ++idlecnt); 1565 ev_start (EV_A_ (W)w, ++idlecnt);
1431 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void)); 1566 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1432 idles [idlecnt - 1] = w; 1567 idles [idlecnt - 1] = w;
1433} 1568}
1434 1569
1435void 1570void
1436ev_idle_stop (EV_P_ struct ev_idle *w) 1571ev_idle_stop (EV_P_ ev_idle *w)
1437{ 1572{
1438 ev_clear_pending (EV_A_ (W)w); 1573 ev_clear_pending (EV_A_ (W)w);
1439 if (ev_is_active (w)) 1574 if (expect_false (!ev_is_active (w)))
1440 return; 1575 return;
1441 1576
1577 {
1578 int active = ((W)w)->active;
1442 idles [((W)w)->active - 1] = idles [--idlecnt]; 1579 idles [active - 1] = idles [--idlecnt];
1580 ((W)idles [active - 1])->active = active;
1581 }
1582
1443 ev_stop (EV_A_ (W)w); 1583 ev_stop (EV_A_ (W)w);
1444} 1584}
1445 1585
1446void 1586void
1447ev_prepare_start (EV_P_ struct ev_prepare *w) 1587ev_prepare_start (EV_P_ ev_prepare *w)
1448{ 1588{
1449 if (ev_is_active (w)) 1589 if (expect_false (ev_is_active (w)))
1450 return; 1590 return;
1451 1591
1452 ev_start (EV_A_ (W)w, ++preparecnt); 1592 ev_start (EV_A_ (W)w, ++preparecnt);
1453 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void)); 1593 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1454 prepares [preparecnt - 1] = w; 1594 prepares [preparecnt - 1] = w;
1455} 1595}
1456 1596
1457void 1597void
1458ev_prepare_stop (EV_P_ struct ev_prepare *w) 1598ev_prepare_stop (EV_P_ ev_prepare *w)
1459{ 1599{
1460 ev_clear_pending (EV_A_ (W)w); 1600 ev_clear_pending (EV_A_ (W)w);
1461 if (ev_is_active (w)) 1601 if (expect_false (!ev_is_active (w)))
1462 return; 1602 return;
1463 1603
1604 {
1605 int active = ((W)w)->active;
1464 prepares [((W)w)->active - 1] = prepares [--preparecnt]; 1606 prepares [active - 1] = prepares [--preparecnt];
1607 ((W)prepares [active - 1])->active = active;
1608 }
1609
1465 ev_stop (EV_A_ (W)w); 1610 ev_stop (EV_A_ (W)w);
1466} 1611}
1467 1612
1468void 1613void
1469ev_check_start (EV_P_ struct ev_check *w) 1614ev_check_start (EV_P_ ev_check *w)
1470{ 1615{
1471 if (ev_is_active (w)) 1616 if (expect_false (ev_is_active (w)))
1472 return; 1617 return;
1473 1618
1474 ev_start (EV_A_ (W)w, ++checkcnt); 1619 ev_start (EV_A_ (W)w, ++checkcnt);
1475 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void)); 1620 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1476 checks [checkcnt - 1] = w; 1621 checks [checkcnt - 1] = w;
1477} 1622}
1478 1623
1479void 1624void
1480ev_check_stop (EV_P_ struct ev_check *w) 1625ev_check_stop (EV_P_ ev_check *w)
1481{ 1626{
1482 ev_clear_pending (EV_A_ (W)w); 1627 ev_clear_pending (EV_A_ (W)w);
1483 if (!ev_is_active (w)) 1628 if (expect_false (!ev_is_active (w)))
1484 return; 1629 return;
1485 1630
1631 {
1632 int active = ((W)w)->active;
1486 checks [((W)w)->active - 1] = checks [--checkcnt]; 1633 checks [active - 1] = checks [--checkcnt];
1634 ((W)checks [active - 1])->active = active;
1635 }
1636
1487 ev_stop (EV_A_ (W)w); 1637 ev_stop (EV_A_ (W)w);
1488} 1638}
1489 1639
1490#ifndef SA_RESTART 1640#ifndef SA_RESTART
1491# define SA_RESTART 0 1641# define SA_RESTART 0
1492#endif 1642#endif
1493 1643
1494void 1644void
1495ev_signal_start (EV_P_ struct ev_signal *w) 1645ev_signal_start (EV_P_ ev_signal *w)
1496{ 1646{
1497#if EV_MULTIPLICITY 1647#if EV_MULTIPLICITY
1498 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1648 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1499#endif 1649#endif
1500 if (ev_is_active (w)) 1650 if (expect_false (ev_is_active (w)))
1501 return; 1651 return;
1502 1652
1503 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1653 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1504 1654
1505 ev_start (EV_A_ (W)w, 1); 1655 ev_start (EV_A_ (W)w, 1);
1506 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 1656 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1507 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1657 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1508 1658
1509 if (!((WL)w)->next) 1659 if (!((WL)w)->next)
1510 { 1660 {
1511#if WIN32 1661#if _WIN32
1512 signal (w->signum, sighandler); 1662 signal (w->signum, sighandler);
1513#else 1663#else
1514 struct sigaction sa; 1664 struct sigaction sa;
1515 sa.sa_handler = sighandler; 1665 sa.sa_handler = sighandler;
1516 sigfillset (&sa.sa_mask); 1666 sigfillset (&sa.sa_mask);
1519#endif 1669#endif
1520 } 1670 }
1521} 1671}
1522 1672
1523void 1673void
1524ev_signal_stop (EV_P_ struct ev_signal *w) 1674ev_signal_stop (EV_P_ ev_signal *w)
1525{ 1675{
1526 ev_clear_pending (EV_A_ (W)w); 1676 ev_clear_pending (EV_A_ (W)w);
1527 if (!ev_is_active (w)) 1677 if (expect_false (!ev_is_active (w)))
1528 return; 1678 return;
1529 1679
1530 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1680 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1531 ev_stop (EV_A_ (W)w); 1681 ev_stop (EV_A_ (W)w);
1532 1682
1533 if (!signals [w->signum - 1].head) 1683 if (!signals [w->signum - 1].head)
1534 signal (w->signum, SIG_DFL); 1684 signal (w->signum, SIG_DFL);
1535} 1685}
1536 1686
1537void 1687void
1538ev_child_start (EV_P_ struct ev_child *w) 1688ev_child_start (EV_P_ ev_child *w)
1539{ 1689{
1540#if EV_MULTIPLICITY 1690#if EV_MULTIPLICITY
1541 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1691 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1542#endif 1692#endif
1543 if (ev_is_active (w)) 1693 if (expect_false (ev_is_active (w)))
1544 return; 1694 return;
1545 1695
1546 ev_start (EV_A_ (W)w, 1); 1696 ev_start (EV_A_ (W)w, 1);
1547 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1697 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1548} 1698}
1549 1699
1550void 1700void
1551ev_child_stop (EV_P_ struct ev_child *w) 1701ev_child_stop (EV_P_ ev_child *w)
1552{ 1702{
1553 ev_clear_pending (EV_A_ (W)w); 1703 ev_clear_pending (EV_A_ (W)w);
1554 if (!ev_is_active (w)) 1704 if (expect_false (!ev_is_active (w)))
1555 return; 1705 return;
1556 1706
1557 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1707 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1558 ev_stop (EV_A_ (W)w); 1708 ev_stop (EV_A_ (W)w);
1559} 1709}
1560 1710
1711#if EV_EMBED_ENABLE
1712void noinline
1713ev_embed_sweep (EV_P_ ev_embed *w)
1714{
1715 ev_loop (w->loop, EVLOOP_NONBLOCK);
1716}
1717
1718static void
1719embed_cb (EV_P_ ev_io *io, int revents)
1720{
1721 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1722
1723 if (ev_cb (w))
1724 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1725 else
1726 ev_embed_sweep (loop, w);
1727}
1728
1729void
1730ev_embed_start (EV_P_ ev_embed *w)
1731{
1732 if (expect_false (ev_is_active (w)))
1733 return;
1734
1735 {
1736 struct ev_loop *loop = w->loop;
1737 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1738 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1739 }
1740
1741 ev_set_priority (&w->io, ev_priority (w));
1742 ev_io_start (EV_A_ &w->io);
1743
1744 ev_start (EV_A_ (W)w, 1);
1745}
1746
1747void
1748ev_embed_stop (EV_P_ ev_embed *w)
1749{
1750 ev_clear_pending (EV_A_ (W)w);
1751 if (expect_false (!ev_is_active (w)))
1752 return;
1753
1754 ev_io_stop (EV_A_ &w->io);
1755
1756 ev_stop (EV_A_ (W)w);
1757}
1758#endif
1759
1760#if EV_STAT_ENABLE
1761
1762# ifdef _WIN32
1763# define lstat(a,b) stat(a,b)
1764# endif
1765
1766void
1767ev_stat_stat (EV_P_ ev_stat *w)
1768{
1769 if (lstat (w->path, &w->attr) < 0)
1770 w->attr.st_nlink = 0;
1771 else if (!w->attr.st_nlink)
1772 w->attr.st_nlink = 1;
1773}
1774
1775static void
1776stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1777{
1778 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1779
1780 /* we copy this here each the time so that */
1781 /* prev has the old value when the callback gets invoked */
1782 w->prev = w->attr;
1783 ev_stat_stat (EV_A_ w);
1784
1785 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata)))
1786 ev_feed_event (EV_A_ w, EV_STAT);
1787}
1788
1789void
1790ev_stat_start (EV_P_ ev_stat *w)
1791{
1792 if (expect_false (ev_is_active (w)))
1793 return;
1794
1795 /* since we use memcmp, we need to clear any padding data etc. */
1796 memset (&w->prev, 0, sizeof (ev_statdata));
1797 memset (&w->attr, 0, sizeof (ev_statdata));
1798
1799 ev_stat_stat (EV_A_ w);
1800
1801 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1802 ev_set_priority (&w->timer, ev_priority (w));
1803 ev_timer_start (EV_A_ &w->timer);
1804
1805 ev_start (EV_A_ (W)w, 1);
1806}
1807
1808void
1809ev_stat_stop (EV_P_ ev_stat *w)
1810{
1811 ev_clear_pending (EV_A_ (W)w);
1812 if (expect_false (!ev_is_active (w)))
1813 return;
1814
1815 ev_timer_stop (EV_A_ &w->timer);
1816
1817 ev_stop (EV_A_ (W)w);
1818}
1819#endif
1820
1561/*****************************************************************************/ 1821/*****************************************************************************/
1562 1822
1563struct ev_once 1823struct ev_once
1564{ 1824{
1565 struct ev_io io; 1825 ev_io io;
1566 struct ev_timer to; 1826 ev_timer to;
1567 void (*cb)(int revents, void *arg); 1827 void (*cb)(int revents, void *arg);
1568 void *arg; 1828 void *arg;
1569}; 1829};
1570 1830
1571static void 1831static void
1580 1840
1581 cb (revents, arg); 1841 cb (revents, arg);
1582} 1842}
1583 1843
1584static void 1844static void
1585once_cb_io (EV_P_ struct ev_io *w, int revents) 1845once_cb_io (EV_P_ ev_io *w, int revents)
1586{ 1846{
1587 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1847 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1588} 1848}
1589 1849
1590static void 1850static void
1591once_cb_to (EV_P_ struct ev_timer *w, int revents) 1851once_cb_to (EV_P_ ev_timer *w, int revents)
1592{ 1852{
1593 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1853 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1594} 1854}
1595 1855
1596void 1856void
1597ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1857ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1598{ 1858{
1599 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 1859 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1600 1860
1601 if (!once) 1861 if (expect_false (!once))
1862 {
1602 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1863 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1603 else 1864 return;
1604 { 1865 }
1866
1605 once->cb = cb; 1867 once->cb = cb;
1606 once->arg = arg; 1868 once->arg = arg;
1607 1869
1608 ev_init (&once->io, once_cb_io); 1870 ev_init (&once->io, once_cb_io);
1609 if (fd >= 0) 1871 if (fd >= 0)
1610 { 1872 {
1611 ev_io_set (&once->io, fd, events); 1873 ev_io_set (&once->io, fd, events);
1612 ev_io_start (EV_A_ &once->io); 1874 ev_io_start (EV_A_ &once->io);
1613 } 1875 }
1614 1876
1615 ev_init (&once->to, once_cb_to); 1877 ev_init (&once->to, once_cb_to);
1616 if (timeout >= 0.) 1878 if (timeout >= 0.)
1617 { 1879 {
1618 ev_timer_set (&once->to, timeout, 0.); 1880 ev_timer_set (&once->to, timeout, 0.);
1619 ev_timer_start (EV_A_ &once->to); 1881 ev_timer_start (EV_A_ &once->to);
1620 }
1621 } 1882 }
1622} 1883}
1623 1884
1624#ifdef __cplusplus 1885#ifdef __cplusplus
1625} 1886}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines