ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.52 by root, Sat Nov 3 22:10:39 2007 UTC vs.
Revision 1.95 by root, Sun Nov 11 01:42:13 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
38
39# if HAVE_CLOCK_GETTIME
40# define EV_USE_MONOTONIC 1
41# define EV_USE_REALTIME 1
42# endif
43
44# if HAVE_SELECT && HAVE_SYS_SELECT_H
45# define EV_USE_SELECT 1
46# endif
47
48# if HAVE_POLL && HAVE_POLL_H
49# define EV_USE_POLL 1
50# endif
51
52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
53# define EV_USE_EPOLL 1
54# endif
55
56# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
57# define EV_USE_KQUEUE 1
58# endif
59
33#endif 60#endif
34 61
35#include <math.h> 62#include <math.h>
36#include <stdlib.h> 63#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 64#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 65#include <stddef.h>
41 66
42#include <stdio.h> 67#include <stdio.h>
43 68
44#include <assert.h> 69#include <assert.h>
45#include <errno.h> 70#include <errno.h>
46#include <sys/types.h> 71#include <sys/types.h>
72#include <time.h>
73
74#include <signal.h>
75
47#ifndef WIN32 76#ifndef WIN32
77# include <unistd.h>
78# include <sys/time.h>
48# include <sys/wait.h> 79# include <sys/wait.h>
49#endif 80#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 81/**/
54 82
55#ifndef EV_USE_MONOTONIC 83#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 84# define EV_USE_MONOTONIC 1
57#endif 85#endif
58 86
59#ifndef EV_USE_SELECT 87#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 88# define EV_USE_SELECT 1
61#endif 89#endif
62 90
63#ifndef EV_USEV_POLL 91#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 92# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif 93#endif
66 94
67#ifndef EV_USE_EPOLL 95#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 96# define EV_USE_EPOLL 0
69#endif 97#endif
70 98
71#ifndef EV_USE_KQUEUE 99#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 100# define EV_USE_KQUEUE 0
101#endif
102
103#ifndef EV_USE_WIN32
104# ifdef WIN32
105# define EV_USE_WIN32 0 /* it does not exist, use select */
106# undef EV_USE_SELECT
107# define EV_USE_SELECT 1
108# else
109# define EV_USE_WIN32 0
110# endif
73#endif 111#endif
74 112
75#ifndef EV_USE_REALTIME 113#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 114# define EV_USE_REALTIME 1
77#endif 115#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 135
136#ifdef EV_H
137# include EV_H
138#else
98#include "ev.h" 139# include "ev.h"
140#endif
99 141
100#if __GNUC__ >= 3 142#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value)) 143# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 144# define inline inline
103#else 145#else
113 155
114typedef struct ev_watcher *W; 156typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 157typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 158typedef struct ev_watcher_time *WT;
117 159
118static ev_tstamp now_floor, mn_now, diff; /* monotonic clock */ 160static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119static ev_tstamp rt_now;
120static int method;
121 161
122static int have_monotonic; /* runtime */ 162#include "ev_win32.c"
123
124static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
125static void (*method_modify)(EV_P_ int fd, int oev, int nev);
126static void (*method_poll)(EV_P_ ev_tstamp timeout);
127
128static int activecnt; /* number of active events */
129
130#if EV_USE_SELECT
131static unsigned char *vec_ri, *vec_ro, *vec_wi, *vec_wo;
132static int vec_max;
133#endif
134
135#if EV_USEV_POLL
136static struct pollfd *polls;
137static int pollmax, pollcnt;
138static int *pollidxs; /* maps fds into structure indices */
139static int pollidxmax;
140#endif
141
142#if EV_USE_EPOLL
143static int epoll_fd = -1;
144
145static struct epoll_event *events;
146static int eventmax;
147#endif
148
149#if EV_USE_KQUEUE
150static int kqueue_fd;
151static struct kevent *kqueue_changes;
152static int kqueue_changemax, kqueue_changecnt;
153static struct kevent *kqueue_events;
154static int kqueue_eventmax;
155#endif
156 163
157/*****************************************************************************/ 164/*****************************************************************************/
158 165
159inline ev_tstamp 166static void (*syserr_cb)(const char *msg);
167
168void ev_set_syserr_cb (void (*cb)(const char *msg))
169{
170 syserr_cb = cb;
171}
172
173static void
174syserr (const char *msg)
175{
176 if (!msg)
177 msg = "(libev) system error";
178
179 if (syserr_cb)
180 syserr_cb (msg);
181 else
182 {
183 perror (msg);
184 abort ();
185 }
186}
187
188static void *(*alloc)(void *ptr, long size);
189
190void ev_set_allocator (void *(*cb)(void *ptr, long size))
191{
192 alloc = cb;
193}
194
195static void *
196ev_realloc (void *ptr, long size)
197{
198 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
199
200 if (!ptr && size)
201 {
202 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
203 abort ();
204 }
205
206 return ptr;
207}
208
209#define ev_malloc(size) ev_realloc (0, (size))
210#define ev_free(ptr) ev_realloc ((ptr), 0)
211
212/*****************************************************************************/
213
214typedef struct
215{
216 WL head;
217 unsigned char events;
218 unsigned char reify;
219} ANFD;
220
221typedef struct
222{
223 W w;
224 int events;
225} ANPENDING;
226
227#if EV_MULTIPLICITY
228
229 struct ev_loop
230 {
231 ev_tstamp ev_rt_now;
232 #define VAR(name,decl) decl;
233 #include "ev_vars.h"
234 #undef VAR
235 };
236 #include "ev_wrap.h"
237
238 struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop;
240
241#else
242
243 ev_tstamp ev_rt_now;
244 #define VAR(name,decl) static decl;
245 #include "ev_vars.h"
246 #undef VAR
247
248 static int default_loop;
249
250#endif
251
252/*****************************************************************************/
253
254ev_tstamp
160ev_time (void) 255ev_time (void)
161{ 256{
162#if EV_USE_REALTIME 257#if EV_USE_REALTIME
163 struct timespec ts; 258 struct timespec ts;
164 clock_gettime (CLOCK_REALTIME, &ts); 259 clock_gettime (CLOCK_REALTIME, &ts);
183#endif 278#endif
184 279
185 return ev_time (); 280 return ev_time ();
186} 281}
187 282
283#if EV_MULTIPLICITY
188ev_tstamp 284ev_tstamp
189ev_now (EV_P) 285ev_now (EV_P)
190{ 286{
191 return rt_now; 287 return ev_rt_now;
192} 288}
289#endif
193 290
194#define array_roundsize(base,n) ((n) | 4 & ~3) 291#define array_roundsize(type,n) ((n) | 4 & ~3)
195 292
196#define array_needsize(base,cur,cnt,init) \ 293#define array_needsize(type,base,cur,cnt,init) \
197 if (expect_false ((cnt) > cur)) \ 294 if (expect_false ((cnt) > cur)) \
198 { \ 295 { \
199 int newcnt = cur; \ 296 int newcnt = cur; \
200 do \ 297 do \
201 { \ 298 { \
202 newcnt = array_roundsize (base, newcnt << 1); \ 299 newcnt = array_roundsize (type, newcnt << 1); \
203 } \ 300 } \
204 while ((cnt) > newcnt); \ 301 while ((cnt) > newcnt); \
205 \ 302 \
206 base = realloc (base, sizeof (*base) * (newcnt)); \ 303 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
207 init (base + cur, newcnt - cur); \ 304 init (base + cur, newcnt - cur); \
208 cur = newcnt; \ 305 cur = newcnt; \
209 } 306 }
307
308#define array_slim(type,stem) \
309 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
310 { \
311 stem ## max = array_roundsize (stem ## cnt >> 1); \
312 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
313 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
314 }
315
316/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
317/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
318#define array_free_microshit(stem) \
319 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
320
321#define array_free(stem, idx) \
322 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
210 323
211/*****************************************************************************/ 324/*****************************************************************************/
212
213typedef struct
214{
215 struct ev_watcher_list *head;
216 unsigned char events;
217 unsigned char reify;
218} ANFD;
219
220static ANFD *anfds;
221static int anfdmax;
222 325
223static void 326static void
224anfds_init (ANFD *base, int count) 327anfds_init (ANFD *base, int count)
225{ 328{
226 while (count--) 329 while (count--)
231 334
232 ++base; 335 ++base;
233 } 336 }
234} 337}
235 338
236typedef struct 339void
237{
238 W w;
239 int events;
240} ANPENDING;
241
242static ANPENDING *pendings [NUMPRI];
243static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
244
245static void
246event (EV_P_ W w, int events) 340ev_feed_event (EV_P_ void *w, int revents)
247{ 341{
342 W w_ = (W)w;
343
248 if (w->pending) 344 if (w_->pending)
249 { 345 {
250 pendings [ABSPRI (w)][w->pending - 1].events |= events; 346 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
251 return; 347 return;
252 } 348 }
253 349
254 w->pending = ++pendingcnt [ABSPRI (w)]; 350 w_->pending = ++pendingcnt [ABSPRI (w_)];
255 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 351 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
256 pendings [ABSPRI (w)][w->pending - 1].w = w; 352 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
257 pendings [ABSPRI (w)][w->pending - 1].events = events; 353 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
258} 354}
259 355
260static void 356static void
261queue_events (EV_P_ W *events, int eventcnt, int type) 357queue_events (EV_P_ W *events, int eventcnt, int type)
262{ 358{
263 int i; 359 int i;
264 360
265 for (i = 0; i < eventcnt; ++i) 361 for (i = 0; i < eventcnt; ++i)
266 event (EV_A_ events [i], type); 362 ev_feed_event (EV_A_ events [i], type);
267} 363}
268 364
269static void 365inline void
270fd_event (EV_P_ int fd, int events) 366fd_event (EV_P_ int fd, int revents)
271{ 367{
272 ANFD *anfd = anfds + fd; 368 ANFD *anfd = anfds + fd;
273 struct ev_io *w; 369 struct ev_io *w;
274 370
275 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
276 { 372 {
277 int ev = w->events & events; 373 int ev = w->events & revents;
278 374
279 if (ev) 375 if (ev)
280 event (EV_A_ (W)w, ev); 376 ev_feed_event (EV_A_ (W)w, ev);
281 } 377 }
378}
379
380void
381ev_feed_fd_event (EV_P_ int fd, int revents)
382{
383 fd_event (EV_A_ fd, revents);
282} 384}
283 385
284/*****************************************************************************/ 386/*****************************************************************************/
285
286static int *fdchanges;
287static int fdchangemax, fdchangecnt;
288 387
289static void 388static void
290fd_reify (EV_P) 389fd_reify (EV_P)
291{ 390{
292 int i; 391 int i;
302 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 401 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
303 events |= w->events; 402 events |= w->events;
304 403
305 anfd->reify = 0; 404 anfd->reify = 0;
306 405
307 if (anfd->events != events)
308 {
309 method_modify (EV_A_ fd, anfd->events, events); 406 method_modify (EV_A_ fd, anfd->events, events);
310 anfd->events = events; 407 anfd->events = events;
311 }
312 } 408 }
313 409
314 fdchangecnt = 0; 410 fdchangecnt = 0;
315} 411}
316 412
317static void 413static void
318fd_change (EV_P_ int fd) 414fd_change (EV_P_ int fd)
319{ 415{
320 if (anfds [fd].reify || fdchangecnt < 0) 416 if (anfds [fd].reify)
321 return; 417 return;
322 418
323 anfds [fd].reify = 1; 419 anfds [fd].reify = 1;
324 420
325 ++fdchangecnt; 421 ++fdchangecnt;
326 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 422 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
327 fdchanges [fdchangecnt - 1] = fd; 423 fdchanges [fdchangecnt - 1] = fd;
328} 424}
329 425
330static void 426static void
331fd_kill (EV_P_ int fd) 427fd_kill (EV_P_ int fd)
333 struct ev_io *w; 429 struct ev_io *w;
334 430
335 while ((w = (struct ev_io *)anfds [fd].head)) 431 while ((w = (struct ev_io *)anfds [fd].head))
336 { 432 {
337 ev_io_stop (EV_A_ w); 433 ev_io_stop (EV_A_ w);
338 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 434 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
339 } 435 }
436}
437
438static int
439fd_valid (int fd)
440{
441#ifdef WIN32
442 return !!win32_get_osfhandle (fd);
443#else
444 return fcntl (fd, F_GETFD) != -1;
445#endif
340} 446}
341 447
342/* called on EBADF to verify fds */ 448/* called on EBADF to verify fds */
343static void 449static void
344fd_ebadf (EV_P) 450fd_ebadf (EV_P)
345{ 451{
346 int fd; 452 int fd;
347 453
348 for (fd = 0; fd < anfdmax; ++fd) 454 for (fd = 0; fd < anfdmax; ++fd)
349 if (anfds [fd].events) 455 if (anfds [fd].events)
350 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 456 if (!fd_valid (fd) == -1 && errno == EBADF)
351 fd_kill (EV_A_ fd); 457 fd_kill (EV_A_ fd);
352} 458}
353 459
354/* called on ENOMEM in select/poll to kill some fds and retry */ 460/* called on ENOMEM in select/poll to kill some fds and retry */
355static void 461static void
356fd_enomem (EV_P) 462fd_enomem (EV_P)
357{ 463{
358 int fd = anfdmax; 464 int fd;
359 465
360 while (fd--) 466 for (fd = anfdmax; fd--; )
361 if (anfds [fd].events) 467 if (anfds [fd].events)
362 { 468 {
363 close (fd);
364 fd_kill (EV_A_ fd); 469 fd_kill (EV_A_ fd);
365 return; 470 return;
366 } 471 }
367} 472}
368 473
474/* usually called after fork if method needs to re-arm all fds from scratch */
475static void
476fd_rearm_all (EV_P)
477{
478 int fd;
479
480 /* this should be highly optimised to not do anything but set a flag */
481 for (fd = 0; fd < anfdmax; ++fd)
482 if (anfds [fd].events)
483 {
484 anfds [fd].events = 0;
485 fd_change (EV_A_ fd);
486 }
487}
488
369/*****************************************************************************/ 489/*****************************************************************************/
370 490
371static struct ev_timer **timers;
372static int timermax, timercnt;
373
374static struct ev_periodic **periodics;
375static int periodicmax, periodiccnt;
376
377static void 491static void
378upheap (WT *timers, int k) 492upheap (WT *heap, int k)
379{ 493{
380 WT w = timers [k]; 494 WT w = heap [k];
381 495
382 while (k && timers [k >> 1]->at > w->at) 496 while (k && heap [k >> 1]->at > w->at)
383 { 497 {
384 timers [k] = timers [k >> 1]; 498 heap [k] = heap [k >> 1];
385 timers [k]->active = k + 1; 499 ((W)heap [k])->active = k + 1;
386 k >>= 1; 500 k >>= 1;
387 } 501 }
388 502
389 timers [k] = w; 503 heap [k] = w;
390 timers [k]->active = k + 1; 504 ((W)heap [k])->active = k + 1;
391 505
392} 506}
393 507
394static void 508static void
395downheap (WT *timers, int N, int k) 509downheap (WT *heap, int N, int k)
396{ 510{
397 WT w = timers [k]; 511 WT w = heap [k];
398 512
399 while (k < (N >> 1)) 513 while (k < (N >> 1))
400 { 514 {
401 int j = k << 1; 515 int j = k << 1;
402 516
403 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 517 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
404 ++j; 518 ++j;
405 519
406 if (w->at <= timers [j]->at) 520 if (w->at <= heap [j]->at)
407 break; 521 break;
408 522
409 timers [k] = timers [j]; 523 heap [k] = heap [j];
410 timers [k]->active = k + 1; 524 ((W)heap [k])->active = k + 1;
411 k = j; 525 k = j;
412 } 526 }
413 527
414 timers [k] = w; 528 heap [k] = w;
415 timers [k]->active = k + 1; 529 ((W)heap [k])->active = k + 1;
530}
531
532inline void
533adjustheap (WT *heap, int N, int k, ev_tstamp at)
534{
535 ev_tstamp old_at = heap [k]->at;
536 heap [k]->at = at;
537
538 if (old_at < at)
539 downheap (heap, N, k);
540 else
541 upheap (heap, k);
416} 542}
417 543
418/*****************************************************************************/ 544/*****************************************************************************/
419 545
420typedef struct 546typedef struct
421{ 547{
422 struct ev_watcher_list *head; 548 WL head;
423 sig_atomic_t volatile gotsig; 549 sig_atomic_t volatile gotsig;
424} ANSIG; 550} ANSIG;
425 551
426static ANSIG *signals; 552static ANSIG *signals;
427static int signalmax; 553static int signalmax;
443} 569}
444 570
445static void 571static void
446sighandler (int signum) 572sighandler (int signum)
447{ 573{
574#if WIN32
575 signal (signum, sighandler);
576#endif
577
448 signals [signum - 1].gotsig = 1; 578 signals [signum - 1].gotsig = 1;
449 579
450 if (!gotsig) 580 if (!gotsig)
451 { 581 {
452 int old_errno = errno; 582 int old_errno = errno;
453 gotsig = 1; 583 gotsig = 1;
584#ifdef WIN32
585 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
586#else
454 write (sigpipe [1], &signum, 1); 587 write (sigpipe [1], &signum, 1);
588#endif
455 errno = old_errno; 589 errno = old_errno;
456 } 590 }
457} 591}
458 592
593void
594ev_feed_signal_event (EV_P_ int signum)
595{
596 WL w;
597
598#if EV_MULTIPLICITY
599 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
600#endif
601
602 --signum;
603
604 if (signum < 0 || signum >= signalmax)
605 return;
606
607 signals [signum].gotsig = 0;
608
609 for (w = signals [signum].head; w; w = w->next)
610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
611}
612
459static void 613static void
460sigcb (EV_P_ struct ev_io *iow, int revents) 614sigcb (EV_P_ struct ev_io *iow, int revents)
461{ 615{
462 struct ev_watcher_list *w;
463 int signum; 616 int signum;
464 617
618#ifdef WIN32
619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
620#else
465 read (sigpipe [0], &revents, 1); 621 read (sigpipe [0], &revents, 1);
622#endif
466 gotsig = 0; 623 gotsig = 0;
467 624
468 for (signum = signalmax; signum--; ) 625 for (signum = signalmax; signum--; )
469 if (signals [signum].gotsig) 626 if (signals [signum].gotsig)
470 { 627 ev_feed_signal_event (EV_A_ signum + 1);
471 signals [signum].gotsig = 0;
472
473 for (w = signals [signum].head; w; w = w->next)
474 event (EV_A_ (W)w, EV_SIGNAL);
475 }
476} 628}
477 629
478static void 630static void
479siginit (EV_P) 631siginit (EV_P)
480{ 632{
486 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 638 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
487 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 639 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
488#endif 640#endif
489 641
490 ev_io_set (&sigev, sigpipe [0], EV_READ); 642 ev_io_set (&sigev, sigpipe [0], EV_READ);
491 ev_io_start (&sigev); 643 ev_io_start (EV_A_ &sigev);
492 ev_unref (EV_A); /* child watcher should not keep loop alive */ 644 ev_unref (EV_A); /* child watcher should not keep loop alive */
493} 645}
494 646
495/*****************************************************************************/ 647/*****************************************************************************/
496 648
497static struct ev_idle **idles;
498static int idlemax, idlecnt;
499
500static struct ev_prepare **prepares;
501static int preparemax, preparecnt;
502
503static struct ev_check **checks;
504static int checkmax, checkcnt;
505
506/*****************************************************************************/
507
508static struct ev_child *childs [PID_HASHSIZE]; 649static struct ev_child *childs [PID_HASHSIZE];
650
651#ifndef WIN32
652
509static struct ev_signal childev; 653static struct ev_signal childev;
510
511#ifndef WIN32
512 654
513#ifndef WCONTINUED 655#ifndef WCONTINUED
514# define WCONTINUED 0 656# define WCONTINUED 0
515#endif 657#endif
516 658
520 struct ev_child *w; 662 struct ev_child *w;
521 663
522 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 664 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
523 if (w->pid == pid || !w->pid) 665 if (w->pid == pid || !w->pid)
524 { 666 {
525 w->priority = sw->priority; /* need to do it *now* */ 667 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
526 w->rpid = pid; 668 w->rpid = pid;
527 w->rstatus = status; 669 w->rstatus = status;
528 event (EV_A_ (W)w, EV_CHILD); 670 ev_feed_event (EV_A_ (W)w, EV_CHILD);
529 } 671 }
530} 672}
531 673
532static void 674static void
533childcb (EV_P_ struct ev_signal *sw, int revents) 675childcb (EV_P_ struct ev_signal *sw, int revents)
535 int pid, status; 677 int pid, status;
536 678
537 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 679 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
538 { 680 {
539 /* make sure we are called again until all childs have been reaped */ 681 /* make sure we are called again until all childs have been reaped */
540 event (EV_A_ (W)sw, EV_SIGNAL); 682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
541 683
542 child_reap (EV_A_ sw, pid, pid, status); 684 child_reap (EV_A_ sw, pid, pid, status);
543 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 685 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
544 } 686 }
545} 687}
552# include "ev_kqueue.c" 694# include "ev_kqueue.c"
553#endif 695#endif
554#if EV_USE_EPOLL 696#if EV_USE_EPOLL
555# include "ev_epoll.c" 697# include "ev_epoll.c"
556#endif 698#endif
557#if EV_USEV_POLL 699#if EV_USE_POLL
558# include "ev_poll.c" 700# include "ev_poll.c"
559#endif 701#endif
560#if EV_USE_SELECT 702#if EV_USE_SELECT
561# include "ev_select.c" 703# include "ev_select.c"
562#endif 704#endif
589ev_method (EV_P) 731ev_method (EV_P)
590{ 732{
591 return method; 733 return method;
592} 734}
593 735
594int 736static void
595ev_init (EV_P_ int methods) 737loop_init (EV_P_ int methods)
596{ 738{
597 if (!method) 739 if (!method)
598 { 740 {
599#if EV_USE_MONOTONIC 741#if EV_USE_MONOTONIC
600 { 742 {
602 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 744 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
603 have_monotonic = 1; 745 have_monotonic = 1;
604 } 746 }
605#endif 747#endif
606 748
607 rt_now = ev_time (); 749 ev_rt_now = ev_time ();
608 mn_now = get_clock (); 750 mn_now = get_clock ();
609 now_floor = mn_now; 751 now_floor = mn_now;
610 diff = rt_now - mn_now; 752 rtmn_diff = ev_rt_now - mn_now;
611
612 if (pipe (sigpipe))
613 return 0;
614 753
615 if (methods == EVMETHOD_AUTO) 754 if (methods == EVMETHOD_AUTO)
616 if (!enable_secure () && getenv ("LIBmethodS")) 755 if (!enable_secure () && getenv ("LIBEV_METHODS"))
617 methods = atoi (getenv ("LIBmethodS")); 756 methods = atoi (getenv ("LIBEV_METHODS"));
618 else 757 else
619 methods = EVMETHOD_ANY; 758 methods = EVMETHOD_ANY;
620 759
621 method = 0; 760 method = 0;
761#if EV_USE_WIN32
762 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
763#endif
622#if EV_USE_KQUEUE 764#if EV_USE_KQUEUE
623 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 765 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
624#endif 766#endif
625#if EV_USE_EPOLL 767#if EV_USE_EPOLL
626 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 768 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
627#endif 769#endif
628#if EV_USEV_POLL 770#if EV_USE_POLL
629 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 771 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
630#endif 772#endif
631#if EV_USE_SELECT 773#if EV_USE_SELECT
632 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
633#endif 775#endif
634 776
777 ev_init (&sigev, sigcb);
778 ev_set_priority (&sigev, EV_MAXPRI);
779 }
780}
781
782void
783loop_destroy (EV_P)
784{
785 int i;
786
787#if EV_USE_WIN32
788 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
789#endif
790#if EV_USE_KQUEUE
791 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
792#endif
793#if EV_USE_EPOLL
794 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
795#endif
796#if EV_USE_POLL
797 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
798#endif
799#if EV_USE_SELECT
800 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
801#endif
802
803 for (i = NUMPRI; i--; )
804 array_free (pending, [i]);
805
806 /* have to use the microsoft-never-gets-it-right macro */
807 array_free_microshit (fdchange);
808 array_free_microshit (timer);
809#if EV_PERIODICS
810 array_free_microshit (periodic);
811#endif
812 array_free_microshit (idle);
813 array_free_microshit (prepare);
814 array_free_microshit (check);
815
816 method = 0;
817}
818
819static void
820loop_fork (EV_P)
821{
822#if EV_USE_EPOLL
823 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
824#endif
825#if EV_USE_KQUEUE
826 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
827#endif
828
829 if (ev_is_active (&sigev))
830 {
831 /* default loop */
832
833 ev_ref (EV_A);
834 ev_io_stop (EV_A_ &sigev);
835 close (sigpipe [0]);
836 close (sigpipe [1]);
837
838 while (pipe (sigpipe))
839 syserr ("(libev) error creating pipe");
840
841 siginit (EV_A);
842 }
843
844 postfork = 0;
845}
846
847#if EV_MULTIPLICITY
848struct ev_loop *
849ev_loop_new (int methods)
850{
851 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
852
853 memset (loop, 0, sizeof (struct ev_loop));
854
855 loop_init (EV_A_ methods);
856
857 if (ev_method (EV_A))
858 return loop;
859
860 return 0;
861}
862
863void
864ev_loop_destroy (EV_P)
865{
866 loop_destroy (EV_A);
867 ev_free (loop);
868}
869
870void
871ev_loop_fork (EV_P)
872{
873 postfork = 1;
874}
875
876#endif
877
878#if EV_MULTIPLICITY
879struct ev_loop *
880#else
881int
882#endif
883ev_default_loop (int methods)
884{
885 if (sigpipe [0] == sigpipe [1])
886 if (pipe (sigpipe))
887 return 0;
888
889 if (!default_loop)
890 {
891#if EV_MULTIPLICITY
892 struct ev_loop *loop = default_loop = &default_loop_struct;
893#else
894 default_loop = 1;
895#endif
896
897 loop_init (EV_A_ methods);
898
635 if (method) 899 if (ev_method (EV_A))
636 { 900 {
637 ev_watcher_init (&sigev, sigcb);
638 ev_set_priority (&sigev, EV_MAXPRI);
639 siginit (EV_A); 901 siginit (EV_A);
640 902
641#ifndef WIN32 903#ifndef WIN32
642 ev_signal_init (&childev, childcb, SIGCHLD); 904 ev_signal_init (&childev, childcb, SIGCHLD);
643 ev_set_priority (&childev, EV_MAXPRI); 905 ev_set_priority (&childev, EV_MAXPRI);
644 ev_signal_start (EV_A_ &childev); 906 ev_signal_start (EV_A_ &childev);
645 ev_unref (EV_A); /* child watcher should not keep loop alive */ 907 ev_unref (EV_A); /* child watcher should not keep loop alive */
646#endif 908#endif
647 } 909 }
910 else
911 default_loop = 0;
648 } 912 }
649 913
650 return method; 914 return default_loop;
915}
916
917void
918ev_default_destroy (void)
919{
920#if EV_MULTIPLICITY
921 struct ev_loop *loop = default_loop;
922#endif
923
924#ifndef WIN32
925 ev_ref (EV_A); /* child watcher */
926 ev_signal_stop (EV_A_ &childev);
927#endif
928
929 ev_ref (EV_A); /* signal watcher */
930 ev_io_stop (EV_A_ &sigev);
931
932 close (sigpipe [0]); sigpipe [0] = 0;
933 close (sigpipe [1]); sigpipe [1] = 0;
934
935 loop_destroy (EV_A);
936}
937
938void
939ev_default_fork (void)
940{
941#if EV_MULTIPLICITY
942 struct ev_loop *loop = default_loop;
943#endif
944
945 if (method)
946 postfork = 1;
651} 947}
652 948
653/*****************************************************************************/ 949/*****************************************************************************/
654 950
655void 951static int
656ev_fork_prepare (void) 952any_pending (EV_P)
657{ 953{
658 /* nop */ 954 int pri;
659}
660 955
661void 956 for (pri = NUMPRI; pri--; )
662ev_fork_parent (void) 957 if (pendingcnt [pri])
663{ 958 return 1;
664 /* nop */
665}
666 959
667void 960 return 0;
668ev_fork_child (void)
669{
670#if EV_USE_EPOLL
671 if (method == EVMETHOD_EPOLL)
672 epoll_postfork_child ();
673#endif
674
675 ev_io_stop (&sigev);
676 close (sigpipe [0]);
677 close (sigpipe [1]);
678 pipe (sigpipe);
679 siginit ();
680} 961}
681
682/*****************************************************************************/
683 962
684static void 963static void
685call_pending (EV_P) 964call_pending (EV_P)
686{ 965{
687 int pri; 966 int pri;
692 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 971 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
693 972
694 if (p->w) 973 if (p->w)
695 { 974 {
696 p->w->pending = 0; 975 p->w->pending = 0;
697 p->w->cb (EV_A_ p->w, p->events); 976 EV_CB_INVOKE (p->w, p->events);
698 } 977 }
699 } 978 }
700} 979}
701 980
702static void 981static void
703timers_reify (EV_P) 982timers_reify (EV_P)
704{ 983{
705 while (timercnt && timers [0]->at <= mn_now) 984 while (timercnt && ((WT)timers [0])->at <= mn_now)
706 { 985 {
707 struct ev_timer *w = timers [0]; 986 struct ev_timer *w = timers [0];
987
988 assert (("inactive timer on timer heap detected", ev_is_active (w)));
708 989
709 /* first reschedule or stop timer */ 990 /* first reschedule or stop timer */
710 if (w->repeat) 991 if (w->repeat)
711 { 992 {
712 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 993 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
994
713 w->at = mn_now + w->repeat; 995 ((WT)w)->at += w->repeat;
996 if (((WT)w)->at < mn_now)
997 ((WT)w)->at = mn_now;
998
714 downheap ((WT *)timers, timercnt, 0); 999 downheap ((WT *)timers, timercnt, 0);
715 } 1000 }
716 else 1001 else
717 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1002 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
718 1003
719 event ((W)w, EV_TIMEOUT); 1004 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
720 } 1005 }
721} 1006}
722 1007
1008#if EV_PERIODICS
723static void 1009static void
724periodics_reify (EV_P) 1010periodics_reify (EV_P)
725{ 1011{
726 while (periodiccnt && periodics [0]->at <= rt_now) 1012 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
727 { 1013 {
728 struct ev_periodic *w = periodics [0]; 1014 struct ev_periodic *w = periodics [0];
729 1015
1016 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1017
730 /* first reschedule or stop timer */ 1018 /* first reschedule or stop timer */
731 if (w->interval) 1019 if (w->reschedule_cb)
732 { 1020 {
1021 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1022
1023 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1024 downheap ((WT *)periodics, periodiccnt, 0);
1025 }
1026 else if (w->interval)
1027 {
733 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1028 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
734 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1029 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
735 downheap ((WT *)periodics, periodiccnt, 0); 1030 downheap ((WT *)periodics, periodiccnt, 0);
736 } 1031 }
737 else 1032 else
738 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1033 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
739 1034
740 event (EV_A_ (W)w, EV_PERIODIC); 1035 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
741 } 1036 }
742} 1037}
743 1038
744static void 1039static void
745periodics_reschedule (EV_P_ ev_tstamp diff) 1040periodics_reschedule (EV_P)
746{ 1041{
747 int i; 1042 int i;
748 1043
749 /* adjust periodics after time jump */ 1044 /* adjust periodics after time jump */
750 for (i = 0; i < periodiccnt; ++i) 1045 for (i = 0; i < periodiccnt; ++i)
751 { 1046 {
752 struct ev_periodic *w = periodics [i]; 1047 struct ev_periodic *w = periodics [i];
753 1048
1049 if (w->reschedule_cb)
1050 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
754 if (w->interval) 1051 else if (w->interval)
755 {
756 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1052 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
757
758 if (fabs (diff) >= 1e-4)
759 {
760 ev_periodic_stop (EV_A_ w);
761 ev_periodic_start (EV_A_ w);
762
763 i = 0; /* restart loop, inefficient, but time jumps should be rare */
764 }
765 }
766 } 1053 }
1054
1055 /* now rebuild the heap */
1056 for (i = periodiccnt >> 1; i--; )
1057 downheap ((WT *)periodics, periodiccnt, i);
767} 1058}
1059#endif
768 1060
769inline int 1061inline int
770time_update_monotonic (EV_P) 1062time_update_monotonic (EV_P)
771{ 1063{
772 mn_now = get_clock (); 1064 mn_now = get_clock ();
773 1065
774 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1066 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
775 { 1067 {
776 rt_now = mn_now + diff; 1068 ev_rt_now = rtmn_diff + mn_now;
777 return 0; 1069 return 0;
778 } 1070 }
779 else 1071 else
780 { 1072 {
781 now_floor = mn_now; 1073 now_floor = mn_now;
782 rt_now = ev_time (); 1074 ev_rt_now = ev_time ();
783 return 1; 1075 return 1;
784 } 1076 }
785} 1077}
786 1078
787static void 1079static void
792#if EV_USE_MONOTONIC 1084#if EV_USE_MONOTONIC
793 if (expect_true (have_monotonic)) 1085 if (expect_true (have_monotonic))
794 { 1086 {
795 if (time_update_monotonic (EV_A)) 1087 if (time_update_monotonic (EV_A))
796 { 1088 {
797 ev_tstamp odiff = diff; 1089 ev_tstamp odiff = rtmn_diff;
798 1090
799 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1091 for (i = 4; --i; ) /* loop a few times, before making important decisions */
800 { 1092 {
801 diff = rt_now - mn_now; 1093 rtmn_diff = ev_rt_now - mn_now;
802 1094
803 if (fabs (odiff - diff) < MIN_TIMEJUMP) 1095 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
804 return; /* all is well */ 1096 return; /* all is well */
805 1097
806 rt_now = ev_time (); 1098 ev_rt_now = ev_time ();
807 mn_now = get_clock (); 1099 mn_now = get_clock ();
808 now_floor = mn_now; 1100 now_floor = mn_now;
809 } 1101 }
810 1102
1103# if EV_PERIODICS
811 periodics_reschedule (EV_A_ diff - odiff); 1104 periodics_reschedule (EV_A);
1105# endif
812 /* no timer adjustment, as the monotonic clock doesn't jump */ 1106 /* no timer adjustment, as the monotonic clock doesn't jump */
1107 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
813 } 1108 }
814 } 1109 }
815 else 1110 else
816#endif 1111#endif
817 { 1112 {
818 rt_now = ev_time (); 1113 ev_rt_now = ev_time ();
819 1114
820 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1115 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
821 { 1116 {
1117#if EV_PERIODICS
822 periodics_reschedule (EV_A_ rt_now - mn_now); 1118 periodics_reschedule (EV_A);
1119#endif
823 1120
824 /* adjust timers. this is easy, as the offset is the same for all */ 1121 /* adjust timers. this is easy, as the offset is the same for all */
825 for (i = 0; i < timercnt; ++i) 1122 for (i = 0; i < timercnt; ++i)
826 timers [i]->at += diff; 1123 ((WT)timers [i])->at += ev_rt_now - mn_now;
827 } 1124 }
828 1125
829 mn_now = rt_now; 1126 mn_now = ev_rt_now;
830 } 1127 }
831} 1128}
832 1129
833void 1130void
834ev_ref (EV_P) 1131ev_ref (EV_P)
857 { 1154 {
858 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1155 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
859 call_pending (EV_A); 1156 call_pending (EV_A);
860 } 1157 }
861 1158
1159 /* we might have forked, so reify kernel state if necessary */
1160 if (expect_false (postfork))
1161 loop_fork (EV_A);
1162
862 /* update fd-related kernel structures */ 1163 /* update fd-related kernel structures */
863 fd_reify (EV_A); 1164 fd_reify (EV_A);
864 1165
865 /* calculate blocking time */ 1166 /* calculate blocking time */
866 1167
867 /* we only need this for !monotonic clockor timers, but as we basically 1168 /* we only need this for !monotonic clock or timers, but as we basically
868 always have timers, we just calculate it always */ 1169 always have timers, we just calculate it always */
869#if EV_USE_MONOTONIC 1170#if EV_USE_MONOTONIC
870 if (expect_true (have_monotonic)) 1171 if (expect_true (have_monotonic))
871 time_update_monotonic (EV_A); 1172 time_update_monotonic (EV_A);
872 else 1173 else
873#endif 1174#endif
874 { 1175 {
875 rt_now = ev_time (); 1176 ev_rt_now = ev_time ();
876 mn_now = rt_now; 1177 mn_now = ev_rt_now;
877 } 1178 }
878 1179
879 if (flags & EVLOOP_NONBLOCK || idlecnt) 1180 if (flags & EVLOOP_NONBLOCK || idlecnt)
880 block = 0.; 1181 block = 0.;
881 else 1182 else
882 { 1183 {
883 block = MAX_BLOCKTIME; 1184 block = MAX_BLOCKTIME;
884 1185
885 if (timercnt) 1186 if (timercnt)
886 { 1187 {
887 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1188 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
888 if (block > to) block = to; 1189 if (block > to) block = to;
889 } 1190 }
890 1191
1192#if EV_PERIODICS
891 if (periodiccnt) 1193 if (periodiccnt)
892 { 1194 {
893 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1195 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
894 if (block > to) block = to; 1196 if (block > to) block = to;
895 } 1197 }
1198#endif
896 1199
897 if (block < 0.) block = 0.; 1200 if (block < 0.) block = 0.;
898 } 1201 }
899 1202
900 method_poll (EV_A_ block); 1203 method_poll (EV_A_ block);
901 1204
902 /* update rt_now, do magic */ 1205 /* update ev_rt_now, do magic */
903 time_update (EV_A); 1206 time_update (EV_A);
904 1207
905 /* queue pending timers and reschedule them */ 1208 /* queue pending timers and reschedule them */
906 timers_reify (EV_A); /* relative timers called last */ 1209 timers_reify (EV_A); /* relative timers called last */
1210#if EV_PERIODICS
907 periodics_reify (EV_A); /* absolute timers called first */ 1211 periodics_reify (EV_A); /* absolute timers called first */
1212#endif
908 1213
909 /* queue idle watchers unless io or timers are pending */ 1214 /* queue idle watchers unless io or timers are pending */
910 if (!pendingcnt) 1215 if (idlecnt && !any_pending (EV_A))
911 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1216 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
912 1217
913 /* queue check watchers, to be executed first */ 1218 /* queue check watchers, to be executed first */
914 if (checkcnt) 1219 if (checkcnt)
915 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1220 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
990 return; 1295 return;
991 1296
992 assert (("ev_io_start called with negative fd", fd >= 0)); 1297 assert (("ev_io_start called with negative fd", fd >= 0));
993 1298
994 ev_start (EV_A_ (W)w, 1); 1299 ev_start (EV_A_ (W)w, 1);
995 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1300 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
996 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1301 wlist_add ((WL *)&anfds[fd].head, (WL)w);
997 1302
998 fd_change (EV_A_ fd); 1303 fd_change (EV_A_ fd);
999} 1304}
1000 1305
1003{ 1308{
1004 ev_clear_pending (EV_A_ (W)w); 1309 ev_clear_pending (EV_A_ (W)w);
1005 if (!ev_is_active (w)) 1310 if (!ev_is_active (w))
1006 return; 1311 return;
1007 1312
1313 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1314
1008 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1315 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1009 ev_stop (EV_A_ (W)w); 1316 ev_stop (EV_A_ (W)w);
1010 1317
1011 fd_change (EV_A_ w->fd); 1318 fd_change (EV_A_ w->fd);
1012} 1319}
1015ev_timer_start (EV_P_ struct ev_timer *w) 1322ev_timer_start (EV_P_ struct ev_timer *w)
1016{ 1323{
1017 if (ev_is_active (w)) 1324 if (ev_is_active (w))
1018 return; 1325 return;
1019 1326
1020 w->at += mn_now; 1327 ((WT)w)->at += mn_now;
1021 1328
1022 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1329 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1023 1330
1024 ev_start (EV_A_ (W)w, ++timercnt); 1331 ev_start (EV_A_ (W)w, ++timercnt);
1025 array_needsize (timers, timermax, timercnt, ); 1332 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1026 timers [timercnt - 1] = w; 1333 timers [timercnt - 1] = w;
1027 upheap ((WT *)timers, timercnt - 1); 1334 upheap ((WT *)timers, timercnt - 1);
1335
1336 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1028} 1337}
1029 1338
1030void 1339void
1031ev_timer_stop (EV_P_ struct ev_timer *w) 1340ev_timer_stop (EV_P_ struct ev_timer *w)
1032{ 1341{
1033 ev_clear_pending (EV_A_ (W)w); 1342 ev_clear_pending (EV_A_ (W)w);
1034 if (!ev_is_active (w)) 1343 if (!ev_is_active (w))
1035 return; 1344 return;
1036 1345
1346 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1347
1037 if (w->active < timercnt--) 1348 if (((W)w)->active < timercnt--)
1038 { 1349 {
1039 timers [w->active - 1] = timers [timercnt]; 1350 timers [((W)w)->active - 1] = timers [timercnt];
1040 downheap ((WT *)timers, timercnt, w->active - 1); 1351 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1041 } 1352 }
1042 1353
1043 w->at = w->repeat; 1354 ((WT)w)->at -= mn_now;
1044 1355
1045 ev_stop (EV_A_ (W)w); 1356 ev_stop (EV_A_ (W)w);
1046} 1357}
1047 1358
1048void 1359void
1049ev_timer_again (EV_P_ struct ev_timer *w) 1360ev_timer_again (EV_P_ struct ev_timer *w)
1050{ 1361{
1051 if (ev_is_active (w)) 1362 if (ev_is_active (w))
1052 { 1363 {
1053 if (w->repeat) 1364 if (w->repeat)
1054 {
1055 w->at = mn_now + w->repeat;
1056 downheap ((WT *)timers, timercnt, w->active - 1); 1365 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1057 }
1058 else 1366 else
1059 ev_timer_stop (EV_A_ w); 1367 ev_timer_stop (EV_A_ w);
1060 } 1368 }
1061 else if (w->repeat) 1369 else if (w->repeat)
1062 ev_timer_start (EV_A_ w); 1370 ev_timer_start (EV_A_ w);
1063} 1371}
1064 1372
1373#if EV_PERIODICS
1065void 1374void
1066ev_periodic_start (EV_P_ struct ev_periodic *w) 1375ev_periodic_start (EV_P_ struct ev_periodic *w)
1067{ 1376{
1068 if (ev_is_active (w)) 1377 if (ev_is_active (w))
1069 return; 1378 return;
1070 1379
1380 if (w->reschedule_cb)
1381 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1382 else if (w->interval)
1383 {
1071 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1384 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1072
1073 /* this formula differs from the one in periodic_reify because we do not always round up */ 1385 /* this formula differs from the one in periodic_reify because we do not always round up */
1074 if (w->interval)
1075 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1386 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1387 }
1076 1388
1077 ev_start (EV_A_ (W)w, ++periodiccnt); 1389 ev_start (EV_A_ (W)w, ++periodiccnt);
1078 array_needsize (periodics, periodicmax, periodiccnt, ); 1390 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1079 periodics [periodiccnt - 1] = w; 1391 periodics [periodiccnt - 1] = w;
1080 upheap ((WT *)periodics, periodiccnt - 1); 1392 upheap ((WT *)periodics, periodiccnt - 1);
1393
1394 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1081} 1395}
1082 1396
1083void 1397void
1084ev_periodic_stop (EV_P_ struct ev_periodic *w) 1398ev_periodic_stop (EV_P_ struct ev_periodic *w)
1085{ 1399{
1086 ev_clear_pending (EV_A_ (W)w); 1400 ev_clear_pending (EV_A_ (W)w);
1087 if (!ev_is_active (w)) 1401 if (!ev_is_active (w))
1088 return; 1402 return;
1089 1403
1404 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1405
1090 if (w->active < periodiccnt--) 1406 if (((W)w)->active < periodiccnt--)
1091 { 1407 {
1092 periodics [w->active - 1] = periodics [periodiccnt]; 1408 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1093 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1409 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1094 } 1410 }
1095 1411
1412 ev_stop (EV_A_ (W)w);
1413}
1414
1415void
1416ev_periodic_again (EV_P_ struct ev_periodic *w)
1417{
1418 /* TODO: use adjustheap and recalculation */
1419 ev_periodic_stop (EV_A_ w);
1420 ev_periodic_start (EV_A_ w);
1421}
1422#endif
1423
1424void
1425ev_idle_start (EV_P_ struct ev_idle *w)
1426{
1427 if (ev_is_active (w))
1428 return;
1429
1430 ev_start (EV_A_ (W)w, ++idlecnt);
1431 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1432 idles [idlecnt - 1] = w;
1433}
1434
1435void
1436ev_idle_stop (EV_P_ struct ev_idle *w)
1437{
1438 ev_clear_pending (EV_A_ (W)w);
1439 if (ev_is_active (w))
1440 return;
1441
1442 idles [((W)w)->active - 1] = idles [--idlecnt];
1443 ev_stop (EV_A_ (W)w);
1444}
1445
1446void
1447ev_prepare_start (EV_P_ struct ev_prepare *w)
1448{
1449 if (ev_is_active (w))
1450 return;
1451
1452 ev_start (EV_A_ (W)w, ++preparecnt);
1453 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1454 prepares [preparecnt - 1] = w;
1455}
1456
1457void
1458ev_prepare_stop (EV_P_ struct ev_prepare *w)
1459{
1460 ev_clear_pending (EV_A_ (W)w);
1461 if (ev_is_active (w))
1462 return;
1463
1464 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1465 ev_stop (EV_A_ (W)w);
1466}
1467
1468void
1469ev_check_start (EV_P_ struct ev_check *w)
1470{
1471 if (ev_is_active (w))
1472 return;
1473
1474 ev_start (EV_A_ (W)w, ++checkcnt);
1475 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1476 checks [checkcnt - 1] = w;
1477}
1478
1479void
1480ev_check_stop (EV_P_ struct ev_check *w)
1481{
1482 ev_clear_pending (EV_A_ (W)w);
1483 if (!ev_is_active (w))
1484 return;
1485
1486 checks [((W)w)->active - 1] = checks [--checkcnt];
1096 ev_stop (EV_A_ (W)w); 1487 ev_stop (EV_A_ (W)w);
1097} 1488}
1098 1489
1099#ifndef SA_RESTART 1490#ifndef SA_RESTART
1100# define SA_RESTART 0 1491# define SA_RESTART 0
1101#endif 1492#endif
1102 1493
1103void 1494void
1104ev_signal_start (EV_P_ struct ev_signal *w) 1495ev_signal_start (EV_P_ struct ev_signal *w)
1105{ 1496{
1497#if EV_MULTIPLICITY
1498 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1499#endif
1106 if (ev_is_active (w)) 1500 if (ev_is_active (w))
1107 return; 1501 return;
1108 1502
1109 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1503 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1110 1504
1111 ev_start (EV_A_ (W)w, 1); 1505 ev_start (EV_A_ (W)w, 1);
1112 array_needsize (signals, signalmax, w->signum, signals_init); 1506 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1113 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1507 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1114 1508
1115 if (!w->next) 1509 if (!((WL)w)->next)
1116 { 1510 {
1511#if WIN32
1512 signal (w->signum, sighandler);
1513#else
1117 struct sigaction sa; 1514 struct sigaction sa;
1118 sa.sa_handler = sighandler; 1515 sa.sa_handler = sighandler;
1119 sigfillset (&sa.sa_mask); 1516 sigfillset (&sa.sa_mask);
1120 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1517 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1121 sigaction (w->signum, &sa, 0); 1518 sigaction (w->signum, &sa, 0);
1519#endif
1122 } 1520 }
1123} 1521}
1124 1522
1125void 1523void
1126ev_signal_stop (EV_P_ struct ev_signal *w) 1524ev_signal_stop (EV_P_ struct ev_signal *w)
1135 if (!signals [w->signum - 1].head) 1533 if (!signals [w->signum - 1].head)
1136 signal (w->signum, SIG_DFL); 1534 signal (w->signum, SIG_DFL);
1137} 1535}
1138 1536
1139void 1537void
1140ev_idle_start (EV_P_ struct ev_idle *w)
1141{
1142 if (ev_is_active (w))
1143 return;
1144
1145 ev_start (EV_A_ (W)w, ++idlecnt);
1146 array_needsize (idles, idlemax, idlecnt, );
1147 idles [idlecnt - 1] = w;
1148}
1149
1150void
1151ev_idle_stop (EV_P_ struct ev_idle *w)
1152{
1153 ev_clear_pending (EV_A_ (W)w);
1154 if (ev_is_active (w))
1155 return;
1156
1157 idles [w->active - 1] = idles [--idlecnt];
1158 ev_stop (EV_A_ (W)w);
1159}
1160
1161void
1162ev_prepare_start (EV_P_ struct ev_prepare *w)
1163{
1164 if (ev_is_active (w))
1165 return;
1166
1167 ev_start (EV_A_ (W)w, ++preparecnt);
1168 array_needsize (prepares, preparemax, preparecnt, );
1169 prepares [preparecnt - 1] = w;
1170}
1171
1172void
1173ev_prepare_stop (EV_P_ struct ev_prepare *w)
1174{
1175 ev_clear_pending (EV_A_ (W)w);
1176 if (ev_is_active (w))
1177 return;
1178
1179 prepares [w->active - 1] = prepares [--preparecnt];
1180 ev_stop (EV_A_ (W)w);
1181}
1182
1183void
1184ev_check_start (EV_P_ struct ev_check *w)
1185{
1186 if (ev_is_active (w))
1187 return;
1188
1189 ev_start (EV_A_ (W)w, ++checkcnt);
1190 array_needsize (checks, checkmax, checkcnt, );
1191 checks [checkcnt - 1] = w;
1192}
1193
1194void
1195ev_check_stop (EV_P_ struct ev_check *w)
1196{
1197 ev_clear_pending (EV_A_ (W)w);
1198 if (ev_is_active (w))
1199 return;
1200
1201 checks [w->active - 1] = checks [--checkcnt];
1202 ev_stop (EV_A_ (W)w);
1203}
1204
1205void
1206ev_child_start (EV_P_ struct ev_child *w) 1538ev_child_start (EV_P_ struct ev_child *w)
1207{ 1539{
1540#if EV_MULTIPLICITY
1541 assert (("child watchers are only supported in the default loop", loop == default_loop));
1542#endif
1208 if (ev_is_active (w)) 1543 if (ev_is_active (w))
1209 return; 1544 return;
1210 1545
1211 ev_start (EV_A_ (W)w, 1); 1546 ev_start (EV_A_ (W)w, 1);
1212 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1547 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1214 1549
1215void 1550void
1216ev_child_stop (EV_P_ struct ev_child *w) 1551ev_child_stop (EV_P_ struct ev_child *w)
1217{ 1552{
1218 ev_clear_pending (EV_A_ (W)w); 1553 ev_clear_pending (EV_A_ (W)w);
1219 if (ev_is_active (w)) 1554 if (!ev_is_active (w))
1220 return; 1555 return;
1221 1556
1222 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1557 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1223 ev_stop (EV_A_ (W)w); 1558 ev_stop (EV_A_ (W)w);
1224} 1559}
1239 void (*cb)(int revents, void *arg) = once->cb; 1574 void (*cb)(int revents, void *arg) = once->cb;
1240 void *arg = once->arg; 1575 void *arg = once->arg;
1241 1576
1242 ev_io_stop (EV_A_ &once->io); 1577 ev_io_stop (EV_A_ &once->io);
1243 ev_timer_stop (EV_A_ &once->to); 1578 ev_timer_stop (EV_A_ &once->to);
1244 free (once); 1579 ev_free (once);
1245 1580
1246 cb (revents, arg); 1581 cb (revents, arg);
1247} 1582}
1248 1583
1249static void 1584static void
1259} 1594}
1260 1595
1261void 1596void
1262ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1597ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1263{ 1598{
1264 struct ev_once *once = malloc (sizeof (struct ev_once)); 1599 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1265 1600
1266 if (!once) 1601 if (!once)
1267 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1602 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1268 else 1603 else
1269 { 1604 {
1270 once->cb = cb; 1605 once->cb = cb;
1271 once->arg = arg; 1606 once->arg = arg;
1272 1607
1273 ev_watcher_init (&once->io, once_cb_io); 1608 ev_init (&once->io, once_cb_io);
1274 if (fd >= 0) 1609 if (fd >= 0)
1275 { 1610 {
1276 ev_io_set (&once->io, fd, events); 1611 ev_io_set (&once->io, fd, events);
1277 ev_io_start (EV_A_ &once->io); 1612 ev_io_start (EV_A_ &once->io);
1278 } 1613 }
1279 1614
1280 ev_watcher_init (&once->to, once_cb_to); 1615 ev_init (&once->to, once_cb_to);
1281 if (timeout >= 0.) 1616 if (timeout >= 0.)
1282 { 1617 {
1283 ev_timer_set (&once->to, timeout, 0.); 1618 ev_timer_set (&once->to, timeout, 0.);
1284 ev_timer_start (EV_A_ &once->to); 1619 ev_timer_start (EV_A_ &once->to);
1285 } 1620 }
1286 } 1621 }
1287} 1622}
1288 1623
1289/*****************************************************************************/ 1624#ifdef __cplusplus
1290
1291#if 0
1292
1293struct ev_io wio;
1294
1295static void
1296sin_cb (struct ev_io *w, int revents)
1297{
1298 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1299} 1625}
1300
1301static void
1302ocb (struct ev_timer *w, int revents)
1303{
1304 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1305 ev_timer_stop (w);
1306 ev_timer_start (w);
1307}
1308
1309static void
1310scb (struct ev_signal *w, int revents)
1311{
1312 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1313 ev_io_stop (&wio);
1314 ev_io_start (&wio);
1315}
1316
1317static void
1318gcb (struct ev_signal *w, int revents)
1319{
1320 fprintf (stderr, "generic %x\n", revents);
1321
1322}
1323
1324int main (void)
1325{
1326 ev_init (0);
1327
1328 ev_io_init (&wio, sin_cb, 0, EV_READ);
1329 ev_io_start (&wio);
1330
1331 struct ev_timer t[10000];
1332
1333#if 0
1334 int i;
1335 for (i = 0; i < 10000; ++i)
1336 {
1337 struct ev_timer *w = t + i;
1338 ev_watcher_init (w, ocb, i);
1339 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1340 ev_timer_start (w);
1341 if (drand48 () < 0.5)
1342 ev_timer_stop (w);
1343 }
1344#endif 1626#endif
1345 1627
1346 struct ev_timer t1;
1347 ev_timer_init (&t1, ocb, 5, 10);
1348 ev_timer_start (&t1);
1349
1350 struct ev_signal sig;
1351 ev_signal_init (&sig, scb, SIGQUIT);
1352 ev_signal_start (&sig);
1353
1354 struct ev_check cw;
1355 ev_check_init (&cw, gcb);
1356 ev_check_start (&cw);
1357
1358 struct ev_idle iw;
1359 ev_idle_init (&iw, gcb);
1360 ev_idle_start (&iw);
1361
1362 ev_loop (0);
1363
1364 return 0;
1365}
1366
1367#endif
1368
1369
1370
1371

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines