ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.56 by root, Sun Nov 4 15:58:49 2007 UTC vs.
Revision 1.95 by root, Sun Nov 11 01:42:13 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
38
39# if HAVE_CLOCK_GETTIME
40# define EV_USE_MONOTONIC 1
41# define EV_USE_REALTIME 1
42# endif
43
44# if HAVE_SELECT && HAVE_SYS_SELECT_H
45# define EV_USE_SELECT 1
46# endif
47
48# if HAVE_POLL && HAVE_POLL_H
49# define EV_USE_POLL 1
50# endif
51
52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
53# define EV_USE_EPOLL 1
54# endif
55
56# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
57# define EV_USE_KQUEUE 1
58# endif
59
33#endif 60#endif
34 61
35#include <math.h> 62#include <math.h>
36#include <stdlib.h> 63#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 64#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 65#include <stddef.h>
41 66
42#include <stdio.h> 67#include <stdio.h>
43 68
44#include <assert.h> 69#include <assert.h>
45#include <errno.h> 70#include <errno.h>
46#include <sys/types.h> 71#include <sys/types.h>
72#include <time.h>
73
74#include <signal.h>
75
47#ifndef WIN32 76#ifndef WIN32
77# include <unistd.h>
78# include <sys/time.h>
48# include <sys/wait.h> 79# include <sys/wait.h>
49#endif 80#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 81/**/
54 82
55#ifndef EV_USE_MONOTONIC 83#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 84# define EV_USE_MONOTONIC 1
57#endif 85#endif
58 86
59#ifndef EV_USE_SELECT 87#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 88# define EV_USE_SELECT 1
61#endif 89#endif
62 90
63#ifndef EV_USEV_POLL 91#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 92# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif 93#endif
66 94
67#ifndef EV_USE_EPOLL 95#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 96# define EV_USE_EPOLL 0
69#endif 97#endif
70 98
71#ifndef EV_USE_KQUEUE 99#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 100# define EV_USE_KQUEUE 0
101#endif
102
103#ifndef EV_USE_WIN32
104# ifdef WIN32
105# define EV_USE_WIN32 0 /* it does not exist, use select */
106# undef EV_USE_SELECT
107# define EV_USE_SELECT 1
108# else
109# define EV_USE_WIN32 0
110# endif
73#endif 111#endif
74 112
75#ifndef EV_USE_REALTIME 113#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 114# define EV_USE_REALTIME 1
77#endif 115#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 135
136#ifdef EV_H
137# include EV_H
138#else
98#include "ev.h" 139# include "ev.h"
140#endif
99 141
100#if __GNUC__ >= 3 142#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value)) 143# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 144# define inline inline
103#else 145#else
115typedef struct ev_watcher_list *WL; 157typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 158typedef struct ev_watcher_time *WT;
117 159
118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 160static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
119 161
162#include "ev_win32.c"
163
120/*****************************************************************************/ 164/*****************************************************************************/
121 165
166static void (*syserr_cb)(const char *msg);
167
168void ev_set_syserr_cb (void (*cb)(const char *msg))
169{
170 syserr_cb = cb;
171}
172
173static void
174syserr (const char *msg)
175{
176 if (!msg)
177 msg = "(libev) system error";
178
179 if (syserr_cb)
180 syserr_cb (msg);
181 else
182 {
183 perror (msg);
184 abort ();
185 }
186}
187
188static void *(*alloc)(void *ptr, long size);
189
190void ev_set_allocator (void *(*cb)(void *ptr, long size))
191{
192 alloc = cb;
193}
194
195static void *
196ev_realloc (void *ptr, long size)
197{
198 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
199
200 if (!ptr && size)
201 {
202 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
203 abort ();
204 }
205
206 return ptr;
207}
208
209#define ev_malloc(size) ev_realloc (0, (size))
210#define ev_free(ptr) ev_realloc ((ptr), 0)
211
212/*****************************************************************************/
213
122typedef struct 214typedef struct
123{ 215{
124 struct ev_watcher_list *head; 216 WL head;
125 unsigned char events; 217 unsigned char events;
126 unsigned char reify; 218 unsigned char reify;
127} ANFD; 219} ANFD;
128 220
129typedef struct 221typedef struct
132 int events; 224 int events;
133} ANPENDING; 225} ANPENDING;
134 226
135#if EV_MULTIPLICITY 227#if EV_MULTIPLICITY
136 228
137struct ev_loop 229 struct ev_loop
138{ 230 {
231 ev_tstamp ev_rt_now;
139# define VAR(name,decl) decl; 232 #define VAR(name,decl) decl;
140# include "ev_vars.h" 233 #include "ev_vars.h"
141};
142# undef VAR 234 #undef VAR
235 };
143# include "ev_wrap.h" 236 #include "ev_wrap.h"
237
238 struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop;
144 240
145#else 241#else
146 242
243 ev_tstamp ev_rt_now;
147# define VAR(name,decl) static decl; 244 #define VAR(name,decl) static decl;
148# include "ev_vars.h" 245 #include "ev_vars.h"
149# undef VAR 246 #undef VAR
247
248 static int default_loop;
150 249
151#endif 250#endif
152 251
153/*****************************************************************************/ 252/*****************************************************************************/
154 253
155inline ev_tstamp 254ev_tstamp
156ev_time (void) 255ev_time (void)
157{ 256{
158#if EV_USE_REALTIME 257#if EV_USE_REALTIME
159 struct timespec ts; 258 struct timespec ts;
160 clock_gettime (CLOCK_REALTIME, &ts); 259 clock_gettime (CLOCK_REALTIME, &ts);
179#endif 278#endif
180 279
181 return ev_time (); 280 return ev_time ();
182} 281}
183 282
283#if EV_MULTIPLICITY
184ev_tstamp 284ev_tstamp
185ev_now (EV_P) 285ev_now (EV_P)
186{ 286{
187 return rt_now; 287 return ev_rt_now;
188} 288}
289#endif
189 290
190#define array_roundsize(base,n) ((n) | 4 & ~3) 291#define array_roundsize(type,n) ((n) | 4 & ~3)
191 292
192#define array_needsize(base,cur,cnt,init) \ 293#define array_needsize(type,base,cur,cnt,init) \
193 if (expect_false ((cnt) > cur)) \ 294 if (expect_false ((cnt) > cur)) \
194 { \ 295 { \
195 int newcnt = cur; \ 296 int newcnt = cur; \
196 do \ 297 do \
197 { \ 298 { \
198 newcnt = array_roundsize (base, newcnt << 1); \ 299 newcnt = array_roundsize (type, newcnt << 1); \
199 } \ 300 } \
200 while ((cnt) > newcnt); \ 301 while ((cnt) > newcnt); \
201 \ 302 \
202 base = realloc (base, sizeof (*base) * (newcnt)); \ 303 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
203 init (base + cur, newcnt - cur); \ 304 init (base + cur, newcnt - cur); \
204 cur = newcnt; \ 305 cur = newcnt; \
205 } 306 }
307
308#define array_slim(type,stem) \
309 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
310 { \
311 stem ## max = array_roundsize (stem ## cnt >> 1); \
312 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
313 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
314 }
315
316/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
317/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
318#define array_free_microshit(stem) \
319 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
320
321#define array_free(stem, idx) \
322 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
206 323
207/*****************************************************************************/ 324/*****************************************************************************/
208 325
209static void 326static void
210anfds_init (ANFD *base, int count) 327anfds_init (ANFD *base, int count)
217 334
218 ++base; 335 ++base;
219 } 336 }
220} 337}
221 338
222static void 339void
223event (EV_P_ W w, int events) 340ev_feed_event (EV_P_ void *w, int revents)
224{ 341{
342 W w_ = (W)w;
343
225 if (w->pending) 344 if (w_->pending)
226 { 345 {
227 pendings [ABSPRI (w)][w->pending - 1].events |= events; 346 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
228 return; 347 return;
229 } 348 }
230 349
231 w->pending = ++pendingcnt [ABSPRI (w)]; 350 w_->pending = ++pendingcnt [ABSPRI (w_)];
232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 351 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
233 pendings [ABSPRI (w)][w->pending - 1].w = w; 352 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
234 pendings [ABSPRI (w)][w->pending - 1].events = events; 353 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
235} 354}
236 355
237static void 356static void
238queue_events (EV_P_ W *events, int eventcnt, int type) 357queue_events (EV_P_ W *events, int eventcnt, int type)
239{ 358{
240 int i; 359 int i;
241 360
242 for (i = 0; i < eventcnt; ++i) 361 for (i = 0; i < eventcnt; ++i)
243 event (EV_A_ events [i], type); 362 ev_feed_event (EV_A_ events [i], type);
244} 363}
245 364
246static void 365inline void
247fd_event (EV_P_ int fd, int events) 366fd_event (EV_P_ int fd, int revents)
248{ 367{
249 ANFD *anfd = anfds + fd; 368 ANFD *anfd = anfds + fd;
250 struct ev_io *w; 369 struct ev_io *w;
251 370
252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
253 { 372 {
254 int ev = w->events & events; 373 int ev = w->events & revents;
255 374
256 if (ev) 375 if (ev)
257 event (EV_A_ (W)w, ev); 376 ev_feed_event (EV_A_ (W)w, ev);
258 } 377 }
378}
379
380void
381ev_feed_fd_event (EV_P_ int fd, int revents)
382{
383 fd_event (EV_A_ fd, revents);
259} 384}
260 385
261/*****************************************************************************/ 386/*****************************************************************************/
262 387
263static void 388static void
276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 401 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
277 events |= w->events; 402 events |= w->events;
278 403
279 anfd->reify = 0; 404 anfd->reify = 0;
280 405
281 if (anfd->events != events)
282 {
283 method_modify (EV_A_ fd, anfd->events, events); 406 method_modify (EV_A_ fd, anfd->events, events);
284 anfd->events = events; 407 anfd->events = events;
285 }
286 } 408 }
287 409
288 fdchangecnt = 0; 410 fdchangecnt = 0;
289} 411}
290 412
291static void 413static void
292fd_change (EV_P_ int fd) 414fd_change (EV_P_ int fd)
293{ 415{
294 if (anfds [fd].reify || fdchangecnt < 0) 416 if (anfds [fd].reify)
295 return; 417 return;
296 418
297 anfds [fd].reify = 1; 419 anfds [fd].reify = 1;
298 420
299 ++fdchangecnt; 421 ++fdchangecnt;
300 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 422 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
301 fdchanges [fdchangecnt - 1] = fd; 423 fdchanges [fdchangecnt - 1] = fd;
302} 424}
303 425
304static void 426static void
305fd_kill (EV_P_ int fd) 427fd_kill (EV_P_ int fd)
307 struct ev_io *w; 429 struct ev_io *w;
308 430
309 while ((w = (struct ev_io *)anfds [fd].head)) 431 while ((w = (struct ev_io *)anfds [fd].head))
310 { 432 {
311 ev_io_stop (EV_A_ w); 433 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 434 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 } 435 }
436}
437
438static int
439fd_valid (int fd)
440{
441#ifdef WIN32
442 return !!win32_get_osfhandle (fd);
443#else
444 return fcntl (fd, F_GETFD) != -1;
445#endif
314} 446}
315 447
316/* called on EBADF to verify fds */ 448/* called on EBADF to verify fds */
317static void 449static void
318fd_ebadf (EV_P) 450fd_ebadf (EV_P)
319{ 451{
320 int fd; 452 int fd;
321 453
322 for (fd = 0; fd < anfdmax; ++fd) 454 for (fd = 0; fd < anfdmax; ++fd)
323 if (anfds [fd].events) 455 if (anfds [fd].events)
324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 456 if (!fd_valid (fd) == -1 && errno == EBADF)
325 fd_kill (EV_A_ fd); 457 fd_kill (EV_A_ fd);
326} 458}
327 459
328/* called on ENOMEM in select/poll to kill some fds and retry */ 460/* called on ENOMEM in select/poll to kill some fds and retry */
329static void 461static void
330fd_enomem (EV_P) 462fd_enomem (EV_P)
331{ 463{
332 int fd = anfdmax; 464 int fd;
333 465
334 while (fd--) 466 for (fd = anfdmax; fd--; )
335 if (anfds [fd].events) 467 if (anfds [fd].events)
336 { 468 {
337 close (fd);
338 fd_kill (EV_A_ fd); 469 fd_kill (EV_A_ fd);
339 return; 470 return;
340 } 471 }
341} 472}
342 473
343/* susually called after fork if method needs to re-arm all fds from scratch */ 474/* usually called after fork if method needs to re-arm all fds from scratch */
344static void 475static void
345fd_rearm_all (EV_P) 476fd_rearm_all (EV_P)
346{ 477{
347 int fd; 478 int fd;
348 479
349 /* this should be highly optimised to not do anything but set a flag */ 480 /* this should be highly optimised to not do anything but set a flag */
350 for (fd = 0; fd < anfdmax; ++fd) 481 for (fd = 0; fd < anfdmax; ++fd)
351 if (anfds [fd].events) 482 if (anfds [fd].events)
352 { 483 {
353 anfds [fd].events = 0; 484 anfds [fd].events = 0;
354 fd_change (fd); 485 fd_change (EV_A_ fd);
355 } 486 }
356} 487}
357 488
358/*****************************************************************************/ 489/*****************************************************************************/
359 490
363 WT w = heap [k]; 494 WT w = heap [k];
364 495
365 while (k && heap [k >> 1]->at > w->at) 496 while (k && heap [k >> 1]->at > w->at)
366 { 497 {
367 heap [k] = heap [k >> 1]; 498 heap [k] = heap [k >> 1];
368 heap [k]->active = k + 1; 499 ((W)heap [k])->active = k + 1;
369 k >>= 1; 500 k >>= 1;
370 } 501 }
371 502
372 heap [k] = w; 503 heap [k] = w;
373 heap [k]->active = k + 1; 504 ((W)heap [k])->active = k + 1;
374 505
375} 506}
376 507
377static void 508static void
378downheap (WT *heap, int N, int k) 509downheap (WT *heap, int N, int k)
388 519
389 if (w->at <= heap [j]->at) 520 if (w->at <= heap [j]->at)
390 break; 521 break;
391 522
392 heap [k] = heap [j]; 523 heap [k] = heap [j];
393 heap [k]->active = k + 1; 524 ((W)heap [k])->active = k + 1;
394 k = j; 525 k = j;
395 } 526 }
396 527
397 heap [k] = w; 528 heap [k] = w;
398 heap [k]->active = k + 1; 529 ((W)heap [k])->active = k + 1;
530}
531
532inline void
533adjustheap (WT *heap, int N, int k, ev_tstamp at)
534{
535 ev_tstamp old_at = heap [k]->at;
536 heap [k]->at = at;
537
538 if (old_at < at)
539 downheap (heap, N, k);
540 else
541 upheap (heap, k);
399} 542}
400 543
401/*****************************************************************************/ 544/*****************************************************************************/
402 545
403typedef struct 546typedef struct
404{ 547{
405 struct ev_watcher_list *head; 548 WL head;
406 sig_atomic_t volatile gotsig; 549 sig_atomic_t volatile gotsig;
407} ANSIG; 550} ANSIG;
408 551
409static ANSIG *signals; 552static ANSIG *signals;
410static int signalmax; 553static int signalmax;
411 554
412static int sigpipe [2]; 555static int sigpipe [2];
413static sig_atomic_t volatile gotsig; 556static sig_atomic_t volatile gotsig;
557static struct ev_io sigev;
414 558
415static void 559static void
416signals_init (ANSIG *base, int count) 560signals_init (ANSIG *base, int count)
417{ 561{
418 while (count--) 562 while (count--)
425} 569}
426 570
427static void 571static void
428sighandler (int signum) 572sighandler (int signum)
429{ 573{
574#if WIN32
575 signal (signum, sighandler);
576#endif
577
430 signals [signum - 1].gotsig = 1; 578 signals [signum - 1].gotsig = 1;
431 579
432 if (!gotsig) 580 if (!gotsig)
433 { 581 {
434 int old_errno = errno; 582 int old_errno = errno;
435 gotsig = 1; 583 gotsig = 1;
584#ifdef WIN32
585 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
586#else
436 write (sigpipe [1], &signum, 1); 587 write (sigpipe [1], &signum, 1);
588#endif
437 errno = old_errno; 589 errno = old_errno;
438 } 590 }
439} 591}
440 592
593void
594ev_feed_signal_event (EV_P_ int signum)
595{
596 WL w;
597
598#if EV_MULTIPLICITY
599 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
600#endif
601
602 --signum;
603
604 if (signum < 0 || signum >= signalmax)
605 return;
606
607 signals [signum].gotsig = 0;
608
609 for (w = signals [signum].head; w; w = w->next)
610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
611}
612
441static void 613static void
442sigcb (EV_P_ struct ev_io *iow, int revents) 614sigcb (EV_P_ struct ev_io *iow, int revents)
443{ 615{
444 struct ev_watcher_list *w;
445 int signum; 616 int signum;
446 617
618#ifdef WIN32
619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
620#else
447 read (sigpipe [0], &revents, 1); 621 read (sigpipe [0], &revents, 1);
622#endif
448 gotsig = 0; 623 gotsig = 0;
449 624
450 for (signum = signalmax; signum--; ) 625 for (signum = signalmax; signum--; )
451 if (signals [signum].gotsig) 626 if (signals [signum].gotsig)
452 { 627 ev_feed_signal_event (EV_A_ signum + 1);
453 signals [signum].gotsig = 0;
454
455 for (w = signals [signum].head; w; w = w->next)
456 event (EV_A_ (W)w, EV_SIGNAL);
457 }
458} 628}
459 629
460static void 630static void
461siginit (EV_P) 631siginit (EV_P)
462{ 632{
474 ev_unref (EV_A); /* child watcher should not keep loop alive */ 644 ev_unref (EV_A); /* child watcher should not keep loop alive */
475} 645}
476 646
477/*****************************************************************************/ 647/*****************************************************************************/
478 648
649static struct ev_child *childs [PID_HASHSIZE];
650
479#ifndef WIN32 651#ifndef WIN32
652
653static struct ev_signal childev;
480 654
481#ifndef WCONTINUED 655#ifndef WCONTINUED
482# define WCONTINUED 0 656# define WCONTINUED 0
483#endif 657#endif
484 658
488 struct ev_child *w; 662 struct ev_child *w;
489 663
490 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 664 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
491 if (w->pid == pid || !w->pid) 665 if (w->pid == pid || !w->pid)
492 { 666 {
493 w->priority = sw->priority; /* need to do it *now* */ 667 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
494 w->rpid = pid; 668 w->rpid = pid;
495 w->rstatus = status; 669 w->rstatus = status;
496 event (EV_A_ (W)w, EV_CHILD); 670 ev_feed_event (EV_A_ (W)w, EV_CHILD);
497 } 671 }
498} 672}
499 673
500static void 674static void
501childcb (EV_P_ struct ev_signal *sw, int revents) 675childcb (EV_P_ struct ev_signal *sw, int revents)
503 int pid, status; 677 int pid, status;
504 678
505 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 679 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
506 { 680 {
507 /* make sure we are called again until all childs have been reaped */ 681 /* make sure we are called again until all childs have been reaped */
508 event (EV_A_ (W)sw, EV_SIGNAL); 682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
509 683
510 child_reap (EV_A_ sw, pid, pid, status); 684 child_reap (EV_A_ sw, pid, pid, status);
511 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 685 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
512 } 686 }
513} 687}
520# include "ev_kqueue.c" 694# include "ev_kqueue.c"
521#endif 695#endif
522#if EV_USE_EPOLL 696#if EV_USE_EPOLL
523# include "ev_epoll.c" 697# include "ev_epoll.c"
524#endif 698#endif
525#if EV_USEV_POLL 699#if EV_USE_POLL
526# include "ev_poll.c" 700# include "ev_poll.c"
527#endif 701#endif
528#if EV_USE_SELECT 702#if EV_USE_SELECT
529# include "ev_select.c" 703# include "ev_select.c"
530#endif 704#endif
570 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 744 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
571 have_monotonic = 1; 745 have_monotonic = 1;
572 } 746 }
573#endif 747#endif
574 748
575 rt_now = ev_time (); 749 ev_rt_now = ev_time ();
576 mn_now = get_clock (); 750 mn_now = get_clock ();
577 now_floor = mn_now; 751 now_floor = mn_now;
578 rtmn_diff = rt_now - mn_now; 752 rtmn_diff = ev_rt_now - mn_now;
579 753
580 if (methods == EVMETHOD_AUTO) 754 if (methods == EVMETHOD_AUTO)
581 if (!enable_secure () && getenv ("LIBEV_METHODS")) 755 if (!enable_secure () && getenv ("LIBEV_METHODS"))
582 methods = atoi (getenv ("LIBEV_METHODS")); 756 methods = atoi (getenv ("LIBEV_METHODS"));
583 else 757 else
584 methods = EVMETHOD_ANY; 758 methods = EVMETHOD_ANY;
585 759
586 method = 0; 760 method = 0;
761#if EV_USE_WIN32
762 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
763#endif
587#if EV_USE_KQUEUE 764#if EV_USE_KQUEUE
588 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 765 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
589#endif 766#endif
590#if EV_USE_EPOLL 767#if EV_USE_EPOLL
591 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 768 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
592#endif 769#endif
593#if EV_USEV_POLL 770#if EV_USE_POLL
594 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 771 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
595#endif 772#endif
596#if EV_USE_SELECT 773#if EV_USE_SELECT
597 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
598#endif 775#endif
776
777 ev_init (&sigev, sigcb);
778 ev_set_priority (&sigev, EV_MAXPRI);
599 } 779 }
600} 780}
601 781
602void 782void
603loop_destroy (EV_P) 783loop_destroy (EV_P)
604{ 784{
785 int i;
786
787#if EV_USE_WIN32
788 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
789#endif
605#if EV_USE_KQUEUE 790#if EV_USE_KQUEUE
606 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 791 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
607#endif 792#endif
608#if EV_USE_EPOLL 793#if EV_USE_EPOLL
609 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 794 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
610#endif 795#endif
611#if EV_USEV_POLL 796#if EV_USE_POLL
612 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 797 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
613#endif 798#endif
614#if EV_USE_SELECT 799#if EV_USE_SELECT
615 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 800 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
616#endif 801#endif
617 802
803 for (i = NUMPRI; i--; )
804 array_free (pending, [i]);
805
806 /* have to use the microsoft-never-gets-it-right macro */
807 array_free_microshit (fdchange);
808 array_free_microshit (timer);
809#if EV_PERIODICS
810 array_free_microshit (periodic);
811#endif
812 array_free_microshit (idle);
813 array_free_microshit (prepare);
814 array_free_microshit (check);
815
618 method = 0; 816 method = 0;
619 /*TODO*/
620} 817}
621 818
622void 819static void
623loop_fork (EV_P) 820loop_fork (EV_P)
624{ 821{
625 /*TODO*/
626#if EV_USE_EPOLL 822#if EV_USE_EPOLL
627 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 823 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
628#endif 824#endif
629#if EV_USE_KQUEUE 825#if EV_USE_KQUEUE
630 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 826 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
631#endif 827#endif
828
829 if (ev_is_active (&sigev))
830 {
831 /* default loop */
832
833 ev_ref (EV_A);
834 ev_io_stop (EV_A_ &sigev);
835 close (sigpipe [0]);
836 close (sigpipe [1]);
837
838 while (pipe (sigpipe))
839 syserr ("(libev) error creating pipe");
840
841 siginit (EV_A);
842 }
843
844 postfork = 0;
632} 845}
633 846
634#if EV_MULTIPLICITY 847#if EV_MULTIPLICITY
635struct ev_loop * 848struct ev_loop *
636ev_loop_new (int methods) 849ev_loop_new (int methods)
637{ 850{
638 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 851 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
852
853 memset (loop, 0, sizeof (struct ev_loop));
639 854
640 loop_init (EV_A_ methods); 855 loop_init (EV_A_ methods);
641 856
642 if (ev_methods (EV_A)) 857 if (ev_method (EV_A))
643 return loop; 858 return loop;
644 859
645 return 0; 860 return 0;
646} 861}
647 862
648void 863void
649ev_loop_destroy (EV_P) 864ev_loop_destroy (EV_P)
650{ 865{
651 loop_destroy (EV_A); 866 loop_destroy (EV_A);
652 free (loop); 867 ev_free (loop);
653} 868}
654 869
655void 870void
656ev_loop_fork (EV_P) 871ev_loop_fork (EV_P)
657{ 872{
658 loop_fork (EV_A); 873 postfork = 1;
659} 874}
660 875
661#endif 876#endif
662 877
663#if EV_MULTIPLICITY 878#if EV_MULTIPLICITY
664struct ev_loop default_loop_struct;
665static struct ev_loop *default_loop;
666
667struct ev_loop * 879struct ev_loop *
668#else 880#else
669static int default_loop;
670
671int 881int
672#endif 882#endif
673ev_default_loop (int methods) 883ev_default_loop (int methods)
674{ 884{
675 if (sigpipe [0] == sigpipe [1]) 885 if (sigpipe [0] == sigpipe [1])
686 896
687 loop_init (EV_A_ methods); 897 loop_init (EV_A_ methods);
688 898
689 if (ev_method (EV_A)) 899 if (ev_method (EV_A))
690 { 900 {
691 ev_watcher_init (&sigev, sigcb);
692 ev_set_priority (&sigev, EV_MAXPRI);
693 siginit (EV_A); 901 siginit (EV_A);
694 902
695#ifndef WIN32 903#ifndef WIN32
696 ev_signal_init (&childev, childcb, SIGCHLD); 904 ev_signal_init (&childev, childcb, SIGCHLD);
697 ev_set_priority (&childev, EV_MAXPRI); 905 ev_set_priority (&childev, EV_MAXPRI);
707} 915}
708 916
709void 917void
710ev_default_destroy (void) 918ev_default_destroy (void)
711{ 919{
920#if EV_MULTIPLICITY
712 struct ev_loop *loop = default_loop; 921 struct ev_loop *loop = default_loop;
922#endif
713 923
924#ifndef WIN32
714 ev_ref (EV_A); /* child watcher */ 925 ev_ref (EV_A); /* child watcher */
715 ev_signal_stop (EV_A_ &childev); 926 ev_signal_stop (EV_A_ &childev);
927#endif
716 928
717 ev_ref (EV_A); /* signal watcher */ 929 ev_ref (EV_A); /* signal watcher */
718 ev_io_stop (EV_A_ &sigev); 930 ev_io_stop (EV_A_ &sigev);
719 931
720 close (sigpipe [0]); sigpipe [0] = 0; 932 close (sigpipe [0]); sigpipe [0] = 0;
722 934
723 loop_destroy (EV_A); 935 loop_destroy (EV_A);
724} 936}
725 937
726void 938void
727ev_default_fork (EV_P) 939ev_default_fork (void)
728{ 940{
729 loop_fork (EV_A); 941#if EV_MULTIPLICITY
942 struct ev_loop *loop = default_loop;
943#endif
730 944
731 ev_io_stop (EV_A_ &sigev); 945 if (method)
732 close (sigpipe [0]); 946 postfork = 1;
733 close (sigpipe [1]);
734 pipe (sigpipe);
735
736 ev_ref (EV_A); /* signal watcher */
737 siginit (EV_A);
738} 947}
739 948
740/*****************************************************************************/ 949/*****************************************************************************/
950
951static int
952any_pending (EV_P)
953{
954 int pri;
955
956 for (pri = NUMPRI; pri--; )
957 if (pendingcnt [pri])
958 return 1;
959
960 return 0;
961}
741 962
742static void 963static void
743call_pending (EV_P) 964call_pending (EV_P)
744{ 965{
745 int pri; 966 int pri;
750 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 971 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
751 972
752 if (p->w) 973 if (p->w)
753 { 974 {
754 p->w->pending = 0; 975 p->w->pending = 0;
755 p->w->cb (EV_A_ p->w, p->events); 976 EV_CB_INVOKE (p->w, p->events);
756 } 977 }
757 } 978 }
758} 979}
759 980
760static void 981static void
761timers_reify (EV_P) 982timers_reify (EV_P)
762{ 983{
763 while (timercnt && timers [0]->at <= mn_now) 984 while (timercnt && ((WT)timers [0])->at <= mn_now)
764 { 985 {
765 struct ev_timer *w = timers [0]; 986 struct ev_timer *w = timers [0];
987
988 assert (("inactive timer on timer heap detected", ev_is_active (w)));
766 989
767 /* first reschedule or stop timer */ 990 /* first reschedule or stop timer */
768 if (w->repeat) 991 if (w->repeat)
769 { 992 {
770 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 993 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
994
771 w->at = mn_now + w->repeat; 995 ((WT)w)->at += w->repeat;
996 if (((WT)w)->at < mn_now)
997 ((WT)w)->at = mn_now;
998
772 downheap ((WT *)timers, timercnt, 0); 999 downheap ((WT *)timers, timercnt, 0);
773 } 1000 }
774 else 1001 else
775 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1002 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
776 1003
777 event (EV_A_ (W)w, EV_TIMEOUT); 1004 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
778 } 1005 }
779} 1006}
780 1007
1008#if EV_PERIODICS
781static void 1009static void
782periodics_reify (EV_P) 1010periodics_reify (EV_P)
783{ 1011{
784 while (periodiccnt && periodics [0]->at <= rt_now) 1012 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
785 { 1013 {
786 struct ev_periodic *w = periodics [0]; 1014 struct ev_periodic *w = periodics [0];
787 1015
1016 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1017
788 /* first reschedule or stop timer */ 1018 /* first reschedule or stop timer */
789 if (w->interval) 1019 if (w->reschedule_cb)
790 { 1020 {
1021 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1022
1023 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1024 downheap ((WT *)periodics, periodiccnt, 0);
1025 }
1026 else if (w->interval)
1027 {
791 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1028 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
792 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1029 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
793 downheap ((WT *)periodics, periodiccnt, 0); 1030 downheap ((WT *)periodics, periodiccnt, 0);
794 } 1031 }
795 else 1032 else
796 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1033 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
797 1034
798 event (EV_A_ (W)w, EV_PERIODIC); 1035 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
799 } 1036 }
800} 1037}
801 1038
802static void 1039static void
803periodics_reschedule (EV_P) 1040periodics_reschedule (EV_P)
807 /* adjust periodics after time jump */ 1044 /* adjust periodics after time jump */
808 for (i = 0; i < periodiccnt; ++i) 1045 for (i = 0; i < periodiccnt; ++i)
809 { 1046 {
810 struct ev_periodic *w = periodics [i]; 1047 struct ev_periodic *w = periodics [i];
811 1048
1049 if (w->reschedule_cb)
1050 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
812 if (w->interval) 1051 else if (w->interval)
813 {
814 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1052 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
815
816 if (fabs (diff) >= 1e-4)
817 {
818 ev_periodic_stop (EV_A_ w);
819 ev_periodic_start (EV_A_ w);
820
821 i = 0; /* restart loop, inefficient, but time jumps should be rare */
822 }
823 }
824 } 1053 }
1054
1055 /* now rebuild the heap */
1056 for (i = periodiccnt >> 1; i--; )
1057 downheap ((WT *)periodics, periodiccnt, i);
825} 1058}
1059#endif
826 1060
827inline int 1061inline int
828time_update_monotonic (EV_P) 1062time_update_monotonic (EV_P)
829{ 1063{
830 mn_now = get_clock (); 1064 mn_now = get_clock ();
831 1065
832 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1066 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
833 { 1067 {
834 rt_now = rtmn_diff + mn_now; 1068 ev_rt_now = rtmn_diff + mn_now;
835 return 0; 1069 return 0;
836 } 1070 }
837 else 1071 else
838 { 1072 {
839 now_floor = mn_now; 1073 now_floor = mn_now;
840 rt_now = ev_time (); 1074 ev_rt_now = ev_time ();
841 return 1; 1075 return 1;
842 } 1076 }
843} 1077}
844 1078
845static void 1079static void
854 { 1088 {
855 ev_tstamp odiff = rtmn_diff; 1089 ev_tstamp odiff = rtmn_diff;
856 1090
857 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1091 for (i = 4; --i; ) /* loop a few times, before making important decisions */
858 { 1092 {
859 rtmn_diff = rt_now - mn_now; 1093 rtmn_diff = ev_rt_now - mn_now;
860 1094
861 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1095 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
862 return; /* all is well */ 1096 return; /* all is well */
863 1097
864 rt_now = ev_time (); 1098 ev_rt_now = ev_time ();
865 mn_now = get_clock (); 1099 mn_now = get_clock ();
866 now_floor = mn_now; 1100 now_floor = mn_now;
867 } 1101 }
868 1102
1103# if EV_PERIODICS
869 periodics_reschedule (EV_A); 1104 periodics_reschedule (EV_A);
1105# endif
870 /* no timer adjustment, as the monotonic clock doesn't jump */ 1106 /* no timer adjustment, as the monotonic clock doesn't jump */
871 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1107 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
872 } 1108 }
873 } 1109 }
874 else 1110 else
875#endif 1111#endif
876 { 1112 {
877 rt_now = ev_time (); 1113 ev_rt_now = ev_time ();
878 1114
879 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1115 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
880 { 1116 {
1117#if EV_PERIODICS
881 periodics_reschedule (EV_A); 1118 periodics_reschedule (EV_A);
1119#endif
882 1120
883 /* adjust timers. this is easy, as the offset is the same for all */ 1121 /* adjust timers. this is easy, as the offset is the same for all */
884 for (i = 0; i < timercnt; ++i) 1122 for (i = 0; i < timercnt; ++i)
885 timers [i]->at += rt_now - mn_now; 1123 ((WT)timers [i])->at += ev_rt_now - mn_now;
886 } 1124 }
887 1125
888 mn_now = rt_now; 1126 mn_now = ev_rt_now;
889 } 1127 }
890} 1128}
891 1129
892void 1130void
893ev_ref (EV_P) 1131ev_ref (EV_P)
916 { 1154 {
917 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1155 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
918 call_pending (EV_A); 1156 call_pending (EV_A);
919 } 1157 }
920 1158
1159 /* we might have forked, so reify kernel state if necessary */
1160 if (expect_false (postfork))
1161 loop_fork (EV_A);
1162
921 /* update fd-related kernel structures */ 1163 /* update fd-related kernel structures */
922 fd_reify (EV_A); 1164 fd_reify (EV_A);
923 1165
924 /* calculate blocking time */ 1166 /* calculate blocking time */
925 1167
926 /* we only need this for !monotonic clockor timers, but as we basically 1168 /* we only need this for !monotonic clock or timers, but as we basically
927 always have timers, we just calculate it always */ 1169 always have timers, we just calculate it always */
928#if EV_USE_MONOTONIC 1170#if EV_USE_MONOTONIC
929 if (expect_true (have_monotonic)) 1171 if (expect_true (have_monotonic))
930 time_update_monotonic (EV_A); 1172 time_update_monotonic (EV_A);
931 else 1173 else
932#endif 1174#endif
933 { 1175 {
934 rt_now = ev_time (); 1176 ev_rt_now = ev_time ();
935 mn_now = rt_now; 1177 mn_now = ev_rt_now;
936 } 1178 }
937 1179
938 if (flags & EVLOOP_NONBLOCK || idlecnt) 1180 if (flags & EVLOOP_NONBLOCK || idlecnt)
939 block = 0.; 1181 block = 0.;
940 else 1182 else
941 { 1183 {
942 block = MAX_BLOCKTIME; 1184 block = MAX_BLOCKTIME;
943 1185
944 if (timercnt) 1186 if (timercnt)
945 { 1187 {
946 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1188 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
947 if (block > to) block = to; 1189 if (block > to) block = to;
948 } 1190 }
949 1191
1192#if EV_PERIODICS
950 if (periodiccnt) 1193 if (periodiccnt)
951 { 1194 {
952 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1195 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
953 if (block > to) block = to; 1196 if (block > to) block = to;
954 } 1197 }
1198#endif
955 1199
956 if (block < 0.) block = 0.; 1200 if (block < 0.) block = 0.;
957 } 1201 }
958 1202
959 method_poll (EV_A_ block); 1203 method_poll (EV_A_ block);
960 1204
961 /* update rt_now, do magic */ 1205 /* update ev_rt_now, do magic */
962 time_update (EV_A); 1206 time_update (EV_A);
963 1207
964 /* queue pending timers and reschedule them */ 1208 /* queue pending timers and reschedule them */
965 timers_reify (EV_A); /* relative timers called last */ 1209 timers_reify (EV_A); /* relative timers called last */
1210#if EV_PERIODICS
966 periodics_reify (EV_A); /* absolute timers called first */ 1211 periodics_reify (EV_A); /* absolute timers called first */
1212#endif
967 1213
968 /* queue idle watchers unless io or timers are pending */ 1214 /* queue idle watchers unless io or timers are pending */
969 if (!pendingcnt) 1215 if (idlecnt && !any_pending (EV_A))
970 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1216 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
971 1217
972 /* queue check watchers, to be executed first */ 1218 /* queue check watchers, to be executed first */
973 if (checkcnt) 1219 if (checkcnt)
974 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1220 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1049 return; 1295 return;
1050 1296
1051 assert (("ev_io_start called with negative fd", fd >= 0)); 1297 assert (("ev_io_start called with negative fd", fd >= 0));
1052 1298
1053 ev_start (EV_A_ (W)w, 1); 1299 ev_start (EV_A_ (W)w, 1);
1054 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1300 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1055 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1301 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1056 1302
1057 fd_change (EV_A_ fd); 1303 fd_change (EV_A_ fd);
1058} 1304}
1059 1305
1062{ 1308{
1063 ev_clear_pending (EV_A_ (W)w); 1309 ev_clear_pending (EV_A_ (W)w);
1064 if (!ev_is_active (w)) 1310 if (!ev_is_active (w))
1065 return; 1311 return;
1066 1312
1313 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1314
1067 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1315 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1068 ev_stop (EV_A_ (W)w); 1316 ev_stop (EV_A_ (W)w);
1069 1317
1070 fd_change (EV_A_ w->fd); 1318 fd_change (EV_A_ w->fd);
1071} 1319}
1074ev_timer_start (EV_P_ struct ev_timer *w) 1322ev_timer_start (EV_P_ struct ev_timer *w)
1075{ 1323{
1076 if (ev_is_active (w)) 1324 if (ev_is_active (w))
1077 return; 1325 return;
1078 1326
1079 w->at += mn_now; 1327 ((WT)w)->at += mn_now;
1080 1328
1081 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1329 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1082 1330
1083 ev_start (EV_A_ (W)w, ++timercnt); 1331 ev_start (EV_A_ (W)w, ++timercnt);
1084 array_needsize (timers, timermax, timercnt, ); 1332 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1085 timers [timercnt - 1] = w; 1333 timers [timercnt - 1] = w;
1086 upheap ((WT *)timers, timercnt - 1); 1334 upheap ((WT *)timers, timercnt - 1);
1335
1336 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1087} 1337}
1088 1338
1089void 1339void
1090ev_timer_stop (EV_P_ struct ev_timer *w) 1340ev_timer_stop (EV_P_ struct ev_timer *w)
1091{ 1341{
1092 ev_clear_pending (EV_A_ (W)w); 1342 ev_clear_pending (EV_A_ (W)w);
1093 if (!ev_is_active (w)) 1343 if (!ev_is_active (w))
1094 return; 1344 return;
1095 1345
1346 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1347
1096 if (w->active < timercnt--) 1348 if (((W)w)->active < timercnt--)
1097 { 1349 {
1098 timers [w->active - 1] = timers [timercnt]; 1350 timers [((W)w)->active - 1] = timers [timercnt];
1099 downheap ((WT *)timers, timercnt, w->active - 1); 1351 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1100 } 1352 }
1101 1353
1102 w->at = w->repeat; 1354 ((WT)w)->at -= mn_now;
1103 1355
1104 ev_stop (EV_A_ (W)w); 1356 ev_stop (EV_A_ (W)w);
1105} 1357}
1106 1358
1107void 1359void
1108ev_timer_again (EV_P_ struct ev_timer *w) 1360ev_timer_again (EV_P_ struct ev_timer *w)
1109{ 1361{
1110 if (ev_is_active (w)) 1362 if (ev_is_active (w))
1111 { 1363 {
1112 if (w->repeat) 1364 if (w->repeat)
1113 {
1114 w->at = mn_now + w->repeat;
1115 downheap ((WT *)timers, timercnt, w->active - 1); 1365 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1116 }
1117 else 1366 else
1118 ev_timer_stop (EV_A_ w); 1367 ev_timer_stop (EV_A_ w);
1119 } 1368 }
1120 else if (w->repeat) 1369 else if (w->repeat)
1121 ev_timer_start (EV_A_ w); 1370 ev_timer_start (EV_A_ w);
1122} 1371}
1123 1372
1373#if EV_PERIODICS
1124void 1374void
1125ev_periodic_start (EV_P_ struct ev_periodic *w) 1375ev_periodic_start (EV_P_ struct ev_periodic *w)
1126{ 1376{
1127 if (ev_is_active (w)) 1377 if (ev_is_active (w))
1128 return; 1378 return;
1129 1379
1380 if (w->reschedule_cb)
1381 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1382 else if (w->interval)
1383 {
1130 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1384 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1131
1132 /* this formula differs from the one in periodic_reify because we do not always round up */ 1385 /* this formula differs from the one in periodic_reify because we do not always round up */
1133 if (w->interval)
1134 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1386 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1387 }
1135 1388
1136 ev_start (EV_A_ (W)w, ++periodiccnt); 1389 ev_start (EV_A_ (W)w, ++periodiccnt);
1137 array_needsize (periodics, periodicmax, periodiccnt, ); 1390 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1138 periodics [periodiccnt - 1] = w; 1391 periodics [periodiccnt - 1] = w;
1139 upheap ((WT *)periodics, periodiccnt - 1); 1392 upheap ((WT *)periodics, periodiccnt - 1);
1393
1394 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1140} 1395}
1141 1396
1142void 1397void
1143ev_periodic_stop (EV_P_ struct ev_periodic *w) 1398ev_periodic_stop (EV_P_ struct ev_periodic *w)
1144{ 1399{
1145 ev_clear_pending (EV_A_ (W)w); 1400 ev_clear_pending (EV_A_ (W)w);
1146 if (!ev_is_active (w)) 1401 if (!ev_is_active (w))
1147 return; 1402 return;
1148 1403
1404 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1405
1149 if (w->active < periodiccnt--) 1406 if (((W)w)->active < periodiccnt--)
1150 { 1407 {
1151 periodics [w->active - 1] = periodics [periodiccnt]; 1408 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1152 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1409 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1153 } 1410 }
1154 1411
1155 ev_stop (EV_A_ (W)w); 1412 ev_stop (EV_A_ (W)w);
1156} 1413}
1157 1414
1158void 1415void
1416ev_periodic_again (EV_P_ struct ev_periodic *w)
1417{
1418 /* TODO: use adjustheap and recalculation */
1419 ev_periodic_stop (EV_A_ w);
1420 ev_periodic_start (EV_A_ w);
1421}
1422#endif
1423
1424void
1159ev_idle_start (EV_P_ struct ev_idle *w) 1425ev_idle_start (EV_P_ struct ev_idle *w)
1160{ 1426{
1161 if (ev_is_active (w)) 1427 if (ev_is_active (w))
1162 return; 1428 return;
1163 1429
1164 ev_start (EV_A_ (W)w, ++idlecnt); 1430 ev_start (EV_A_ (W)w, ++idlecnt);
1165 array_needsize (idles, idlemax, idlecnt, ); 1431 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1166 idles [idlecnt - 1] = w; 1432 idles [idlecnt - 1] = w;
1167} 1433}
1168 1434
1169void 1435void
1170ev_idle_stop (EV_P_ struct ev_idle *w) 1436ev_idle_stop (EV_P_ struct ev_idle *w)
1171{ 1437{
1172 ev_clear_pending (EV_A_ (W)w); 1438 ev_clear_pending (EV_A_ (W)w);
1173 if (ev_is_active (w)) 1439 if (ev_is_active (w))
1174 return; 1440 return;
1175 1441
1176 idles [w->active - 1] = idles [--idlecnt]; 1442 idles [((W)w)->active - 1] = idles [--idlecnt];
1177 ev_stop (EV_A_ (W)w); 1443 ev_stop (EV_A_ (W)w);
1178} 1444}
1179 1445
1180void 1446void
1181ev_prepare_start (EV_P_ struct ev_prepare *w) 1447ev_prepare_start (EV_P_ struct ev_prepare *w)
1182{ 1448{
1183 if (ev_is_active (w)) 1449 if (ev_is_active (w))
1184 return; 1450 return;
1185 1451
1186 ev_start (EV_A_ (W)w, ++preparecnt); 1452 ev_start (EV_A_ (W)w, ++preparecnt);
1187 array_needsize (prepares, preparemax, preparecnt, ); 1453 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1188 prepares [preparecnt - 1] = w; 1454 prepares [preparecnt - 1] = w;
1189} 1455}
1190 1456
1191void 1457void
1192ev_prepare_stop (EV_P_ struct ev_prepare *w) 1458ev_prepare_stop (EV_P_ struct ev_prepare *w)
1193{ 1459{
1194 ev_clear_pending (EV_A_ (W)w); 1460 ev_clear_pending (EV_A_ (W)w);
1195 if (ev_is_active (w)) 1461 if (ev_is_active (w))
1196 return; 1462 return;
1197 1463
1198 prepares [w->active - 1] = prepares [--preparecnt]; 1464 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1199 ev_stop (EV_A_ (W)w); 1465 ev_stop (EV_A_ (W)w);
1200} 1466}
1201 1467
1202void 1468void
1203ev_check_start (EV_P_ struct ev_check *w) 1469ev_check_start (EV_P_ struct ev_check *w)
1204{ 1470{
1205 if (ev_is_active (w)) 1471 if (ev_is_active (w))
1206 return; 1472 return;
1207 1473
1208 ev_start (EV_A_ (W)w, ++checkcnt); 1474 ev_start (EV_A_ (W)w, ++checkcnt);
1209 array_needsize (checks, checkmax, checkcnt, ); 1475 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1210 checks [checkcnt - 1] = w; 1476 checks [checkcnt - 1] = w;
1211} 1477}
1212 1478
1213void 1479void
1214ev_check_stop (EV_P_ struct ev_check *w) 1480ev_check_stop (EV_P_ struct ev_check *w)
1215{ 1481{
1216 ev_clear_pending (EV_A_ (W)w); 1482 ev_clear_pending (EV_A_ (W)w);
1217 if (ev_is_active (w)) 1483 if (!ev_is_active (w))
1218 return; 1484 return;
1219 1485
1220 checks [w->active - 1] = checks [--checkcnt]; 1486 checks [((W)w)->active - 1] = checks [--checkcnt];
1221 ev_stop (EV_A_ (W)w); 1487 ev_stop (EV_A_ (W)w);
1222} 1488}
1223 1489
1224#ifndef SA_RESTART 1490#ifndef SA_RESTART
1225# define SA_RESTART 0 1491# define SA_RESTART 0
1235 return; 1501 return;
1236 1502
1237 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1503 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1238 1504
1239 ev_start (EV_A_ (W)w, 1); 1505 ev_start (EV_A_ (W)w, 1);
1240 array_needsize (signals, signalmax, w->signum, signals_init); 1506 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1241 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1507 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1242 1508
1243 if (!w->next) 1509 if (!((WL)w)->next)
1244 { 1510 {
1511#if WIN32
1512 signal (w->signum, sighandler);
1513#else
1245 struct sigaction sa; 1514 struct sigaction sa;
1246 sa.sa_handler = sighandler; 1515 sa.sa_handler = sighandler;
1247 sigfillset (&sa.sa_mask); 1516 sigfillset (&sa.sa_mask);
1248 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1517 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1249 sigaction (w->signum, &sa, 0); 1518 sigaction (w->signum, &sa, 0);
1519#endif
1250 } 1520 }
1251} 1521}
1252 1522
1253void 1523void
1254ev_signal_stop (EV_P_ struct ev_signal *w) 1524ev_signal_stop (EV_P_ struct ev_signal *w)
1279 1549
1280void 1550void
1281ev_child_stop (EV_P_ struct ev_child *w) 1551ev_child_stop (EV_P_ struct ev_child *w)
1282{ 1552{
1283 ev_clear_pending (EV_A_ (W)w); 1553 ev_clear_pending (EV_A_ (W)w);
1284 if (ev_is_active (w)) 1554 if (!ev_is_active (w))
1285 return; 1555 return;
1286 1556
1287 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1557 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1288 ev_stop (EV_A_ (W)w); 1558 ev_stop (EV_A_ (W)w);
1289} 1559}
1304 void (*cb)(int revents, void *arg) = once->cb; 1574 void (*cb)(int revents, void *arg) = once->cb;
1305 void *arg = once->arg; 1575 void *arg = once->arg;
1306 1576
1307 ev_io_stop (EV_A_ &once->io); 1577 ev_io_stop (EV_A_ &once->io);
1308 ev_timer_stop (EV_A_ &once->to); 1578 ev_timer_stop (EV_A_ &once->to);
1309 free (once); 1579 ev_free (once);
1310 1580
1311 cb (revents, arg); 1581 cb (revents, arg);
1312} 1582}
1313 1583
1314static void 1584static void
1324} 1594}
1325 1595
1326void 1596void
1327ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1597ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1328{ 1598{
1329 struct ev_once *once = malloc (sizeof (struct ev_once)); 1599 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1330 1600
1331 if (!once) 1601 if (!once)
1332 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1602 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1333 else 1603 else
1334 { 1604 {
1335 once->cb = cb; 1605 once->cb = cb;
1336 once->arg = arg; 1606 once->arg = arg;
1337 1607
1338 ev_watcher_init (&once->io, once_cb_io); 1608 ev_init (&once->io, once_cb_io);
1339 if (fd >= 0) 1609 if (fd >= 0)
1340 { 1610 {
1341 ev_io_set (&once->io, fd, events); 1611 ev_io_set (&once->io, fd, events);
1342 ev_io_start (EV_A_ &once->io); 1612 ev_io_start (EV_A_ &once->io);
1343 } 1613 }
1344 1614
1345 ev_watcher_init (&once->to, once_cb_to); 1615 ev_init (&once->to, once_cb_to);
1346 if (timeout >= 0.) 1616 if (timeout >= 0.)
1347 { 1617 {
1348 ev_timer_set (&once->to, timeout, 0.); 1618 ev_timer_set (&once->to, timeout, 0.);
1349 ev_timer_start (EV_A_ &once->to); 1619 ev_timer_start (EV_A_ &once->to);
1350 } 1620 }
1351 } 1621 }
1352} 1622}
1353 1623
1624#ifdef __cplusplus
1625}
1626#endif
1627

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines