ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.79 by root, Fri Nov 9 15:15:20 2007 UTC vs.
Revision 1.95 by root, Sun Nov 11 01:42:13 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1 40# define EV_USE_MONOTONIC 1
46 51
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 53# define EV_USE_EPOLL 1
49# endif 54# endif
50 55
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 56# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 57# define EV_USE_KQUEUE 1
53# endif 58# endif
54 59
55#endif 60#endif
56 61
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 135
136#ifdef EV_H
137# include EV_H
138#else
131#include "ev.h" 139# include "ev.h"
140#endif
132 141
133#if __GNUC__ >= 3 142#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value)) 143# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 144# define inline inline
136#else 145#else
215 int events; 224 int events;
216} ANPENDING; 225} ANPENDING;
217 226
218#if EV_MULTIPLICITY 227#if EV_MULTIPLICITY
219 228
220struct ev_loop 229 struct ev_loop
221{ 230 {
231 ev_tstamp ev_rt_now;
222# define VAR(name,decl) decl; 232 #define VAR(name,decl) decl;
223# include "ev_vars.h" 233 #include "ev_vars.h"
224};
225# undef VAR 234 #undef VAR
235 };
226# include "ev_wrap.h" 236 #include "ev_wrap.h"
237
238 struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop;
227 240
228#else 241#else
229 242
243 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 244 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 245 #include "ev_vars.h"
232# undef VAR 246 #undef VAR
247
248 static int default_loop;
233 249
234#endif 250#endif
235 251
236/*****************************************************************************/ 252/*****************************************************************************/
237 253
238inline ev_tstamp 254ev_tstamp
239ev_time (void) 255ev_time (void)
240{ 256{
241#if EV_USE_REALTIME 257#if EV_USE_REALTIME
242 struct timespec ts; 258 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 259 clock_gettime (CLOCK_REALTIME, &ts);
262#endif 278#endif
263 279
264 return ev_time (); 280 return ev_time ();
265} 281}
266 282
283#if EV_MULTIPLICITY
267ev_tstamp 284ev_tstamp
268ev_now (EV_P) 285ev_now (EV_P)
269{ 286{
270 return rt_now; 287 return ev_rt_now;
271} 288}
289#endif
272 290
273#define array_roundsize(type,n) ((n) | 4 & ~3) 291#define array_roundsize(type,n) ((n) | 4 & ~3)
274 292
275#define array_needsize(type,base,cur,cnt,init) \ 293#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 294 if (expect_false ((cnt) > cur)) \
509 527
510 heap [k] = w; 528 heap [k] = w;
511 ((W)heap [k])->active = k + 1; 529 ((W)heap [k])->active = k + 1;
512} 530}
513 531
532inline void
533adjustheap (WT *heap, int N, int k, ev_tstamp at)
534{
535 ev_tstamp old_at = heap [k]->at;
536 heap [k]->at = at;
537
538 if (old_at < at)
539 downheap (heap, N, k);
540 else
541 upheap (heap, k);
542}
543
514/*****************************************************************************/ 544/*****************************************************************************/
515 545
516typedef struct 546typedef struct
517{ 547{
518 WL head; 548 WL head;
561} 591}
562 592
563void 593void
564ev_feed_signal_event (EV_P_ int signum) 594ev_feed_signal_event (EV_P_ int signum)
565{ 595{
596 WL w;
597
566#if EV_MULTIPLICITY 598#if EV_MULTIPLICITY
567 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 599 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
568#endif 600#endif
569 601
570 --signum; 602 --signum;
579} 611}
580 612
581static void 613static void
582sigcb (EV_P_ struct ev_io *iow, int revents) 614sigcb (EV_P_ struct ev_io *iow, int revents)
583{ 615{
584 WL w;
585 int signum; 616 int signum;
586 617
587#ifdef WIN32 618#ifdef WIN32
588 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
589#else 620#else
591#endif 622#endif
592 gotsig = 0; 623 gotsig = 0;
593 624
594 for (signum = signalmax; signum--; ) 625 for (signum = signalmax; signum--; )
595 if (signals [signum].gotsig) 626 if (signals [signum].gotsig)
596 sigevent (EV_A_ signum + 1); 627 ev_feed_signal_event (EV_A_ signum + 1);
597} 628}
598 629
599static void 630static void
600siginit (EV_P) 631siginit (EV_P)
601{ 632{
713 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 744 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
714 have_monotonic = 1; 745 have_monotonic = 1;
715 } 746 }
716#endif 747#endif
717 748
718 rt_now = ev_time (); 749 ev_rt_now = ev_time ();
719 mn_now = get_clock (); 750 mn_now = get_clock ();
720 now_floor = mn_now; 751 now_floor = mn_now;
721 rtmn_diff = rt_now - mn_now; 752 rtmn_diff = ev_rt_now - mn_now;
722 753
723 if (methods == EVMETHOD_AUTO) 754 if (methods == EVMETHOD_AUTO)
724 if (!enable_secure () && getenv ("LIBEV_METHODS")) 755 if (!enable_secure () && getenv ("LIBEV_METHODS"))
725 methods = atoi (getenv ("LIBEV_METHODS")); 756 methods = atoi (getenv ("LIBEV_METHODS"));
726 else 757 else
741#endif 772#endif
742#if EV_USE_SELECT 773#if EV_USE_SELECT
743 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
744#endif 775#endif
745 776
746 ev_watcher_init (&sigev, sigcb); 777 ev_init (&sigev, sigcb);
747 ev_set_priority (&sigev, EV_MAXPRI); 778 ev_set_priority (&sigev, EV_MAXPRI);
748 } 779 }
749} 780}
750 781
751void 782void
773 array_free (pending, [i]); 804 array_free (pending, [i]);
774 805
775 /* have to use the microsoft-never-gets-it-right macro */ 806 /* have to use the microsoft-never-gets-it-right macro */
776 array_free_microshit (fdchange); 807 array_free_microshit (fdchange);
777 array_free_microshit (timer); 808 array_free_microshit (timer);
809#if EV_PERIODICS
778 array_free_microshit (periodic); 810 array_free_microshit (periodic);
811#endif
779 array_free_microshit (idle); 812 array_free_microshit (idle);
780 array_free_microshit (prepare); 813 array_free_microshit (prepare);
781 array_free_microshit (check); 814 array_free_microshit (check);
782 815
783 method = 0; 816 method = 0;
841} 874}
842 875
843#endif 876#endif
844 877
845#if EV_MULTIPLICITY 878#if EV_MULTIPLICITY
846struct ev_loop default_loop_struct;
847static struct ev_loop *default_loop;
848
849struct ev_loop * 879struct ev_loop *
850#else 880#else
851static int default_loop;
852
853int 881int
854#endif 882#endif
855ev_default_loop (int methods) 883ev_default_loop (int methods)
856{ 884{
857 if (sigpipe [0] == sigpipe [1]) 885 if (sigpipe [0] == sigpipe [1])
943 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 971 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
944 972
945 if (p->w) 973 if (p->w)
946 { 974 {
947 p->w->pending = 0; 975 p->w->pending = 0;
948 p->w->cb (EV_A_ p->w, p->events); 976 EV_CB_INVOKE (p->w, p->events);
949 } 977 }
950 } 978 }
951} 979}
952 980
953static void 981static void
961 989
962 /* first reschedule or stop timer */ 990 /* first reschedule or stop timer */
963 if (w->repeat) 991 if (w->repeat)
964 { 992 {
965 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 993 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
994
966 ((WT)w)->at = mn_now + w->repeat; 995 ((WT)w)->at += w->repeat;
996 if (((WT)w)->at < mn_now)
997 ((WT)w)->at = mn_now;
998
967 downheap ((WT *)timers, timercnt, 0); 999 downheap ((WT *)timers, timercnt, 0);
968 } 1000 }
969 else 1001 else
970 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1002 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
971 1003
972 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1004 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
973 } 1005 }
974} 1006}
975 1007
1008#if EV_PERIODICS
976static void 1009static void
977periodics_reify (EV_P) 1010periodics_reify (EV_P)
978{ 1011{
979 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1012 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
980 { 1013 {
981 struct ev_periodic *w = periodics [0]; 1014 struct ev_periodic *w = periodics [0];
982 1015
983 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1016 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
984 1017
985 /* first reschedule or stop timer */ 1018 /* first reschedule or stop timer */
986 if (w->reschedule_cb) 1019 if (w->reschedule_cb)
987 { 1020 {
988 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001); 1021 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
989 1022
990 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now)); 1023 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
991 downheap ((WT *)periodics, periodiccnt, 0); 1024 downheap ((WT *)periodics, periodiccnt, 0);
992 } 1025 }
993 else if (w->interval) 1026 else if (w->interval)
994 { 1027 {
995 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1028 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
996 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1029 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
997 downheap ((WT *)periodics, periodiccnt, 0); 1030 downheap ((WT *)periodics, periodiccnt, 0);
998 } 1031 }
999 else 1032 else
1000 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1033 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1001 1034
1012 for (i = 0; i < periodiccnt; ++i) 1045 for (i = 0; i < periodiccnt; ++i)
1013 { 1046 {
1014 struct ev_periodic *w = periodics [i]; 1047 struct ev_periodic *w = periodics [i];
1015 1048
1016 if (w->reschedule_cb) 1049 if (w->reschedule_cb)
1017 ((WT)w)->at = w->reschedule_cb (w, rt_now); 1050 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1018 else if (w->interval) 1051 else if (w->interval)
1019 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1052 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1020 } 1053 }
1021 1054
1022 /* now rebuild the heap */ 1055 /* now rebuild the heap */
1023 for (i = periodiccnt >> 1; i--; ) 1056 for (i = periodiccnt >> 1; i--; )
1024 downheap ((WT *)periodics, periodiccnt, i); 1057 downheap ((WT *)periodics, periodiccnt, i);
1025} 1058}
1059#endif
1026 1060
1027inline int 1061inline int
1028time_update_monotonic (EV_P) 1062time_update_monotonic (EV_P)
1029{ 1063{
1030 mn_now = get_clock (); 1064 mn_now = get_clock ();
1031 1065
1032 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1066 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1033 { 1067 {
1034 rt_now = rtmn_diff + mn_now; 1068 ev_rt_now = rtmn_diff + mn_now;
1035 return 0; 1069 return 0;
1036 } 1070 }
1037 else 1071 else
1038 { 1072 {
1039 now_floor = mn_now; 1073 now_floor = mn_now;
1040 rt_now = ev_time (); 1074 ev_rt_now = ev_time ();
1041 return 1; 1075 return 1;
1042 } 1076 }
1043} 1077}
1044 1078
1045static void 1079static void
1054 { 1088 {
1055 ev_tstamp odiff = rtmn_diff; 1089 ev_tstamp odiff = rtmn_diff;
1056 1090
1057 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1091 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1058 { 1092 {
1059 rtmn_diff = rt_now - mn_now; 1093 rtmn_diff = ev_rt_now - mn_now;
1060 1094
1061 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1095 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1062 return; /* all is well */ 1096 return; /* all is well */
1063 1097
1064 rt_now = ev_time (); 1098 ev_rt_now = ev_time ();
1065 mn_now = get_clock (); 1099 mn_now = get_clock ();
1066 now_floor = mn_now; 1100 now_floor = mn_now;
1067 } 1101 }
1068 1102
1103# if EV_PERIODICS
1069 periodics_reschedule (EV_A); 1104 periodics_reschedule (EV_A);
1105# endif
1070 /* no timer adjustment, as the monotonic clock doesn't jump */ 1106 /* no timer adjustment, as the monotonic clock doesn't jump */
1071 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1107 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1072 } 1108 }
1073 } 1109 }
1074 else 1110 else
1075#endif 1111#endif
1076 { 1112 {
1077 rt_now = ev_time (); 1113 ev_rt_now = ev_time ();
1078 1114
1079 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1115 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1080 { 1116 {
1117#if EV_PERIODICS
1081 periodics_reschedule (EV_A); 1118 periodics_reschedule (EV_A);
1119#endif
1082 1120
1083 /* adjust timers. this is easy, as the offset is the same for all */ 1121 /* adjust timers. this is easy, as the offset is the same for all */
1084 for (i = 0; i < timercnt; ++i) 1122 for (i = 0; i < timercnt; ++i)
1085 ((WT)timers [i])->at += rt_now - mn_now; 1123 ((WT)timers [i])->at += ev_rt_now - mn_now;
1086 } 1124 }
1087 1125
1088 mn_now = rt_now; 1126 mn_now = ev_rt_now;
1089 } 1127 }
1090} 1128}
1091 1129
1092void 1130void
1093ev_ref (EV_P) 1131ev_ref (EV_P)
1133 if (expect_true (have_monotonic)) 1171 if (expect_true (have_monotonic))
1134 time_update_monotonic (EV_A); 1172 time_update_monotonic (EV_A);
1135 else 1173 else
1136#endif 1174#endif
1137 { 1175 {
1138 rt_now = ev_time (); 1176 ev_rt_now = ev_time ();
1139 mn_now = rt_now; 1177 mn_now = ev_rt_now;
1140 } 1178 }
1141 1179
1142 if (flags & EVLOOP_NONBLOCK || idlecnt) 1180 if (flags & EVLOOP_NONBLOCK || idlecnt)
1143 block = 0.; 1181 block = 0.;
1144 else 1182 else
1149 { 1187 {
1150 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1188 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1151 if (block > to) block = to; 1189 if (block > to) block = to;
1152 } 1190 }
1153 1191
1192#if EV_PERIODICS
1154 if (periodiccnt) 1193 if (periodiccnt)
1155 { 1194 {
1156 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1195 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1157 if (block > to) block = to; 1196 if (block > to) block = to;
1158 } 1197 }
1198#endif
1159 1199
1160 if (block < 0.) block = 0.; 1200 if (block < 0.) block = 0.;
1161 } 1201 }
1162 1202
1163 method_poll (EV_A_ block); 1203 method_poll (EV_A_ block);
1164 1204
1165 /* update rt_now, do magic */ 1205 /* update ev_rt_now, do magic */
1166 time_update (EV_A); 1206 time_update (EV_A);
1167 1207
1168 /* queue pending timers and reschedule them */ 1208 /* queue pending timers and reschedule them */
1169 timers_reify (EV_A); /* relative timers called last */ 1209 timers_reify (EV_A); /* relative timers called last */
1210#if EV_PERIODICS
1170 periodics_reify (EV_A); /* absolute timers called first */ 1211 periodics_reify (EV_A); /* absolute timers called first */
1212#endif
1171 1213
1172 /* queue idle watchers unless io or timers are pending */ 1214 /* queue idle watchers unless io or timers are pending */
1173 if (idlecnt && !any_pending (EV_A)) 1215 if (idlecnt && !any_pending (EV_A))
1174 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1216 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1175 1217
1266{ 1308{
1267 ev_clear_pending (EV_A_ (W)w); 1309 ev_clear_pending (EV_A_ (W)w);
1268 if (!ev_is_active (w)) 1310 if (!ev_is_active (w))
1269 return; 1311 return;
1270 1312
1313 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1314
1271 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1315 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1272 ev_stop (EV_A_ (W)w); 1316 ev_stop (EV_A_ (W)w);
1273 1317
1274 fd_change (EV_A_ w->fd); 1318 fd_change (EV_A_ w->fd);
1275} 1319}
1305 { 1349 {
1306 timers [((W)w)->active - 1] = timers [timercnt]; 1350 timers [((W)w)->active - 1] = timers [timercnt];
1307 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1351 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1308 } 1352 }
1309 1353
1310 ((WT)w)->at = w->repeat; 1354 ((WT)w)->at -= mn_now;
1311 1355
1312 ev_stop (EV_A_ (W)w); 1356 ev_stop (EV_A_ (W)w);
1313} 1357}
1314 1358
1315void 1359void
1316ev_timer_again (EV_P_ struct ev_timer *w) 1360ev_timer_again (EV_P_ struct ev_timer *w)
1317{ 1361{
1318 if (ev_is_active (w)) 1362 if (ev_is_active (w))
1319 { 1363 {
1320 if (w->repeat) 1364 if (w->repeat)
1321 {
1322 ((WT)w)->at = mn_now + w->repeat;
1323 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1365 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1324 }
1325 else 1366 else
1326 ev_timer_stop (EV_A_ w); 1367 ev_timer_stop (EV_A_ w);
1327 } 1368 }
1328 else if (w->repeat) 1369 else if (w->repeat)
1329 ev_timer_start (EV_A_ w); 1370 ev_timer_start (EV_A_ w);
1330} 1371}
1331 1372
1373#if EV_PERIODICS
1332void 1374void
1333ev_periodic_start (EV_P_ struct ev_periodic *w) 1375ev_periodic_start (EV_P_ struct ev_periodic *w)
1334{ 1376{
1335 if (ev_is_active (w)) 1377 if (ev_is_active (w))
1336 return; 1378 return;
1337 1379
1338 if (w->reschedule_cb) 1380 if (w->reschedule_cb)
1339 ((WT)w)->at = w->reschedule_cb (w, rt_now); 1381 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1340 else if (w->interval) 1382 else if (w->interval)
1341 { 1383 {
1342 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1384 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1343 /* this formula differs from the one in periodic_reify because we do not always round up */ 1385 /* this formula differs from the one in periodic_reify because we do not always round up */
1344 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1386 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1345 } 1387 }
1346 1388
1347 ev_start (EV_A_ (W)w, ++periodiccnt); 1389 ev_start (EV_A_ (W)w, ++periodiccnt);
1348 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1390 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1349 periodics [periodiccnt - 1] = w; 1391 periodics [periodiccnt - 1] = w;
1371} 1413}
1372 1414
1373void 1415void
1374ev_periodic_again (EV_P_ struct ev_periodic *w) 1416ev_periodic_again (EV_P_ struct ev_periodic *w)
1375{ 1417{
1418 /* TODO: use adjustheap and recalculation */
1376 ev_periodic_stop (EV_A_ w); 1419 ev_periodic_stop (EV_A_ w);
1377 ev_periodic_start (EV_A_ w); 1420 ev_periodic_start (EV_A_ w);
1378} 1421}
1422#endif
1379 1423
1380void 1424void
1381ev_idle_start (EV_P_ struct ev_idle *w) 1425ev_idle_start (EV_P_ struct ev_idle *w)
1382{ 1426{
1383 if (ev_is_active (w)) 1427 if (ev_is_active (w))
1434 1478
1435void 1479void
1436ev_check_stop (EV_P_ struct ev_check *w) 1480ev_check_stop (EV_P_ struct ev_check *w)
1437{ 1481{
1438 ev_clear_pending (EV_A_ (W)w); 1482 ev_clear_pending (EV_A_ (W)w);
1439 if (ev_is_active (w)) 1483 if (!ev_is_active (w))
1440 return; 1484 return;
1441 1485
1442 checks [((W)w)->active - 1] = checks [--checkcnt]; 1486 checks [((W)w)->active - 1] = checks [--checkcnt];
1443 ev_stop (EV_A_ (W)w); 1487 ev_stop (EV_A_ (W)w);
1444} 1488}
1505 1549
1506void 1550void
1507ev_child_stop (EV_P_ struct ev_child *w) 1551ev_child_stop (EV_P_ struct ev_child *w)
1508{ 1552{
1509 ev_clear_pending (EV_A_ (W)w); 1553 ev_clear_pending (EV_A_ (W)w);
1510 if (ev_is_active (w)) 1554 if (!ev_is_active (w))
1511 return; 1555 return;
1512 1556
1513 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1557 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1514 ev_stop (EV_A_ (W)w); 1558 ev_stop (EV_A_ (W)w);
1515} 1559}
1559 else 1603 else
1560 { 1604 {
1561 once->cb = cb; 1605 once->cb = cb;
1562 once->arg = arg; 1606 once->arg = arg;
1563 1607
1564 ev_watcher_init (&once->io, once_cb_io); 1608 ev_init (&once->io, once_cb_io);
1565 if (fd >= 0) 1609 if (fd >= 0)
1566 { 1610 {
1567 ev_io_set (&once->io, fd, events); 1611 ev_io_set (&once->io, fd, events);
1568 ev_io_start (EV_A_ &once->io); 1612 ev_io_start (EV_A_ &once->io);
1569 } 1613 }
1570 1614
1571 ev_watcher_init (&once->to, once_cb_to); 1615 ev_init (&once->to, once_cb_to);
1572 if (timeout >= 0.) 1616 if (timeout >= 0.)
1573 { 1617 {
1574 ev_timer_set (&once->to, timeout, 0.); 1618 ev_timer_set (&once->to, timeout, 0.);
1575 ev_timer_start (EV_A_ &once->to); 1619 ev_timer_start (EV_A_ &once->to);
1576 } 1620 }
1577 } 1621 }
1578} 1622}
1579 1623
1624#ifdef __cplusplus
1625}
1626#endif
1627

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines