ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.96 by root, Sun Nov 11 01:50:36 2007 UTC vs.
Revision 1.240 by root, Thu May 8 21:21:41 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
40# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
41# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
42# endif 66# endif
43 67
44# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
45# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
46# endif 74# endif
47 75
48# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
49# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
50# endif 82# endif
51 83
52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
53# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
54# endif 90# endif
55 91
56# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
57# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
58# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
59 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
60#endif 132#endif
61 133
62#include <math.h> 134#include <math.h>
63#include <stdlib.h> 135#include <stdlib.h>
64#include <fcntl.h> 136#include <fcntl.h>
71#include <sys/types.h> 143#include <sys/types.h>
72#include <time.h> 144#include <time.h>
73 145
74#include <signal.h> 146#include <signal.h>
75 147
76#ifndef WIN32
77# include <unistd.h>
78# include <sys/time.h>
79# include <sys/wait.h>
80#endif
81/**/
82
83#ifndef EV_USE_MONOTONIC
84# define EV_USE_MONOTONIC 1
85#endif
86
87#ifndef EV_USE_SELECT
88# define EV_USE_SELECT 1
89#endif
90
91#ifndef EV_USE_POLL
92# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
93#endif
94
95#ifndef EV_USE_EPOLL
96# define EV_USE_EPOLL 0
97#endif
98
99#ifndef EV_USE_KQUEUE
100# define EV_USE_KQUEUE 0
101#endif
102
103#ifndef EV_USE_WIN32
104# ifdef WIN32
105# define EV_USE_WIN32 0 /* it does not exist, use select */
106# undef EV_USE_SELECT
107# define EV_USE_SELECT 1
108# else
109# define EV_USE_WIN32 0
110# endif
111#endif
112
113#ifndef EV_USE_REALTIME
114# define EV_USE_REALTIME 1
115#endif
116
117/**/
118
119#ifndef CLOCK_MONOTONIC
120# undef EV_USE_MONOTONIC
121# define EV_USE_MONOTONIC 0
122#endif
123
124#ifndef CLOCK_REALTIME
125# undef EV_USE_REALTIME
126# define EV_USE_REALTIME 0
127#endif
128
129/**/
130
131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
135
136#ifdef EV_H 148#ifdef EV_H
137# include EV_H 149# include EV_H
138#else 150#else
139# include "ev.h" 151# include "ev.h"
140#endif 152#endif
141 153
154#ifndef _WIN32
155# include <sys/time.h>
156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
163# endif
164#endif
165
166/* this block tries to deduce configuration from header-defined symbols and defaults */
167
168#ifndef EV_USE_MONOTONIC
169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
178#endif
179
180#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1
182#endif
183
184#ifndef EV_USE_POLL
185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
189# endif
190#endif
191
192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
196# define EV_USE_EPOLL 0
197# endif
198#endif
199
200#ifndef EV_USE_KQUEUE
201# define EV_USE_KQUEUE 0
202#endif
203
204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241
242#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0
245#endif
246
247#ifndef CLOCK_REALTIME
248# undef EV_USE_REALTIME
249# define EV_USE_REALTIME 0
250#endif
251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif
270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298
142#if __GNUC__ >= 3 299#if __GNUC__ >= 4
143# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
144# define inline inline 301# define noinline __attribute__ ((noinline))
145#else 302#else
146# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
147# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
148#endif 308#endif
149 309
150#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
151#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
152 319
153#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
154#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
155 322
323#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */
325
156typedef struct ev_watcher *W; 326typedef ev_watcher *W;
157typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
158typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
159 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
160static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
161 338
339#ifdef _WIN32
162#include "ev_win32.c" 340# include "ev_win32.c"
341#endif
163 342
164/*****************************************************************************/ 343/*****************************************************************************/
165 344
166static void (*syserr_cb)(const char *msg); 345static void (*syserr_cb)(const char *msg);
167 346
347void
168void ev_set_syserr_cb (void (*cb)(const char *msg)) 348ev_set_syserr_cb (void (*cb)(const char *msg))
169{ 349{
170 syserr_cb = cb; 350 syserr_cb = cb;
171} 351}
172 352
173static void 353static void noinline
174syserr (const char *msg) 354syserr (const char *msg)
175{ 355{
176 if (!msg) 356 if (!msg)
177 msg = "(libev) system error"; 357 msg = "(libev) system error";
178 358
183 perror (msg); 363 perror (msg);
184 abort (); 364 abort ();
185 } 365 }
186} 366}
187 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
188static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
189 384
385void
190void ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
191{ 387{
192 alloc = cb; 388 alloc = cb;
193} 389}
194 390
195static void * 391inline_speed void *
196ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
197{ 393{
198 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
199 395
200 if (!ptr && size) 396 if (!ptr && size)
201 { 397 {
202 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
203 abort (); 399 abort ();
214typedef struct 410typedef struct
215{ 411{
216 WL head; 412 WL head;
217 unsigned char events; 413 unsigned char events;
218 unsigned char reify; 414 unsigned char reify;
415#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle;
417#endif
219} ANFD; 418} ANFD;
220 419
221typedef struct 420typedef struct
222{ 421{
223 W w; 422 W w;
224 int events; 423 int events;
225} ANPENDING; 424} ANPENDING;
226 425
426#if EV_USE_INOTIFY
427typedef struct
428{
429 WL head;
430} ANFS;
431#endif
432
227#if EV_MULTIPLICITY 433#if EV_MULTIPLICITY
228 434
229 struct ev_loop 435 struct ev_loop
230 { 436 {
231 ev_tstamp ev_rt_now; 437 ev_tstamp ev_rt_now;
438 #define ev_rt_now ((loop)->ev_rt_now)
232 #define VAR(name,decl) decl; 439 #define VAR(name,decl) decl;
233 #include "ev_vars.h" 440 #include "ev_vars.h"
234 #undef VAR 441 #undef VAR
235 }; 442 };
236 #include "ev_wrap.h" 443 #include "ev_wrap.h"
237 444
238 struct ev_loop default_loop_struct; 445 static struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop; 446 struct ev_loop *ev_default_loop_ptr;
240 447
241#else 448#else
242 449
243 ev_tstamp ev_rt_now; 450 ev_tstamp ev_rt_now;
244 #define VAR(name,decl) static decl; 451 #define VAR(name,decl) static decl;
245 #include "ev_vars.h" 452 #include "ev_vars.h"
246 #undef VAR 453 #undef VAR
247 454
248 static int default_loop; 455 static int ev_default_loop_ptr;
249 456
250#endif 457#endif
251 458
252/*****************************************************************************/ 459/*****************************************************************************/
253 460
263 gettimeofday (&tv, 0); 470 gettimeofday (&tv, 0);
264 return tv.tv_sec + tv.tv_usec * 1e-6; 471 return tv.tv_sec + tv.tv_usec * 1e-6;
265#endif 472#endif
266} 473}
267 474
268inline ev_tstamp 475ev_tstamp inline_size
269get_clock (void) 476get_clock (void)
270{ 477{
271#if EV_USE_MONOTONIC 478#if EV_USE_MONOTONIC
272 if (expect_true (have_monotonic)) 479 if (expect_true (have_monotonic))
273 { 480 {
286{ 493{
287 return ev_rt_now; 494 return ev_rt_now;
288} 495}
289#endif 496#endif
290 497
291#define array_roundsize(type,n) ((n) | 4 & ~3) 498void
499ev_sleep (ev_tstamp delay)
500{
501 if (delay > 0.)
502 {
503#if EV_USE_NANOSLEEP
504 struct timespec ts;
505
506 ts.tv_sec = (time_t)delay;
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0);
510#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3));
512#else
513 struct timeval tv;
514
515 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517
518 select (0, 0, 0, 0, &tv);
519#endif
520 }
521}
522
523/*****************************************************************************/
524
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526
527int inline_size
528array_nextsize (int elem, int cur, int cnt)
529{
530 int ncur = cur + 1;
531
532 do
533 ncur <<= 1;
534 while (cnt > ncur);
535
536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
538 {
539 ncur *= elem;
540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
541 ncur = ncur - sizeof (void *) * 4;
542 ncur /= elem;
543 }
544
545 return ncur;
546}
547
548static noinline void *
549array_realloc (int elem, void *base, int *cur, int cnt)
550{
551 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur);
553}
292 554
293#define array_needsize(type,base,cur,cnt,init) \ 555#define array_needsize(type,base,cur,cnt,init) \
294 if (expect_false ((cnt) > cur)) \ 556 if (expect_false ((cnt) > (cur))) \
295 { \ 557 { \
296 int newcnt = cur; \ 558 int ocur_ = (cur); \
297 do \ 559 (base) = (type *)array_realloc \
298 { \ 560 (sizeof (type), (base), &(cur), (cnt)); \
299 newcnt = array_roundsize (type, newcnt << 1); \ 561 init ((base) + (ocur_), (cur) - ocur_); \
300 } \
301 while ((cnt) > newcnt); \
302 \
303 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
304 init (base + cur, newcnt - cur); \
305 cur = newcnt; \
306 } 562 }
307 563
564#if 0
308#define array_slim(type,stem) \ 565#define array_slim(type,stem) \
309 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 566 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
310 { \ 567 { \
311 stem ## max = array_roundsize (stem ## cnt >> 1); \ 568 stem ## max = array_roundsize (stem ## cnt >> 1); \
312 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 569 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
313 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
314 } 571 }
315 572#endif
316/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
317/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
318#define array_free_microshit(stem) \
319 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
320 573
321#define array_free(stem, idx) \ 574#define array_free(stem, idx) \
322 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
323 576
324/*****************************************************************************/ 577/*****************************************************************************/
325 578
326static void 579void noinline
580ev_feed_event (EV_P_ void *w, int revents)
581{
582 W w_ = (W)w;
583 int pri = ABSPRI (w_);
584
585 if (expect_false (w_->pending))
586 pendings [pri][w_->pending - 1].events |= revents;
587 else
588 {
589 w_->pending = ++pendingcnt [pri];
590 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
591 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents;
593 }
594}
595
596void inline_speed
597queue_events (EV_P_ W *events, int eventcnt, int type)
598{
599 int i;
600
601 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type);
603}
604
605/*****************************************************************************/
606
607void inline_size
327anfds_init (ANFD *base, int count) 608anfds_init (ANFD *base, int count)
328{ 609{
329 while (count--) 610 while (count--)
330 { 611 {
331 base->head = 0; 612 base->head = 0;
334 615
335 ++base; 616 ++base;
336 } 617 }
337} 618}
338 619
339void 620void inline_speed
340ev_feed_event (EV_P_ void *w, int revents)
341{
342 W w_ = (W)w;
343
344 if (w_->pending)
345 {
346 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
347 return;
348 }
349
350 w_->pending = ++pendingcnt [ABSPRI (w_)];
351 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
352 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
353 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
354}
355
356static void
357queue_events (EV_P_ W *events, int eventcnt, int type)
358{
359 int i;
360
361 for (i = 0; i < eventcnt; ++i)
362 ev_feed_event (EV_A_ events [i], type);
363}
364
365inline void
366fd_event (EV_P_ int fd, int revents) 621fd_event (EV_P_ int fd, int revents)
367{ 622{
368 ANFD *anfd = anfds + fd; 623 ANFD *anfd = anfds + fd;
369 struct ev_io *w; 624 ev_io *w;
370 625
371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
372 { 627 {
373 int ev = w->events & revents; 628 int ev = w->events & revents;
374 629
375 if (ev) 630 if (ev)
376 ev_feed_event (EV_A_ (W)w, ev); 631 ev_feed_event (EV_A_ (W)w, ev);
378} 633}
379 634
380void 635void
381ev_feed_fd_event (EV_P_ int fd, int revents) 636ev_feed_fd_event (EV_P_ int fd, int revents)
382{ 637{
638 if (fd >= 0 && fd < anfdmax)
383 fd_event (EV_A_ fd, revents); 639 fd_event (EV_A_ fd, revents);
384} 640}
385 641
386/*****************************************************************************/ 642void inline_size
387
388static void
389fd_reify (EV_P) 643fd_reify (EV_P)
390{ 644{
391 int i; 645 int i;
392 646
393 for (i = 0; i < fdchangecnt; ++i) 647 for (i = 0; i < fdchangecnt; ++i)
394 { 648 {
395 int fd = fdchanges [i]; 649 int fd = fdchanges [i];
396 ANFD *anfd = anfds + fd; 650 ANFD *anfd = anfds + fd;
397 struct ev_io *w; 651 ev_io *w;
398 652
399 int events = 0; 653 unsigned char events = 0;
400 654
401 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 655 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
402 events |= w->events; 656 events |= (unsigned char)w->events;
403 657
658#if EV_SELECT_IS_WINSOCKET
659 if (events)
660 {
661 unsigned long argp;
662 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else
665 anfd->handle = _get_osfhandle (fd);
666 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
668 }
669#endif
670
671 {
672 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify;
674
404 anfd->reify = 0; 675 anfd->reify = 0;
405
406 method_modify (EV_A_ fd, anfd->events, events);
407 anfd->events = events; 676 anfd->events = events;
677
678 if (o_events != events || o_reify & EV_IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events);
680 }
408 } 681 }
409 682
410 fdchangecnt = 0; 683 fdchangecnt = 0;
411} 684}
412 685
413static void 686void inline_size
414fd_change (EV_P_ int fd) 687fd_change (EV_P_ int fd, int flags)
415{ 688{
416 if (anfds [fd].reify) 689 unsigned char reify = anfds [fd].reify;
417 return;
418
419 anfds [fd].reify = 1; 690 anfds [fd].reify |= flags;
420 691
692 if (expect_true (!reify))
693 {
421 ++fdchangecnt; 694 ++fdchangecnt;
422 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
423 fdchanges [fdchangecnt - 1] = fd; 696 fdchanges [fdchangecnt - 1] = fd;
697 }
424} 698}
425 699
426static void 700void inline_speed
427fd_kill (EV_P_ int fd) 701fd_kill (EV_P_ int fd)
428{ 702{
429 struct ev_io *w; 703 ev_io *w;
430 704
431 while ((w = (struct ev_io *)anfds [fd].head)) 705 while ((w = (ev_io *)anfds [fd].head))
432 { 706 {
433 ev_io_stop (EV_A_ w); 707 ev_io_stop (EV_A_ w);
434 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
435 } 709 }
436} 710}
437 711
438static int 712int inline_size
439fd_valid (int fd) 713fd_valid (int fd)
440{ 714{
441#ifdef WIN32 715#ifdef _WIN32
442 return !!win32_get_osfhandle (fd); 716 return _get_osfhandle (fd) != -1;
443#else 717#else
444 return fcntl (fd, F_GETFD) != -1; 718 return fcntl (fd, F_GETFD) != -1;
445#endif 719#endif
446} 720}
447 721
448/* called on EBADF to verify fds */ 722/* called on EBADF to verify fds */
449static void 723static void noinline
450fd_ebadf (EV_P) 724fd_ebadf (EV_P)
451{ 725{
452 int fd; 726 int fd;
453 727
454 for (fd = 0; fd < anfdmax; ++fd) 728 for (fd = 0; fd < anfdmax; ++fd)
456 if (!fd_valid (fd) == -1 && errno == EBADF) 730 if (!fd_valid (fd) == -1 && errno == EBADF)
457 fd_kill (EV_A_ fd); 731 fd_kill (EV_A_ fd);
458} 732}
459 733
460/* called on ENOMEM in select/poll to kill some fds and retry */ 734/* called on ENOMEM in select/poll to kill some fds and retry */
461static void 735static void noinline
462fd_enomem (EV_P) 736fd_enomem (EV_P)
463{ 737{
464 int fd; 738 int fd;
465 739
466 for (fd = anfdmax; fd--; ) 740 for (fd = anfdmax; fd--; )
469 fd_kill (EV_A_ fd); 743 fd_kill (EV_A_ fd);
470 return; 744 return;
471 } 745 }
472} 746}
473 747
474/* usually called after fork if method needs to re-arm all fds from scratch */ 748/* usually called after fork if backend needs to re-arm all fds from scratch */
475static void 749static void noinline
476fd_rearm_all (EV_P) 750fd_rearm_all (EV_P)
477{ 751{
478 int fd; 752 int fd;
479 753
480 /* this should be highly optimised to not do anything but set a flag */
481 for (fd = 0; fd < anfdmax; ++fd) 754 for (fd = 0; fd < anfdmax; ++fd)
482 if (anfds [fd].events) 755 if (anfds [fd].events)
483 { 756 {
484 anfds [fd].events = 0; 757 anfds [fd].events = 0;
485 fd_change (EV_A_ fd); 758 fd_change (EV_A_ fd, EV_IOFDSET | 1);
486 } 759 }
487} 760}
488 761
489/*****************************************************************************/ 762/*****************************************************************************/
490 763
491static void 764/*
765 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers.
769 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP
772
773#define DHEAP 4
774#define HEAP0 (DHEAP - 1) /* index of first element in heap */
775
776/* towards the root */
777void inline_speed
492upheap (WT *heap, int k) 778upheap (WT *heap, int k)
493{ 779{
494 WT w = heap [k]; 780 WT w = heap [k];
781 ev_tstamp w_at = w->at;
495 782
496 while (k && heap [k >> 1]->at > w->at) 783 for (;;)
497 { 784 {
785 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
786
787 if (p == k || heap [p]->at <= w_at)
788 break;
789
498 heap [k] = heap [k >> 1]; 790 heap [k] = heap [p];
499 ((W)heap [k])->active = k + 1; 791 ev_active (heap [k]) = k;
500 k >>= 1; 792 k = p;
501 } 793 }
502 794
503 heap [k] = w; 795 heap [k] = w;
504 ((W)heap [k])->active = k + 1; 796 ev_active (heap [k]) = k;
505
506} 797}
507 798
508static void 799/* away from the root */
800void inline_speed
509downheap (WT *heap, int N, int k) 801downheap (WT *heap, int N, int k)
510{ 802{
511 WT w = heap [k]; 803 WT w = heap [k];
804 WT *E = heap + N + HEAP0;
512 805
513 while (k < (N >> 1)) 806 for (;;)
514 { 807 {
515 int j = k << 1; 808 ev_tstamp minat;
809 WT *minpos;
810 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
516 811
517 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 812 // find minimum child
813 if (expect_true (pos + DHEAP - 1 < E))
518 ++j; 814 {
519 815 /* fast path */ (minpos = pos + 0), (minat = (*minpos)->at);
520 if (w->at <= heap [j]->at) 816 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
817 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
818 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
819 }
820 else if (pos < E)
821 {
822 /* slow path */ (minpos = pos + 0), (minat = (*minpos)->at);
823 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
824 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
825 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
826 }
827 else
521 break; 828 break;
522 829
523 heap [k] = heap [j]; 830 if (w->at <= minat)
524 ((W)heap [k])->active = k + 1; 831 break;
525 k = j; 832
833 ev_active (*minpos) = k;
834 heap [k] = *minpos;
835
836 k = minpos - heap;
526 } 837 }
527 838
528 heap [k] = w; 839 heap [k] = w;
840 ev_active (heap [k]) = k;
841}
842
843#else // 4HEAP
844
845#define HEAP0 1
846
847/* towards the root */
848void inline_speed
849upheap (WT *heap, int k)
850{
851 WT w = heap [k];
852
853 for (;;)
854 {
855 int p = k >> 1;
856
857 /* maybe we could use a dummy element at heap [0]? */
858 if (!p || heap [p]->at <= w->at)
859 break;
860
861 heap [k] = heap [p];
862 ev_active (heap [k]) = k;
863 k = p;
864 }
865
866 heap [k] = w;
867 ev_active (heap [k]) = k;
868}
869
870/* away from the root */
871void inline_speed
872downheap (WT *heap, int N, int k)
873{
874 WT w = heap [k];
875
876 for (;;)
877 {
878 int c = k << 1;
879
880 if (c > N)
881 break;
882
883 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
884 ? 1 : 0;
885
886 if (w->at <= heap [c]->at)
887 break;
888
889 heap [k] = heap [c];
529 ((W)heap [k])->active = k + 1; 890 ((W)heap [k])->active = k;
530} 891
892 k = c;
893 }
531 894
532inline void 895 heap [k] = w;
896 ev_active (heap [k]) = k;
897}
898#endif
899
900void inline_size
533adjustheap (WT *heap, int N, int k, ev_tstamp at) 901adjustheap (WT *heap, int N, int k)
534{ 902{
535 ev_tstamp old_at = heap [k]->at; 903 upheap (heap, k);
536 heap [k]->at = at;
537
538 if (old_at < at)
539 downheap (heap, N, k); 904 downheap (heap, N, k);
540 else
541 upheap (heap, k);
542} 905}
543 906
544/*****************************************************************************/ 907/*****************************************************************************/
545 908
546typedef struct 909typedef struct
547{ 910{
548 WL head; 911 WL head;
549 sig_atomic_t volatile gotsig; 912 EV_ATOMIC_T gotsig;
550} ANSIG; 913} ANSIG;
551 914
552static ANSIG *signals; 915static ANSIG *signals;
553static int signalmax; 916static int signalmax;
554 917
555static int sigpipe [2]; 918static EV_ATOMIC_T gotsig;
556static sig_atomic_t volatile gotsig;
557static struct ev_io sigev;
558 919
559static void 920void inline_size
560signals_init (ANSIG *base, int count) 921signals_init (ANSIG *base, int count)
561{ 922{
562 while (count--) 923 while (count--)
563 { 924 {
564 base->head = 0; 925 base->head = 0;
566 927
567 ++base; 928 ++base;
568 } 929 }
569} 930}
570 931
932/*****************************************************************************/
933
934void inline_speed
935fd_intern (int fd)
936{
937#ifdef _WIN32
938 int arg = 1;
939 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
940#else
941 fcntl (fd, F_SETFD, FD_CLOEXEC);
942 fcntl (fd, F_SETFL, O_NONBLOCK);
943#endif
944}
945
946static void noinline
947evpipe_init (EV_P)
948{
949 if (!ev_is_active (&pipeev))
950 {
951#if EV_USE_EVENTFD
952 if ((evfd = eventfd (0, 0)) >= 0)
953 {
954 evpipe [0] = -1;
955 fd_intern (evfd);
956 ev_io_set (&pipeev, evfd, EV_READ);
957 }
958 else
959#endif
960 {
961 while (pipe (evpipe))
962 syserr ("(libev) error creating signal/async pipe");
963
964 fd_intern (evpipe [0]);
965 fd_intern (evpipe [1]);
966 ev_io_set (&pipeev, evpipe [0], EV_READ);
967 }
968
969 ev_io_start (EV_A_ &pipeev);
970 ev_unref (EV_A); /* watcher should not keep loop alive */
971 }
972}
973
974void inline_size
975evpipe_write (EV_P_ EV_ATOMIC_T *flag)
976{
977 if (!*flag)
978 {
979 int old_errno = errno; /* save errno because write might clobber it */
980
981 *flag = 1;
982
983#if EV_USE_EVENTFD
984 if (evfd >= 0)
985 {
986 uint64_t counter = 1;
987 write (evfd, &counter, sizeof (uint64_t));
988 }
989 else
990#endif
991 write (evpipe [1], &old_errno, 1);
992
993 errno = old_errno;
994 }
995}
996
571static void 997static void
998pipecb (EV_P_ ev_io *iow, int revents)
999{
1000#if EV_USE_EVENTFD
1001 if (evfd >= 0)
1002 {
1003 uint64_t counter;
1004 read (evfd, &counter, sizeof (uint64_t));
1005 }
1006 else
1007#endif
1008 {
1009 char dummy;
1010 read (evpipe [0], &dummy, 1);
1011 }
1012
1013 if (gotsig && ev_is_default_loop (EV_A))
1014 {
1015 int signum;
1016 gotsig = 0;
1017
1018 for (signum = signalmax; signum--; )
1019 if (signals [signum].gotsig)
1020 ev_feed_signal_event (EV_A_ signum + 1);
1021 }
1022
1023#if EV_ASYNC_ENABLE
1024 if (gotasync)
1025 {
1026 int i;
1027 gotasync = 0;
1028
1029 for (i = asynccnt; i--; )
1030 if (asyncs [i]->sent)
1031 {
1032 asyncs [i]->sent = 0;
1033 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1034 }
1035 }
1036#endif
1037}
1038
1039/*****************************************************************************/
1040
1041static void
572sighandler (int signum) 1042ev_sighandler (int signum)
573{ 1043{
1044#if EV_MULTIPLICITY
1045 struct ev_loop *loop = &default_loop_struct;
1046#endif
1047
574#if WIN32 1048#if _WIN32
575 signal (signum, sighandler); 1049 signal (signum, ev_sighandler);
576#endif 1050#endif
577 1051
578 signals [signum - 1].gotsig = 1; 1052 signals [signum - 1].gotsig = 1;
579 1053 evpipe_write (EV_A_ &gotsig);
580 if (!gotsig)
581 {
582 int old_errno = errno;
583 gotsig = 1;
584#ifdef WIN32
585 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
586#else
587 write (sigpipe [1], &signum, 1);
588#endif
589 errno = old_errno;
590 }
591} 1054}
592 1055
593void 1056void noinline
594ev_feed_signal_event (EV_P_ int signum) 1057ev_feed_signal_event (EV_P_ int signum)
595{ 1058{
596 WL w; 1059 WL w;
597 1060
598#if EV_MULTIPLICITY 1061#if EV_MULTIPLICITY
599 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 1062 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
600#endif 1063#endif
601 1064
602 --signum; 1065 --signum;
603 1066
604 if (signum < 0 || signum >= signalmax) 1067 if (signum < 0 || signum >= signalmax)
608 1071
609 for (w = signals [signum].head; w; w = w->next) 1072 for (w = signals [signum].head; w; w = w->next)
610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1073 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
611} 1074}
612 1075
613static void
614sigcb (EV_P_ struct ev_io *iow, int revents)
615{
616 int signum;
617
618#ifdef WIN32
619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
620#else
621 read (sigpipe [0], &revents, 1);
622#endif
623 gotsig = 0;
624
625 for (signum = signalmax; signum--; )
626 if (signals [signum].gotsig)
627 ev_feed_signal_event (EV_A_ signum + 1);
628}
629
630static void
631siginit (EV_P)
632{
633#ifndef WIN32
634 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
635 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
636
637 /* rather than sort out wether we really need nb, set it */
638 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
639 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
640#endif
641
642 ev_io_set (&sigev, sigpipe [0], EV_READ);
643 ev_io_start (EV_A_ &sigev);
644 ev_unref (EV_A); /* child watcher should not keep loop alive */
645}
646
647/*****************************************************************************/ 1076/*****************************************************************************/
648 1077
649static struct ev_child *childs [PID_HASHSIZE]; 1078static WL childs [EV_PID_HASHSIZE];
650 1079
651#ifndef WIN32 1080#ifndef _WIN32
652 1081
653static struct ev_signal childev; 1082static ev_signal childev;
1083
1084#ifndef WIFCONTINUED
1085# define WIFCONTINUED(status) 0
1086#endif
1087
1088void inline_speed
1089child_reap (EV_P_ int chain, int pid, int status)
1090{
1091 ev_child *w;
1092 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1093
1094 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1095 {
1096 if ((w->pid == pid || !w->pid)
1097 && (!traced || (w->flags & 1)))
1098 {
1099 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1100 w->rpid = pid;
1101 w->rstatus = status;
1102 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1103 }
1104 }
1105}
654 1106
655#ifndef WCONTINUED 1107#ifndef WCONTINUED
656# define WCONTINUED 0 1108# define WCONTINUED 0
657#endif 1109#endif
658 1110
659static void 1111static void
660child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
661{
662 struct ev_child *w;
663
664 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
665 if (w->pid == pid || !w->pid)
666 {
667 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
668 w->rpid = pid;
669 w->rstatus = status;
670 ev_feed_event (EV_A_ (W)w, EV_CHILD);
671 }
672}
673
674static void
675childcb (EV_P_ struct ev_signal *sw, int revents) 1112childcb (EV_P_ ev_signal *sw, int revents)
676{ 1113{
677 int pid, status; 1114 int pid, status;
678 1115
1116 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
679 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1117 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
680 { 1118 if (!WCONTINUED
1119 || errno != EINVAL
1120 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1121 return;
1122
681 /* make sure we are called again until all childs have been reaped */ 1123 /* make sure we are called again until all children have been reaped */
1124 /* we need to do it this way so that the callback gets called before we continue */
682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1125 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
683 1126
684 child_reap (EV_A_ sw, pid, pid, status); 1127 child_reap (EV_A_ pid, pid, status);
1128 if (EV_PID_HASHSIZE > 1)
685 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1129 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
686 }
687} 1130}
688 1131
689#endif 1132#endif
690 1133
691/*****************************************************************************/ 1134/*****************************************************************************/
692 1135
1136#if EV_USE_PORT
1137# include "ev_port.c"
1138#endif
693#if EV_USE_KQUEUE 1139#if EV_USE_KQUEUE
694# include "ev_kqueue.c" 1140# include "ev_kqueue.c"
695#endif 1141#endif
696#if EV_USE_EPOLL 1142#if EV_USE_EPOLL
697# include "ev_epoll.c" 1143# include "ev_epoll.c"
714{ 1160{
715 return EV_VERSION_MINOR; 1161 return EV_VERSION_MINOR;
716} 1162}
717 1163
718/* return true if we are running with elevated privileges and should ignore env variables */ 1164/* return true if we are running with elevated privileges and should ignore env variables */
719static int 1165int inline_size
720enable_secure (void) 1166enable_secure (void)
721{ 1167{
722#ifdef WIN32 1168#ifdef _WIN32
723 return 0; 1169 return 0;
724#else 1170#else
725 return getuid () != geteuid () 1171 return getuid () != geteuid ()
726 || getgid () != getegid (); 1172 || getgid () != getegid ();
727#endif 1173#endif
728} 1174}
729 1175
730int 1176unsigned int
731ev_method (EV_P) 1177ev_supported_backends (void)
732{ 1178{
733 return method; 1179 unsigned int flags = 0;
734}
735 1180
736static void 1181 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
737loop_init (EV_P_ int methods) 1182 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1183 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1184 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1185 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1186
1187 return flags;
1188}
1189
1190unsigned int
1191ev_recommended_backends (void)
738{ 1192{
739 if (!method) 1193 unsigned int flags = ev_supported_backends ();
1194
1195#ifndef __NetBSD__
1196 /* kqueue is borked on everything but netbsd apparently */
1197 /* it usually doesn't work correctly on anything but sockets and pipes */
1198 flags &= ~EVBACKEND_KQUEUE;
1199#endif
1200#ifdef __APPLE__
1201 // flags &= ~EVBACKEND_KQUEUE; for documentation
1202 flags &= ~EVBACKEND_POLL;
1203#endif
1204
1205 return flags;
1206}
1207
1208unsigned int
1209ev_embeddable_backends (void)
1210{
1211 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1212
1213 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1214 /* please fix it and tell me how to detect the fix */
1215 flags &= ~EVBACKEND_EPOLL;
1216
1217 return flags;
1218}
1219
1220unsigned int
1221ev_backend (EV_P)
1222{
1223 return backend;
1224}
1225
1226unsigned int
1227ev_loop_count (EV_P)
1228{
1229 return loop_count;
1230}
1231
1232void
1233ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1234{
1235 io_blocktime = interval;
1236}
1237
1238void
1239ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1240{
1241 timeout_blocktime = interval;
1242}
1243
1244static void noinline
1245loop_init (EV_P_ unsigned int flags)
1246{
1247 if (!backend)
740 { 1248 {
741#if EV_USE_MONOTONIC 1249#if EV_USE_MONOTONIC
742 { 1250 {
743 struct timespec ts; 1251 struct timespec ts;
744 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1252 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
745 have_monotonic = 1; 1253 have_monotonic = 1;
746 } 1254 }
747#endif 1255#endif
748 1256
749 ev_rt_now = ev_time (); 1257 ev_rt_now = ev_time ();
750 mn_now = get_clock (); 1258 mn_now = get_clock ();
751 now_floor = mn_now; 1259 now_floor = mn_now;
752 rtmn_diff = ev_rt_now - mn_now; 1260 rtmn_diff = ev_rt_now - mn_now;
753 1261
754 if (methods == EVMETHOD_AUTO) 1262 io_blocktime = 0.;
755 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1263 timeout_blocktime = 0.;
1264 backend = 0;
1265 backend_fd = -1;
1266 gotasync = 0;
1267#if EV_USE_INOTIFY
1268 fs_fd = -2;
1269#endif
1270
1271 /* pid check not overridable via env */
1272#ifndef _WIN32
1273 if (flags & EVFLAG_FORKCHECK)
1274 curpid = getpid ();
1275#endif
1276
1277 if (!(flags & EVFLAG_NOENV)
1278 && !enable_secure ()
1279 && getenv ("LIBEV_FLAGS"))
756 methods = atoi (getenv ("LIBEV_METHODS")); 1280 flags = atoi (getenv ("LIBEV_FLAGS"));
757 else
758 methods = EVMETHOD_ANY;
759 1281
760 method = 0; 1282 if (!(flags & 0x0000ffffU))
761#if EV_USE_WIN32 1283 flags |= ev_recommended_backends ();
762 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1284
1285#if EV_USE_PORT
1286 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
763#endif 1287#endif
764#if EV_USE_KQUEUE 1288#if EV_USE_KQUEUE
765 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1289 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
766#endif 1290#endif
767#if EV_USE_EPOLL 1291#if EV_USE_EPOLL
768 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1292 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
769#endif 1293#endif
770#if EV_USE_POLL 1294#if EV_USE_POLL
771 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1295 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
772#endif 1296#endif
773#if EV_USE_SELECT 1297#if EV_USE_SELECT
774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1298 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
775#endif 1299#endif
776 1300
777 ev_init (&sigev, sigcb); 1301 ev_init (&pipeev, pipecb);
778 ev_set_priority (&sigev, EV_MAXPRI); 1302 ev_set_priority (&pipeev, EV_MAXPRI);
779 } 1303 }
780} 1304}
781 1305
782void 1306static void noinline
783loop_destroy (EV_P) 1307loop_destroy (EV_P)
784{ 1308{
785 int i; 1309 int i;
786 1310
1311 if (ev_is_active (&pipeev))
1312 {
1313 ev_ref (EV_A); /* signal watcher */
1314 ev_io_stop (EV_A_ &pipeev);
1315
1316#if EV_USE_EVENTFD
1317 if (evfd >= 0)
1318 close (evfd);
1319#endif
1320
1321 if (evpipe [0] >= 0)
1322 {
1323 close (evpipe [0]);
1324 close (evpipe [1]);
1325 }
1326 }
1327
787#if EV_USE_WIN32 1328#if EV_USE_INOTIFY
788 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1329 if (fs_fd >= 0)
1330 close (fs_fd);
1331#endif
1332
1333 if (backend_fd >= 0)
1334 close (backend_fd);
1335
1336#if EV_USE_PORT
1337 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
789#endif 1338#endif
790#if EV_USE_KQUEUE 1339#if EV_USE_KQUEUE
791 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1340 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
792#endif 1341#endif
793#if EV_USE_EPOLL 1342#if EV_USE_EPOLL
794 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1343 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
795#endif 1344#endif
796#if EV_USE_POLL 1345#if EV_USE_POLL
797 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1346 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
798#endif 1347#endif
799#if EV_USE_SELECT 1348#if EV_USE_SELECT
800 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1349 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
801#endif 1350#endif
802 1351
803 for (i = NUMPRI; i--; ) 1352 for (i = NUMPRI; i--; )
1353 {
804 array_free (pending, [i]); 1354 array_free (pending, [i]);
1355#if EV_IDLE_ENABLE
1356 array_free (idle, [i]);
1357#endif
1358 }
1359
1360 ev_free (anfds); anfdmax = 0;
805 1361
806 /* have to use the microsoft-never-gets-it-right macro */ 1362 /* have to use the microsoft-never-gets-it-right macro */
807 array_free_microshit (fdchange); 1363 array_free (fdchange, EMPTY);
808 array_free_microshit (timer); 1364 array_free (timer, EMPTY);
809#if EV_PERIODICS 1365#if EV_PERIODIC_ENABLE
810 array_free_microshit (periodic); 1366 array_free (periodic, EMPTY);
811#endif 1367#endif
812 array_free_microshit (idle); 1368#if EV_FORK_ENABLE
813 array_free_microshit (prepare); 1369 array_free (fork, EMPTY);
814 array_free_microshit (check); 1370#endif
1371 array_free (prepare, EMPTY);
1372 array_free (check, EMPTY);
1373#if EV_ASYNC_ENABLE
1374 array_free (async, EMPTY);
1375#endif
815 1376
816 method = 0; 1377 backend = 0;
817} 1378}
818 1379
819static void 1380#if EV_USE_INOTIFY
1381void inline_size infy_fork (EV_P);
1382#endif
1383
1384void inline_size
820loop_fork (EV_P) 1385loop_fork (EV_P)
821{ 1386{
1387#if EV_USE_PORT
1388 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1389#endif
1390#if EV_USE_KQUEUE
1391 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1392#endif
822#if EV_USE_EPOLL 1393#if EV_USE_EPOLL
823 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1394 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
824#endif 1395#endif
825#if EV_USE_KQUEUE 1396#if EV_USE_INOTIFY
826 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1397 infy_fork (EV_A);
827#endif 1398#endif
828 1399
829 if (ev_is_active (&sigev)) 1400 if (ev_is_active (&pipeev))
830 { 1401 {
831 /* default loop */ 1402 /* this "locks" the handlers against writing to the pipe */
1403 /* while we modify the fd vars */
1404 gotsig = 1;
1405#if EV_ASYNC_ENABLE
1406 gotasync = 1;
1407#endif
832 1408
833 ev_ref (EV_A); 1409 ev_ref (EV_A);
834 ev_io_stop (EV_A_ &sigev); 1410 ev_io_stop (EV_A_ &pipeev);
1411
1412#if EV_USE_EVENTFD
1413 if (evfd >= 0)
1414 close (evfd);
1415#endif
1416
1417 if (evpipe [0] >= 0)
1418 {
835 close (sigpipe [0]); 1419 close (evpipe [0]);
836 close (sigpipe [1]); 1420 close (evpipe [1]);
1421 }
837 1422
838 while (pipe (sigpipe))
839 syserr ("(libev) error creating pipe");
840
841 siginit (EV_A); 1423 evpipe_init (EV_A);
1424 /* now iterate over everything, in case we missed something */
1425 pipecb (EV_A_ &pipeev, EV_READ);
842 } 1426 }
843 1427
844 postfork = 0; 1428 postfork = 0;
845} 1429}
846 1430
847#if EV_MULTIPLICITY 1431#if EV_MULTIPLICITY
848struct ev_loop * 1432struct ev_loop *
849ev_loop_new (int methods) 1433ev_loop_new (unsigned int flags)
850{ 1434{
851 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1435 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
852 1436
853 memset (loop, 0, sizeof (struct ev_loop)); 1437 memset (loop, 0, sizeof (struct ev_loop));
854 1438
855 loop_init (EV_A_ methods); 1439 loop_init (EV_A_ flags);
856 1440
857 if (ev_method (EV_A)) 1441 if (ev_backend (EV_A))
858 return loop; 1442 return loop;
859 1443
860 return 0; 1444 return 0;
861} 1445}
862 1446
868} 1452}
869 1453
870void 1454void
871ev_loop_fork (EV_P) 1455ev_loop_fork (EV_P)
872{ 1456{
873 postfork = 1; 1457 postfork = 1; /* must be in line with ev_default_fork */
874} 1458}
875
876#endif 1459#endif
877 1460
878#if EV_MULTIPLICITY 1461#if EV_MULTIPLICITY
879struct ev_loop * 1462struct ev_loop *
1463ev_default_loop_init (unsigned int flags)
880#else 1464#else
881int 1465int
1466ev_default_loop (unsigned int flags)
882#endif 1467#endif
883ev_default_loop (int methods)
884{ 1468{
885 if (sigpipe [0] == sigpipe [1])
886 if (pipe (sigpipe))
887 return 0;
888
889 if (!default_loop) 1469 if (!ev_default_loop_ptr)
890 { 1470 {
891#if EV_MULTIPLICITY 1471#if EV_MULTIPLICITY
892 struct ev_loop *loop = default_loop = &default_loop_struct; 1472 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
893#else 1473#else
894 default_loop = 1; 1474 ev_default_loop_ptr = 1;
895#endif 1475#endif
896 1476
897 loop_init (EV_A_ methods); 1477 loop_init (EV_A_ flags);
898 1478
899 if (ev_method (EV_A)) 1479 if (ev_backend (EV_A))
900 { 1480 {
901 siginit (EV_A);
902
903#ifndef WIN32 1481#ifndef _WIN32
904 ev_signal_init (&childev, childcb, SIGCHLD); 1482 ev_signal_init (&childev, childcb, SIGCHLD);
905 ev_set_priority (&childev, EV_MAXPRI); 1483 ev_set_priority (&childev, EV_MAXPRI);
906 ev_signal_start (EV_A_ &childev); 1484 ev_signal_start (EV_A_ &childev);
907 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1485 ev_unref (EV_A); /* child watcher should not keep loop alive */
908#endif 1486#endif
909 } 1487 }
910 else 1488 else
911 default_loop = 0; 1489 ev_default_loop_ptr = 0;
912 } 1490 }
913 1491
914 return default_loop; 1492 return ev_default_loop_ptr;
915} 1493}
916 1494
917void 1495void
918ev_default_destroy (void) 1496ev_default_destroy (void)
919{ 1497{
920#if EV_MULTIPLICITY 1498#if EV_MULTIPLICITY
921 struct ev_loop *loop = default_loop; 1499 struct ev_loop *loop = ev_default_loop_ptr;
922#endif 1500#endif
923 1501
924#ifndef WIN32 1502#ifndef _WIN32
925 ev_ref (EV_A); /* child watcher */ 1503 ev_ref (EV_A); /* child watcher */
926 ev_signal_stop (EV_A_ &childev); 1504 ev_signal_stop (EV_A_ &childev);
927#endif 1505#endif
928 1506
929 ev_ref (EV_A); /* signal watcher */
930 ev_io_stop (EV_A_ &sigev);
931
932 close (sigpipe [0]); sigpipe [0] = 0;
933 close (sigpipe [1]); sigpipe [1] = 0;
934
935 loop_destroy (EV_A); 1507 loop_destroy (EV_A);
936} 1508}
937 1509
938void 1510void
939ev_default_fork (void) 1511ev_default_fork (void)
940{ 1512{
941#if EV_MULTIPLICITY 1513#if EV_MULTIPLICITY
942 struct ev_loop *loop = default_loop; 1514 struct ev_loop *loop = ev_default_loop_ptr;
943#endif 1515#endif
944 1516
945 if (method) 1517 if (backend)
946 postfork = 1; 1518 postfork = 1; /* must be in line with ev_loop_fork */
947} 1519}
948 1520
949/*****************************************************************************/ 1521/*****************************************************************************/
950 1522
951static int 1523void
952any_pending (EV_P) 1524ev_invoke (EV_P_ void *w, int revents)
953{ 1525{
954 int pri; 1526 EV_CB_INVOKE ((W)w, revents);
955
956 for (pri = NUMPRI; pri--; )
957 if (pendingcnt [pri])
958 return 1;
959
960 return 0;
961} 1527}
962 1528
963static void 1529void inline_speed
964call_pending (EV_P) 1530call_pending (EV_P)
965{ 1531{
966 int pri; 1532 int pri;
967 1533
968 for (pri = NUMPRI; pri--; ) 1534 for (pri = NUMPRI; pri--; )
969 while (pendingcnt [pri]) 1535 while (pendingcnt [pri])
970 { 1536 {
971 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1537 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
972 1538
973 if (p->w) 1539 if (expect_true (p->w))
974 { 1540 {
1541 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1542
975 p->w->pending = 0; 1543 p->w->pending = 0;
976 EV_CB_INVOKE (p->w, p->events); 1544 EV_CB_INVOKE (p->w, p->events);
977 } 1545 }
978 } 1546 }
979} 1547}
980 1548
981static void 1549#if EV_IDLE_ENABLE
1550void inline_size
1551idle_reify (EV_P)
1552{
1553 if (expect_false (idleall))
1554 {
1555 int pri;
1556
1557 for (pri = NUMPRI; pri--; )
1558 {
1559 if (pendingcnt [pri])
1560 break;
1561
1562 if (idlecnt [pri])
1563 {
1564 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1565 break;
1566 }
1567 }
1568 }
1569}
1570#endif
1571
1572void inline_size
982timers_reify (EV_P) 1573timers_reify (EV_P)
983{ 1574{
984 while (timercnt && ((WT)timers [0])->at <= mn_now) 1575 while (timercnt && ev_at (timers [HEAP0]) <= mn_now)
985 { 1576 {
986 struct ev_timer *w = timers [0]; 1577 ev_timer *w = (ev_timer *)timers [HEAP0];
987 1578
988 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1579 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
989 1580
990 /* first reschedule or stop timer */ 1581 /* first reschedule or stop timer */
991 if (w->repeat) 1582 if (w->repeat)
992 { 1583 {
993 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1584 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
994 1585
995 ((WT)w)->at += w->repeat; 1586 ev_at (w) += w->repeat;
996 if (((WT)w)->at < mn_now) 1587 if (ev_at (w) < mn_now)
997 ((WT)w)->at = mn_now; 1588 ev_at (w) = mn_now;
998 1589
999 downheap ((WT *)timers, timercnt, 0); 1590 downheap (timers, timercnt, HEAP0);
1000 } 1591 }
1001 else 1592 else
1002 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1593 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1003 1594
1004 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1595 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1005 } 1596 }
1006} 1597}
1007 1598
1008#if EV_PERIODICS 1599#if EV_PERIODIC_ENABLE
1009static void 1600void inline_size
1010periodics_reify (EV_P) 1601periodics_reify (EV_P)
1011{ 1602{
1012 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1603 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now)
1013 { 1604 {
1014 struct ev_periodic *w = periodics [0]; 1605 ev_periodic *w = (ev_periodic *)periodics [HEAP0];
1015 1606
1016 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1607 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1017 1608
1018 /* first reschedule or stop timer */ 1609 /* first reschedule or stop timer */
1019 if (w->reschedule_cb) 1610 if (w->reschedule_cb)
1020 { 1611 {
1021 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1612 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1022
1023 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1613 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1024 downheap ((WT *)periodics, periodiccnt, 0); 1614 downheap (periodics, periodiccnt, 1);
1025 } 1615 }
1026 else if (w->interval) 1616 else if (w->interval)
1027 { 1617 {
1028 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1618 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1619 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1029 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1620 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1030 downheap ((WT *)periodics, periodiccnt, 0); 1621 downheap (periodics, periodiccnt, HEAP0);
1031 } 1622 }
1032 else 1623 else
1033 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1624 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1034 1625
1035 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1626 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1036 } 1627 }
1037} 1628}
1038 1629
1039static void 1630static void noinline
1040periodics_reschedule (EV_P) 1631periodics_reschedule (EV_P)
1041{ 1632{
1042 int i; 1633 int i;
1043 1634
1044 /* adjust periodics after time jump */ 1635 /* adjust periodics after time jump */
1045 for (i = 0; i < periodiccnt; ++i) 1636 for (i = 1; i <= periodiccnt; ++i)
1046 { 1637 {
1047 struct ev_periodic *w = periodics [i]; 1638 ev_periodic *w = (ev_periodic *)periodics [i];
1048 1639
1049 if (w->reschedule_cb) 1640 if (w->reschedule_cb)
1050 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1641 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1051 else if (w->interval) 1642 else if (w->interval)
1052 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1643 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1053 } 1644 }
1054 1645
1055 /* now rebuild the heap */ 1646 /* now rebuild the heap */
1056 for (i = periodiccnt >> 1; i--; ) 1647 for (i = periodiccnt >> 1; --i; )
1057 downheap ((WT *)periodics, periodiccnt, i); 1648 downheap (periodics, periodiccnt, i + HEAP0);
1058} 1649}
1059#endif 1650#endif
1060 1651
1061inline int 1652void inline_speed
1062time_update_monotonic (EV_P) 1653time_update (EV_P_ ev_tstamp max_block)
1063{ 1654{
1655 int i;
1656
1657#if EV_USE_MONOTONIC
1658 if (expect_true (have_monotonic))
1659 {
1660 ev_tstamp odiff = rtmn_diff;
1661
1064 mn_now = get_clock (); 1662 mn_now = get_clock ();
1065 1663
1664 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1665 /* interpolate in the meantime */
1066 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1666 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1067 { 1667 {
1068 ev_rt_now = rtmn_diff + mn_now; 1668 ev_rt_now = rtmn_diff + mn_now;
1069 return 0; 1669 return;
1070 } 1670 }
1071 else 1671
1072 {
1073 now_floor = mn_now; 1672 now_floor = mn_now;
1074 ev_rt_now = ev_time (); 1673 ev_rt_now = ev_time ();
1075 return 1;
1076 }
1077}
1078 1674
1079static void 1675 /* loop a few times, before making important decisions.
1080time_update (EV_P) 1676 * on the choice of "4": one iteration isn't enough,
1081{ 1677 * in case we get preempted during the calls to
1082 int i; 1678 * ev_time and get_clock. a second call is almost guaranteed
1083 1679 * to succeed in that case, though. and looping a few more times
1084#if EV_USE_MONOTONIC 1680 * doesn't hurt either as we only do this on time-jumps or
1085 if (expect_true (have_monotonic)) 1681 * in the unlikely event of having been preempted here.
1086 { 1682 */
1087 if (time_update_monotonic (EV_A)) 1683 for (i = 4; --i; )
1088 { 1684 {
1089 ev_tstamp odiff = rtmn_diff;
1090
1091 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1092 {
1093 rtmn_diff = ev_rt_now - mn_now; 1685 rtmn_diff = ev_rt_now - mn_now;
1094 1686
1095 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1687 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1096 return; /* all is well */ 1688 return; /* all is well */
1097 1689
1098 ev_rt_now = ev_time (); 1690 ev_rt_now = ev_time ();
1099 mn_now = get_clock (); 1691 mn_now = get_clock ();
1100 now_floor = mn_now; 1692 now_floor = mn_now;
1101 } 1693 }
1102 1694
1103# if EV_PERIODICS 1695# if EV_PERIODIC_ENABLE
1696 periodics_reschedule (EV_A);
1697# endif
1698 /* no timer adjustment, as the monotonic clock doesn't jump */
1699 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1700 }
1701 else
1702#endif
1703 {
1704 ev_rt_now = ev_time ();
1705
1706 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1707 {
1708#if EV_PERIODIC_ENABLE
1104 periodics_reschedule (EV_A); 1709 periodics_reschedule (EV_A);
1105# endif 1710#endif
1106 /* no timer adjustment, as the monotonic clock doesn't jump */ 1711 /* adjust timers. this is easy, as the offset is the same for all of them */
1107 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1712 for (i = 1; i <= timercnt; ++i)
1713 ev_at (timers [i]) += ev_rt_now - mn_now;
1108 } 1714 }
1109 }
1110 else
1111#endif
1112 {
1113 ev_rt_now = ev_time ();
1114
1115 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1116 {
1117#if EV_PERIODICS
1118 periodics_reschedule (EV_A);
1119#endif
1120
1121 /* adjust timers. this is easy, as the offset is the same for all */
1122 for (i = 0; i < timercnt; ++i)
1123 ((WT)timers [i])->at += ev_rt_now - mn_now;
1124 }
1125 1715
1126 mn_now = ev_rt_now; 1716 mn_now = ev_rt_now;
1127 } 1717 }
1128} 1718}
1129 1719
1142static int loop_done; 1732static int loop_done;
1143 1733
1144void 1734void
1145ev_loop (EV_P_ int flags) 1735ev_loop (EV_P_ int flags)
1146{ 1736{
1147 double block; 1737 loop_done = EVUNLOOP_CANCEL;
1148 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1738
1739 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1149 1740
1150 do 1741 do
1151 { 1742 {
1743#ifndef _WIN32
1744 if (expect_false (curpid)) /* penalise the forking check even more */
1745 if (expect_false (getpid () != curpid))
1746 {
1747 curpid = getpid ();
1748 postfork = 1;
1749 }
1750#endif
1751
1752#if EV_FORK_ENABLE
1753 /* we might have forked, so queue fork handlers */
1754 if (expect_false (postfork))
1755 if (forkcnt)
1756 {
1757 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1758 call_pending (EV_A);
1759 }
1760#endif
1761
1152 /* queue check watchers (and execute them) */ 1762 /* queue prepare watchers (and execute them) */
1153 if (expect_false (preparecnt)) 1763 if (expect_false (preparecnt))
1154 { 1764 {
1155 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1765 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1156 call_pending (EV_A); 1766 call_pending (EV_A);
1157 } 1767 }
1158 1768
1769 if (expect_false (!activecnt))
1770 break;
1771
1159 /* we might have forked, so reify kernel state if necessary */ 1772 /* we might have forked, so reify kernel state if necessary */
1160 if (expect_false (postfork)) 1773 if (expect_false (postfork))
1161 loop_fork (EV_A); 1774 loop_fork (EV_A);
1162 1775
1163 /* update fd-related kernel structures */ 1776 /* update fd-related kernel structures */
1164 fd_reify (EV_A); 1777 fd_reify (EV_A);
1165 1778
1166 /* calculate blocking time */ 1779 /* calculate blocking time */
1780 {
1781 ev_tstamp waittime = 0.;
1782 ev_tstamp sleeptime = 0.;
1167 1783
1168 /* we only need this for !monotonic clock or timers, but as we basically 1784 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1169 always have timers, we just calculate it always */
1170#if EV_USE_MONOTONIC
1171 if (expect_true (have_monotonic))
1172 time_update_monotonic (EV_A);
1173 else
1174#endif
1175 { 1785 {
1176 ev_rt_now = ev_time (); 1786 /* update time to cancel out callback processing overhead */
1177 mn_now = ev_rt_now; 1787 time_update (EV_A_ 1e100);
1178 }
1179 1788
1180 if (flags & EVLOOP_NONBLOCK || idlecnt)
1181 block = 0.;
1182 else
1183 {
1184 block = MAX_BLOCKTIME; 1789 waittime = MAX_BLOCKTIME;
1185 1790
1186 if (timercnt) 1791 if (timercnt)
1187 { 1792 {
1188 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1793 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge;
1189 if (block > to) block = to; 1794 if (waittime > to) waittime = to;
1190 } 1795 }
1191 1796
1192#if EV_PERIODICS 1797#if EV_PERIODIC_ENABLE
1193 if (periodiccnt) 1798 if (periodiccnt)
1194 { 1799 {
1195 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1800 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1196 if (block > to) block = to; 1801 if (waittime > to) waittime = to;
1197 } 1802 }
1198#endif 1803#endif
1199 1804
1200 if (block < 0.) block = 0.; 1805 if (expect_false (waittime < timeout_blocktime))
1806 waittime = timeout_blocktime;
1807
1808 sleeptime = waittime - backend_fudge;
1809
1810 if (expect_true (sleeptime > io_blocktime))
1811 sleeptime = io_blocktime;
1812
1813 if (sleeptime)
1814 {
1815 ev_sleep (sleeptime);
1816 waittime -= sleeptime;
1817 }
1201 } 1818 }
1202 1819
1203 method_poll (EV_A_ block); 1820 ++loop_count;
1821 backend_poll (EV_A_ waittime);
1204 1822
1205 /* update ev_rt_now, do magic */ 1823 /* update ev_rt_now, do magic */
1206 time_update (EV_A); 1824 time_update (EV_A_ waittime + sleeptime);
1825 }
1207 1826
1208 /* queue pending timers and reschedule them */ 1827 /* queue pending timers and reschedule them */
1209 timers_reify (EV_A); /* relative timers called last */ 1828 timers_reify (EV_A); /* relative timers called last */
1210#if EV_PERIODICS 1829#if EV_PERIODIC_ENABLE
1211 periodics_reify (EV_A); /* absolute timers called first */ 1830 periodics_reify (EV_A); /* absolute timers called first */
1212#endif 1831#endif
1213 1832
1833#if EV_IDLE_ENABLE
1214 /* queue idle watchers unless io or timers are pending */ 1834 /* queue idle watchers unless other events are pending */
1215 if (idlecnt && !any_pending (EV_A)) 1835 idle_reify (EV_A);
1216 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1836#endif
1217 1837
1218 /* queue check watchers, to be executed first */ 1838 /* queue check watchers, to be executed first */
1219 if (checkcnt) 1839 if (expect_false (checkcnt))
1220 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1840 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1221 1841
1222 call_pending (EV_A); 1842 call_pending (EV_A);
1223 } 1843 }
1224 while (activecnt && !loop_done); 1844 while (expect_true (
1845 activecnt
1846 && !loop_done
1847 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1848 ));
1225 1849
1226 if (loop_done != 2) 1850 if (loop_done == EVUNLOOP_ONE)
1227 loop_done = 0; 1851 loop_done = EVUNLOOP_CANCEL;
1228} 1852}
1229 1853
1230void 1854void
1231ev_unloop (EV_P_ int how) 1855ev_unloop (EV_P_ int how)
1232{ 1856{
1233 loop_done = how; 1857 loop_done = how;
1234} 1858}
1235 1859
1236/*****************************************************************************/ 1860/*****************************************************************************/
1237 1861
1238inline void 1862void inline_size
1239wlist_add (WL *head, WL elem) 1863wlist_add (WL *head, WL elem)
1240{ 1864{
1241 elem->next = *head; 1865 elem->next = *head;
1242 *head = elem; 1866 *head = elem;
1243} 1867}
1244 1868
1245inline void 1869void inline_size
1246wlist_del (WL *head, WL elem) 1870wlist_del (WL *head, WL elem)
1247{ 1871{
1248 while (*head) 1872 while (*head)
1249 { 1873 {
1250 if (*head == elem) 1874 if (*head == elem)
1255 1879
1256 head = &(*head)->next; 1880 head = &(*head)->next;
1257 } 1881 }
1258} 1882}
1259 1883
1260inline void 1884void inline_speed
1261ev_clear_pending (EV_P_ W w) 1885clear_pending (EV_P_ W w)
1262{ 1886{
1263 if (w->pending) 1887 if (w->pending)
1264 { 1888 {
1265 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1889 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1266 w->pending = 0; 1890 w->pending = 0;
1267 } 1891 }
1268} 1892}
1269 1893
1270inline void 1894int
1895ev_clear_pending (EV_P_ void *w)
1896{
1897 W w_ = (W)w;
1898 int pending = w_->pending;
1899
1900 if (expect_true (pending))
1901 {
1902 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1903 w_->pending = 0;
1904 p->w = 0;
1905 return p->events;
1906 }
1907 else
1908 return 0;
1909}
1910
1911void inline_size
1912pri_adjust (EV_P_ W w)
1913{
1914 int pri = w->priority;
1915 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1916 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1917 w->priority = pri;
1918}
1919
1920void inline_speed
1271ev_start (EV_P_ W w, int active) 1921ev_start (EV_P_ W w, int active)
1272{ 1922{
1273 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1923 pri_adjust (EV_A_ w);
1274 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1275
1276 w->active = active; 1924 w->active = active;
1277 ev_ref (EV_A); 1925 ev_ref (EV_A);
1278} 1926}
1279 1927
1280inline void 1928void inline_size
1281ev_stop (EV_P_ W w) 1929ev_stop (EV_P_ W w)
1282{ 1930{
1283 ev_unref (EV_A); 1931 ev_unref (EV_A);
1284 w->active = 0; 1932 w->active = 0;
1285} 1933}
1286 1934
1287/*****************************************************************************/ 1935/*****************************************************************************/
1288 1936
1289void 1937void noinline
1290ev_io_start (EV_P_ struct ev_io *w) 1938ev_io_start (EV_P_ ev_io *w)
1291{ 1939{
1292 int fd = w->fd; 1940 int fd = w->fd;
1293 1941
1294 if (ev_is_active (w)) 1942 if (expect_false (ev_is_active (w)))
1295 return; 1943 return;
1296 1944
1297 assert (("ev_io_start called with negative fd", fd >= 0)); 1945 assert (("ev_io_start called with negative fd", fd >= 0));
1298 1946
1299 ev_start (EV_A_ (W)w, 1); 1947 ev_start (EV_A_ (W)w, 1);
1300 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1948 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1301 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1949 wlist_add (&anfds[fd].head, (WL)w);
1302 1950
1303 fd_change (EV_A_ fd); 1951 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1952 w->events &= ~EV_IOFDSET;
1304} 1953}
1305 1954
1306void 1955void noinline
1307ev_io_stop (EV_P_ struct ev_io *w) 1956ev_io_stop (EV_P_ ev_io *w)
1308{ 1957{
1309 ev_clear_pending (EV_A_ (W)w); 1958 clear_pending (EV_A_ (W)w);
1310 if (!ev_is_active (w)) 1959 if (expect_false (!ev_is_active (w)))
1311 return; 1960 return;
1312 1961
1313 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1962 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1314 1963
1315 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1964 wlist_del (&anfds[w->fd].head, (WL)w);
1316 ev_stop (EV_A_ (W)w); 1965 ev_stop (EV_A_ (W)w);
1317 1966
1318 fd_change (EV_A_ w->fd); 1967 fd_change (EV_A_ w->fd, 1);
1319} 1968}
1320 1969
1321void 1970void noinline
1322ev_timer_start (EV_P_ struct ev_timer *w) 1971ev_timer_start (EV_P_ ev_timer *w)
1972{
1973 if (expect_false (ev_is_active (w)))
1974 return;
1975
1976 ev_at (w) += mn_now;
1977
1978 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1979
1980 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1981 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2);
1982 timers [ev_active (w)] = (WT)w;
1983 upheap (timers, ev_active (w));
1984
1985 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1986}
1987
1988void noinline
1989ev_timer_stop (EV_P_ ev_timer *w)
1990{
1991 clear_pending (EV_A_ (W)w);
1992 if (expect_false (!ev_is_active (w)))
1993 return;
1994
1995 {
1996 int active = ev_active (w);
1997
1998 assert (("internal timer heap corruption", timers [active] == (WT)w));
1999
2000 if (expect_true (active < timercnt + HEAP0 - 1))
2001 {
2002 timers [active] = timers [timercnt + HEAP0 - 1];
2003 adjustheap (timers, timercnt, active);
2004 }
2005
2006 --timercnt;
2007 }
2008
2009 ev_at (w) -= mn_now;
2010
2011 ev_stop (EV_A_ (W)w);
2012}
2013
2014void noinline
2015ev_timer_again (EV_P_ ev_timer *w)
1323{ 2016{
1324 if (ev_is_active (w)) 2017 if (ev_is_active (w))
1325 return;
1326
1327 ((WT)w)->at += mn_now;
1328
1329 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1330
1331 ev_start (EV_A_ (W)w, ++timercnt);
1332 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1333 timers [timercnt - 1] = w;
1334 upheap ((WT *)timers, timercnt - 1);
1335
1336 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1337}
1338
1339void
1340ev_timer_stop (EV_P_ struct ev_timer *w)
1341{
1342 ev_clear_pending (EV_A_ (W)w);
1343 if (!ev_is_active (w))
1344 return;
1345
1346 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1347
1348 if (((W)w)->active < timercnt--)
1349 {
1350 timers [((W)w)->active - 1] = timers [timercnt];
1351 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1352 }
1353
1354 ((WT)w)->at -= mn_now;
1355
1356 ev_stop (EV_A_ (W)w);
1357}
1358
1359void
1360ev_timer_again (EV_P_ struct ev_timer *w)
1361{
1362 if (ev_is_active (w))
1363 { 2018 {
1364 if (w->repeat) 2019 if (w->repeat)
1365 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat); 2020 {
2021 ev_at (w) = mn_now + w->repeat;
2022 adjustheap (timers, timercnt, ev_active (w));
2023 }
1366 else 2024 else
1367 ev_timer_stop (EV_A_ w); 2025 ev_timer_stop (EV_A_ w);
1368 } 2026 }
1369 else if (w->repeat) 2027 else if (w->repeat)
2028 {
2029 ev_at (w) = w->repeat;
1370 ev_timer_start (EV_A_ w); 2030 ev_timer_start (EV_A_ w);
2031 }
1371} 2032}
1372 2033
1373#if EV_PERIODICS 2034#if EV_PERIODIC_ENABLE
1374void 2035void noinline
1375ev_periodic_start (EV_P_ struct ev_periodic *w) 2036ev_periodic_start (EV_P_ ev_periodic *w)
1376{ 2037{
1377 if (ev_is_active (w)) 2038 if (expect_false (ev_is_active (w)))
1378 return; 2039 return;
1379 2040
1380 if (w->reschedule_cb) 2041 if (w->reschedule_cb)
1381 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2042 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1382 else if (w->interval) 2043 else if (w->interval)
1383 { 2044 {
1384 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2045 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1385 /* this formula differs from the one in periodic_reify because we do not always round up */ 2046 /* this formula differs from the one in periodic_reify because we do not always round up */
1386 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2047 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1387 } 2048 }
2049 else
2050 ev_at (w) = w->offset;
1388 2051
1389 ev_start (EV_A_ (W)w, ++periodiccnt); 2052 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1390 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2053 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2);
1391 periodics [periodiccnt - 1] = w; 2054 periodics [ev_active (w)] = (WT)w;
1392 upheap ((WT *)periodics, periodiccnt - 1); 2055 upheap (periodics, ev_active (w));
1393 2056
1394 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2057 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/
1395} 2058}
1396 2059
1397void 2060void noinline
1398ev_periodic_stop (EV_P_ struct ev_periodic *w) 2061ev_periodic_stop (EV_P_ ev_periodic *w)
1399{ 2062{
1400 ev_clear_pending (EV_A_ (W)w); 2063 clear_pending (EV_A_ (W)w);
1401 if (!ev_is_active (w)) 2064 if (expect_false (!ev_is_active (w)))
1402 return; 2065 return;
1403 2066
2067 {
2068 int active = ev_active (w);
2069
1404 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2070 assert (("internal periodic heap corruption", periodics [active] == (WT)w));
1405 2071
1406 if (((W)w)->active < periodiccnt--) 2072 if (expect_true (active < periodiccnt + HEAP0 - 1))
1407 { 2073 {
1408 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2074 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1409 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2075 adjustheap (periodics, periodiccnt, active);
1410 } 2076 }
2077
2078 --periodiccnt;
2079 }
1411 2080
1412 ev_stop (EV_A_ (W)w); 2081 ev_stop (EV_A_ (W)w);
1413} 2082}
1414 2083
1415void 2084void noinline
1416ev_periodic_again (EV_P_ struct ev_periodic *w) 2085ev_periodic_again (EV_P_ ev_periodic *w)
1417{ 2086{
1418 /* TODO: use adjustheap and recalculation */ 2087 /* TODO: use adjustheap and recalculation */
1419 ev_periodic_stop (EV_A_ w); 2088 ev_periodic_stop (EV_A_ w);
1420 ev_periodic_start (EV_A_ w); 2089 ev_periodic_start (EV_A_ w);
1421} 2090}
1422#endif 2091#endif
1423 2092
1424void
1425ev_idle_start (EV_P_ struct ev_idle *w)
1426{
1427 if (ev_is_active (w))
1428 return;
1429
1430 ev_start (EV_A_ (W)w, ++idlecnt);
1431 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1432 idles [idlecnt - 1] = w;
1433}
1434
1435void
1436ev_idle_stop (EV_P_ struct ev_idle *w)
1437{
1438 ev_clear_pending (EV_A_ (W)w);
1439 if (ev_is_active (w))
1440 return;
1441
1442 idles [((W)w)->active - 1] = idles [--idlecnt];
1443 ev_stop (EV_A_ (W)w);
1444}
1445
1446void
1447ev_prepare_start (EV_P_ struct ev_prepare *w)
1448{
1449 if (ev_is_active (w))
1450 return;
1451
1452 ev_start (EV_A_ (W)w, ++preparecnt);
1453 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1454 prepares [preparecnt - 1] = w;
1455}
1456
1457void
1458ev_prepare_stop (EV_P_ struct ev_prepare *w)
1459{
1460 ev_clear_pending (EV_A_ (W)w);
1461 if (ev_is_active (w))
1462 return;
1463
1464 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1465 ev_stop (EV_A_ (W)w);
1466}
1467
1468void
1469ev_check_start (EV_P_ struct ev_check *w)
1470{
1471 if (ev_is_active (w))
1472 return;
1473
1474 ev_start (EV_A_ (W)w, ++checkcnt);
1475 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1476 checks [checkcnt - 1] = w;
1477}
1478
1479void
1480ev_check_stop (EV_P_ struct ev_check *w)
1481{
1482 ev_clear_pending (EV_A_ (W)w);
1483 if (!ev_is_active (w))
1484 return;
1485
1486 checks [((W)w)->active - 1] = checks [--checkcnt];
1487 ev_stop (EV_A_ (W)w);
1488}
1489
1490#ifndef SA_RESTART 2093#ifndef SA_RESTART
1491# define SA_RESTART 0 2094# define SA_RESTART 0
1492#endif 2095#endif
1493 2096
1494void 2097void noinline
1495ev_signal_start (EV_P_ struct ev_signal *w) 2098ev_signal_start (EV_P_ ev_signal *w)
1496{ 2099{
1497#if EV_MULTIPLICITY 2100#if EV_MULTIPLICITY
1498 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2101 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1499#endif 2102#endif
1500 if (ev_is_active (w)) 2103 if (expect_false (ev_is_active (w)))
1501 return; 2104 return;
1502 2105
1503 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2106 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1504 2107
2108 evpipe_init (EV_A);
2109
2110 {
2111#ifndef _WIN32
2112 sigset_t full, prev;
2113 sigfillset (&full);
2114 sigprocmask (SIG_SETMASK, &full, &prev);
2115#endif
2116
2117 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2118
2119#ifndef _WIN32
2120 sigprocmask (SIG_SETMASK, &prev, 0);
2121#endif
2122 }
2123
1505 ev_start (EV_A_ (W)w, 1); 2124 ev_start (EV_A_ (W)w, 1);
1506 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1507 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2125 wlist_add (&signals [w->signum - 1].head, (WL)w);
1508 2126
1509 if (!((WL)w)->next) 2127 if (!((WL)w)->next)
1510 { 2128 {
1511#if WIN32 2129#if _WIN32
1512 signal (w->signum, sighandler); 2130 signal (w->signum, ev_sighandler);
1513#else 2131#else
1514 struct sigaction sa; 2132 struct sigaction sa;
1515 sa.sa_handler = sighandler; 2133 sa.sa_handler = ev_sighandler;
1516 sigfillset (&sa.sa_mask); 2134 sigfillset (&sa.sa_mask);
1517 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2135 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1518 sigaction (w->signum, &sa, 0); 2136 sigaction (w->signum, &sa, 0);
1519#endif 2137#endif
1520 } 2138 }
1521} 2139}
1522 2140
1523void 2141void noinline
1524ev_signal_stop (EV_P_ struct ev_signal *w) 2142ev_signal_stop (EV_P_ ev_signal *w)
1525{ 2143{
1526 ev_clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1527 if (!ev_is_active (w)) 2145 if (expect_false (!ev_is_active (w)))
1528 return; 2146 return;
1529 2147
1530 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2148 wlist_del (&signals [w->signum - 1].head, (WL)w);
1531 ev_stop (EV_A_ (W)w); 2149 ev_stop (EV_A_ (W)w);
1532 2150
1533 if (!signals [w->signum - 1].head) 2151 if (!signals [w->signum - 1].head)
1534 signal (w->signum, SIG_DFL); 2152 signal (w->signum, SIG_DFL);
1535} 2153}
1536 2154
1537void 2155void
1538ev_child_start (EV_P_ struct ev_child *w) 2156ev_child_start (EV_P_ ev_child *w)
1539{ 2157{
1540#if EV_MULTIPLICITY 2158#if EV_MULTIPLICITY
1541 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2159 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1542#endif 2160#endif
1543 if (ev_is_active (w)) 2161 if (expect_false (ev_is_active (w)))
1544 return; 2162 return;
1545 2163
1546 ev_start (EV_A_ (W)w, 1); 2164 ev_start (EV_A_ (W)w, 1);
1547 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2165 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1548} 2166}
1549 2167
1550void 2168void
1551ev_child_stop (EV_P_ struct ev_child *w) 2169ev_child_stop (EV_P_ ev_child *w)
1552{ 2170{
1553 ev_clear_pending (EV_A_ (W)w); 2171 clear_pending (EV_A_ (W)w);
1554 if (!ev_is_active (w)) 2172 if (expect_false (!ev_is_active (w)))
1555 return; 2173 return;
1556 2174
1557 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2175 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1558 ev_stop (EV_A_ (W)w); 2176 ev_stop (EV_A_ (W)w);
1559} 2177}
1560 2178
2179#if EV_STAT_ENABLE
2180
2181# ifdef _WIN32
2182# undef lstat
2183# define lstat(a,b) _stati64 (a,b)
2184# endif
2185
2186#define DEF_STAT_INTERVAL 5.0074891
2187#define MIN_STAT_INTERVAL 0.1074891
2188
2189static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2190
2191#if EV_USE_INOTIFY
2192# define EV_INOTIFY_BUFSIZE 8192
2193
2194static void noinline
2195infy_add (EV_P_ ev_stat *w)
2196{
2197 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2198
2199 if (w->wd < 0)
2200 {
2201 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2202
2203 /* monitor some parent directory for speedup hints */
2204 /* note that exceeding the hardcoded limit is not a correctness issue, */
2205 /* but an efficiency issue only */
2206 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2207 {
2208 char path [4096];
2209 strcpy (path, w->path);
2210
2211 do
2212 {
2213 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2214 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2215
2216 char *pend = strrchr (path, '/');
2217
2218 if (!pend)
2219 break; /* whoops, no '/', complain to your admin */
2220
2221 *pend = 0;
2222 w->wd = inotify_add_watch (fs_fd, path, mask);
2223 }
2224 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2225 }
2226 }
2227 else
2228 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2229
2230 if (w->wd >= 0)
2231 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2232}
2233
2234static void noinline
2235infy_del (EV_P_ ev_stat *w)
2236{
2237 int slot;
2238 int wd = w->wd;
2239
2240 if (wd < 0)
2241 return;
2242
2243 w->wd = -2;
2244 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2245 wlist_del (&fs_hash [slot].head, (WL)w);
2246
2247 /* remove this watcher, if others are watching it, they will rearm */
2248 inotify_rm_watch (fs_fd, wd);
2249}
2250
2251static void noinline
2252infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2253{
2254 if (slot < 0)
2255 /* overflow, need to check for all hahs slots */
2256 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2257 infy_wd (EV_A_ slot, wd, ev);
2258 else
2259 {
2260 WL w_;
2261
2262 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2263 {
2264 ev_stat *w = (ev_stat *)w_;
2265 w_ = w_->next; /* lets us remove this watcher and all before it */
2266
2267 if (w->wd == wd || wd == -1)
2268 {
2269 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2270 {
2271 w->wd = -1;
2272 infy_add (EV_A_ w); /* re-add, no matter what */
2273 }
2274
2275 stat_timer_cb (EV_A_ &w->timer, 0);
2276 }
2277 }
2278 }
2279}
2280
2281static void
2282infy_cb (EV_P_ ev_io *w, int revents)
2283{
2284 char buf [EV_INOTIFY_BUFSIZE];
2285 struct inotify_event *ev = (struct inotify_event *)buf;
2286 int ofs;
2287 int len = read (fs_fd, buf, sizeof (buf));
2288
2289 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2290 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2291}
2292
2293void inline_size
2294infy_init (EV_P)
2295{
2296 if (fs_fd != -2)
2297 return;
2298
2299 fs_fd = inotify_init ();
2300
2301 if (fs_fd >= 0)
2302 {
2303 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2304 ev_set_priority (&fs_w, EV_MAXPRI);
2305 ev_io_start (EV_A_ &fs_w);
2306 }
2307}
2308
2309void inline_size
2310infy_fork (EV_P)
2311{
2312 int slot;
2313
2314 if (fs_fd < 0)
2315 return;
2316
2317 close (fs_fd);
2318 fs_fd = inotify_init ();
2319
2320 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2321 {
2322 WL w_ = fs_hash [slot].head;
2323 fs_hash [slot].head = 0;
2324
2325 while (w_)
2326 {
2327 ev_stat *w = (ev_stat *)w_;
2328 w_ = w_->next; /* lets us add this watcher */
2329
2330 w->wd = -1;
2331
2332 if (fs_fd >= 0)
2333 infy_add (EV_A_ w); /* re-add, no matter what */
2334 else
2335 ev_timer_start (EV_A_ &w->timer);
2336 }
2337
2338 }
2339}
2340
2341#endif
2342
2343void
2344ev_stat_stat (EV_P_ ev_stat *w)
2345{
2346 if (lstat (w->path, &w->attr) < 0)
2347 w->attr.st_nlink = 0;
2348 else if (!w->attr.st_nlink)
2349 w->attr.st_nlink = 1;
2350}
2351
2352static void noinline
2353stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2354{
2355 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2356
2357 /* we copy this here each the time so that */
2358 /* prev has the old value when the callback gets invoked */
2359 w->prev = w->attr;
2360 ev_stat_stat (EV_A_ w);
2361
2362 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2363 if (
2364 w->prev.st_dev != w->attr.st_dev
2365 || w->prev.st_ino != w->attr.st_ino
2366 || w->prev.st_mode != w->attr.st_mode
2367 || w->prev.st_nlink != w->attr.st_nlink
2368 || w->prev.st_uid != w->attr.st_uid
2369 || w->prev.st_gid != w->attr.st_gid
2370 || w->prev.st_rdev != w->attr.st_rdev
2371 || w->prev.st_size != w->attr.st_size
2372 || w->prev.st_atime != w->attr.st_atime
2373 || w->prev.st_mtime != w->attr.st_mtime
2374 || w->prev.st_ctime != w->attr.st_ctime
2375 ) {
2376 #if EV_USE_INOTIFY
2377 infy_del (EV_A_ w);
2378 infy_add (EV_A_ w);
2379 ev_stat_stat (EV_A_ w); /* avoid race... */
2380 #endif
2381
2382 ev_feed_event (EV_A_ w, EV_STAT);
2383 }
2384}
2385
2386void
2387ev_stat_start (EV_P_ ev_stat *w)
2388{
2389 if (expect_false (ev_is_active (w)))
2390 return;
2391
2392 /* since we use memcmp, we need to clear any padding data etc. */
2393 memset (&w->prev, 0, sizeof (ev_statdata));
2394 memset (&w->attr, 0, sizeof (ev_statdata));
2395
2396 ev_stat_stat (EV_A_ w);
2397
2398 if (w->interval < MIN_STAT_INTERVAL)
2399 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2400
2401 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2402 ev_set_priority (&w->timer, ev_priority (w));
2403
2404#if EV_USE_INOTIFY
2405 infy_init (EV_A);
2406
2407 if (fs_fd >= 0)
2408 infy_add (EV_A_ w);
2409 else
2410#endif
2411 ev_timer_start (EV_A_ &w->timer);
2412
2413 ev_start (EV_A_ (W)w, 1);
2414}
2415
2416void
2417ev_stat_stop (EV_P_ ev_stat *w)
2418{
2419 clear_pending (EV_A_ (W)w);
2420 if (expect_false (!ev_is_active (w)))
2421 return;
2422
2423#if EV_USE_INOTIFY
2424 infy_del (EV_A_ w);
2425#endif
2426 ev_timer_stop (EV_A_ &w->timer);
2427
2428 ev_stop (EV_A_ (W)w);
2429}
2430#endif
2431
2432#if EV_IDLE_ENABLE
2433void
2434ev_idle_start (EV_P_ ev_idle *w)
2435{
2436 if (expect_false (ev_is_active (w)))
2437 return;
2438
2439 pri_adjust (EV_A_ (W)w);
2440
2441 {
2442 int active = ++idlecnt [ABSPRI (w)];
2443
2444 ++idleall;
2445 ev_start (EV_A_ (W)w, active);
2446
2447 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2448 idles [ABSPRI (w)][active - 1] = w;
2449 }
2450}
2451
2452void
2453ev_idle_stop (EV_P_ ev_idle *w)
2454{
2455 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w)))
2457 return;
2458
2459 {
2460 int active = ev_active (w);
2461
2462 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2463 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2464
2465 ev_stop (EV_A_ (W)w);
2466 --idleall;
2467 }
2468}
2469#endif
2470
2471void
2472ev_prepare_start (EV_P_ ev_prepare *w)
2473{
2474 if (expect_false (ev_is_active (w)))
2475 return;
2476
2477 ev_start (EV_A_ (W)w, ++preparecnt);
2478 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2479 prepares [preparecnt - 1] = w;
2480}
2481
2482void
2483ev_prepare_stop (EV_P_ ev_prepare *w)
2484{
2485 clear_pending (EV_A_ (W)w);
2486 if (expect_false (!ev_is_active (w)))
2487 return;
2488
2489 {
2490 int active = ev_active (w);
2491
2492 prepares [active - 1] = prepares [--preparecnt];
2493 ev_active (prepares [active - 1]) = active;
2494 }
2495
2496 ev_stop (EV_A_ (W)w);
2497}
2498
2499void
2500ev_check_start (EV_P_ ev_check *w)
2501{
2502 if (expect_false (ev_is_active (w)))
2503 return;
2504
2505 ev_start (EV_A_ (W)w, ++checkcnt);
2506 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2507 checks [checkcnt - 1] = w;
2508}
2509
2510void
2511ev_check_stop (EV_P_ ev_check *w)
2512{
2513 clear_pending (EV_A_ (W)w);
2514 if (expect_false (!ev_is_active (w)))
2515 return;
2516
2517 {
2518 int active = ev_active (w);
2519
2520 checks [active - 1] = checks [--checkcnt];
2521 ev_active (checks [active - 1]) = active;
2522 }
2523
2524 ev_stop (EV_A_ (W)w);
2525}
2526
2527#if EV_EMBED_ENABLE
2528void noinline
2529ev_embed_sweep (EV_P_ ev_embed *w)
2530{
2531 ev_loop (w->other, EVLOOP_NONBLOCK);
2532}
2533
2534static void
2535embed_io_cb (EV_P_ ev_io *io, int revents)
2536{
2537 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2538
2539 if (ev_cb (w))
2540 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2541 else
2542 ev_loop (w->other, EVLOOP_NONBLOCK);
2543}
2544
2545static void
2546embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2547{
2548 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2549
2550 {
2551 struct ev_loop *loop = w->other;
2552
2553 while (fdchangecnt)
2554 {
2555 fd_reify (EV_A);
2556 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2557 }
2558 }
2559}
2560
2561#if 0
2562static void
2563embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2564{
2565 ev_idle_stop (EV_A_ idle);
2566}
2567#endif
2568
2569void
2570ev_embed_start (EV_P_ ev_embed *w)
2571{
2572 if (expect_false (ev_is_active (w)))
2573 return;
2574
2575 {
2576 struct ev_loop *loop = w->other;
2577 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2578 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2579 }
2580
2581 ev_set_priority (&w->io, ev_priority (w));
2582 ev_io_start (EV_A_ &w->io);
2583
2584 ev_prepare_init (&w->prepare, embed_prepare_cb);
2585 ev_set_priority (&w->prepare, EV_MINPRI);
2586 ev_prepare_start (EV_A_ &w->prepare);
2587
2588 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2589
2590 ev_start (EV_A_ (W)w, 1);
2591}
2592
2593void
2594ev_embed_stop (EV_P_ ev_embed *w)
2595{
2596 clear_pending (EV_A_ (W)w);
2597 if (expect_false (!ev_is_active (w)))
2598 return;
2599
2600 ev_io_stop (EV_A_ &w->io);
2601 ev_prepare_stop (EV_A_ &w->prepare);
2602
2603 ev_stop (EV_A_ (W)w);
2604}
2605#endif
2606
2607#if EV_FORK_ENABLE
2608void
2609ev_fork_start (EV_P_ ev_fork *w)
2610{
2611 if (expect_false (ev_is_active (w)))
2612 return;
2613
2614 ev_start (EV_A_ (W)w, ++forkcnt);
2615 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2616 forks [forkcnt - 1] = w;
2617}
2618
2619void
2620ev_fork_stop (EV_P_ ev_fork *w)
2621{
2622 clear_pending (EV_A_ (W)w);
2623 if (expect_false (!ev_is_active (w)))
2624 return;
2625
2626 {
2627 int active = ev_active (w);
2628
2629 forks [active - 1] = forks [--forkcnt];
2630 ev_active (forks [active - 1]) = active;
2631 }
2632
2633 ev_stop (EV_A_ (W)w);
2634}
2635#endif
2636
2637#if EV_ASYNC_ENABLE
2638void
2639ev_async_start (EV_P_ ev_async *w)
2640{
2641 if (expect_false (ev_is_active (w)))
2642 return;
2643
2644 evpipe_init (EV_A);
2645
2646 ev_start (EV_A_ (W)w, ++asynccnt);
2647 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2648 asyncs [asynccnt - 1] = w;
2649}
2650
2651void
2652ev_async_stop (EV_P_ ev_async *w)
2653{
2654 clear_pending (EV_A_ (W)w);
2655 if (expect_false (!ev_is_active (w)))
2656 return;
2657
2658 {
2659 int active = ev_active (w);
2660
2661 asyncs [active - 1] = asyncs [--asynccnt];
2662 ev_active (asyncs [active - 1]) = active;
2663 }
2664
2665 ev_stop (EV_A_ (W)w);
2666}
2667
2668void
2669ev_async_send (EV_P_ ev_async *w)
2670{
2671 w->sent = 1;
2672 evpipe_write (EV_A_ &gotasync);
2673}
2674#endif
2675
1561/*****************************************************************************/ 2676/*****************************************************************************/
1562 2677
1563struct ev_once 2678struct ev_once
1564{ 2679{
1565 struct ev_io io; 2680 ev_io io;
1566 struct ev_timer to; 2681 ev_timer to;
1567 void (*cb)(int revents, void *arg); 2682 void (*cb)(int revents, void *arg);
1568 void *arg; 2683 void *arg;
1569}; 2684};
1570 2685
1571static void 2686static void
1580 2695
1581 cb (revents, arg); 2696 cb (revents, arg);
1582} 2697}
1583 2698
1584static void 2699static void
1585once_cb_io (EV_P_ struct ev_io *w, int revents) 2700once_cb_io (EV_P_ ev_io *w, int revents)
1586{ 2701{
1587 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2702 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1588} 2703}
1589 2704
1590static void 2705static void
1591once_cb_to (EV_P_ struct ev_timer *w, int revents) 2706once_cb_to (EV_P_ ev_timer *w, int revents)
1592{ 2707{
1593 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2708 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1594} 2709}
1595 2710
1596void 2711void
1597ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2712ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1598{ 2713{
1599 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2714 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1600 2715
1601 if (!once) 2716 if (expect_false (!once))
2717 {
1602 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2718 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1603 else 2719 return;
1604 { 2720 }
2721
1605 once->cb = cb; 2722 once->cb = cb;
1606 once->arg = arg; 2723 once->arg = arg;
1607 2724
1608 ev_init (&once->io, once_cb_io); 2725 ev_init (&once->io, once_cb_io);
1609 if (fd >= 0) 2726 if (fd >= 0)
1610 { 2727 {
1611 ev_io_set (&once->io, fd, events); 2728 ev_io_set (&once->io, fd, events);
1612 ev_io_start (EV_A_ &once->io); 2729 ev_io_start (EV_A_ &once->io);
1613 } 2730 }
1614 2731
1615 ev_init (&once->to, once_cb_to); 2732 ev_init (&once->to, once_cb_to);
1616 if (timeout >= 0.) 2733 if (timeout >= 0.)
1617 { 2734 {
1618 ev_timer_set (&once->to, timeout, 0.); 2735 ev_timer_set (&once->to, timeout, 0.);
1619 ev_timer_start (EV_A_ &once->to); 2736 ev_timer_start (EV_A_ &once->to);
1620 }
1621 } 2737 }
1622} 2738}
2739
2740#if EV_MULTIPLICITY
2741 #include "ev_wrap.h"
2742#endif
1623 2743
1624#ifdef __cplusplus 2744#ifdef __cplusplus
1625} 2745}
1626#endif 2746#endif
1627 2747

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines