ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.96 by root, Sun Nov 11 01:50:36 2007 UTC vs.
Revision 1.279 by root, Fri Feb 6 20:17:43 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
38 63
39# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
65# ifndef EV_USE_MONOTONIC
40# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
67# endif
68# ifndef EV_USE_REALTIME
41# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
70# endif
71# else
72# ifndef EV_USE_MONOTONIC
73# define EV_USE_MONOTONIC 0
74# endif
75# ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 0
77# endif
42# endif 78# endif
43 79
44# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
45# define EV_USE_SELECT 1 82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
85# endif
46# endif 86# endif
47 87
48# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 88# ifndef EV_USE_SELECT
89# if HAVE_SELECT && HAVE_SYS_SELECT_H
49# define EV_USE_POLL 1 90# define EV_USE_SELECT 1
91# else
92# define EV_USE_SELECT 0
93# endif
50# endif 94# endif
51 95
52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 96# ifndef EV_USE_POLL
97# if HAVE_POLL && HAVE_POLL_H
53# define EV_USE_EPOLL 1 98# define EV_USE_POLL 1
99# else
100# define EV_USE_POLL 0
101# endif
54# endif 102# endif
55 103
56# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 104# ifndef EV_USE_EPOLL
105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
57# define EV_USE_KQUEUE 1 106# define EV_USE_EPOLL 1
107# else
108# define EV_USE_EPOLL 0
109# endif
58# endif 110# endif
111
112# ifndef EV_USE_KQUEUE
113# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
114# define EV_USE_KQUEUE 1
115# else
116# define EV_USE_KQUEUE 0
117# endif
118# endif
119
120# ifndef EV_USE_PORT
121# if HAVE_PORT_H && HAVE_PORT_CREATE
122# define EV_USE_PORT 1
123# else
124# define EV_USE_PORT 0
125# endif
126# endif
59 127
128# ifndef EV_USE_INOTIFY
129# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
130# define EV_USE_INOTIFY 1
131# else
132# define EV_USE_INOTIFY 0
133# endif
134# endif
135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
60#endif 144#endif
61 145
62#include <math.h> 146#include <math.h>
63#include <stdlib.h> 147#include <stdlib.h>
64#include <fcntl.h> 148#include <fcntl.h>
71#include <sys/types.h> 155#include <sys/types.h>
72#include <time.h> 156#include <time.h>
73 157
74#include <signal.h> 158#include <signal.h>
75 159
76#ifndef WIN32
77# include <unistd.h>
78# include <sys/time.h>
79# include <sys/wait.h>
80#endif
81/**/
82
83#ifndef EV_USE_MONOTONIC
84# define EV_USE_MONOTONIC 1
85#endif
86
87#ifndef EV_USE_SELECT
88# define EV_USE_SELECT 1
89#endif
90
91#ifndef EV_USE_POLL
92# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
93#endif
94
95#ifndef EV_USE_EPOLL
96# define EV_USE_EPOLL 0
97#endif
98
99#ifndef EV_USE_KQUEUE
100# define EV_USE_KQUEUE 0
101#endif
102
103#ifndef EV_USE_WIN32
104# ifdef WIN32
105# define EV_USE_WIN32 0 /* it does not exist, use select */
106# undef EV_USE_SELECT
107# define EV_USE_SELECT 1
108# else
109# define EV_USE_WIN32 0
110# endif
111#endif
112
113#ifndef EV_USE_REALTIME
114# define EV_USE_REALTIME 1
115#endif
116
117/**/
118
119#ifndef CLOCK_MONOTONIC
120# undef EV_USE_MONOTONIC
121# define EV_USE_MONOTONIC 0
122#endif
123
124#ifndef CLOCK_REALTIME
125# undef EV_USE_REALTIME
126# define EV_USE_REALTIME 0
127#endif
128
129/**/
130
131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
135
136#ifdef EV_H 160#ifdef EV_H
137# include EV_H 161# include EV_H
138#else 162#else
139# include "ev.h" 163# include "ev.h"
140#endif 164#endif
141 165
166#ifndef _WIN32
167# include <sys/time.h>
168# include <sys/wait.h>
169# include <unistd.h>
170#else
171# include <io.h>
172# define WIN32_LEAN_AND_MEAN
173# include <windows.h>
174# ifndef EV_SELECT_IS_WINSOCKET
175# define EV_SELECT_IS_WINSOCKET 1
176# endif
177#endif
178
179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
188
189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
193# define EV_USE_MONOTONIC 0
194# endif
195#endif
196
197#ifndef EV_USE_REALTIME
198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
207#endif
208
209#ifndef EV_USE_SELECT
210# define EV_USE_SELECT 1
211#endif
212
213#ifndef EV_USE_POLL
214# ifdef _WIN32
215# define EV_USE_POLL 0
216# else
217# define EV_USE_POLL 1
218# endif
219#endif
220
221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
225# define EV_USE_EPOLL 0
226# endif
227#endif
228
229#ifndef EV_USE_KQUEUE
230# define EV_USE_KQUEUE 0
231#endif
232
233#ifndef EV_USE_PORT
234# define EV_USE_PORT 0
235#endif
236
237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
241# define EV_USE_INOTIFY 0
242# endif
243#endif
244
245#ifndef EV_PID_HASHSIZE
246# if EV_MINIMAL
247# define EV_PID_HASHSIZE 1
248# else
249# define EV_PID_HASHSIZE 16
250# endif
251#endif
252
253#ifndef EV_INOTIFY_HASHSIZE
254# if EV_MINIMAL
255# define EV_INOTIFY_HASHSIZE 1
256# else
257# define EV_INOTIFY_HASHSIZE 16
258# endif
259#endif
260
261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
288
289#ifndef CLOCK_MONOTONIC
290# undef EV_USE_MONOTONIC
291# define EV_USE_MONOTONIC 0
292#endif
293
294#ifndef CLOCK_REALTIME
295# undef EV_USE_REALTIME
296# define EV_USE_REALTIME 0
297#endif
298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
321#if EV_SELECT_IS_WINSOCKET
322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
339# endif
340int eventfd (unsigned int initval, int flags);
341# ifdef __cplusplus
342}
343# endif
344#endif
345
346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
353
354/*
355 * This is used to avoid floating point rounding problems.
356 * It is added to ev_rt_now when scheduling periodics
357 * to ensure progress, time-wise, even when rounding
358 * errors are against us.
359 * This value is good at least till the year 4000.
360 * Better solutions welcome.
361 */
362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
363
364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
367
142#if __GNUC__ >= 3 368#if __GNUC__ >= 4
143# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
144# define inline inline 370# define noinline __attribute__ ((noinline))
145#else 371#else
146# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
147# define inline static 373# define noinline
374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
375# define inline
376# endif
148#endif 377#endif
149 378
150#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
151#define expect_true(expr) expect ((expr) != 0, 1) 380#define expect_true(expr) expect ((expr) != 0, 1)
381#define inline_size static inline
382
383#if EV_MINIMAL
384# define inline_speed static noinline
385#else
386# define inline_speed static inline
387#endif
152 388
153#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 389#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
154#define ABSPRI(w) ((w)->priority - EV_MINPRI) 390#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
155 391
392#define EMPTY /* required for microsofts broken pseudo-c compiler */
393#define EMPTY2(a,b) /* used to suppress some warnings */
394
156typedef struct ev_watcher *W; 395typedef ev_watcher *W;
157typedef struct ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
158typedef struct ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
159 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
160static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
161 411
412#ifdef _WIN32
162#include "ev_win32.c" 413# include "ev_win32.c"
414#endif
163 415
164/*****************************************************************************/ 416/*****************************************************************************/
165 417
166static void (*syserr_cb)(const char *msg); 418static void (*syserr_cb)(const char *msg);
167 419
420void
168void ev_set_syserr_cb (void (*cb)(const char *msg)) 421ev_set_syserr_cb (void (*cb)(const char *msg))
169{ 422{
170 syserr_cb = cb; 423 syserr_cb = cb;
171} 424}
172 425
173static void 426static void noinline
174syserr (const char *msg) 427ev_syserr (const char *msg)
175{ 428{
176 if (!msg) 429 if (!msg)
177 msg = "(libev) system error"; 430 msg = "(libev) system error";
178 431
179 if (syserr_cb) 432 if (syserr_cb)
183 perror (msg); 436 perror (msg);
184 abort (); 437 abort ();
185 } 438 }
186} 439}
187 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
188static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
189 457
458void
190void ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
191{ 460{
192 alloc = cb; 461 alloc = cb;
193} 462}
194 463
195static void * 464inline_speed void *
196ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
197{ 466{
198 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
199 468
200 if (!ptr && size) 469 if (!ptr && size)
201 { 470 {
202 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
203 abort (); 472 abort ();
214typedef struct 483typedef struct
215{ 484{
216 WL head; 485 WL head;
217 unsigned char events; 486 unsigned char events;
218 unsigned char reify; 487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
493#if EV_SELECT_IS_WINSOCKET
494 SOCKET handle;
495#endif
219} ANFD; 496} ANFD;
220 497
221typedef struct 498typedef struct
222{ 499{
223 W w; 500 W w;
224 int events; 501 int events;
225} ANPENDING; 502} ANPENDING;
226 503
504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
506typedef struct
507{
508 WL head;
509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
528#endif
529
227#if EV_MULTIPLICITY 530#if EV_MULTIPLICITY
228 531
229 struct ev_loop 532 struct ev_loop
230 { 533 {
231 ev_tstamp ev_rt_now; 534 ev_tstamp ev_rt_now;
535 #define ev_rt_now ((loop)->ev_rt_now)
232 #define VAR(name,decl) decl; 536 #define VAR(name,decl) decl;
233 #include "ev_vars.h" 537 #include "ev_vars.h"
234 #undef VAR 538 #undef VAR
235 }; 539 };
236 #include "ev_wrap.h" 540 #include "ev_wrap.h"
237 541
238 struct ev_loop default_loop_struct; 542 static struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop; 543 struct ev_loop *ev_default_loop_ptr;
240 544
241#else 545#else
242 546
243 ev_tstamp ev_rt_now; 547 ev_tstamp ev_rt_now;
244 #define VAR(name,decl) static decl; 548 #define VAR(name,decl) static decl;
245 #include "ev_vars.h" 549 #include "ev_vars.h"
246 #undef VAR 550 #undef VAR
247 551
248 static int default_loop; 552 static int ev_default_loop_ptr;
249 553
250#endif 554#endif
251 555
252/*****************************************************************************/ 556/*****************************************************************************/
253 557
254ev_tstamp 558ev_tstamp
255ev_time (void) 559ev_time (void)
256{ 560{
257#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
258 struct timespec ts; 564 struct timespec ts;
259 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
260 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
261#else 567 }
568#endif
569
262 struct timeval tv; 570 struct timeval tv;
263 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
264 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
265#endif
266} 573}
267 574
268inline ev_tstamp 575ev_tstamp inline_size
269get_clock (void) 576get_clock (void)
270{ 577{
271#if EV_USE_MONOTONIC 578#if EV_USE_MONOTONIC
272 if (expect_true (have_monotonic)) 579 if (expect_true (have_monotonic))
273 { 580 {
286{ 593{
287 return ev_rt_now; 594 return ev_rt_now;
288} 595}
289#endif 596#endif
290 597
291#define array_roundsize(type,n) ((n) | 4 & ~3) 598void
599ev_sleep (ev_tstamp delay)
600{
601 if (delay > 0.)
602 {
603#if EV_USE_NANOSLEEP
604 struct timespec ts;
605
606 ts.tv_sec = (time_t)delay;
607 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
608
609 nanosleep (&ts, 0);
610#elif defined(_WIN32)
611 Sleep ((unsigned long)(delay * 1e3));
612#else
613 struct timeval tv;
614
615 tv.tv_sec = (time_t)delay;
616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
621 select (0, 0, 0, 0, &tv);
622#endif
623 }
624}
625
626/*****************************************************************************/
627
628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629
630int inline_size
631array_nextsize (int elem, int cur, int cnt)
632{
633 int ncur = cur + 1;
634
635 do
636 ncur <<= 1;
637 while (cnt > ncur);
638
639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
641 {
642 ncur *= elem;
643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
644 ncur = ncur - sizeof (void *) * 4;
645 ncur /= elem;
646 }
647
648 return ncur;
649}
650
651static noinline void *
652array_realloc (int elem, void *base, int *cur, int cnt)
653{
654 *cur = array_nextsize (elem, *cur, cnt);
655 return ev_realloc (base, elem * *cur);
656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
292 660
293#define array_needsize(type,base,cur,cnt,init) \ 661#define array_needsize(type,base,cur,cnt,init) \
294 if (expect_false ((cnt) > cur)) \ 662 if (expect_false ((cnt) > (cur))) \
295 { \ 663 { \
296 int newcnt = cur; \ 664 int ocur_ = (cur); \
297 do \ 665 (base) = (type *)array_realloc \
298 { \ 666 (sizeof (type), (base), &(cur), (cnt)); \
299 newcnt = array_roundsize (type, newcnt << 1); \ 667 init ((base) + (ocur_), (cur) - ocur_); \
300 } \
301 while ((cnt) > newcnt); \
302 \
303 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
304 init (base + cur, newcnt - cur); \
305 cur = newcnt; \
306 } 668 }
307 669
670#if 0
308#define array_slim(type,stem) \ 671#define array_slim(type,stem) \
309 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 672 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
310 { \ 673 { \
311 stem ## max = array_roundsize (stem ## cnt >> 1); \ 674 stem ## max = array_roundsize (stem ## cnt >> 1); \
312 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 675 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
313 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
314 } 677 }
315 678#endif
316/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
317/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
318#define array_free_microshit(stem) \
319 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
320 679
321#define array_free(stem, idx) \ 680#define array_free(stem, idx) \
322 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
323 682
324/*****************************************************************************/ 683/*****************************************************************************/
325 684
326static void 685void noinline
327anfds_init (ANFD *base, int count)
328{
329 while (count--)
330 {
331 base->head = 0;
332 base->events = EV_NONE;
333 base->reify = 0;
334
335 ++base;
336 }
337}
338
339void
340ev_feed_event (EV_P_ void *w, int revents) 686ev_feed_event (EV_P_ void *w, int revents)
341{ 687{
342 W w_ = (W)w; 688 W w_ = (W)w;
689 int pri = ABSPRI (w_);
343 690
344 if (w_->pending) 691 if (expect_false (w_->pending))
692 pendings [pri][w_->pending - 1].events |= revents;
693 else
345 { 694 {
695 w_->pending = ++pendingcnt [pri];
696 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
697 pendings [pri][w_->pending - 1].w = w_;
346 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 698 pendings [pri][w_->pending - 1].events = revents;
347 return;
348 } 699 }
349
350 w_->pending = ++pendingcnt [ABSPRI (w_)];
351 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
352 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
353 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
354} 700}
355 701
356static void 702void inline_speed
357queue_events (EV_P_ W *events, int eventcnt, int type) 703queue_events (EV_P_ W *events, int eventcnt, int type)
358{ 704{
359 int i; 705 int i;
360 706
361 for (i = 0; i < eventcnt; ++i) 707 for (i = 0; i < eventcnt; ++i)
362 ev_feed_event (EV_A_ events [i], type); 708 ev_feed_event (EV_A_ events [i], type);
363} 709}
364 710
365inline void 711/*****************************************************************************/
712
713void inline_speed
366fd_event (EV_P_ int fd, int revents) 714fd_event (EV_P_ int fd, int revents)
367{ 715{
368 ANFD *anfd = anfds + fd; 716 ANFD *anfd = anfds + fd;
369 struct ev_io *w; 717 ev_io *w;
370 718
371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 719 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
372 { 720 {
373 int ev = w->events & revents; 721 int ev = w->events & revents;
374 722
375 if (ev) 723 if (ev)
376 ev_feed_event (EV_A_ (W)w, ev); 724 ev_feed_event (EV_A_ (W)w, ev);
378} 726}
379 727
380void 728void
381ev_feed_fd_event (EV_P_ int fd, int revents) 729ev_feed_fd_event (EV_P_ int fd, int revents)
382{ 730{
731 if (fd >= 0 && fd < anfdmax)
383 fd_event (EV_A_ fd, revents); 732 fd_event (EV_A_ fd, revents);
384} 733}
385 734
386/*****************************************************************************/ 735void inline_size
387
388static void
389fd_reify (EV_P) 736fd_reify (EV_P)
390{ 737{
391 int i; 738 int i;
392 739
393 for (i = 0; i < fdchangecnt; ++i) 740 for (i = 0; i < fdchangecnt; ++i)
394 { 741 {
395 int fd = fdchanges [i]; 742 int fd = fdchanges [i];
396 ANFD *anfd = anfds + fd; 743 ANFD *anfd = anfds + fd;
397 struct ev_io *w; 744 ev_io *w;
398 745
399 int events = 0; 746 unsigned char events = 0;
400 747
401 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 748 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
402 events |= w->events; 749 events |= (unsigned char)w->events;
403 750
751#if EV_SELECT_IS_WINSOCKET
752 if (events)
753 {
754 unsigned long arg;
755 #ifdef EV_FD_TO_WIN32_HANDLE
756 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
757 #else
758 anfd->handle = _get_osfhandle (fd);
759 #endif
760 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
761 }
762#endif
763
764 {
765 unsigned char o_events = anfd->events;
766 unsigned char o_reify = anfd->reify;
767
404 anfd->reify = 0; 768 anfd->reify = 0;
405
406 method_modify (EV_A_ fd, anfd->events, events);
407 anfd->events = events; 769 anfd->events = events;
770
771 if (o_events != events || o_reify & EV_IOFDSET)
772 backend_modify (EV_A_ fd, o_events, events);
773 }
408 } 774 }
409 775
410 fdchangecnt = 0; 776 fdchangecnt = 0;
411} 777}
412 778
413static void 779void inline_size
414fd_change (EV_P_ int fd) 780fd_change (EV_P_ int fd, int flags)
415{ 781{
416 if (anfds [fd].reify) 782 unsigned char reify = anfds [fd].reify;
417 return;
418
419 anfds [fd].reify = 1; 783 anfds [fd].reify |= flags;
420 784
785 if (expect_true (!reify))
786 {
421 ++fdchangecnt; 787 ++fdchangecnt;
422 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 788 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
423 fdchanges [fdchangecnt - 1] = fd; 789 fdchanges [fdchangecnt - 1] = fd;
790 }
424} 791}
425 792
426static void 793void inline_speed
427fd_kill (EV_P_ int fd) 794fd_kill (EV_P_ int fd)
428{ 795{
429 struct ev_io *w; 796 ev_io *w;
430 797
431 while ((w = (struct ev_io *)anfds [fd].head)) 798 while ((w = (ev_io *)anfds [fd].head))
432 { 799 {
433 ev_io_stop (EV_A_ w); 800 ev_io_stop (EV_A_ w);
434 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 801 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
435 } 802 }
436} 803}
437 804
438static int 805int inline_size
439fd_valid (int fd) 806fd_valid (int fd)
440{ 807{
441#ifdef WIN32 808#ifdef _WIN32
442 return !!win32_get_osfhandle (fd); 809 return _get_osfhandle (fd) != -1;
443#else 810#else
444 return fcntl (fd, F_GETFD) != -1; 811 return fcntl (fd, F_GETFD) != -1;
445#endif 812#endif
446} 813}
447 814
448/* called on EBADF to verify fds */ 815/* called on EBADF to verify fds */
449static void 816static void noinline
450fd_ebadf (EV_P) 817fd_ebadf (EV_P)
451{ 818{
452 int fd; 819 int fd;
453 820
454 for (fd = 0; fd < anfdmax; ++fd) 821 for (fd = 0; fd < anfdmax; ++fd)
455 if (anfds [fd].events) 822 if (anfds [fd].events)
456 if (!fd_valid (fd) == -1 && errno == EBADF) 823 if (!fd_valid (fd) && errno == EBADF)
457 fd_kill (EV_A_ fd); 824 fd_kill (EV_A_ fd);
458} 825}
459 826
460/* called on ENOMEM in select/poll to kill some fds and retry */ 827/* called on ENOMEM in select/poll to kill some fds and retry */
461static void 828static void noinline
462fd_enomem (EV_P) 829fd_enomem (EV_P)
463{ 830{
464 int fd; 831 int fd;
465 832
466 for (fd = anfdmax; fd--; ) 833 for (fd = anfdmax; fd--; )
469 fd_kill (EV_A_ fd); 836 fd_kill (EV_A_ fd);
470 return; 837 return;
471 } 838 }
472} 839}
473 840
474/* usually called after fork if method needs to re-arm all fds from scratch */ 841/* usually called after fork if backend needs to re-arm all fds from scratch */
475static void 842static void noinline
476fd_rearm_all (EV_P) 843fd_rearm_all (EV_P)
477{ 844{
478 int fd; 845 int fd;
479 846
480 /* this should be highly optimised to not do anything but set a flag */
481 for (fd = 0; fd < anfdmax; ++fd) 847 for (fd = 0; fd < anfdmax; ++fd)
482 if (anfds [fd].events) 848 if (anfds [fd].events)
483 { 849 {
484 anfds [fd].events = 0; 850 anfds [fd].events = 0;
851 anfds [fd].emask = 0;
485 fd_change (EV_A_ fd); 852 fd_change (EV_A_ fd, EV_IOFDSET | 1);
486 } 853 }
487} 854}
488 855
489/*****************************************************************************/ 856/*****************************************************************************/
490 857
491static void 858/*
492upheap (WT *heap, int k) 859 * the heap functions want a real array index. array index 0 uis guaranteed to not
493{ 860 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
494 WT w = heap [k]; 861 * the branching factor of the d-tree.
862 */
495 863
496 while (k && heap [k >> 1]->at > w->at) 864/*
497 { 865 * at the moment we allow libev the luxury of two heaps,
498 heap [k] = heap [k >> 1]; 866 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
499 ((W)heap [k])->active = k + 1; 867 * which is more cache-efficient.
500 k >>= 1; 868 * the difference is about 5% with 50000+ watchers.
501 } 869 */
870#if EV_USE_4HEAP
502 871
503 heap [k] = w; 872#define DHEAP 4
504 ((W)heap [k])->active = k + 1; 873#define HEAP0 (DHEAP - 1) /* index of first element in heap */
874#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
875#define UPHEAP_DONE(p,k) ((p) == (k))
505 876
506} 877/* away from the root */
507 878void inline_speed
508static void
509downheap (WT *heap, int N, int k) 879downheap (ANHE *heap, int N, int k)
510{ 880{
511 WT w = heap [k]; 881 ANHE he = heap [k];
882 ANHE *E = heap + N + HEAP0;
512 883
513 while (k < (N >> 1)) 884 for (;;)
514 { 885 {
515 int j = k << 1; 886 ev_tstamp minat;
887 ANHE *minpos;
888 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
516 889
517 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 890 /* find minimum child */
891 if (expect_true (pos + DHEAP - 1 < E))
518 ++j; 892 {
519 893 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
520 if (w->at <= heap [j]->at) 894 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
895 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
896 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
897 }
898 else if (pos < E)
899 {
900 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
901 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
902 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
903 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
904 }
905 else
521 break; 906 break;
522 907
908 if (ANHE_at (he) <= minat)
909 break;
910
911 heap [k] = *minpos;
912 ev_active (ANHE_w (*minpos)) = k;
913
914 k = minpos - heap;
915 }
916
917 heap [k] = he;
918 ev_active (ANHE_w (he)) = k;
919}
920
921#else /* 4HEAP */
922
923#define HEAP0 1
924#define HPARENT(k) ((k) >> 1)
925#define UPHEAP_DONE(p,k) (!(p))
926
927/* away from the root */
928void inline_speed
929downheap (ANHE *heap, int N, int k)
930{
931 ANHE he = heap [k];
932
933 for (;;)
934 {
935 int c = k << 1;
936
937 if (c > N + HEAP0 - 1)
938 break;
939
940 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
941 ? 1 : 0;
942
943 if (ANHE_at (he) <= ANHE_at (heap [c]))
944 break;
945
523 heap [k] = heap [j]; 946 heap [k] = heap [c];
524 ((W)heap [k])->active = k + 1; 947 ev_active (ANHE_w (heap [k])) = k;
948
525 k = j; 949 k = c;
526 } 950 }
527 951
528 heap [k] = w; 952 heap [k] = he;
529 ((W)heap [k])->active = k + 1; 953 ev_active (ANHE_w (he)) = k;
530} 954}
955#endif
531 956
532inline void 957/* towards the root */
533adjustheap (WT *heap, int N, int k, ev_tstamp at) 958void inline_speed
959upheap (ANHE *heap, int k)
534{ 960{
535 ev_tstamp old_at = heap [k]->at; 961 ANHE he = heap [k];
962
963 for (;;)
964 {
965 int p = HPARENT (k);
966
967 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
968 break;
969
970 heap [k] = heap [p];
971 ev_active (ANHE_w (heap [k])) = k;
972 k = p;
973 }
974
536 heap [k]->at = at; 975 heap [k] = he;
976 ev_active (ANHE_w (he)) = k;
977}
537 978
538 if (old_at < at) 979void inline_size
980adjustheap (ANHE *heap, int N, int k)
981{
982 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
983 upheap (heap, k);
984 else
539 downheap (heap, N, k); 985 downheap (heap, N, k);
540 else 986}
987
988/* rebuild the heap: this function is used only once and executed rarely */
989void inline_size
990reheap (ANHE *heap, int N)
991{
992 int i;
993
994 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
995 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
996 for (i = 0; i < N; ++i)
541 upheap (heap, k); 997 upheap (heap, i + HEAP0);
542} 998}
543 999
544/*****************************************************************************/ 1000/*****************************************************************************/
545 1001
546typedef struct 1002typedef struct
547{ 1003{
548 WL head; 1004 WL head;
549 sig_atomic_t volatile gotsig; 1005 EV_ATOMIC_T gotsig;
550} ANSIG; 1006} ANSIG;
551 1007
552static ANSIG *signals; 1008static ANSIG *signals;
553static int signalmax; 1009static int signalmax;
554 1010
555static int sigpipe [2]; 1011static EV_ATOMIC_T gotsig;
556static sig_atomic_t volatile gotsig; 1012
557static struct ev_io sigev; 1013/*****************************************************************************/
1014
1015void inline_speed
1016fd_intern (int fd)
1017{
1018#ifdef _WIN32
1019 unsigned long arg = 1;
1020 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1021#else
1022 fcntl (fd, F_SETFD, FD_CLOEXEC);
1023 fcntl (fd, F_SETFL, O_NONBLOCK);
1024#endif
1025}
1026
1027static void noinline
1028evpipe_init (EV_P)
1029{
1030 if (!ev_is_active (&pipeev))
1031 {
1032#if EV_USE_EVENTFD
1033 if ((evfd = eventfd (0, 0)) >= 0)
1034 {
1035 evpipe [0] = -1;
1036 fd_intern (evfd);
1037 ev_io_set (&pipeev, evfd, EV_READ);
1038 }
1039 else
1040#endif
1041 {
1042 while (pipe (evpipe))
1043 ev_syserr ("(libev) error creating signal/async pipe");
1044
1045 fd_intern (evpipe [0]);
1046 fd_intern (evpipe [1]);
1047 ev_io_set (&pipeev, evpipe [0], EV_READ);
1048 }
1049
1050 ev_io_start (EV_A_ &pipeev);
1051 ev_unref (EV_A); /* watcher should not keep loop alive */
1052 }
1053}
1054
1055void inline_size
1056evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1057{
1058 if (!*flag)
1059 {
1060 int old_errno = errno; /* save errno because write might clobber it */
1061
1062 *flag = 1;
1063
1064#if EV_USE_EVENTFD
1065 if (evfd >= 0)
1066 {
1067 uint64_t counter = 1;
1068 write (evfd, &counter, sizeof (uint64_t));
1069 }
1070 else
1071#endif
1072 write (evpipe [1], &old_errno, 1);
1073
1074 errno = old_errno;
1075 }
1076}
558 1077
559static void 1078static void
560signals_init (ANSIG *base, int count) 1079pipecb (EV_P_ ev_io *iow, int revents)
561{ 1080{
562 while (count--) 1081#if EV_USE_EVENTFD
1082 if (evfd >= 0)
1083 {
1084 uint64_t counter;
1085 read (evfd, &counter, sizeof (uint64_t));
563 { 1086 }
564 base->head = 0; 1087 else
1088#endif
1089 {
1090 char dummy;
1091 read (evpipe [0], &dummy, 1);
1092 }
1093
1094 if (gotsig && ev_is_default_loop (EV_A))
1095 {
1096 int signum;
565 base->gotsig = 0; 1097 gotsig = 0;
566 1098
567 ++base; 1099 for (signum = signalmax; signum--; )
1100 if (signals [signum].gotsig)
1101 ev_feed_signal_event (EV_A_ signum + 1);
1102 }
1103
1104#if EV_ASYNC_ENABLE
1105 if (gotasync)
568 } 1106 {
1107 int i;
1108 gotasync = 0;
1109
1110 for (i = asynccnt; i--; )
1111 if (asyncs [i]->sent)
1112 {
1113 asyncs [i]->sent = 0;
1114 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1115 }
1116 }
1117#endif
569} 1118}
1119
1120/*****************************************************************************/
570 1121
571static void 1122static void
572sighandler (int signum) 1123ev_sighandler (int signum)
573{ 1124{
1125#if EV_MULTIPLICITY
1126 struct ev_loop *loop = &default_loop_struct;
1127#endif
1128
574#if WIN32 1129#if _WIN32
575 signal (signum, sighandler); 1130 signal (signum, ev_sighandler);
576#endif 1131#endif
577 1132
578 signals [signum - 1].gotsig = 1; 1133 signals [signum - 1].gotsig = 1;
579 1134 evpipe_write (EV_A_ &gotsig);
580 if (!gotsig)
581 {
582 int old_errno = errno;
583 gotsig = 1;
584#ifdef WIN32
585 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
586#else
587 write (sigpipe [1], &signum, 1);
588#endif
589 errno = old_errno;
590 }
591} 1135}
592 1136
593void 1137void noinline
594ev_feed_signal_event (EV_P_ int signum) 1138ev_feed_signal_event (EV_P_ int signum)
595{ 1139{
596 WL w; 1140 WL w;
597 1141
598#if EV_MULTIPLICITY 1142#if EV_MULTIPLICITY
599 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 1143 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
600#endif 1144#endif
601 1145
602 --signum; 1146 --signum;
603 1147
604 if (signum < 0 || signum >= signalmax) 1148 if (signum < 0 || signum >= signalmax)
608 1152
609 for (w = signals [signum].head; w; w = w->next) 1153 for (w = signals [signum].head; w; w = w->next)
610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1154 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
611} 1155}
612 1156
613static void
614sigcb (EV_P_ struct ev_io *iow, int revents)
615{
616 int signum;
617
618#ifdef WIN32
619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
620#else
621 read (sigpipe [0], &revents, 1);
622#endif
623 gotsig = 0;
624
625 for (signum = signalmax; signum--; )
626 if (signals [signum].gotsig)
627 ev_feed_signal_event (EV_A_ signum + 1);
628}
629
630static void
631siginit (EV_P)
632{
633#ifndef WIN32
634 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
635 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
636
637 /* rather than sort out wether we really need nb, set it */
638 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
639 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
640#endif
641
642 ev_io_set (&sigev, sigpipe [0], EV_READ);
643 ev_io_start (EV_A_ &sigev);
644 ev_unref (EV_A); /* child watcher should not keep loop alive */
645}
646
647/*****************************************************************************/ 1157/*****************************************************************************/
648 1158
649static struct ev_child *childs [PID_HASHSIZE]; 1159static WL childs [EV_PID_HASHSIZE];
650 1160
651#ifndef WIN32 1161#ifndef _WIN32
652 1162
653static struct ev_signal childev; 1163static ev_signal childev;
1164
1165#ifndef WIFCONTINUED
1166# define WIFCONTINUED(status) 0
1167#endif
1168
1169void inline_speed
1170child_reap (EV_P_ int chain, int pid, int status)
1171{
1172 ev_child *w;
1173 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1174
1175 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1176 {
1177 if ((w->pid == pid || !w->pid)
1178 && (!traced || (w->flags & 1)))
1179 {
1180 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1181 w->rpid = pid;
1182 w->rstatus = status;
1183 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1184 }
1185 }
1186}
654 1187
655#ifndef WCONTINUED 1188#ifndef WCONTINUED
656# define WCONTINUED 0 1189# define WCONTINUED 0
657#endif 1190#endif
658 1191
659static void 1192static void
660child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
661{
662 struct ev_child *w;
663
664 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
665 if (w->pid == pid || !w->pid)
666 {
667 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
668 w->rpid = pid;
669 w->rstatus = status;
670 ev_feed_event (EV_A_ (W)w, EV_CHILD);
671 }
672}
673
674static void
675childcb (EV_P_ struct ev_signal *sw, int revents) 1193childcb (EV_P_ ev_signal *sw, int revents)
676{ 1194{
677 int pid, status; 1195 int pid, status;
678 1196
1197 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
679 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1198 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
680 { 1199 if (!WCONTINUED
1200 || errno != EINVAL
1201 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1202 return;
1203
681 /* make sure we are called again until all childs have been reaped */ 1204 /* make sure we are called again until all children have been reaped */
1205 /* we need to do it this way so that the callback gets called before we continue */
682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1206 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
683 1207
684 child_reap (EV_A_ sw, pid, pid, status); 1208 child_reap (EV_A_ pid, pid, status);
1209 if (EV_PID_HASHSIZE > 1)
685 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1210 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
686 }
687} 1211}
688 1212
689#endif 1213#endif
690 1214
691/*****************************************************************************/ 1215/*****************************************************************************/
692 1216
1217#if EV_USE_PORT
1218# include "ev_port.c"
1219#endif
693#if EV_USE_KQUEUE 1220#if EV_USE_KQUEUE
694# include "ev_kqueue.c" 1221# include "ev_kqueue.c"
695#endif 1222#endif
696#if EV_USE_EPOLL 1223#if EV_USE_EPOLL
697# include "ev_epoll.c" 1224# include "ev_epoll.c"
714{ 1241{
715 return EV_VERSION_MINOR; 1242 return EV_VERSION_MINOR;
716} 1243}
717 1244
718/* return true if we are running with elevated privileges and should ignore env variables */ 1245/* return true if we are running with elevated privileges and should ignore env variables */
719static int 1246int inline_size
720enable_secure (void) 1247enable_secure (void)
721{ 1248{
722#ifdef WIN32 1249#ifdef _WIN32
723 return 0; 1250 return 0;
724#else 1251#else
725 return getuid () != geteuid () 1252 return getuid () != geteuid ()
726 || getgid () != getegid (); 1253 || getgid () != getegid ();
727#endif 1254#endif
728} 1255}
729 1256
730int 1257unsigned int
731ev_method (EV_P) 1258ev_supported_backends (void)
732{ 1259{
733 return method; 1260 unsigned int flags = 0;
734}
735 1261
736static void 1262 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
737loop_init (EV_P_ int methods) 1263 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1264 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1265 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1266 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1267
1268 return flags;
1269}
1270
1271unsigned int
1272ev_recommended_backends (void)
738{ 1273{
739 if (!method) 1274 unsigned int flags = ev_supported_backends ();
1275
1276#ifndef __NetBSD__
1277 /* kqueue is borked on everything but netbsd apparently */
1278 /* it usually doesn't work correctly on anything but sockets and pipes */
1279 flags &= ~EVBACKEND_KQUEUE;
1280#endif
1281#ifdef __APPLE__
1282 /* only select works correctly on that "unix-certified" platform */
1283 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1284 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1285#endif
1286
1287 return flags;
1288}
1289
1290unsigned int
1291ev_embeddable_backends (void)
1292{
1293 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1294
1295 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1296 /* please fix it and tell me how to detect the fix */
1297 flags &= ~EVBACKEND_EPOLL;
1298
1299 return flags;
1300}
1301
1302unsigned int
1303ev_backend (EV_P)
1304{
1305 return backend;
1306}
1307
1308unsigned int
1309ev_loop_count (EV_P)
1310{
1311 return loop_count;
1312}
1313
1314void
1315ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1316{
1317 io_blocktime = interval;
1318}
1319
1320void
1321ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1322{
1323 timeout_blocktime = interval;
1324}
1325
1326static void noinline
1327loop_init (EV_P_ unsigned int flags)
1328{
1329 if (!backend)
740 { 1330 {
1331#if EV_USE_REALTIME
1332 if (!have_realtime)
1333 {
1334 struct timespec ts;
1335
1336 if (!clock_gettime (CLOCK_REALTIME, &ts))
1337 have_realtime = 1;
1338 }
1339#endif
1340
741#if EV_USE_MONOTONIC 1341#if EV_USE_MONOTONIC
1342 if (!have_monotonic)
1343 {
1344 struct timespec ts;
1345
1346 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1347 have_monotonic = 1;
1348 }
1349#endif
1350
1351 ev_rt_now = ev_time ();
1352 mn_now = get_clock ();
1353 now_floor = mn_now;
1354 rtmn_diff = ev_rt_now - mn_now;
1355
1356 io_blocktime = 0.;
1357 timeout_blocktime = 0.;
1358 backend = 0;
1359 backend_fd = -1;
1360 gotasync = 0;
1361#if EV_USE_INOTIFY
1362 fs_fd = -2;
1363#endif
1364
1365 /* pid check not overridable via env */
1366#ifndef _WIN32
1367 if (flags & EVFLAG_FORKCHECK)
1368 curpid = getpid ();
1369#endif
1370
1371 if (!(flags & EVFLAG_NOENV)
1372 && !enable_secure ()
1373 && getenv ("LIBEV_FLAGS"))
1374 flags = atoi (getenv ("LIBEV_FLAGS"));
1375
1376 if (!(flags & 0x0000ffffU))
1377 flags |= ev_recommended_backends ();
1378
1379#if EV_USE_PORT
1380 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1381#endif
1382#if EV_USE_KQUEUE
1383 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1384#endif
1385#if EV_USE_EPOLL
1386 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1387#endif
1388#if EV_USE_POLL
1389 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1390#endif
1391#if EV_USE_SELECT
1392 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1393#endif
1394
1395 ev_init (&pipeev, pipecb);
1396 ev_set_priority (&pipeev, EV_MAXPRI);
1397 }
1398}
1399
1400static void noinline
1401loop_destroy (EV_P)
1402{
1403 int i;
1404
1405 if (ev_is_active (&pipeev))
1406 {
1407 ev_ref (EV_A); /* signal watcher */
1408 ev_io_stop (EV_A_ &pipeev);
1409
1410#if EV_USE_EVENTFD
1411 if (evfd >= 0)
1412 close (evfd);
1413#endif
1414
1415 if (evpipe [0] >= 0)
1416 {
1417 close (evpipe [0]);
1418 close (evpipe [1]);
1419 }
1420 }
1421
1422#if EV_USE_INOTIFY
1423 if (fs_fd >= 0)
1424 close (fs_fd);
1425#endif
1426
1427 if (backend_fd >= 0)
1428 close (backend_fd);
1429
1430#if EV_USE_PORT
1431 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1432#endif
1433#if EV_USE_KQUEUE
1434 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1435#endif
1436#if EV_USE_EPOLL
1437 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1438#endif
1439#if EV_USE_POLL
1440 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1441#endif
1442#if EV_USE_SELECT
1443 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1444#endif
1445
1446 for (i = NUMPRI; i--; )
1447 {
1448 array_free (pending, [i]);
1449#if EV_IDLE_ENABLE
1450 array_free (idle, [i]);
1451#endif
1452 }
1453
1454 ev_free (anfds); anfdmax = 0;
1455
1456 /* have to use the microsoft-never-gets-it-right macro */
1457 array_free (fdchange, EMPTY);
1458 array_free (timer, EMPTY);
1459#if EV_PERIODIC_ENABLE
1460 array_free (periodic, EMPTY);
1461#endif
1462#if EV_FORK_ENABLE
1463 array_free (fork, EMPTY);
1464#endif
1465 array_free (prepare, EMPTY);
1466 array_free (check, EMPTY);
1467#if EV_ASYNC_ENABLE
1468 array_free (async, EMPTY);
1469#endif
1470
1471 backend = 0;
1472}
1473
1474#if EV_USE_INOTIFY
1475void inline_size infy_fork (EV_P);
1476#endif
1477
1478void inline_size
1479loop_fork (EV_P)
1480{
1481#if EV_USE_PORT
1482 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1483#endif
1484#if EV_USE_KQUEUE
1485 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1486#endif
1487#if EV_USE_EPOLL
1488 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1489#endif
1490#if EV_USE_INOTIFY
1491 infy_fork (EV_A);
1492#endif
1493
1494 if (ev_is_active (&pipeev))
1495 {
1496 /* this "locks" the handlers against writing to the pipe */
1497 /* while we modify the fd vars */
1498 gotsig = 1;
1499#if EV_ASYNC_ENABLE
1500 gotasync = 1;
1501#endif
1502
1503 ev_ref (EV_A);
1504 ev_io_stop (EV_A_ &pipeev);
1505
1506#if EV_USE_EVENTFD
1507 if (evfd >= 0)
1508 close (evfd);
1509#endif
1510
1511 if (evpipe [0] >= 0)
1512 {
1513 close (evpipe [0]);
1514 close (evpipe [1]);
1515 }
1516
1517 evpipe_init (EV_A);
1518 /* now iterate over everything, in case we missed something */
1519 pipecb (EV_A_ &pipeev, EV_READ);
1520 }
1521
1522 postfork = 0;
1523}
1524
1525#if EV_MULTIPLICITY
1526
1527struct ev_loop *
1528ev_loop_new (unsigned int flags)
1529{
1530 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1531
1532 memset (loop, 0, sizeof (struct ev_loop));
1533
1534 loop_init (EV_A_ flags);
1535
1536 if (ev_backend (EV_A))
1537 return loop;
1538
1539 return 0;
1540}
1541
1542void
1543ev_loop_destroy (EV_P)
1544{
1545 loop_destroy (EV_A);
1546 ev_free (loop);
1547}
1548
1549void
1550ev_loop_fork (EV_P)
1551{
1552 postfork = 1; /* must be in line with ev_default_fork */
1553}
1554
1555#if EV_VERIFY
1556static void noinline
1557verify_watcher (EV_P_ W w)
1558{
1559 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1560
1561 if (w->pending)
1562 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1563}
1564
1565static void noinline
1566verify_heap (EV_P_ ANHE *heap, int N)
1567{
1568 int i;
1569
1570 for (i = HEAP0; i < N + HEAP0; ++i)
1571 {
1572 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1573 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1574 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1575
1576 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1577 }
1578}
1579
1580static void noinline
1581array_verify (EV_P_ W *ws, int cnt)
1582{
1583 while (cnt--)
1584 {
1585 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1586 verify_watcher (EV_A_ ws [cnt]);
1587 }
1588}
1589#endif
1590
1591void
1592ev_loop_verify (EV_P)
1593{
1594#if EV_VERIFY
1595 int i;
1596 WL w;
1597
1598 assert (activecnt >= -1);
1599
1600 assert (fdchangemax >= fdchangecnt);
1601 for (i = 0; i < fdchangecnt; ++i)
1602 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1603
1604 assert (anfdmax >= 0);
1605 for (i = 0; i < anfdmax; ++i)
1606 for (w = anfds [i].head; w; w = w->next)
742 { 1607 {
743 struct timespec ts; 1608 verify_watcher (EV_A_ (W)w);
744 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1609 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
745 have_monotonic = 1; 1610 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
746 } 1611 }
747#endif
748 1612
749 ev_rt_now = ev_time (); 1613 assert (timermax >= timercnt);
750 mn_now = get_clock (); 1614 verify_heap (EV_A_ timers, timercnt);
751 now_floor = mn_now;
752 rtmn_diff = ev_rt_now - mn_now;
753 1615
754 if (methods == EVMETHOD_AUTO) 1616#if EV_PERIODIC_ENABLE
755 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1617 assert (periodicmax >= periodiccnt);
756 methods = atoi (getenv ("LIBEV_METHODS")); 1618 verify_heap (EV_A_ periodics, periodiccnt);
757 else
758 methods = EVMETHOD_ANY;
759
760 method = 0;
761#if EV_USE_WIN32
762 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
763#endif
764#if EV_USE_KQUEUE
765 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
766#endif
767#if EV_USE_EPOLL
768 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
769#endif
770#if EV_USE_POLL
771 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
772#endif
773#if EV_USE_SELECT
774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
775#endif
776
777 ev_init (&sigev, sigcb);
778 ev_set_priority (&sigev, EV_MAXPRI);
779 }
780}
781
782void
783loop_destroy (EV_P)
784{
785 int i;
786
787#if EV_USE_WIN32
788 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
789#endif
790#if EV_USE_KQUEUE
791 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
792#endif
793#if EV_USE_EPOLL
794 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
795#endif
796#if EV_USE_POLL
797 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
798#endif
799#if EV_USE_SELECT
800 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
801#endif 1619#endif
802 1620
803 for (i = NUMPRI; i--; ) 1621 for (i = NUMPRI; i--; )
804 array_free (pending, [i]); 1622 {
1623 assert (pendingmax [i] >= pendingcnt [i]);
1624#if EV_IDLE_ENABLE
1625 assert (idleall >= 0);
1626 assert (idlemax [i] >= idlecnt [i]);
1627 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1628#endif
1629 }
805 1630
806 /* have to use the microsoft-never-gets-it-right macro */ 1631#if EV_FORK_ENABLE
807 array_free_microshit (fdchange); 1632 assert (forkmax >= forkcnt);
808 array_free_microshit (timer); 1633 array_verify (EV_A_ (W *)forks, forkcnt);
809#if EV_PERIODICS 1634#endif
810 array_free_microshit (periodic); 1635
1636#if EV_ASYNC_ENABLE
1637 assert (asyncmax >= asynccnt);
1638 array_verify (EV_A_ (W *)asyncs, asynccnt);
1639#endif
1640
1641 assert (preparemax >= preparecnt);
1642 array_verify (EV_A_ (W *)prepares, preparecnt);
1643
1644 assert (checkmax >= checkcnt);
1645 array_verify (EV_A_ (W *)checks, checkcnt);
1646
1647# if 0
1648 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1649 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
811#endif 1650# endif
812 array_free_microshit (idle);
813 array_free_microshit (prepare);
814 array_free_microshit (check);
815
816 method = 0;
817}
818
819static void
820loop_fork (EV_P)
821{
822#if EV_USE_EPOLL
823 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
824#endif 1651#endif
825#if EV_USE_KQUEUE
826 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
827#endif
828
829 if (ev_is_active (&sigev))
830 {
831 /* default loop */
832
833 ev_ref (EV_A);
834 ev_io_stop (EV_A_ &sigev);
835 close (sigpipe [0]);
836 close (sigpipe [1]);
837
838 while (pipe (sigpipe))
839 syserr ("(libev) error creating pipe");
840
841 siginit (EV_A);
842 }
843
844 postfork = 0;
845} 1652}
1653
1654#endif /* multiplicity */
846 1655
847#if EV_MULTIPLICITY 1656#if EV_MULTIPLICITY
848struct ev_loop * 1657struct ev_loop *
849ev_loop_new (int methods) 1658ev_default_loop_init (unsigned int flags)
850{
851 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
852
853 memset (loop, 0, sizeof (struct ev_loop));
854
855 loop_init (EV_A_ methods);
856
857 if (ev_method (EV_A))
858 return loop;
859
860 return 0;
861}
862
863void
864ev_loop_destroy (EV_P)
865{
866 loop_destroy (EV_A);
867 ev_free (loop);
868}
869
870void
871ev_loop_fork (EV_P)
872{
873 postfork = 1;
874}
875
876#endif
877
878#if EV_MULTIPLICITY
879struct ev_loop *
880#else 1659#else
881int 1660int
1661ev_default_loop (unsigned int flags)
882#endif 1662#endif
883ev_default_loop (int methods)
884{ 1663{
885 if (sigpipe [0] == sigpipe [1])
886 if (pipe (sigpipe))
887 return 0;
888
889 if (!default_loop) 1664 if (!ev_default_loop_ptr)
890 { 1665 {
891#if EV_MULTIPLICITY 1666#if EV_MULTIPLICITY
892 struct ev_loop *loop = default_loop = &default_loop_struct; 1667 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
893#else 1668#else
894 default_loop = 1; 1669 ev_default_loop_ptr = 1;
895#endif 1670#endif
896 1671
897 loop_init (EV_A_ methods); 1672 loop_init (EV_A_ flags);
898 1673
899 if (ev_method (EV_A)) 1674 if (ev_backend (EV_A))
900 { 1675 {
901 siginit (EV_A);
902
903#ifndef WIN32 1676#ifndef _WIN32
904 ev_signal_init (&childev, childcb, SIGCHLD); 1677 ev_signal_init (&childev, childcb, SIGCHLD);
905 ev_set_priority (&childev, EV_MAXPRI); 1678 ev_set_priority (&childev, EV_MAXPRI);
906 ev_signal_start (EV_A_ &childev); 1679 ev_signal_start (EV_A_ &childev);
907 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1680 ev_unref (EV_A); /* child watcher should not keep loop alive */
908#endif 1681#endif
909 } 1682 }
910 else 1683 else
911 default_loop = 0; 1684 ev_default_loop_ptr = 0;
912 } 1685 }
913 1686
914 return default_loop; 1687 return ev_default_loop_ptr;
915} 1688}
916 1689
917void 1690void
918ev_default_destroy (void) 1691ev_default_destroy (void)
919{ 1692{
920#if EV_MULTIPLICITY 1693#if EV_MULTIPLICITY
921 struct ev_loop *loop = default_loop; 1694 struct ev_loop *loop = ev_default_loop_ptr;
922#endif 1695#endif
923 1696
1697 ev_default_loop_ptr = 0;
1698
924#ifndef WIN32 1699#ifndef _WIN32
925 ev_ref (EV_A); /* child watcher */ 1700 ev_ref (EV_A); /* child watcher */
926 ev_signal_stop (EV_A_ &childev); 1701 ev_signal_stop (EV_A_ &childev);
927#endif 1702#endif
928 1703
929 ev_ref (EV_A); /* signal watcher */
930 ev_io_stop (EV_A_ &sigev);
931
932 close (sigpipe [0]); sigpipe [0] = 0;
933 close (sigpipe [1]); sigpipe [1] = 0;
934
935 loop_destroy (EV_A); 1704 loop_destroy (EV_A);
936} 1705}
937 1706
938void 1707void
939ev_default_fork (void) 1708ev_default_fork (void)
940{ 1709{
941#if EV_MULTIPLICITY 1710#if EV_MULTIPLICITY
942 struct ev_loop *loop = default_loop; 1711 struct ev_loop *loop = ev_default_loop_ptr;
943#endif 1712#endif
944 1713
945 if (method) 1714 postfork = 1; /* must be in line with ev_loop_fork */
946 postfork = 1;
947} 1715}
948 1716
949/*****************************************************************************/ 1717/*****************************************************************************/
950 1718
951static int 1719void
952any_pending (EV_P) 1720ev_invoke (EV_P_ void *w, int revents)
953{ 1721{
954 int pri; 1722 EV_CB_INVOKE ((W)w, revents);
955
956 for (pri = NUMPRI; pri--; )
957 if (pendingcnt [pri])
958 return 1;
959
960 return 0;
961} 1723}
962 1724
963static void 1725void inline_speed
964call_pending (EV_P) 1726call_pending (EV_P)
965{ 1727{
966 int pri; 1728 int pri;
967 1729
968 for (pri = NUMPRI; pri--; ) 1730 for (pri = NUMPRI; pri--; )
969 while (pendingcnt [pri]) 1731 while (pendingcnt [pri])
970 { 1732 {
971 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1733 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
972 1734
973 if (p->w) 1735 if (expect_true (p->w))
974 { 1736 {
1737 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1738
975 p->w->pending = 0; 1739 p->w->pending = 0;
976 EV_CB_INVOKE (p->w, p->events); 1740 EV_CB_INVOKE (p->w, p->events);
1741 EV_FREQUENT_CHECK;
977 } 1742 }
978 } 1743 }
979} 1744}
980 1745
981static void 1746#if EV_IDLE_ENABLE
1747void inline_size
1748idle_reify (EV_P)
1749{
1750 if (expect_false (idleall))
1751 {
1752 int pri;
1753
1754 for (pri = NUMPRI; pri--; )
1755 {
1756 if (pendingcnt [pri])
1757 break;
1758
1759 if (idlecnt [pri])
1760 {
1761 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1762 break;
1763 }
1764 }
1765 }
1766}
1767#endif
1768
1769void inline_size
982timers_reify (EV_P) 1770timers_reify (EV_P)
983{ 1771{
1772 EV_FREQUENT_CHECK;
1773
984 while (timercnt && ((WT)timers [0])->at <= mn_now) 1774 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
985 { 1775 {
986 struct ev_timer *w = timers [0]; 1776 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
987 1777
988 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1778 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
989 1779
990 /* first reschedule or stop timer */ 1780 /* first reschedule or stop timer */
991 if (w->repeat) 1781 if (w->repeat)
992 { 1782 {
1783 ev_at (w) += w->repeat;
1784 if (ev_at (w) < mn_now)
1785 ev_at (w) = mn_now;
1786
993 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1787 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
994 1788
995 ((WT)w)->at += w->repeat; 1789 ANHE_at_cache (timers [HEAP0]);
996 if (((WT)w)->at < mn_now)
997 ((WT)w)->at = mn_now;
998
999 downheap ((WT *)timers, timercnt, 0); 1790 downheap (timers, timercnt, HEAP0);
1000 } 1791 }
1001 else 1792 else
1002 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1793 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1003 1794
1795 EV_FREQUENT_CHECK;
1004 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1796 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1005 } 1797 }
1006} 1798}
1007 1799
1008#if EV_PERIODICS 1800#if EV_PERIODIC_ENABLE
1009static void 1801void inline_size
1010periodics_reify (EV_P) 1802periodics_reify (EV_P)
1011{ 1803{
1804 EV_FREQUENT_CHECK;
1805
1012 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1806 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1013 { 1807 {
1014 struct ev_periodic *w = periodics [0]; 1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1015 1809
1016 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1810 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1017 1811
1018 /* first reschedule or stop timer */ 1812 /* first reschedule or stop timer */
1019 if (w->reschedule_cb) 1813 if (w->reschedule_cb)
1020 { 1814 {
1021 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1022 1816
1023 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1817 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1818
1819 ANHE_at_cache (periodics [HEAP0]);
1024 downheap ((WT *)periodics, periodiccnt, 0); 1820 downheap (periodics, periodiccnt, HEAP0);
1025 } 1821 }
1026 else if (w->interval) 1822 else if (w->interval)
1027 { 1823 {
1028 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1824 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1029 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1825 /* if next trigger time is not sufficiently in the future, put it there */
1826 /* this might happen because of floating point inexactness */
1827 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1828 {
1829 ev_at (w) += w->interval;
1830
1831 /* if interval is unreasonably low we might still have a time in the past */
1832 /* so correct this. this will make the periodic very inexact, but the user */
1833 /* has effectively asked to get triggered more often than possible */
1834 if (ev_at (w) < ev_rt_now)
1835 ev_at (w) = ev_rt_now;
1836 }
1837
1838 ANHE_at_cache (periodics [HEAP0]);
1030 downheap ((WT *)periodics, periodiccnt, 0); 1839 downheap (periodics, periodiccnt, HEAP0);
1031 } 1840 }
1032 else 1841 else
1033 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1842 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1034 1843
1844 EV_FREQUENT_CHECK;
1035 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1845 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1036 } 1846 }
1037} 1847}
1038 1848
1039static void 1849static void noinline
1040periodics_reschedule (EV_P) 1850periodics_reschedule (EV_P)
1041{ 1851{
1042 int i; 1852 int i;
1043 1853
1044 /* adjust periodics after time jump */ 1854 /* adjust periodics after time jump */
1045 for (i = 0; i < periodiccnt; ++i) 1855 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1046 { 1856 {
1047 struct ev_periodic *w = periodics [i]; 1857 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1048 1858
1049 if (w->reschedule_cb) 1859 if (w->reschedule_cb)
1050 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1860 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1051 else if (w->interval) 1861 else if (w->interval)
1052 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1862 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1863
1864 ANHE_at_cache (periodics [i]);
1865 }
1866
1867 reheap (periodics, periodiccnt);
1868}
1869#endif
1870
1871void inline_speed
1872time_update (EV_P_ ev_tstamp max_block)
1873{
1874 int i;
1875
1876#if EV_USE_MONOTONIC
1877 if (expect_true (have_monotonic))
1053 } 1878 {
1879 ev_tstamp odiff = rtmn_diff;
1054 1880
1055 /* now rebuild the heap */
1056 for (i = periodiccnt >> 1; i--; )
1057 downheap ((WT *)periodics, periodiccnt, i);
1058}
1059#endif
1060
1061inline int
1062time_update_monotonic (EV_P)
1063{
1064 mn_now = get_clock (); 1881 mn_now = get_clock ();
1065 1882
1883 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1884 /* interpolate in the meantime */
1066 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1885 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1067 { 1886 {
1068 ev_rt_now = rtmn_diff + mn_now; 1887 ev_rt_now = rtmn_diff + mn_now;
1069 return 0; 1888 return;
1070 } 1889 }
1071 else 1890
1072 {
1073 now_floor = mn_now; 1891 now_floor = mn_now;
1074 ev_rt_now = ev_time (); 1892 ev_rt_now = ev_time ();
1075 return 1;
1076 }
1077}
1078 1893
1079static void 1894 /* loop a few times, before making important decisions.
1080time_update (EV_P) 1895 * on the choice of "4": one iteration isn't enough,
1081{ 1896 * in case we get preempted during the calls to
1082 int i; 1897 * ev_time and get_clock. a second call is almost guaranteed
1083 1898 * to succeed in that case, though. and looping a few more times
1084#if EV_USE_MONOTONIC 1899 * doesn't hurt either as we only do this on time-jumps or
1085 if (expect_true (have_monotonic)) 1900 * in the unlikely event of having been preempted here.
1086 { 1901 */
1087 if (time_update_monotonic (EV_A)) 1902 for (i = 4; --i; )
1088 { 1903 {
1089 ev_tstamp odiff = rtmn_diff; 1904 rtmn_diff = ev_rt_now - mn_now;
1090 1905
1091 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1906 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1907 return; /* all is well */
1908
1909 ev_rt_now = ev_time ();
1910 mn_now = get_clock ();
1911 now_floor = mn_now;
1912 }
1913
1914# if EV_PERIODIC_ENABLE
1915 periodics_reschedule (EV_A);
1916# endif
1917 /* no timer adjustment, as the monotonic clock doesn't jump */
1918 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1919 }
1920 else
1921#endif
1922 {
1923 ev_rt_now = ev_time ();
1924
1925 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1926 {
1927#if EV_PERIODIC_ENABLE
1928 periodics_reschedule (EV_A);
1929#endif
1930 /* adjust timers. this is easy, as the offset is the same for all of them */
1931 for (i = 0; i < timercnt; ++i)
1092 { 1932 {
1093 rtmn_diff = ev_rt_now - mn_now; 1933 ANHE *he = timers + i + HEAP0;
1094 1934 ANHE_w (*he)->at += ev_rt_now - mn_now;
1095 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1935 ANHE_at_cache (*he);
1096 return; /* all is well */
1097
1098 ev_rt_now = ev_time ();
1099 mn_now = get_clock ();
1100 now_floor = mn_now;
1101 } 1936 }
1102
1103# if EV_PERIODICS
1104 periodics_reschedule (EV_A);
1105# endif
1106 /* no timer adjustment, as the monotonic clock doesn't jump */
1107 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1108 } 1937 }
1109 }
1110 else
1111#endif
1112 {
1113 ev_rt_now = ev_time ();
1114
1115 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1116 {
1117#if EV_PERIODICS
1118 periodics_reschedule (EV_A);
1119#endif
1120
1121 /* adjust timers. this is easy, as the offset is the same for all */
1122 for (i = 0; i < timercnt; ++i)
1123 ((WT)timers [i])->at += ev_rt_now - mn_now;
1124 }
1125 1938
1126 mn_now = ev_rt_now; 1939 mn_now = ev_rt_now;
1127 } 1940 }
1128} 1941}
1129 1942
1137ev_unref (EV_P) 1950ev_unref (EV_P)
1138{ 1951{
1139 --activecnt; 1952 --activecnt;
1140} 1953}
1141 1954
1955void
1956ev_now_update (EV_P)
1957{
1958 time_update (EV_A_ 1e100);
1959}
1960
1142static int loop_done; 1961static int loop_done;
1143 1962
1144void 1963void
1145ev_loop (EV_P_ int flags) 1964ev_loop (EV_P_ int flags)
1146{ 1965{
1147 double block; 1966 loop_done = EVUNLOOP_CANCEL;
1148 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1967
1968 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1149 1969
1150 do 1970 do
1151 { 1971 {
1972#if EV_VERIFY >= 2
1973 ev_loop_verify (EV_A);
1974#endif
1975
1976#ifndef _WIN32
1977 if (expect_false (curpid)) /* penalise the forking check even more */
1978 if (expect_false (getpid () != curpid))
1979 {
1980 curpid = getpid ();
1981 postfork = 1;
1982 }
1983#endif
1984
1985#if EV_FORK_ENABLE
1986 /* we might have forked, so queue fork handlers */
1987 if (expect_false (postfork))
1988 if (forkcnt)
1989 {
1990 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1991 call_pending (EV_A);
1992 }
1993#endif
1994
1152 /* queue check watchers (and execute them) */ 1995 /* queue prepare watchers (and execute them) */
1153 if (expect_false (preparecnt)) 1996 if (expect_false (preparecnt))
1154 { 1997 {
1155 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1998 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1156 call_pending (EV_A); 1999 call_pending (EV_A);
1157 } 2000 }
1158 2001
2002 if (expect_false (!activecnt))
2003 break;
2004
1159 /* we might have forked, so reify kernel state if necessary */ 2005 /* we might have forked, so reify kernel state if necessary */
1160 if (expect_false (postfork)) 2006 if (expect_false (postfork))
1161 loop_fork (EV_A); 2007 loop_fork (EV_A);
1162 2008
1163 /* update fd-related kernel structures */ 2009 /* update fd-related kernel structures */
1164 fd_reify (EV_A); 2010 fd_reify (EV_A);
1165 2011
1166 /* calculate blocking time */ 2012 /* calculate blocking time */
2013 {
2014 ev_tstamp waittime = 0.;
2015 ev_tstamp sleeptime = 0.;
1167 2016
1168 /* we only need this for !monotonic clock or timers, but as we basically 2017 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1169 always have timers, we just calculate it always */
1170#if EV_USE_MONOTONIC
1171 if (expect_true (have_monotonic))
1172 time_update_monotonic (EV_A);
1173 else
1174#endif
1175 { 2018 {
1176 ev_rt_now = ev_time (); 2019 /* update time to cancel out callback processing overhead */
1177 mn_now = ev_rt_now; 2020 time_update (EV_A_ 1e100);
1178 }
1179 2021
1180 if (flags & EVLOOP_NONBLOCK || idlecnt)
1181 block = 0.;
1182 else
1183 {
1184 block = MAX_BLOCKTIME; 2022 waittime = MAX_BLOCKTIME;
1185 2023
1186 if (timercnt) 2024 if (timercnt)
1187 { 2025 {
1188 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2026 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1189 if (block > to) block = to; 2027 if (waittime > to) waittime = to;
1190 } 2028 }
1191 2029
1192#if EV_PERIODICS 2030#if EV_PERIODIC_ENABLE
1193 if (periodiccnt) 2031 if (periodiccnt)
1194 { 2032 {
1195 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2033 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1196 if (block > to) block = to; 2034 if (waittime > to) waittime = to;
1197 } 2035 }
1198#endif 2036#endif
1199 2037
1200 if (block < 0.) block = 0.; 2038 if (expect_false (waittime < timeout_blocktime))
2039 waittime = timeout_blocktime;
2040
2041 sleeptime = waittime - backend_fudge;
2042
2043 if (expect_true (sleeptime > io_blocktime))
2044 sleeptime = io_blocktime;
2045
2046 if (sleeptime)
2047 {
2048 ev_sleep (sleeptime);
2049 waittime -= sleeptime;
2050 }
1201 } 2051 }
1202 2052
1203 method_poll (EV_A_ block); 2053 ++loop_count;
2054 backend_poll (EV_A_ waittime);
1204 2055
1205 /* update ev_rt_now, do magic */ 2056 /* update ev_rt_now, do magic */
1206 time_update (EV_A); 2057 time_update (EV_A_ waittime + sleeptime);
2058 }
1207 2059
1208 /* queue pending timers and reschedule them */ 2060 /* queue pending timers and reschedule them */
1209 timers_reify (EV_A); /* relative timers called last */ 2061 timers_reify (EV_A); /* relative timers called last */
1210#if EV_PERIODICS 2062#if EV_PERIODIC_ENABLE
1211 periodics_reify (EV_A); /* absolute timers called first */ 2063 periodics_reify (EV_A); /* absolute timers called first */
1212#endif 2064#endif
1213 2065
2066#if EV_IDLE_ENABLE
1214 /* queue idle watchers unless io or timers are pending */ 2067 /* queue idle watchers unless other events are pending */
1215 if (idlecnt && !any_pending (EV_A)) 2068 idle_reify (EV_A);
1216 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2069#endif
1217 2070
1218 /* queue check watchers, to be executed first */ 2071 /* queue check watchers, to be executed first */
1219 if (checkcnt) 2072 if (expect_false (checkcnt))
1220 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2073 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1221 2074
1222 call_pending (EV_A); 2075 call_pending (EV_A);
1223 } 2076 }
1224 while (activecnt && !loop_done); 2077 while (expect_true (
2078 activecnt
2079 && !loop_done
2080 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2081 ));
1225 2082
1226 if (loop_done != 2) 2083 if (loop_done == EVUNLOOP_ONE)
1227 loop_done = 0; 2084 loop_done = EVUNLOOP_CANCEL;
1228} 2085}
1229 2086
1230void 2087void
1231ev_unloop (EV_P_ int how) 2088ev_unloop (EV_P_ int how)
1232{ 2089{
1233 loop_done = how; 2090 loop_done = how;
1234} 2091}
1235 2092
1236/*****************************************************************************/ 2093/*****************************************************************************/
1237 2094
1238inline void 2095void inline_size
1239wlist_add (WL *head, WL elem) 2096wlist_add (WL *head, WL elem)
1240{ 2097{
1241 elem->next = *head; 2098 elem->next = *head;
1242 *head = elem; 2099 *head = elem;
1243} 2100}
1244 2101
1245inline void 2102void inline_size
1246wlist_del (WL *head, WL elem) 2103wlist_del (WL *head, WL elem)
1247{ 2104{
1248 while (*head) 2105 while (*head)
1249 { 2106 {
1250 if (*head == elem) 2107 if (*head == elem)
1255 2112
1256 head = &(*head)->next; 2113 head = &(*head)->next;
1257 } 2114 }
1258} 2115}
1259 2116
1260inline void 2117void inline_speed
1261ev_clear_pending (EV_P_ W w) 2118clear_pending (EV_P_ W w)
1262{ 2119{
1263 if (w->pending) 2120 if (w->pending)
1264 { 2121 {
1265 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2122 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1266 w->pending = 0; 2123 w->pending = 0;
1267 } 2124 }
1268} 2125}
1269 2126
1270inline void 2127int
2128ev_clear_pending (EV_P_ void *w)
2129{
2130 W w_ = (W)w;
2131 int pending = w_->pending;
2132
2133 if (expect_true (pending))
2134 {
2135 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2136 w_->pending = 0;
2137 p->w = 0;
2138 return p->events;
2139 }
2140 else
2141 return 0;
2142}
2143
2144void inline_size
2145pri_adjust (EV_P_ W w)
2146{
2147 int pri = w->priority;
2148 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2149 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2150 w->priority = pri;
2151}
2152
2153void inline_speed
1271ev_start (EV_P_ W w, int active) 2154ev_start (EV_P_ W w, int active)
1272{ 2155{
1273 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2156 pri_adjust (EV_A_ w);
1274 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1275
1276 w->active = active; 2157 w->active = active;
1277 ev_ref (EV_A); 2158 ev_ref (EV_A);
1278} 2159}
1279 2160
1280inline void 2161void inline_size
1281ev_stop (EV_P_ W w) 2162ev_stop (EV_P_ W w)
1282{ 2163{
1283 ev_unref (EV_A); 2164 ev_unref (EV_A);
1284 w->active = 0; 2165 w->active = 0;
1285} 2166}
1286 2167
1287/*****************************************************************************/ 2168/*****************************************************************************/
1288 2169
1289void 2170void noinline
1290ev_io_start (EV_P_ struct ev_io *w) 2171ev_io_start (EV_P_ ev_io *w)
1291{ 2172{
1292 int fd = w->fd; 2173 int fd = w->fd;
1293 2174
2175 if (expect_false (ev_is_active (w)))
2176 return;
2177
2178 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2179 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2180
2181 EV_FREQUENT_CHECK;
2182
2183 ev_start (EV_A_ (W)w, 1);
2184 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2185 wlist_add (&anfds[fd].head, (WL)w);
2186
2187 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2188 w->events &= ~EV_IOFDSET;
2189
2190 EV_FREQUENT_CHECK;
2191}
2192
2193void noinline
2194ev_io_stop (EV_P_ ev_io *w)
2195{
2196 clear_pending (EV_A_ (W)w);
2197 if (expect_false (!ev_is_active (w)))
2198 return;
2199
2200 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2201
2202 EV_FREQUENT_CHECK;
2203
2204 wlist_del (&anfds[w->fd].head, (WL)w);
2205 ev_stop (EV_A_ (W)w);
2206
2207 fd_change (EV_A_ w->fd, 1);
2208
2209 EV_FREQUENT_CHECK;
2210}
2211
2212void noinline
2213ev_timer_start (EV_P_ ev_timer *w)
2214{
2215 if (expect_false (ev_is_active (w)))
2216 return;
2217
2218 ev_at (w) += mn_now;
2219
2220 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2221
2222 EV_FREQUENT_CHECK;
2223
2224 ++timercnt;
2225 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2226 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2227 ANHE_w (timers [ev_active (w)]) = (WT)w;
2228 ANHE_at_cache (timers [ev_active (w)]);
2229 upheap (timers, ev_active (w));
2230
2231 EV_FREQUENT_CHECK;
2232
2233 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2234}
2235
2236void noinline
2237ev_timer_stop (EV_P_ ev_timer *w)
2238{
2239 clear_pending (EV_A_ (W)w);
2240 if (expect_false (!ev_is_active (w)))
2241 return;
2242
2243 EV_FREQUENT_CHECK;
2244
2245 {
2246 int active = ev_active (w);
2247
2248 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2249
2250 --timercnt;
2251
2252 if (expect_true (active < timercnt + HEAP0))
2253 {
2254 timers [active] = timers [timercnt + HEAP0];
2255 adjustheap (timers, timercnt, active);
2256 }
2257 }
2258
2259 EV_FREQUENT_CHECK;
2260
2261 ev_at (w) -= mn_now;
2262
2263 ev_stop (EV_A_ (W)w);
2264}
2265
2266void noinline
2267ev_timer_again (EV_P_ ev_timer *w)
2268{
2269 EV_FREQUENT_CHECK;
2270
1294 if (ev_is_active (w)) 2271 if (ev_is_active (w))
1295 return;
1296
1297 assert (("ev_io_start called with negative fd", fd >= 0));
1298
1299 ev_start (EV_A_ (W)w, 1);
1300 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1301 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1302
1303 fd_change (EV_A_ fd);
1304}
1305
1306void
1307ev_io_stop (EV_P_ struct ev_io *w)
1308{
1309 ev_clear_pending (EV_A_ (W)w);
1310 if (!ev_is_active (w))
1311 return;
1312
1313 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1314
1315 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1316 ev_stop (EV_A_ (W)w);
1317
1318 fd_change (EV_A_ w->fd);
1319}
1320
1321void
1322ev_timer_start (EV_P_ struct ev_timer *w)
1323{
1324 if (ev_is_active (w))
1325 return;
1326
1327 ((WT)w)->at += mn_now;
1328
1329 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1330
1331 ev_start (EV_A_ (W)w, ++timercnt);
1332 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1333 timers [timercnt - 1] = w;
1334 upheap ((WT *)timers, timercnt - 1);
1335
1336 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1337}
1338
1339void
1340ev_timer_stop (EV_P_ struct ev_timer *w)
1341{
1342 ev_clear_pending (EV_A_ (W)w);
1343 if (!ev_is_active (w))
1344 return;
1345
1346 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1347
1348 if (((W)w)->active < timercnt--)
1349 {
1350 timers [((W)w)->active - 1] = timers [timercnt];
1351 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1352 }
1353
1354 ((WT)w)->at -= mn_now;
1355
1356 ev_stop (EV_A_ (W)w);
1357}
1358
1359void
1360ev_timer_again (EV_P_ struct ev_timer *w)
1361{
1362 if (ev_is_active (w))
1363 { 2272 {
1364 if (w->repeat) 2273 if (w->repeat)
1365 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat); 2274 {
2275 ev_at (w) = mn_now + w->repeat;
2276 ANHE_at_cache (timers [ev_active (w)]);
2277 adjustheap (timers, timercnt, ev_active (w));
2278 }
1366 else 2279 else
1367 ev_timer_stop (EV_A_ w); 2280 ev_timer_stop (EV_A_ w);
1368 } 2281 }
1369 else if (w->repeat) 2282 else if (w->repeat)
2283 {
2284 ev_at (w) = w->repeat;
1370 ev_timer_start (EV_A_ w); 2285 ev_timer_start (EV_A_ w);
1371} 2286 }
1372 2287
2288 EV_FREQUENT_CHECK;
2289}
2290
1373#if EV_PERIODICS 2291#if EV_PERIODIC_ENABLE
1374void 2292void noinline
1375ev_periodic_start (EV_P_ struct ev_periodic *w) 2293ev_periodic_start (EV_P_ ev_periodic *w)
1376{ 2294{
1377 if (ev_is_active (w)) 2295 if (expect_false (ev_is_active (w)))
1378 return; 2296 return;
1379 2297
1380 if (w->reschedule_cb) 2298 if (w->reschedule_cb)
1381 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2299 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1382 else if (w->interval) 2300 else if (w->interval)
1383 { 2301 {
1384 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2302 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1385 /* this formula differs from the one in periodic_reify because we do not always round up */ 2303 /* this formula differs from the one in periodic_reify because we do not always round up */
1386 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2304 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1387 } 2305 }
2306 else
2307 ev_at (w) = w->offset;
1388 2308
2309 EV_FREQUENT_CHECK;
2310
2311 ++periodiccnt;
1389 ev_start (EV_A_ (W)w, ++periodiccnt); 2312 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1390 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2313 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1391 periodics [periodiccnt - 1] = w; 2314 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1392 upheap ((WT *)periodics, periodiccnt - 1); 2315 ANHE_at_cache (periodics [ev_active (w)]);
2316 upheap (periodics, ev_active (w));
1393 2317
2318 EV_FREQUENT_CHECK;
2319
1394 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2320 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1395} 2321}
1396 2322
1397void 2323void noinline
1398ev_periodic_stop (EV_P_ struct ev_periodic *w) 2324ev_periodic_stop (EV_P_ ev_periodic *w)
1399{ 2325{
1400 ev_clear_pending (EV_A_ (W)w); 2326 clear_pending (EV_A_ (W)w);
1401 if (!ev_is_active (w)) 2327 if (expect_false (!ev_is_active (w)))
1402 return; 2328 return;
1403 2329
2330 EV_FREQUENT_CHECK;
2331
2332 {
2333 int active = ev_active (w);
2334
1404 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2335 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1405 2336
1406 if (((W)w)->active < periodiccnt--) 2337 --periodiccnt;
2338
2339 if (expect_true (active < periodiccnt + HEAP0))
1407 { 2340 {
1408 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2341 periodics [active] = periodics [periodiccnt + HEAP0];
1409 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2342 adjustheap (periodics, periodiccnt, active);
1410 } 2343 }
2344 }
2345
2346 EV_FREQUENT_CHECK;
1411 2347
1412 ev_stop (EV_A_ (W)w); 2348 ev_stop (EV_A_ (W)w);
1413} 2349}
1414 2350
1415void 2351void noinline
1416ev_periodic_again (EV_P_ struct ev_periodic *w) 2352ev_periodic_again (EV_P_ ev_periodic *w)
1417{ 2353{
1418 /* TODO: use adjustheap and recalculation */ 2354 /* TODO: use adjustheap and recalculation */
1419 ev_periodic_stop (EV_A_ w); 2355 ev_periodic_stop (EV_A_ w);
1420 ev_periodic_start (EV_A_ w); 2356 ev_periodic_start (EV_A_ w);
1421} 2357}
1422#endif 2358#endif
1423 2359
1424void
1425ev_idle_start (EV_P_ struct ev_idle *w)
1426{
1427 if (ev_is_active (w))
1428 return;
1429
1430 ev_start (EV_A_ (W)w, ++idlecnt);
1431 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1432 idles [idlecnt - 1] = w;
1433}
1434
1435void
1436ev_idle_stop (EV_P_ struct ev_idle *w)
1437{
1438 ev_clear_pending (EV_A_ (W)w);
1439 if (ev_is_active (w))
1440 return;
1441
1442 idles [((W)w)->active - 1] = idles [--idlecnt];
1443 ev_stop (EV_A_ (W)w);
1444}
1445
1446void
1447ev_prepare_start (EV_P_ struct ev_prepare *w)
1448{
1449 if (ev_is_active (w))
1450 return;
1451
1452 ev_start (EV_A_ (W)w, ++preparecnt);
1453 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1454 prepares [preparecnt - 1] = w;
1455}
1456
1457void
1458ev_prepare_stop (EV_P_ struct ev_prepare *w)
1459{
1460 ev_clear_pending (EV_A_ (W)w);
1461 if (ev_is_active (w))
1462 return;
1463
1464 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1465 ev_stop (EV_A_ (W)w);
1466}
1467
1468void
1469ev_check_start (EV_P_ struct ev_check *w)
1470{
1471 if (ev_is_active (w))
1472 return;
1473
1474 ev_start (EV_A_ (W)w, ++checkcnt);
1475 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1476 checks [checkcnt - 1] = w;
1477}
1478
1479void
1480ev_check_stop (EV_P_ struct ev_check *w)
1481{
1482 ev_clear_pending (EV_A_ (W)w);
1483 if (!ev_is_active (w))
1484 return;
1485
1486 checks [((W)w)->active - 1] = checks [--checkcnt];
1487 ev_stop (EV_A_ (W)w);
1488}
1489
1490#ifndef SA_RESTART 2360#ifndef SA_RESTART
1491# define SA_RESTART 0 2361# define SA_RESTART 0
1492#endif 2362#endif
1493 2363
1494void 2364void noinline
1495ev_signal_start (EV_P_ struct ev_signal *w) 2365ev_signal_start (EV_P_ ev_signal *w)
1496{ 2366{
1497#if EV_MULTIPLICITY 2367#if EV_MULTIPLICITY
1498 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2368 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1499#endif 2369#endif
1500 if (ev_is_active (w)) 2370 if (expect_false (ev_is_active (w)))
1501 return; 2371 return;
1502 2372
1503 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2373 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2374
2375 evpipe_init (EV_A);
2376
2377 EV_FREQUENT_CHECK;
2378
2379 {
2380#ifndef _WIN32
2381 sigset_t full, prev;
2382 sigfillset (&full);
2383 sigprocmask (SIG_SETMASK, &full, &prev);
2384#endif
2385
2386 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2387
2388#ifndef _WIN32
2389 sigprocmask (SIG_SETMASK, &prev, 0);
2390#endif
2391 }
1504 2392
1505 ev_start (EV_A_ (W)w, 1); 2393 ev_start (EV_A_ (W)w, 1);
1506 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1507 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2394 wlist_add (&signals [w->signum - 1].head, (WL)w);
1508 2395
1509 if (!((WL)w)->next) 2396 if (!((WL)w)->next)
1510 { 2397 {
1511#if WIN32 2398#if _WIN32
1512 signal (w->signum, sighandler); 2399 signal (w->signum, ev_sighandler);
1513#else 2400#else
1514 struct sigaction sa; 2401 struct sigaction sa;
1515 sa.sa_handler = sighandler; 2402 sa.sa_handler = ev_sighandler;
1516 sigfillset (&sa.sa_mask); 2403 sigfillset (&sa.sa_mask);
1517 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2404 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1518 sigaction (w->signum, &sa, 0); 2405 sigaction (w->signum, &sa, 0);
1519#endif 2406#endif
1520 } 2407 }
1521}
1522 2408
1523void 2409 EV_FREQUENT_CHECK;
2410}
2411
2412void noinline
1524ev_signal_stop (EV_P_ struct ev_signal *w) 2413ev_signal_stop (EV_P_ ev_signal *w)
1525{ 2414{
1526 ev_clear_pending (EV_A_ (W)w); 2415 clear_pending (EV_A_ (W)w);
1527 if (!ev_is_active (w)) 2416 if (expect_false (!ev_is_active (w)))
1528 return; 2417 return;
1529 2418
2419 EV_FREQUENT_CHECK;
2420
1530 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2421 wlist_del (&signals [w->signum - 1].head, (WL)w);
1531 ev_stop (EV_A_ (W)w); 2422 ev_stop (EV_A_ (W)w);
1532 2423
1533 if (!signals [w->signum - 1].head) 2424 if (!signals [w->signum - 1].head)
1534 signal (w->signum, SIG_DFL); 2425 signal (w->signum, SIG_DFL);
1535}
1536 2426
2427 EV_FREQUENT_CHECK;
2428}
2429
1537void 2430void
1538ev_child_start (EV_P_ struct ev_child *w) 2431ev_child_start (EV_P_ ev_child *w)
1539{ 2432{
1540#if EV_MULTIPLICITY 2433#if EV_MULTIPLICITY
1541 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2434 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1542#endif 2435#endif
1543 if (ev_is_active (w)) 2436 if (expect_false (ev_is_active (w)))
1544 return; 2437 return;
1545 2438
2439 EV_FREQUENT_CHECK;
2440
1546 ev_start (EV_A_ (W)w, 1); 2441 ev_start (EV_A_ (W)w, 1);
1547 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2442 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1548}
1549 2443
2444 EV_FREQUENT_CHECK;
2445}
2446
1550void 2447void
1551ev_child_stop (EV_P_ struct ev_child *w) 2448ev_child_stop (EV_P_ ev_child *w)
1552{ 2449{
1553 ev_clear_pending (EV_A_ (W)w); 2450 clear_pending (EV_A_ (W)w);
1554 if (!ev_is_active (w)) 2451 if (expect_false (!ev_is_active (w)))
1555 return; 2452 return;
1556 2453
2454 EV_FREQUENT_CHECK;
2455
1557 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2456 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1558 ev_stop (EV_A_ (W)w); 2457 ev_stop (EV_A_ (W)w);
2458
2459 EV_FREQUENT_CHECK;
1559} 2460}
2461
2462#if EV_STAT_ENABLE
2463
2464# ifdef _WIN32
2465# undef lstat
2466# define lstat(a,b) _stati64 (a,b)
2467# endif
2468
2469#define DEF_STAT_INTERVAL 5.0074891
2470#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2471#define MIN_STAT_INTERVAL 0.1074891
2472
2473static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2474
2475#if EV_USE_INOTIFY
2476# define EV_INOTIFY_BUFSIZE 8192
2477
2478static void noinline
2479infy_add (EV_P_ ev_stat *w)
2480{
2481 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2482
2483 if (w->wd < 0)
2484 {
2485 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2486 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2487
2488 /* monitor some parent directory for speedup hints */
2489 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2490 /* but an efficiency issue only */
2491 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2492 {
2493 char path [4096];
2494 strcpy (path, w->path);
2495
2496 do
2497 {
2498 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2499 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2500
2501 char *pend = strrchr (path, '/');
2502
2503 if (!pend || pend == path)
2504 break;
2505
2506 *pend = 0;
2507 w->wd = inotify_add_watch (fs_fd, path, mask);
2508 }
2509 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2510 }
2511 }
2512
2513 if (w->wd >= 0)
2514 {
2515 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2516
2517 /* now local changes will be tracked by inotify, but remote changes won't */
2518 /* unless the filesystem it known to be local, we therefore still poll */
2519 /* also do poll on <2.6.25, but with normal frequency */
2520 struct statfs sfs;
2521
2522 if (fs_2625 && !statfs (w->path, &sfs))
2523 if (sfs.f_type == 0x1373 /* devfs */
2524 || sfs.f_type == 0xEF53 /* ext2/3 */
2525 || sfs.f_type == 0x3153464a /* jfs */
2526 || sfs.f_type == 0x52654973 /* reiser3 */
2527 || sfs.f_type == 0x01021994 /* tempfs */
2528 || sfs.f_type == 0x58465342 /* xfs */)
2529 return;
2530
2531 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2532 ev_timer_again (EV_A_ &w->timer);
2533 }
2534}
2535
2536static void noinline
2537infy_del (EV_P_ ev_stat *w)
2538{
2539 int slot;
2540 int wd = w->wd;
2541
2542 if (wd < 0)
2543 return;
2544
2545 w->wd = -2;
2546 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2547 wlist_del (&fs_hash [slot].head, (WL)w);
2548
2549 /* remove this watcher, if others are watching it, they will rearm */
2550 inotify_rm_watch (fs_fd, wd);
2551}
2552
2553static void noinline
2554infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2555{
2556 if (slot < 0)
2557 /* overflow, need to check for all hash slots */
2558 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2559 infy_wd (EV_A_ slot, wd, ev);
2560 else
2561 {
2562 WL w_;
2563
2564 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2565 {
2566 ev_stat *w = (ev_stat *)w_;
2567 w_ = w_->next; /* lets us remove this watcher and all before it */
2568
2569 if (w->wd == wd || wd == -1)
2570 {
2571 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2572 {
2573 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2574 w->wd = -1;
2575 infy_add (EV_A_ w); /* re-add, no matter what */
2576 }
2577
2578 stat_timer_cb (EV_A_ &w->timer, 0);
2579 }
2580 }
2581 }
2582}
2583
2584static void
2585infy_cb (EV_P_ ev_io *w, int revents)
2586{
2587 char buf [EV_INOTIFY_BUFSIZE];
2588 struct inotify_event *ev = (struct inotify_event *)buf;
2589 int ofs;
2590 int len = read (fs_fd, buf, sizeof (buf));
2591
2592 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2593 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2594}
2595
2596void inline_size
2597check_2625 (EV_P)
2598{
2599 /* kernels < 2.6.25 are borked
2600 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2601 */
2602 struct utsname buf;
2603 int major, minor, micro;
2604
2605 if (uname (&buf))
2606 return;
2607
2608 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2609 return;
2610
2611 if (major < 2
2612 || (major == 2 && minor < 6)
2613 || (major == 2 && minor == 6 && micro < 25))
2614 return;
2615
2616 fs_2625 = 1;
2617}
2618
2619void inline_size
2620infy_init (EV_P)
2621{
2622 if (fs_fd != -2)
2623 return;
2624
2625 fs_fd = -1;
2626
2627 check_2625 (EV_A);
2628
2629 fs_fd = inotify_init ();
2630
2631 if (fs_fd >= 0)
2632 {
2633 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2634 ev_set_priority (&fs_w, EV_MAXPRI);
2635 ev_io_start (EV_A_ &fs_w);
2636 }
2637}
2638
2639void inline_size
2640infy_fork (EV_P)
2641{
2642 int slot;
2643
2644 if (fs_fd < 0)
2645 return;
2646
2647 close (fs_fd);
2648 fs_fd = inotify_init ();
2649
2650 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2651 {
2652 WL w_ = fs_hash [slot].head;
2653 fs_hash [slot].head = 0;
2654
2655 while (w_)
2656 {
2657 ev_stat *w = (ev_stat *)w_;
2658 w_ = w_->next; /* lets us add this watcher */
2659
2660 w->wd = -1;
2661
2662 if (fs_fd >= 0)
2663 infy_add (EV_A_ w); /* re-add, no matter what */
2664 else
2665 ev_timer_again (EV_A_ &w->timer);
2666 }
2667 }
2668}
2669
2670#endif
2671
2672#ifdef _WIN32
2673# define EV_LSTAT(p,b) _stati64 (p, b)
2674#else
2675# define EV_LSTAT(p,b) lstat (p, b)
2676#endif
2677
2678void
2679ev_stat_stat (EV_P_ ev_stat *w)
2680{
2681 if (lstat (w->path, &w->attr) < 0)
2682 w->attr.st_nlink = 0;
2683 else if (!w->attr.st_nlink)
2684 w->attr.st_nlink = 1;
2685}
2686
2687static void noinline
2688stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2689{
2690 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2691
2692 /* we copy this here each the time so that */
2693 /* prev has the old value when the callback gets invoked */
2694 w->prev = w->attr;
2695 ev_stat_stat (EV_A_ w);
2696
2697 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2698 if (
2699 w->prev.st_dev != w->attr.st_dev
2700 || w->prev.st_ino != w->attr.st_ino
2701 || w->prev.st_mode != w->attr.st_mode
2702 || w->prev.st_nlink != w->attr.st_nlink
2703 || w->prev.st_uid != w->attr.st_uid
2704 || w->prev.st_gid != w->attr.st_gid
2705 || w->prev.st_rdev != w->attr.st_rdev
2706 || w->prev.st_size != w->attr.st_size
2707 || w->prev.st_atime != w->attr.st_atime
2708 || w->prev.st_mtime != w->attr.st_mtime
2709 || w->prev.st_ctime != w->attr.st_ctime
2710 ) {
2711 #if EV_USE_INOTIFY
2712 if (fs_fd >= 0)
2713 {
2714 infy_del (EV_A_ w);
2715 infy_add (EV_A_ w);
2716 ev_stat_stat (EV_A_ w); /* avoid race... */
2717 }
2718 #endif
2719
2720 ev_feed_event (EV_A_ w, EV_STAT);
2721 }
2722}
2723
2724void
2725ev_stat_start (EV_P_ ev_stat *w)
2726{
2727 if (expect_false (ev_is_active (w)))
2728 return;
2729
2730 ev_stat_stat (EV_A_ w);
2731
2732 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2733 w->interval = MIN_STAT_INTERVAL;
2734
2735 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2736 ev_set_priority (&w->timer, ev_priority (w));
2737
2738#if EV_USE_INOTIFY
2739 infy_init (EV_A);
2740
2741 if (fs_fd >= 0)
2742 infy_add (EV_A_ w);
2743 else
2744#endif
2745 ev_timer_again (EV_A_ &w->timer);
2746
2747 ev_start (EV_A_ (W)w, 1);
2748
2749 EV_FREQUENT_CHECK;
2750}
2751
2752void
2753ev_stat_stop (EV_P_ ev_stat *w)
2754{
2755 clear_pending (EV_A_ (W)w);
2756 if (expect_false (!ev_is_active (w)))
2757 return;
2758
2759 EV_FREQUENT_CHECK;
2760
2761#if EV_USE_INOTIFY
2762 infy_del (EV_A_ w);
2763#endif
2764 ev_timer_stop (EV_A_ &w->timer);
2765
2766 ev_stop (EV_A_ (W)w);
2767
2768 EV_FREQUENT_CHECK;
2769}
2770#endif
2771
2772#if EV_IDLE_ENABLE
2773void
2774ev_idle_start (EV_P_ ev_idle *w)
2775{
2776 if (expect_false (ev_is_active (w)))
2777 return;
2778
2779 pri_adjust (EV_A_ (W)w);
2780
2781 EV_FREQUENT_CHECK;
2782
2783 {
2784 int active = ++idlecnt [ABSPRI (w)];
2785
2786 ++idleall;
2787 ev_start (EV_A_ (W)w, active);
2788
2789 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2790 idles [ABSPRI (w)][active - 1] = w;
2791 }
2792
2793 EV_FREQUENT_CHECK;
2794}
2795
2796void
2797ev_idle_stop (EV_P_ ev_idle *w)
2798{
2799 clear_pending (EV_A_ (W)w);
2800 if (expect_false (!ev_is_active (w)))
2801 return;
2802
2803 EV_FREQUENT_CHECK;
2804
2805 {
2806 int active = ev_active (w);
2807
2808 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2809 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2810
2811 ev_stop (EV_A_ (W)w);
2812 --idleall;
2813 }
2814
2815 EV_FREQUENT_CHECK;
2816}
2817#endif
2818
2819void
2820ev_prepare_start (EV_P_ ev_prepare *w)
2821{
2822 if (expect_false (ev_is_active (w)))
2823 return;
2824
2825 EV_FREQUENT_CHECK;
2826
2827 ev_start (EV_A_ (W)w, ++preparecnt);
2828 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2829 prepares [preparecnt - 1] = w;
2830
2831 EV_FREQUENT_CHECK;
2832}
2833
2834void
2835ev_prepare_stop (EV_P_ ev_prepare *w)
2836{
2837 clear_pending (EV_A_ (W)w);
2838 if (expect_false (!ev_is_active (w)))
2839 return;
2840
2841 EV_FREQUENT_CHECK;
2842
2843 {
2844 int active = ev_active (w);
2845
2846 prepares [active - 1] = prepares [--preparecnt];
2847 ev_active (prepares [active - 1]) = active;
2848 }
2849
2850 ev_stop (EV_A_ (W)w);
2851
2852 EV_FREQUENT_CHECK;
2853}
2854
2855void
2856ev_check_start (EV_P_ ev_check *w)
2857{
2858 if (expect_false (ev_is_active (w)))
2859 return;
2860
2861 EV_FREQUENT_CHECK;
2862
2863 ev_start (EV_A_ (W)w, ++checkcnt);
2864 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2865 checks [checkcnt - 1] = w;
2866
2867 EV_FREQUENT_CHECK;
2868}
2869
2870void
2871ev_check_stop (EV_P_ ev_check *w)
2872{
2873 clear_pending (EV_A_ (W)w);
2874 if (expect_false (!ev_is_active (w)))
2875 return;
2876
2877 EV_FREQUENT_CHECK;
2878
2879 {
2880 int active = ev_active (w);
2881
2882 checks [active - 1] = checks [--checkcnt];
2883 ev_active (checks [active - 1]) = active;
2884 }
2885
2886 ev_stop (EV_A_ (W)w);
2887
2888 EV_FREQUENT_CHECK;
2889}
2890
2891#if EV_EMBED_ENABLE
2892void noinline
2893ev_embed_sweep (EV_P_ ev_embed *w)
2894{
2895 ev_loop (w->other, EVLOOP_NONBLOCK);
2896}
2897
2898static void
2899embed_io_cb (EV_P_ ev_io *io, int revents)
2900{
2901 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2902
2903 if (ev_cb (w))
2904 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2905 else
2906 ev_loop (w->other, EVLOOP_NONBLOCK);
2907}
2908
2909static void
2910embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2911{
2912 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2913
2914 {
2915 struct ev_loop *loop = w->other;
2916
2917 while (fdchangecnt)
2918 {
2919 fd_reify (EV_A);
2920 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2921 }
2922 }
2923}
2924
2925static void
2926embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2927{
2928 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2929
2930 ev_embed_stop (EV_A_ w);
2931
2932 {
2933 struct ev_loop *loop = w->other;
2934
2935 ev_loop_fork (EV_A);
2936 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2937 }
2938
2939 ev_embed_start (EV_A_ w);
2940}
2941
2942#if 0
2943static void
2944embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2945{
2946 ev_idle_stop (EV_A_ idle);
2947}
2948#endif
2949
2950void
2951ev_embed_start (EV_P_ ev_embed *w)
2952{
2953 if (expect_false (ev_is_active (w)))
2954 return;
2955
2956 {
2957 struct ev_loop *loop = w->other;
2958 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2959 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2960 }
2961
2962 EV_FREQUENT_CHECK;
2963
2964 ev_set_priority (&w->io, ev_priority (w));
2965 ev_io_start (EV_A_ &w->io);
2966
2967 ev_prepare_init (&w->prepare, embed_prepare_cb);
2968 ev_set_priority (&w->prepare, EV_MINPRI);
2969 ev_prepare_start (EV_A_ &w->prepare);
2970
2971 ev_fork_init (&w->fork, embed_fork_cb);
2972 ev_fork_start (EV_A_ &w->fork);
2973
2974 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2975
2976 ev_start (EV_A_ (W)w, 1);
2977
2978 EV_FREQUENT_CHECK;
2979}
2980
2981void
2982ev_embed_stop (EV_P_ ev_embed *w)
2983{
2984 clear_pending (EV_A_ (W)w);
2985 if (expect_false (!ev_is_active (w)))
2986 return;
2987
2988 EV_FREQUENT_CHECK;
2989
2990 ev_io_stop (EV_A_ &w->io);
2991 ev_prepare_stop (EV_A_ &w->prepare);
2992 ev_fork_stop (EV_A_ &w->fork);
2993
2994 EV_FREQUENT_CHECK;
2995}
2996#endif
2997
2998#if EV_FORK_ENABLE
2999void
3000ev_fork_start (EV_P_ ev_fork *w)
3001{
3002 if (expect_false (ev_is_active (w)))
3003 return;
3004
3005 EV_FREQUENT_CHECK;
3006
3007 ev_start (EV_A_ (W)w, ++forkcnt);
3008 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3009 forks [forkcnt - 1] = w;
3010
3011 EV_FREQUENT_CHECK;
3012}
3013
3014void
3015ev_fork_stop (EV_P_ ev_fork *w)
3016{
3017 clear_pending (EV_A_ (W)w);
3018 if (expect_false (!ev_is_active (w)))
3019 return;
3020
3021 EV_FREQUENT_CHECK;
3022
3023 {
3024 int active = ev_active (w);
3025
3026 forks [active - 1] = forks [--forkcnt];
3027 ev_active (forks [active - 1]) = active;
3028 }
3029
3030 ev_stop (EV_A_ (W)w);
3031
3032 EV_FREQUENT_CHECK;
3033}
3034#endif
3035
3036#if EV_ASYNC_ENABLE
3037void
3038ev_async_start (EV_P_ ev_async *w)
3039{
3040 if (expect_false (ev_is_active (w)))
3041 return;
3042
3043 evpipe_init (EV_A);
3044
3045 EV_FREQUENT_CHECK;
3046
3047 ev_start (EV_A_ (W)w, ++asynccnt);
3048 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3049 asyncs [asynccnt - 1] = w;
3050
3051 EV_FREQUENT_CHECK;
3052}
3053
3054void
3055ev_async_stop (EV_P_ ev_async *w)
3056{
3057 clear_pending (EV_A_ (W)w);
3058 if (expect_false (!ev_is_active (w)))
3059 return;
3060
3061 EV_FREQUENT_CHECK;
3062
3063 {
3064 int active = ev_active (w);
3065
3066 asyncs [active - 1] = asyncs [--asynccnt];
3067 ev_active (asyncs [active - 1]) = active;
3068 }
3069
3070 ev_stop (EV_A_ (W)w);
3071
3072 EV_FREQUENT_CHECK;
3073}
3074
3075void
3076ev_async_send (EV_P_ ev_async *w)
3077{
3078 w->sent = 1;
3079 evpipe_write (EV_A_ &gotasync);
3080}
3081#endif
1560 3082
1561/*****************************************************************************/ 3083/*****************************************************************************/
1562 3084
1563struct ev_once 3085struct ev_once
1564{ 3086{
1565 struct ev_io io; 3087 ev_io io;
1566 struct ev_timer to; 3088 ev_timer to;
1567 void (*cb)(int revents, void *arg); 3089 void (*cb)(int revents, void *arg);
1568 void *arg; 3090 void *arg;
1569}; 3091};
1570 3092
1571static void 3093static void
1572once_cb (EV_P_ struct ev_once *once, int revents) 3094once_cb (EV_P_ struct ev_once *once, int revents)
1573{ 3095{
1574 void (*cb)(int revents, void *arg) = once->cb; 3096 void (*cb)(int revents, void *arg) = once->cb;
1575 void *arg = once->arg; 3097 void *arg = once->arg;
1576 3098
1577 ev_io_stop (EV_A_ &once->io); 3099 ev_io_stop (EV_A_ &once->io);
1578 ev_timer_stop (EV_A_ &once->to); 3100 ev_timer_stop (EV_A_ &once->to);
1579 ev_free (once); 3101 ev_free (once);
1580 3102
1581 cb (revents, arg); 3103 cb (revents, arg);
1582} 3104}
1583 3105
1584static void 3106static void
1585once_cb_io (EV_P_ struct ev_io *w, int revents) 3107once_cb_io (EV_P_ ev_io *w, int revents)
1586{ 3108{
1587 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3109 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3110
3111 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1588} 3112}
1589 3113
1590static void 3114static void
1591once_cb_to (EV_P_ struct ev_timer *w, int revents) 3115once_cb_to (EV_P_ ev_timer *w, int revents)
1592{ 3116{
1593 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3117 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3118
3119 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1594} 3120}
1595 3121
1596void 3122void
1597ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3123ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1598{ 3124{
1599 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3125 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1600 3126
1601 if (!once) 3127 if (expect_false (!once))
3128 {
1602 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3129 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1603 else 3130 return;
1604 { 3131 }
3132
1605 once->cb = cb; 3133 once->cb = cb;
1606 once->arg = arg; 3134 once->arg = arg;
1607 3135
1608 ev_init (&once->io, once_cb_io); 3136 ev_init (&once->io, once_cb_io);
1609 if (fd >= 0) 3137 if (fd >= 0)
1610 { 3138 {
1611 ev_io_set (&once->io, fd, events); 3139 ev_io_set (&once->io, fd, events);
1612 ev_io_start (EV_A_ &once->io); 3140 ev_io_start (EV_A_ &once->io);
1613 } 3141 }
1614 3142
1615 ev_init (&once->to, once_cb_to); 3143 ev_init (&once->to, once_cb_to);
1616 if (timeout >= 0.) 3144 if (timeout >= 0.)
1617 { 3145 {
1618 ev_timer_set (&once->to, timeout, 0.); 3146 ev_timer_set (&once->to, timeout, 0.);
1619 ev_timer_start (EV_A_ &once->to); 3147 ev_timer_start (EV_A_ &once->to);
1620 }
1621 } 3148 }
1622} 3149}
3150
3151#if EV_MULTIPLICITY
3152 #include "ev_wrap.h"
3153#endif
1623 3154
1624#ifdef __cplusplus 3155#ifdef __cplusplus
1625} 3156}
1626#endif 3157#endif
1627 3158

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines