ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.96 by root, Sun Nov 11 01:50:36 2007 UTC vs.
Revision 1.375 by root, Sat Jun 4 05:25:03 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
42# ifdef EV_CONFIG_H
43# include EV_CONFIG_H
44# else
37# include "config.h" 45# include "config.h"
46# endif
47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
38 67
39# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
69# ifndef EV_USE_MONOTONIC
40# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
71# endif
72# ifndef EV_USE_REALTIME
41# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
74# endif
75# else
76# ifndef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0
78# endif
79# ifndef EV_USE_REALTIME
80# define EV_USE_REALTIME 0
81# endif
42# endif 82# endif
43 83
44# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 84# if HAVE_NANOSLEEP
45# define EV_USE_SELECT 1 85# ifndef EV_USE_NANOSLEEP
86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
46# endif 91# endif
47 92
48# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
96# endif
97# else
98# undef EV_USE_SELECT
49# define EV_USE_POLL 1 99# define EV_USE_SELECT 0
50# endif 100# endif
51 101
52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
53# define EV_USE_EPOLL 1 108# define EV_USE_POLL 0
54# endif 109# endif
55 110
56# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
57# define EV_USE_KQUEUE 1 112# ifndef EV_USE_EPOLL
113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
58# endif 118# endif
59 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
121# ifndef EV_USE_KQUEUE
122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
60#endif 127# endif
128
129# if HAVE_PORT_H && HAVE_PORT_CREATE
130# ifndef EV_USE_PORT
131# define EV_USE_PORT EV_FEATURE_BACKENDS
132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
136# endif
61 137
62#include <math.h> 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
139# ifndef EV_USE_INOTIFY
140# define EV_USE_INOTIFY EV_FEATURE_OS
141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
145# endif
146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
154# endif
155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
63#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
64#include <fcntl.h> 169#include <fcntl.h>
65#include <stddef.h> 170#include <stddef.h>
66 171
67#include <stdio.h> 172#include <stdio.h>
68 173
69#include <assert.h> 174#include <assert.h>
70#include <errno.h> 175#include <errno.h>
71#include <sys/types.h> 176#include <sys/types.h>
72#include <time.h> 177#include <time.h>
178#include <limits.h>
73 179
74#include <signal.h> 180#include <signal.h>
75
76#ifndef WIN32
77# include <unistd.h>
78# include <sys/time.h>
79# include <sys/wait.h>
80#endif
81/**/
82
83#ifndef EV_USE_MONOTONIC
84# define EV_USE_MONOTONIC 1
85#endif
86
87#ifndef EV_USE_SELECT
88# define EV_USE_SELECT 1
89#endif
90
91#ifndef EV_USE_POLL
92# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
93#endif
94
95#ifndef EV_USE_EPOLL
96# define EV_USE_EPOLL 0
97#endif
98
99#ifndef EV_USE_KQUEUE
100# define EV_USE_KQUEUE 0
101#endif
102
103#ifndef EV_USE_WIN32
104# ifdef WIN32
105# define EV_USE_WIN32 0 /* it does not exist, use select */
106# undef EV_USE_SELECT
107# define EV_USE_SELECT 1
108# else
109# define EV_USE_WIN32 0
110# endif
111#endif
112
113#ifndef EV_USE_REALTIME
114# define EV_USE_REALTIME 1
115#endif
116
117/**/
118
119#ifndef CLOCK_MONOTONIC
120# undef EV_USE_MONOTONIC
121# define EV_USE_MONOTONIC 0
122#endif
123
124#ifndef CLOCK_REALTIME
125# undef EV_USE_REALTIME
126# define EV_USE_REALTIME 0
127#endif
128
129/**/
130
131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
135 181
136#ifdef EV_H 182#ifdef EV_H
137# include EV_H 183# include EV_H
138#else 184#else
139# include "ev.h" 185# include "ev.h"
140#endif 186#endif
141 187
188EV_CPP(extern "C" {)
189
190#ifndef _WIN32
191# include <sys/time.h>
192# include <sys/wait.h>
193# include <unistd.h>
194#else
195# include <io.h>
196# define WIN32_LEAN_AND_MEAN
197# include <windows.h>
198# ifndef EV_SELECT_IS_WINSOCKET
199# define EV_SELECT_IS_WINSOCKET 1
200# endif
201# undef EV_AVOID_STDIO
202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
211
212/* this block tries to deduce configuration from header-defined symbols and defaults */
213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
251# endif
252#endif
253
254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
258# define EV_USE_MONOTONIC 0
259# endif
260#endif
261
262#ifndef EV_USE_REALTIME
263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264#endif
265
266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
270# define EV_USE_NANOSLEEP 0
271# endif
272#endif
273
274#ifndef EV_USE_SELECT
275# define EV_USE_SELECT EV_FEATURE_BACKENDS
276#endif
277
278#ifndef EV_USE_POLL
279# ifdef _WIN32
280# define EV_USE_POLL 0
281# else
282# define EV_USE_POLL EV_FEATURE_BACKENDS
283# endif
284#endif
285
286#ifndef EV_USE_EPOLL
287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
289# else
290# define EV_USE_EPOLL 0
291# endif
292#endif
293
294#ifndef EV_USE_KQUEUE
295# define EV_USE_KQUEUE 0
296#endif
297
298#ifndef EV_USE_PORT
299# define EV_USE_PORT 0
300#endif
301
302#ifndef EV_USE_INOTIFY
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_INOTIFY EV_FEATURE_OS
305# else
306# define EV_USE_INOTIFY 0
307# endif
308#endif
309
310#ifndef EV_PID_HASHSIZE
311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
312#endif
313
314#ifndef EV_INOTIFY_HASHSIZE
315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316#endif
317
318#ifndef EV_USE_EVENTFD
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320# define EV_USE_EVENTFD EV_FEATURE_OS
321# else
322# define EV_USE_EVENTFD 0
323# endif
324#endif
325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
373
374#ifndef CLOCK_MONOTONIC
375# undef EV_USE_MONOTONIC
376# define EV_USE_MONOTONIC 0
377#endif
378
379#ifndef CLOCK_REALTIME
380# undef EV_USE_REALTIME
381# define EV_USE_REALTIME 0
382#endif
383
384#if !EV_STAT_ENABLE
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387#endif
388
389#if !EV_USE_NANOSLEEP
390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
392# include <sys/select.h>
393# endif
394#endif
395
396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
404#endif
405
406#if EV_SELECT_IS_WINSOCKET
407# include <winsock.h>
408#endif
409
410#if EV_USE_EVENTFD
411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
446#endif
447
448/**/
449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
456/*
457 * This is used to work around floating point rounding problems.
458 * This value is good at least till the year 4000.
459 */
460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
462
463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
465
466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468
142#if __GNUC__ >= 3 469#if __GNUC__ >= 4
143# define expect(expr,value) __builtin_expect ((expr),(value)) 470# define expect(expr,value) __builtin_expect ((expr),(value))
144# define inline inline 471# define noinline __attribute__ ((noinline))
145#else 472#else
146# define expect(expr,value) (expr) 473# define expect(expr,value) (expr)
147# define inline static 474# define noinline
475# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
476# define inline
477# endif
148#endif 478#endif
149 479
150#define expect_false(expr) expect ((expr) != 0, 0) 480#define expect_false(expr) expect ((expr) != 0, 0)
151#define expect_true(expr) expect ((expr) != 0, 1) 481#define expect_true(expr) expect ((expr) != 0, 1)
482#define inline_size static inline
152 483
484#if EV_FEATURE_CODE
485# define inline_speed static inline
486#else
487# define inline_speed static noinline
488#endif
489
153#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 490#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
491
492#if EV_MINPRI == EV_MAXPRI
493# define ABSPRI(w) (((W)w), 0)
494#else
154#define ABSPRI(w) ((w)->priority - EV_MINPRI) 495# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
496#endif
155 497
498#define EMPTY /* required for microsofts broken pseudo-c compiler */
499#define EMPTY2(a,b) /* used to suppress some warnings */
500
156typedef struct ev_watcher *W; 501typedef ev_watcher *W;
157typedef struct ev_watcher_list *WL; 502typedef ev_watcher_list *WL;
158typedef struct ev_watcher_time *WT; 503typedef ev_watcher_time *WT;
159 504
505#define ev_active(w) ((W)(w))->active
506#define ev_at(w) ((WT)(w))->at
507
508#if EV_USE_REALTIME
509/* sig_atomic_t is used to avoid per-thread variables or locking but still */
510/* giving it a reasonably high chance of working on typical architectures */
511static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
512#endif
513
514#if EV_USE_MONOTONIC
160static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 515static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
516#endif
161 517
518#ifndef EV_FD_TO_WIN32_HANDLE
519# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
520#endif
521#ifndef EV_WIN32_HANDLE_TO_FD
522# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
523#endif
524#ifndef EV_WIN32_CLOSE_FD
525# define EV_WIN32_CLOSE_FD(fd) close (fd)
526#endif
527
528#ifdef _WIN32
162#include "ev_win32.c" 529# include "ev_win32.c"
530#endif
163 531
164/*****************************************************************************/ 532/*****************************************************************************/
165 533
534/* define a suitable floor function (only used by periodics atm) */
535
536#if EV_USE_FLOOR
537# include <math.h>
538# define ev_floor(v) floor (v)
539#else
540
541#include <float.h>
542
543/* a floor() replacement function, should be independent of ev_tstamp type */
544static ev_tstamp noinline
545ev_floor (ev_tstamp v)
546{
547 /* the choice of shift factor is not terribly important */
548#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
549 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
550#else
551 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
552#endif
553
554 /* argument too large for an unsigned long? */
555 if (expect_false (v >= shift))
556 {
557 ev_tstamp f;
558
559 if (v == v - 1.)
560 return v; /* very large number */
561
562 f = shift * ev_floor (v * (1. / shift));
563 return f + ev_floor (v - f);
564 }
565
566 /* special treatment for negative args? */
567 if (expect_false (v < 0.))
568 {
569 ev_tstamp f = -ev_floor (-v);
570
571 return f - (f == v ? 0 : 1);
572 }
573
574 /* fits into an unsigned long */
575 return (unsigned long)v;
576}
577
578#endif
579
580/*****************************************************************************/
581
582#ifdef __linux
583# include <sys/utsname.h>
584#endif
585
586static unsigned int noinline
587ev_linux_version (void)
588{
589#ifdef __linux
590 unsigned int v = 0;
591 struct utsname buf;
592 int i;
593 char *p = buf.release;
594
595 if (uname (&buf))
596 return 0;
597
598 for (i = 3+1; --i; )
599 {
600 unsigned int c = 0;
601
602 for (;;)
603 {
604 if (*p >= '0' && *p <= '9')
605 c = c * 10 + *p++ - '0';
606 else
607 {
608 p += *p == '.';
609 break;
610 }
611 }
612
613 v = (v << 8) | c;
614 }
615
616 return v;
617#else
618 return 0;
619#endif
620}
621
622/*****************************************************************************/
623
624#if EV_AVOID_STDIO
625static void noinline
626ev_printerr (const char *msg)
627{
628 write (STDERR_FILENO, msg, strlen (msg));
629}
630#endif
631
166static void (*syserr_cb)(const char *msg); 632static void (*syserr_cb)(const char *msg);
167 633
634void
168void ev_set_syserr_cb (void (*cb)(const char *msg)) 635ev_set_syserr_cb (void (*cb)(const char *msg))
169{ 636{
170 syserr_cb = cb; 637 syserr_cb = cb;
171} 638}
172 639
173static void 640static void noinline
174syserr (const char *msg) 641ev_syserr (const char *msg)
175{ 642{
176 if (!msg) 643 if (!msg)
177 msg = "(libev) system error"; 644 msg = "(libev) system error";
178 645
179 if (syserr_cb) 646 if (syserr_cb)
180 syserr_cb (msg); 647 syserr_cb (msg);
181 else 648 else
182 { 649 {
650#if EV_AVOID_STDIO
651 ev_printerr (msg);
652 ev_printerr (": ");
653 ev_printerr (strerror (errno));
654 ev_printerr ("\n");
655#else
183 perror (msg); 656 perror (msg);
657#endif
184 abort (); 658 abort ();
185 } 659 }
186} 660}
187 661
662static void *
663ev_realloc_emul (void *ptr, long size)
664{
665#if __GLIBC__
666 return realloc (ptr, size);
667#else
668 /* some systems, notably openbsd and darwin, fail to properly
669 * implement realloc (x, 0) (as required by both ansi c-89 and
670 * the single unix specification, so work around them here.
671 */
672
673 if (size)
674 return realloc (ptr, size);
675
676 free (ptr);
677 return 0;
678#endif
679}
680
188static void *(*alloc)(void *ptr, long size); 681static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
189 682
683void
190void ev_set_allocator (void *(*cb)(void *ptr, long size)) 684ev_set_allocator (void *(*cb)(void *ptr, long size))
191{ 685{
192 alloc = cb; 686 alloc = cb;
193} 687}
194 688
195static void * 689inline_speed void *
196ev_realloc (void *ptr, long size) 690ev_realloc (void *ptr, long size)
197{ 691{
198 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 692 ptr = alloc (ptr, size);
199 693
200 if (!ptr && size) 694 if (!ptr && size)
201 { 695 {
696#if EV_AVOID_STDIO
697 ev_printerr ("(libev) memory allocation failed, aborting.\n");
698#else
202 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 699 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
700#endif
203 abort (); 701 abort ();
204 } 702 }
205 703
206 return ptr; 704 return ptr;
207} 705}
209#define ev_malloc(size) ev_realloc (0, (size)) 707#define ev_malloc(size) ev_realloc (0, (size))
210#define ev_free(ptr) ev_realloc ((ptr), 0) 708#define ev_free(ptr) ev_realloc ((ptr), 0)
211 709
212/*****************************************************************************/ 710/*****************************************************************************/
213 711
712/* set in reify when reification needed */
713#define EV_ANFD_REIFY 1
714
715/* file descriptor info structure */
214typedef struct 716typedef struct
215{ 717{
216 WL head; 718 WL head;
217 unsigned char events; 719 unsigned char events; /* the events watched for */
720 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
721 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
218 unsigned char reify; 722 unsigned char unused;
723#if EV_USE_EPOLL
724 unsigned int egen; /* generation counter to counter epoll bugs */
725#endif
726#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
727 SOCKET handle;
728#endif
729#if EV_USE_IOCP
730 OVERLAPPED or, ow;
731#endif
219} ANFD; 732} ANFD;
220 733
734/* stores the pending event set for a given watcher */
221typedef struct 735typedef struct
222{ 736{
223 W w; 737 W w;
224 int events; 738 int events; /* the pending event set for the given watcher */
225} ANPENDING; 739} ANPENDING;
740
741#if EV_USE_INOTIFY
742/* hash table entry per inotify-id */
743typedef struct
744{
745 WL head;
746} ANFS;
747#endif
748
749/* Heap Entry */
750#if EV_HEAP_CACHE_AT
751 /* a heap element */
752 typedef struct {
753 ev_tstamp at;
754 WT w;
755 } ANHE;
756
757 #define ANHE_w(he) (he).w /* access watcher, read-write */
758 #define ANHE_at(he) (he).at /* access cached at, read-only */
759 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
760#else
761 /* a heap element */
762 typedef WT ANHE;
763
764 #define ANHE_w(he) (he)
765 #define ANHE_at(he) (he)->at
766 #define ANHE_at_cache(he)
767#endif
226 768
227#if EV_MULTIPLICITY 769#if EV_MULTIPLICITY
228 770
229 struct ev_loop 771 struct ev_loop
230 { 772 {
231 ev_tstamp ev_rt_now; 773 ev_tstamp ev_rt_now;
774 #define ev_rt_now ((loop)->ev_rt_now)
232 #define VAR(name,decl) decl; 775 #define VAR(name,decl) decl;
233 #include "ev_vars.h" 776 #include "ev_vars.h"
234 #undef VAR 777 #undef VAR
235 }; 778 };
236 #include "ev_wrap.h" 779 #include "ev_wrap.h"
237 780
238 struct ev_loop default_loop_struct; 781 static struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop; 782 struct ev_loop *ev_default_loop_ptr;
240 783
241#else 784#else
242 785
243 ev_tstamp ev_rt_now; 786 ev_tstamp ev_rt_now;
244 #define VAR(name,decl) static decl; 787 #define VAR(name,decl) static decl;
245 #include "ev_vars.h" 788 #include "ev_vars.h"
246 #undef VAR 789 #undef VAR
247 790
248 static int default_loop; 791 static int ev_default_loop_ptr;
249 792
250#endif 793#endif
794
795#if EV_FEATURE_API
796# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
797# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
798# define EV_INVOKE_PENDING invoke_cb (EV_A)
799#else
800# define EV_RELEASE_CB (void)0
801# define EV_ACQUIRE_CB (void)0
802# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
803#endif
804
805#define EVBREAK_RECURSE 0x80
251 806
252/*****************************************************************************/ 807/*****************************************************************************/
253 808
809#ifndef EV_HAVE_EV_TIME
254ev_tstamp 810ev_tstamp
255ev_time (void) 811ev_time (void)
256{ 812{
257#if EV_USE_REALTIME 813#if EV_USE_REALTIME
814 if (expect_true (have_realtime))
815 {
258 struct timespec ts; 816 struct timespec ts;
259 clock_gettime (CLOCK_REALTIME, &ts); 817 clock_gettime (CLOCK_REALTIME, &ts);
260 return ts.tv_sec + ts.tv_nsec * 1e-9; 818 return ts.tv_sec + ts.tv_nsec * 1e-9;
261#else 819 }
820#endif
821
262 struct timeval tv; 822 struct timeval tv;
263 gettimeofday (&tv, 0); 823 gettimeofday (&tv, 0);
264 return tv.tv_sec + tv.tv_usec * 1e-6; 824 return tv.tv_sec + tv.tv_usec * 1e-6;
265#endif
266} 825}
826#endif
267 827
268inline ev_tstamp 828inline_size ev_tstamp
269get_clock (void) 829get_clock (void)
270{ 830{
271#if EV_USE_MONOTONIC 831#if EV_USE_MONOTONIC
272 if (expect_true (have_monotonic)) 832 if (expect_true (have_monotonic))
273 { 833 {
286{ 846{
287 return ev_rt_now; 847 return ev_rt_now;
288} 848}
289#endif 849#endif
290 850
291#define array_roundsize(type,n) ((n) | 4 & ~3) 851void
852ev_sleep (ev_tstamp delay)
853{
854 if (delay > 0.)
855 {
856#if EV_USE_NANOSLEEP
857 struct timespec ts;
858
859 EV_TS_SET (ts, delay);
860 nanosleep (&ts, 0);
861#elif defined(_WIN32)
862 Sleep ((unsigned long)(delay * 1e3));
863#else
864 struct timeval tv;
865
866 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
867 /* something not guaranteed by newer posix versions, but guaranteed */
868 /* by older ones */
869 EV_TV_SET (tv, delay);
870 select (0, 0, 0, 0, &tv);
871#endif
872 }
873}
874
875/*****************************************************************************/
876
877#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
878
879/* find a suitable new size for the given array, */
880/* hopefully by rounding to a nice-to-malloc size */
881inline_size int
882array_nextsize (int elem, int cur, int cnt)
883{
884 int ncur = cur + 1;
885
886 do
887 ncur <<= 1;
888 while (cnt > ncur);
889
890 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
891 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
892 {
893 ncur *= elem;
894 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
895 ncur = ncur - sizeof (void *) * 4;
896 ncur /= elem;
897 }
898
899 return ncur;
900}
901
902static noinline void *
903array_realloc (int elem, void *base, int *cur, int cnt)
904{
905 *cur = array_nextsize (elem, *cur, cnt);
906 return ev_realloc (base, elem * *cur);
907}
908
909#define array_init_zero(base,count) \
910 memset ((void *)(base), 0, sizeof (*(base)) * (count))
292 911
293#define array_needsize(type,base,cur,cnt,init) \ 912#define array_needsize(type,base,cur,cnt,init) \
294 if (expect_false ((cnt) > cur)) \ 913 if (expect_false ((cnt) > (cur))) \
295 { \ 914 { \
296 int newcnt = cur; \ 915 int ocur_ = (cur); \
297 do \ 916 (base) = (type *)array_realloc \
298 { \ 917 (sizeof (type), (base), &(cur), (cnt)); \
299 newcnt = array_roundsize (type, newcnt << 1); \ 918 init ((base) + (ocur_), (cur) - ocur_); \
300 } \
301 while ((cnt) > newcnt); \
302 \
303 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
304 init (base + cur, newcnt - cur); \
305 cur = newcnt; \
306 } 919 }
307 920
921#if 0
308#define array_slim(type,stem) \ 922#define array_slim(type,stem) \
309 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 923 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
310 { \ 924 { \
311 stem ## max = array_roundsize (stem ## cnt >> 1); \ 925 stem ## max = array_roundsize (stem ## cnt >> 1); \
312 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 926 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
313 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 927 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
314 } 928 }
315 929#endif
316/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
317/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
318#define array_free_microshit(stem) \
319 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
320 930
321#define array_free(stem, idx) \ 931#define array_free(stem, idx) \
322 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 932 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
323 933
324/*****************************************************************************/ 934/*****************************************************************************/
325 935
326static void 936/* dummy callback for pending events */
327anfds_init (ANFD *base, int count) 937static void noinline
938pendingcb (EV_P_ ev_prepare *w, int revents)
328{ 939{
329 while (count--)
330 {
331 base->head = 0;
332 base->events = EV_NONE;
333 base->reify = 0;
334
335 ++base;
336 }
337} 940}
338 941
339void 942void noinline
340ev_feed_event (EV_P_ void *w, int revents) 943ev_feed_event (EV_P_ void *w, int revents)
341{ 944{
342 W w_ = (W)w; 945 W w_ = (W)w;
946 int pri = ABSPRI (w_);
343 947
344 if (w_->pending) 948 if (expect_false (w_->pending))
949 pendings [pri][w_->pending - 1].events |= revents;
950 else
345 { 951 {
952 w_->pending = ++pendingcnt [pri];
953 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
954 pendings [pri][w_->pending - 1].w = w_;
346 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 955 pendings [pri][w_->pending - 1].events = revents;
347 return;
348 } 956 }
349
350 w_->pending = ++pendingcnt [ABSPRI (w_)];
351 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
352 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
353 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
354} 957}
355 958
356static void 959inline_speed void
960feed_reverse (EV_P_ W w)
961{
962 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
963 rfeeds [rfeedcnt++] = w;
964}
965
966inline_size void
967feed_reverse_done (EV_P_ int revents)
968{
969 do
970 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
971 while (rfeedcnt);
972}
973
974inline_speed void
357queue_events (EV_P_ W *events, int eventcnt, int type) 975queue_events (EV_P_ W *events, int eventcnt, int type)
358{ 976{
359 int i; 977 int i;
360 978
361 for (i = 0; i < eventcnt; ++i) 979 for (i = 0; i < eventcnt; ++i)
362 ev_feed_event (EV_A_ events [i], type); 980 ev_feed_event (EV_A_ events [i], type);
363} 981}
364 982
983/*****************************************************************************/
984
365inline void 985inline_speed void
366fd_event (EV_P_ int fd, int revents) 986fd_event_nocheck (EV_P_ int fd, int revents)
367{ 987{
368 ANFD *anfd = anfds + fd; 988 ANFD *anfd = anfds + fd;
369 struct ev_io *w; 989 ev_io *w;
370 990
371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 991 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
372 { 992 {
373 int ev = w->events & revents; 993 int ev = w->events & revents;
374 994
375 if (ev) 995 if (ev)
376 ev_feed_event (EV_A_ (W)w, ev); 996 ev_feed_event (EV_A_ (W)w, ev);
377 } 997 }
378} 998}
379 999
1000/* do not submit kernel events for fds that have reify set */
1001/* because that means they changed while we were polling for new events */
1002inline_speed void
1003fd_event (EV_P_ int fd, int revents)
1004{
1005 ANFD *anfd = anfds + fd;
1006
1007 if (expect_true (!anfd->reify))
1008 fd_event_nocheck (EV_A_ fd, revents);
1009}
1010
380void 1011void
381ev_feed_fd_event (EV_P_ int fd, int revents) 1012ev_feed_fd_event (EV_P_ int fd, int revents)
382{ 1013{
1014 if (fd >= 0 && fd < anfdmax)
383 fd_event (EV_A_ fd, revents); 1015 fd_event_nocheck (EV_A_ fd, revents);
384} 1016}
385 1017
386/*****************************************************************************/ 1018/* make sure the external fd watch events are in-sync */
387 1019/* with the kernel/libev internal state */
388static void 1020inline_size void
389fd_reify (EV_P) 1021fd_reify (EV_P)
390{ 1022{
391 int i; 1023 int i;
392 1024
1025#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
393 for (i = 0; i < fdchangecnt; ++i) 1026 for (i = 0; i < fdchangecnt; ++i)
394 { 1027 {
395 int fd = fdchanges [i]; 1028 int fd = fdchanges [i];
396 ANFD *anfd = anfds + fd; 1029 ANFD *anfd = anfds + fd;
1030
1031 if (anfd->reify & EV__IOFDSET && anfd->head)
1032 {
1033 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1034
1035 if (handle != anfd->handle)
1036 {
1037 unsigned long arg;
1038
1039 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1040
1041 /* handle changed, but fd didn't - we need to do it in two steps */
1042 backend_modify (EV_A_ fd, anfd->events, 0);
1043 anfd->events = 0;
1044 anfd->handle = handle;
1045 }
1046 }
1047 }
1048#endif
1049
1050 for (i = 0; i < fdchangecnt; ++i)
1051 {
1052 int fd = fdchanges [i];
1053 ANFD *anfd = anfds + fd;
397 struct ev_io *w; 1054 ev_io *w;
398 1055
399 int events = 0; 1056 unsigned char o_events = anfd->events;
1057 unsigned char o_reify = anfd->reify;
400 1058
401 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
402 events |= w->events;
403
404 anfd->reify = 0; 1059 anfd->reify = 0;
405 1060
406 method_modify (EV_A_ fd, anfd->events, events); 1061 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1062 {
407 anfd->events = events; 1063 anfd->events = 0;
1064
1065 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1066 anfd->events |= (unsigned char)w->events;
1067
1068 if (o_events != anfd->events)
1069 o_reify = EV__IOFDSET; /* actually |= */
1070 }
1071
1072 if (o_reify & EV__IOFDSET)
1073 backend_modify (EV_A_ fd, o_events, anfd->events);
408 } 1074 }
409 1075
410 fdchangecnt = 0; 1076 fdchangecnt = 0;
411} 1077}
412 1078
413static void 1079/* something about the given fd changed */
1080inline_size void
414fd_change (EV_P_ int fd) 1081fd_change (EV_P_ int fd, int flags)
415{ 1082{
416 if (anfds [fd].reify) 1083 unsigned char reify = anfds [fd].reify;
417 return;
418
419 anfds [fd].reify = 1; 1084 anfds [fd].reify |= flags;
420 1085
1086 if (expect_true (!reify))
1087 {
421 ++fdchangecnt; 1088 ++fdchangecnt;
422 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 1089 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
423 fdchanges [fdchangecnt - 1] = fd; 1090 fdchanges [fdchangecnt - 1] = fd;
1091 }
424} 1092}
425 1093
426static void 1094/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1095inline_speed void
427fd_kill (EV_P_ int fd) 1096fd_kill (EV_P_ int fd)
428{ 1097{
429 struct ev_io *w; 1098 ev_io *w;
430 1099
431 while ((w = (struct ev_io *)anfds [fd].head)) 1100 while ((w = (ev_io *)anfds [fd].head))
432 { 1101 {
433 ev_io_stop (EV_A_ w); 1102 ev_io_stop (EV_A_ w);
434 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1103 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
435 } 1104 }
436} 1105}
437 1106
438static int 1107/* check whether the given fd is actually valid, for error recovery */
1108inline_size int
439fd_valid (int fd) 1109fd_valid (int fd)
440{ 1110{
441#ifdef WIN32 1111#ifdef _WIN32
442 return !!win32_get_osfhandle (fd); 1112 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
443#else 1113#else
444 return fcntl (fd, F_GETFD) != -1; 1114 return fcntl (fd, F_GETFD) != -1;
445#endif 1115#endif
446} 1116}
447 1117
448/* called on EBADF to verify fds */ 1118/* called on EBADF to verify fds */
449static void 1119static void noinline
450fd_ebadf (EV_P) 1120fd_ebadf (EV_P)
451{ 1121{
452 int fd; 1122 int fd;
453 1123
454 for (fd = 0; fd < anfdmax; ++fd) 1124 for (fd = 0; fd < anfdmax; ++fd)
455 if (anfds [fd].events) 1125 if (anfds [fd].events)
456 if (!fd_valid (fd) == -1 && errno == EBADF) 1126 if (!fd_valid (fd) && errno == EBADF)
457 fd_kill (EV_A_ fd); 1127 fd_kill (EV_A_ fd);
458} 1128}
459 1129
460/* called on ENOMEM in select/poll to kill some fds and retry */ 1130/* called on ENOMEM in select/poll to kill some fds and retry */
461static void 1131static void noinline
462fd_enomem (EV_P) 1132fd_enomem (EV_P)
463{ 1133{
464 int fd; 1134 int fd;
465 1135
466 for (fd = anfdmax; fd--; ) 1136 for (fd = anfdmax; fd--; )
467 if (anfds [fd].events) 1137 if (anfds [fd].events)
468 { 1138 {
469 fd_kill (EV_A_ fd); 1139 fd_kill (EV_A_ fd);
470 return; 1140 break;
471 } 1141 }
472} 1142}
473 1143
474/* usually called after fork if method needs to re-arm all fds from scratch */ 1144/* usually called after fork if backend needs to re-arm all fds from scratch */
475static void 1145static void noinline
476fd_rearm_all (EV_P) 1146fd_rearm_all (EV_P)
477{ 1147{
478 int fd; 1148 int fd;
479 1149
480 /* this should be highly optimised to not do anything but set a flag */
481 for (fd = 0; fd < anfdmax; ++fd) 1150 for (fd = 0; fd < anfdmax; ++fd)
482 if (anfds [fd].events) 1151 if (anfds [fd].events)
483 { 1152 {
484 anfds [fd].events = 0; 1153 anfds [fd].events = 0;
485 fd_change (EV_A_ fd); 1154 anfds [fd].emask = 0;
1155 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
486 } 1156 }
487} 1157}
488 1158
1159/* used to prepare libev internal fd's */
1160/* this is not fork-safe */
1161inline_speed void
1162fd_intern (int fd)
1163{
1164#ifdef _WIN32
1165 unsigned long arg = 1;
1166 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
1167#else
1168 fcntl (fd, F_SETFD, FD_CLOEXEC);
1169 fcntl (fd, F_SETFL, O_NONBLOCK);
1170#endif
1171}
1172
489/*****************************************************************************/ 1173/*****************************************************************************/
490 1174
1175/*
1176 * the heap functions want a real array index. array index 0 is guaranteed to not
1177 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1178 * the branching factor of the d-tree.
1179 */
1180
1181/*
1182 * at the moment we allow libev the luxury of two heaps,
1183 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1184 * which is more cache-efficient.
1185 * the difference is about 5% with 50000+ watchers.
1186 */
1187#if EV_USE_4HEAP
1188
1189#define DHEAP 4
1190#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1191#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1192#define UPHEAP_DONE(p,k) ((p) == (k))
1193
1194/* away from the root */
1195inline_speed void
1196downheap (ANHE *heap, int N, int k)
1197{
1198 ANHE he = heap [k];
1199 ANHE *E = heap + N + HEAP0;
1200
1201 for (;;)
1202 {
1203 ev_tstamp minat;
1204 ANHE *minpos;
1205 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1206
1207 /* find minimum child */
1208 if (expect_true (pos + DHEAP - 1 < E))
1209 {
1210 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1211 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1212 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1213 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1214 }
1215 else if (pos < E)
1216 {
1217 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1218 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1219 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1220 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1221 }
1222 else
1223 break;
1224
1225 if (ANHE_at (he) <= minat)
1226 break;
1227
1228 heap [k] = *minpos;
1229 ev_active (ANHE_w (*minpos)) = k;
1230
1231 k = minpos - heap;
1232 }
1233
1234 heap [k] = he;
1235 ev_active (ANHE_w (he)) = k;
1236}
1237
1238#else /* 4HEAP */
1239
1240#define HEAP0 1
1241#define HPARENT(k) ((k) >> 1)
1242#define UPHEAP_DONE(p,k) (!(p))
1243
1244/* away from the root */
1245inline_speed void
1246downheap (ANHE *heap, int N, int k)
1247{
1248 ANHE he = heap [k];
1249
1250 for (;;)
1251 {
1252 int c = k << 1;
1253
1254 if (c >= N + HEAP0)
1255 break;
1256
1257 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1258 ? 1 : 0;
1259
1260 if (ANHE_at (he) <= ANHE_at (heap [c]))
1261 break;
1262
1263 heap [k] = heap [c];
1264 ev_active (ANHE_w (heap [k])) = k;
1265
1266 k = c;
1267 }
1268
1269 heap [k] = he;
1270 ev_active (ANHE_w (he)) = k;
1271}
1272#endif
1273
1274/* towards the root */
1275inline_speed void
1276upheap (ANHE *heap, int k)
1277{
1278 ANHE he = heap [k];
1279
1280 for (;;)
1281 {
1282 int p = HPARENT (k);
1283
1284 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1285 break;
1286
1287 heap [k] = heap [p];
1288 ev_active (ANHE_w (heap [k])) = k;
1289 k = p;
1290 }
1291
1292 heap [k] = he;
1293 ev_active (ANHE_w (he)) = k;
1294}
1295
1296/* move an element suitably so it is in a correct place */
1297inline_size void
1298adjustheap (ANHE *heap, int N, int k)
1299{
1300 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1301 upheap (heap, k);
1302 else
1303 downheap (heap, N, k);
1304}
1305
1306/* rebuild the heap: this function is used only once and executed rarely */
1307inline_size void
1308reheap (ANHE *heap, int N)
1309{
1310 int i;
1311
1312 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1313 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1314 for (i = 0; i < N; ++i)
1315 upheap (heap, i + HEAP0);
1316}
1317
1318/*****************************************************************************/
1319
1320/* associate signal watchers to a signal signal */
1321typedef struct
1322{
1323 EV_ATOMIC_T pending;
1324#if EV_MULTIPLICITY
1325 EV_P;
1326#endif
1327 WL head;
1328} ANSIG;
1329
1330static ANSIG signals [EV_NSIG - 1];
1331
1332/*****************************************************************************/
1333
1334#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1335
1336static void noinline
1337evpipe_init (EV_P)
1338{
1339 if (!ev_is_active (&pipe_w))
1340 {
1341# if EV_USE_EVENTFD
1342 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1343 if (evfd < 0 && errno == EINVAL)
1344 evfd = eventfd (0, 0);
1345
1346 if (evfd >= 0)
1347 {
1348 evpipe [0] = -1;
1349 fd_intern (evfd); /* doing it twice doesn't hurt */
1350 ev_io_set (&pipe_w, evfd, EV_READ);
1351 }
1352 else
1353# endif
1354 {
1355 while (pipe (evpipe))
1356 ev_syserr ("(libev) error creating signal/async pipe");
1357
1358 fd_intern (evpipe [0]);
1359 fd_intern (evpipe [1]);
1360 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1361 }
1362
1363 ev_io_start (EV_A_ &pipe_w);
1364 ev_unref (EV_A); /* watcher should not keep loop alive */
1365 }
1366}
1367
1368inline_size void
1369evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1370{
1371 if (!*flag)
1372 {
1373 int old_errno = errno; /* save errno because write might clobber it */
1374 char dummy;
1375
1376 *flag = 1;
1377
1378#if EV_USE_EVENTFD
1379 if (evfd >= 0)
1380 {
1381 uint64_t counter = 1;
1382 write (evfd, &counter, sizeof (uint64_t));
1383 }
1384 else
1385#endif
1386 /* win32 people keep sending patches that change this write() to send() */
1387 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1388 /* so when you think this write should be a send instead, please find out */
1389 /* where your send() is from - it's definitely not the microsoft send, and */
1390 /* tell me. thank you. */
1391 write (evpipe [1], &dummy, 1);
1392
1393 errno = old_errno;
1394 }
1395}
1396
1397/* called whenever the libev signal pipe */
1398/* got some events (signal, async) */
491static void 1399static void
492upheap (WT *heap, int k) 1400pipecb (EV_P_ ev_io *iow, int revents)
493{ 1401{
494 WT w = heap [k]; 1402 int i;
495 1403
496 while (k && heap [k >> 1]->at > w->at) 1404#if EV_USE_EVENTFD
497 { 1405 if (evfd >= 0)
498 heap [k] = heap [k >> 1];
499 ((W)heap [k])->active = k + 1;
500 k >>= 1;
501 } 1406 {
1407 uint64_t counter;
1408 read (evfd, &counter, sizeof (uint64_t));
1409 }
1410 else
1411#endif
1412 {
1413 char dummy;
1414 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1415 read (evpipe [0], &dummy, 1);
1416 }
502 1417
503 heap [k] = w; 1418#if EV_SIGNAL_ENABLE
504 ((W)heap [k])->active = k + 1; 1419 if (sig_pending)
1420 {
1421 sig_pending = 0;
505 1422
1423 for (i = EV_NSIG - 1; i--; )
1424 if (expect_false (signals [i].pending))
1425 ev_feed_signal_event (EV_A_ i + 1);
1426 }
1427#endif
1428
1429#if EV_ASYNC_ENABLE
1430 if (async_pending)
1431 {
1432 async_pending = 0;
1433
1434 for (i = asynccnt; i--; )
1435 if (asyncs [i]->sent)
1436 {
1437 asyncs [i]->sent = 0;
1438 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1439 }
1440 }
1441#endif
1442}
1443
1444/*****************************************************************************/
1445
1446void
1447ev_feed_signal (int signum)
1448{
1449#if EV_MULTIPLICITY
1450 EV_P = signals [signum - 1].loop;
1451
1452 if (!EV_A)
1453 return;
1454#endif
1455
1456 signals [signum - 1].pending = 1;
1457 evpipe_write (EV_A_ &sig_pending);
506} 1458}
507 1459
508static void 1460static void
509downheap (WT *heap, int N, int k)
510{
511 WT w = heap [k];
512
513 while (k < (N >> 1))
514 {
515 int j = k << 1;
516
517 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
518 ++j;
519
520 if (w->at <= heap [j]->at)
521 break;
522
523 heap [k] = heap [j];
524 ((W)heap [k])->active = k + 1;
525 k = j;
526 }
527
528 heap [k] = w;
529 ((W)heap [k])->active = k + 1;
530}
531
532inline void
533adjustheap (WT *heap, int N, int k, ev_tstamp at)
534{
535 ev_tstamp old_at = heap [k]->at;
536 heap [k]->at = at;
537
538 if (old_at < at)
539 downheap (heap, N, k);
540 else
541 upheap (heap, k);
542}
543
544/*****************************************************************************/
545
546typedef struct
547{
548 WL head;
549 sig_atomic_t volatile gotsig;
550} ANSIG;
551
552static ANSIG *signals;
553static int signalmax;
554
555static int sigpipe [2];
556static sig_atomic_t volatile gotsig;
557static struct ev_io sigev;
558
559static void
560signals_init (ANSIG *base, int count)
561{
562 while (count--)
563 {
564 base->head = 0;
565 base->gotsig = 0;
566
567 ++base;
568 }
569}
570
571static void
572sighandler (int signum) 1461ev_sighandler (int signum)
573{ 1462{
574#if WIN32
575 signal (signum, sighandler);
576#endif
577
578 signals [signum - 1].gotsig = 1;
579
580 if (!gotsig)
581 {
582 int old_errno = errno;
583 gotsig = 1;
584#ifdef WIN32 1463#ifdef _WIN32
585 send (sigpipe [1], &signum, 1, MSG_DONTWAIT); 1464 signal (signum, ev_sighandler);
586#else
587 write (sigpipe [1], &signum, 1);
588#endif 1465#endif
589 errno = old_errno;
590 }
591}
592 1466
593void 1467 ev_feed_signal (signum);
1468}
1469
1470void noinline
594ev_feed_signal_event (EV_P_ int signum) 1471ev_feed_signal_event (EV_P_ int signum)
595{ 1472{
596 WL w; 1473 WL w;
597 1474
1475 if (expect_false (signum <= 0 || signum > EV_NSIG))
1476 return;
1477
1478 --signum;
1479
598#if EV_MULTIPLICITY 1480#if EV_MULTIPLICITY
599 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 1481 /* it is permissible to try to feed a signal to the wrong loop */
600#endif 1482 /* or, likely more useful, feeding a signal nobody is waiting for */
601 1483
602 --signum; 1484 if (expect_false (signals [signum].loop != EV_A))
603
604 if (signum < 0 || signum >= signalmax)
605 return; 1485 return;
1486#endif
606 1487
607 signals [signum].gotsig = 0; 1488 signals [signum].pending = 0;
608 1489
609 for (w = signals [signum].head; w; w = w->next) 1490 for (w = signals [signum].head; w; w = w->next)
610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1491 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
611} 1492}
612 1493
1494#if EV_USE_SIGNALFD
613static void 1495static void
614sigcb (EV_P_ struct ev_io *iow, int revents) 1496sigfdcb (EV_P_ ev_io *iow, int revents)
615{ 1497{
616 int signum; 1498 struct signalfd_siginfo si[2], *sip; /* these structs are big */
617 1499
618#ifdef WIN32 1500 for (;;)
619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 1501 {
620#else 1502 ssize_t res = read (sigfd, si, sizeof (si));
621 read (sigpipe [0], &revents, 1);
622#endif
623 gotsig = 0;
624 1503
625 for (signum = signalmax; signum--; ) 1504 /* not ISO-C, as res might be -1, but works with SuS */
626 if (signals [signum].gotsig) 1505 for (sip = si; (char *)sip < (char *)si + res; ++sip)
627 ev_feed_signal_event (EV_A_ signum + 1); 1506 ev_feed_signal_event (EV_A_ sip->ssi_signo);
628}
629 1507
630static void 1508 if (res < (ssize_t)sizeof (si))
631siginit (EV_P) 1509 break;
632{ 1510 }
633#ifndef WIN32
634 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
635 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
636
637 /* rather than sort out wether we really need nb, set it */
638 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
639 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
640#endif
641
642 ev_io_set (&sigev, sigpipe [0], EV_READ);
643 ev_io_start (EV_A_ &sigev);
644 ev_unref (EV_A); /* child watcher should not keep loop alive */
645} 1511}
1512#endif
1513
1514#endif
646 1515
647/*****************************************************************************/ 1516/*****************************************************************************/
648 1517
649static struct ev_child *childs [PID_HASHSIZE]; 1518#if EV_CHILD_ENABLE
1519static WL childs [EV_PID_HASHSIZE];
650 1520
651#ifndef WIN32
652
653static struct ev_signal childev; 1521static ev_signal childev;
1522
1523#ifndef WIFCONTINUED
1524# define WIFCONTINUED(status) 0
1525#endif
1526
1527/* handle a single child status event */
1528inline_speed void
1529child_reap (EV_P_ int chain, int pid, int status)
1530{
1531 ev_child *w;
1532 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1533
1534 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1535 {
1536 if ((w->pid == pid || !w->pid)
1537 && (!traced || (w->flags & 1)))
1538 {
1539 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1540 w->rpid = pid;
1541 w->rstatus = status;
1542 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1543 }
1544 }
1545}
654 1546
655#ifndef WCONTINUED 1547#ifndef WCONTINUED
656# define WCONTINUED 0 1548# define WCONTINUED 0
657#endif 1549#endif
658 1550
1551/* called on sigchld etc., calls waitpid */
659static void 1552static void
660child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
661{
662 struct ev_child *w;
663
664 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
665 if (w->pid == pid || !w->pid)
666 {
667 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
668 w->rpid = pid;
669 w->rstatus = status;
670 ev_feed_event (EV_A_ (W)w, EV_CHILD);
671 }
672}
673
674static void
675childcb (EV_P_ struct ev_signal *sw, int revents) 1553childcb (EV_P_ ev_signal *sw, int revents)
676{ 1554{
677 int pid, status; 1555 int pid, status;
678 1556
1557 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
679 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1558 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
680 { 1559 if (!WCONTINUED
1560 || errno != EINVAL
1561 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1562 return;
1563
681 /* make sure we are called again until all childs have been reaped */ 1564 /* make sure we are called again until all children have been reaped */
1565 /* we need to do it this way so that the callback gets called before we continue */
682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1566 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
683 1567
684 child_reap (EV_A_ sw, pid, pid, status); 1568 child_reap (EV_A_ pid, pid, status);
1569 if ((EV_PID_HASHSIZE) > 1)
685 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1570 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
686 }
687} 1571}
688 1572
689#endif 1573#endif
690 1574
691/*****************************************************************************/ 1575/*****************************************************************************/
692 1576
1577#if EV_USE_IOCP
1578# include "ev_iocp.c"
1579#endif
1580#if EV_USE_PORT
1581# include "ev_port.c"
1582#endif
693#if EV_USE_KQUEUE 1583#if EV_USE_KQUEUE
694# include "ev_kqueue.c" 1584# include "ev_kqueue.c"
695#endif 1585#endif
696#if EV_USE_EPOLL 1586#if EV_USE_EPOLL
697# include "ev_epoll.c" 1587# include "ev_epoll.c"
714{ 1604{
715 return EV_VERSION_MINOR; 1605 return EV_VERSION_MINOR;
716} 1606}
717 1607
718/* return true if we are running with elevated privileges and should ignore env variables */ 1608/* return true if we are running with elevated privileges and should ignore env variables */
719static int 1609int inline_size
720enable_secure (void) 1610enable_secure (void)
721{ 1611{
722#ifdef WIN32 1612#ifdef _WIN32
723 return 0; 1613 return 0;
724#else 1614#else
725 return getuid () != geteuid () 1615 return getuid () != geteuid ()
726 || getgid () != getegid (); 1616 || getgid () != getegid ();
727#endif 1617#endif
728} 1618}
729 1619
730int 1620unsigned int
1621ev_supported_backends (void)
1622{
1623 unsigned int flags = 0;
1624
1625 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1626 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1627 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1628 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1629 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1630
1631 return flags;
1632}
1633
1634unsigned int
1635ev_recommended_backends (void)
1636{
1637 unsigned int flags = ev_supported_backends ();
1638
1639#ifndef __NetBSD__
1640 /* kqueue is borked on everything but netbsd apparently */
1641 /* it usually doesn't work correctly on anything but sockets and pipes */
1642 flags &= ~EVBACKEND_KQUEUE;
1643#endif
1644#ifdef __APPLE__
1645 /* only select works correctly on that "unix-certified" platform */
1646 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1647 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1648#endif
1649#ifdef __FreeBSD__
1650 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1651#endif
1652
1653 return flags;
1654}
1655
1656unsigned int
1657ev_embeddable_backends (void)
1658{
1659 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1660
1661 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1662 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1663 flags &= ~EVBACKEND_EPOLL;
1664
1665 return flags;
1666}
1667
1668unsigned int
1669ev_backend (EV_P)
1670{
1671 return backend;
1672}
1673
1674#if EV_FEATURE_API
1675unsigned int
1676ev_iteration (EV_P)
1677{
1678 return loop_count;
1679}
1680
1681unsigned int
731ev_method (EV_P) 1682ev_depth (EV_P)
732{ 1683{
733 return method; 1684 return loop_depth;
734} 1685}
735 1686
736static void 1687void
737loop_init (EV_P_ int methods) 1688ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
738{ 1689{
739 if (!method) 1690 io_blocktime = interval;
1691}
1692
1693void
1694ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1695{
1696 timeout_blocktime = interval;
1697}
1698
1699void
1700ev_set_userdata (EV_P_ void *data)
1701{
1702 userdata = data;
1703}
1704
1705void *
1706ev_userdata (EV_P)
1707{
1708 return userdata;
1709}
1710
1711void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1712{
1713 invoke_cb = invoke_pending_cb;
1714}
1715
1716void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1717{
1718 release_cb = release;
1719 acquire_cb = acquire;
1720}
1721#endif
1722
1723/* initialise a loop structure, must be zero-initialised */
1724static void noinline
1725loop_init (EV_P_ unsigned int flags)
1726{
1727 if (!backend)
740 { 1728 {
1729 origflags = flags;
1730
1731#if EV_USE_REALTIME
1732 if (!have_realtime)
1733 {
1734 struct timespec ts;
1735
1736 if (!clock_gettime (CLOCK_REALTIME, &ts))
1737 have_realtime = 1;
1738 }
1739#endif
1740
741#if EV_USE_MONOTONIC 1741#if EV_USE_MONOTONIC
1742 if (!have_monotonic)
1743 {
1744 struct timespec ts;
1745
1746 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1747 have_monotonic = 1;
1748 }
1749#endif
1750
1751 /* pid check not overridable via env */
1752#ifndef _WIN32
1753 if (flags & EVFLAG_FORKCHECK)
1754 curpid = getpid ();
1755#endif
1756
1757 if (!(flags & EVFLAG_NOENV)
1758 && !enable_secure ()
1759 && getenv ("LIBEV_FLAGS"))
1760 flags = atoi (getenv ("LIBEV_FLAGS"));
1761
1762 ev_rt_now = ev_time ();
1763 mn_now = get_clock ();
1764 now_floor = mn_now;
1765 rtmn_diff = ev_rt_now - mn_now;
1766#if EV_FEATURE_API
1767 invoke_cb = ev_invoke_pending;
1768#endif
1769
1770 io_blocktime = 0.;
1771 timeout_blocktime = 0.;
1772 backend = 0;
1773 backend_fd = -1;
1774 sig_pending = 0;
1775#if EV_ASYNC_ENABLE
1776 async_pending = 0;
1777#endif
1778#if EV_USE_INOTIFY
1779 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1780#endif
1781#if EV_USE_SIGNALFD
1782 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1783#endif
1784
1785 if (!(flags & EVBACKEND_MASK))
1786 flags |= ev_recommended_backends ();
1787
1788#if EV_USE_IOCP
1789 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
1790#endif
1791#if EV_USE_PORT
1792 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1793#endif
1794#if EV_USE_KQUEUE
1795 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1796#endif
1797#if EV_USE_EPOLL
1798 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1799#endif
1800#if EV_USE_POLL
1801 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1802#endif
1803#if EV_USE_SELECT
1804 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1805#endif
1806
1807 ev_prepare_init (&pending_w, pendingcb);
1808
1809#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1810 ev_init (&pipe_w, pipecb);
1811 ev_set_priority (&pipe_w, EV_MAXPRI);
1812#endif
1813 }
1814}
1815
1816/* free up a loop structure */
1817void
1818ev_loop_destroy (EV_P)
1819{
1820 int i;
1821
1822#if EV_MULTIPLICITY
1823 /* mimic free (0) */
1824 if (!EV_A)
1825 return;
1826#endif
1827
1828#if EV_CLEANUP_ENABLE
1829 /* queue cleanup watchers (and execute them) */
1830 if (expect_false (cleanupcnt))
1831 {
1832 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1833 EV_INVOKE_PENDING;
1834 }
1835#endif
1836
1837#if EV_CHILD_ENABLE
1838 if (ev_is_active (&childev))
1839 {
1840 ev_ref (EV_A); /* child watcher */
1841 ev_signal_stop (EV_A_ &childev);
1842 }
1843#endif
1844
1845 if (ev_is_active (&pipe_w))
1846 {
1847 /*ev_ref (EV_A);*/
1848 /*ev_io_stop (EV_A_ &pipe_w);*/
1849
1850#if EV_USE_EVENTFD
1851 if (evfd >= 0)
1852 close (evfd);
1853#endif
1854
1855 if (evpipe [0] >= 0)
1856 {
1857 EV_WIN32_CLOSE_FD (evpipe [0]);
1858 EV_WIN32_CLOSE_FD (evpipe [1]);
1859 }
1860 }
1861
1862#if EV_USE_SIGNALFD
1863 if (ev_is_active (&sigfd_w))
1864 close (sigfd);
1865#endif
1866
1867#if EV_USE_INOTIFY
1868 if (fs_fd >= 0)
1869 close (fs_fd);
1870#endif
1871
1872 if (backend_fd >= 0)
1873 close (backend_fd);
1874
1875#if EV_USE_IOCP
1876 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1877#endif
1878#if EV_USE_PORT
1879 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1880#endif
1881#if EV_USE_KQUEUE
1882 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1883#endif
1884#if EV_USE_EPOLL
1885 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1886#endif
1887#if EV_USE_POLL
1888 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1889#endif
1890#if EV_USE_SELECT
1891 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1892#endif
1893
1894 for (i = NUMPRI; i--; )
1895 {
1896 array_free (pending, [i]);
1897#if EV_IDLE_ENABLE
1898 array_free (idle, [i]);
1899#endif
1900 }
1901
1902 ev_free (anfds); anfds = 0; anfdmax = 0;
1903
1904 /* have to use the microsoft-never-gets-it-right macro */
1905 array_free (rfeed, EMPTY);
1906 array_free (fdchange, EMPTY);
1907 array_free (timer, EMPTY);
1908#if EV_PERIODIC_ENABLE
1909 array_free (periodic, EMPTY);
1910#endif
1911#if EV_FORK_ENABLE
1912 array_free (fork, EMPTY);
1913#endif
1914#if EV_CLEANUP_ENABLE
1915 array_free (cleanup, EMPTY);
1916#endif
1917 array_free (prepare, EMPTY);
1918 array_free (check, EMPTY);
1919#if EV_ASYNC_ENABLE
1920 array_free (async, EMPTY);
1921#endif
1922
1923 backend = 0;
1924
1925#if EV_MULTIPLICITY
1926 if (ev_is_default_loop (EV_A))
1927#endif
1928 ev_default_loop_ptr = 0;
1929#if EV_MULTIPLICITY
1930 else
1931 ev_free (EV_A);
1932#endif
1933}
1934
1935#if EV_USE_INOTIFY
1936inline_size void infy_fork (EV_P);
1937#endif
1938
1939inline_size void
1940loop_fork (EV_P)
1941{
1942#if EV_USE_PORT
1943 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1944#endif
1945#if EV_USE_KQUEUE
1946 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1947#endif
1948#if EV_USE_EPOLL
1949 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1950#endif
1951#if EV_USE_INOTIFY
1952 infy_fork (EV_A);
1953#endif
1954
1955 if (ev_is_active (&pipe_w))
1956 {
1957 /* this "locks" the handlers against writing to the pipe */
1958 /* while we modify the fd vars */
1959 sig_pending = 1;
1960#if EV_ASYNC_ENABLE
1961 async_pending = 1;
1962#endif
1963
1964 ev_ref (EV_A);
1965 ev_io_stop (EV_A_ &pipe_w);
1966
1967#if EV_USE_EVENTFD
1968 if (evfd >= 0)
1969 close (evfd);
1970#endif
1971
1972 if (evpipe [0] >= 0)
1973 {
1974 EV_WIN32_CLOSE_FD (evpipe [0]);
1975 EV_WIN32_CLOSE_FD (evpipe [1]);
1976 }
1977
1978#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1979 evpipe_init (EV_A);
1980 /* now iterate over everything, in case we missed something */
1981 pipecb (EV_A_ &pipe_w, EV_READ);
1982#endif
1983 }
1984
1985 postfork = 0;
1986}
1987
1988#if EV_MULTIPLICITY
1989
1990struct ev_loop *
1991ev_loop_new (unsigned int flags)
1992{
1993 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1994
1995 memset (EV_A, 0, sizeof (struct ev_loop));
1996 loop_init (EV_A_ flags);
1997
1998 if (ev_backend (EV_A))
1999 return EV_A;
2000
2001 ev_free (EV_A);
2002 return 0;
2003}
2004
2005#endif /* multiplicity */
2006
2007#if EV_VERIFY
2008static void noinline
2009verify_watcher (EV_P_ W w)
2010{
2011 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2012
2013 if (w->pending)
2014 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2015}
2016
2017static void noinline
2018verify_heap (EV_P_ ANHE *heap, int N)
2019{
2020 int i;
2021
2022 for (i = HEAP0; i < N + HEAP0; ++i)
2023 {
2024 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2025 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2026 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2027
2028 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2029 }
2030}
2031
2032static void noinline
2033array_verify (EV_P_ W *ws, int cnt)
2034{
2035 while (cnt--)
2036 {
2037 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2038 verify_watcher (EV_A_ ws [cnt]);
2039 }
2040}
2041#endif
2042
2043#if EV_FEATURE_API
2044void
2045ev_verify (EV_P)
2046{
2047#if EV_VERIFY
2048 int i;
2049 WL w;
2050
2051 assert (activecnt >= -1);
2052
2053 assert (fdchangemax >= fdchangecnt);
2054 for (i = 0; i < fdchangecnt; ++i)
2055 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2056
2057 assert (anfdmax >= 0);
2058 for (i = 0; i < anfdmax; ++i)
2059 for (w = anfds [i].head; w; w = w->next)
742 { 2060 {
743 struct timespec ts; 2061 verify_watcher (EV_A_ (W)w);
744 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2062 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
745 have_monotonic = 1; 2063 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
746 } 2064 }
747#endif
748 2065
749 ev_rt_now = ev_time (); 2066 assert (timermax >= timercnt);
750 mn_now = get_clock (); 2067 verify_heap (EV_A_ timers, timercnt);
751 now_floor = mn_now;
752 rtmn_diff = ev_rt_now - mn_now;
753 2068
754 if (methods == EVMETHOD_AUTO) 2069#if EV_PERIODIC_ENABLE
755 if (!enable_secure () && getenv ("LIBEV_METHODS")) 2070 assert (periodicmax >= periodiccnt);
756 methods = atoi (getenv ("LIBEV_METHODS")); 2071 verify_heap (EV_A_ periodics, periodiccnt);
757 else
758 methods = EVMETHOD_ANY;
759
760 method = 0;
761#if EV_USE_WIN32
762 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
763#endif
764#if EV_USE_KQUEUE
765 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
766#endif
767#if EV_USE_EPOLL
768 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
769#endif
770#if EV_USE_POLL
771 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
772#endif
773#if EV_USE_SELECT
774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
775#endif
776
777 ev_init (&sigev, sigcb);
778 ev_set_priority (&sigev, EV_MAXPRI);
779 }
780}
781
782void
783loop_destroy (EV_P)
784{
785 int i;
786
787#if EV_USE_WIN32
788 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
789#endif
790#if EV_USE_KQUEUE
791 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
792#endif
793#if EV_USE_EPOLL
794 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
795#endif
796#if EV_USE_POLL
797 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
798#endif
799#if EV_USE_SELECT
800 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
801#endif 2072#endif
802 2073
803 for (i = NUMPRI; i--; ) 2074 for (i = NUMPRI; i--; )
804 array_free (pending, [i]); 2075 {
2076 assert (pendingmax [i] >= pendingcnt [i]);
2077#if EV_IDLE_ENABLE
2078 assert (idleall >= 0);
2079 assert (idlemax [i] >= idlecnt [i]);
2080 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2081#endif
2082 }
805 2083
806 /* have to use the microsoft-never-gets-it-right macro */ 2084#if EV_FORK_ENABLE
807 array_free_microshit (fdchange); 2085 assert (forkmax >= forkcnt);
808 array_free_microshit (timer); 2086 array_verify (EV_A_ (W *)forks, forkcnt);
809#if EV_PERIODICS 2087#endif
810 array_free_microshit (periodic); 2088
2089#if EV_CLEANUP_ENABLE
2090 assert (cleanupmax >= cleanupcnt);
2091 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2092#endif
2093
2094#if EV_ASYNC_ENABLE
2095 assert (asyncmax >= asynccnt);
2096 array_verify (EV_A_ (W *)asyncs, asynccnt);
2097#endif
2098
2099#if EV_PREPARE_ENABLE
2100 assert (preparemax >= preparecnt);
2101 array_verify (EV_A_ (W *)prepares, preparecnt);
2102#endif
2103
2104#if EV_CHECK_ENABLE
2105 assert (checkmax >= checkcnt);
2106 array_verify (EV_A_ (W *)checks, checkcnt);
2107#endif
2108
2109# if 0
2110#if EV_CHILD_ENABLE
2111 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2112 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2113#endif
811#endif 2114# endif
812 array_free_microshit (idle);
813 array_free_microshit (prepare);
814 array_free_microshit (check);
815
816 method = 0;
817}
818
819static void
820loop_fork (EV_P)
821{
822#if EV_USE_EPOLL
823 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
824#endif 2115#endif
825#if EV_USE_KQUEUE
826 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
827#endif
828
829 if (ev_is_active (&sigev))
830 {
831 /* default loop */
832
833 ev_ref (EV_A);
834 ev_io_stop (EV_A_ &sigev);
835 close (sigpipe [0]);
836 close (sigpipe [1]);
837
838 while (pipe (sigpipe))
839 syserr ("(libev) error creating pipe");
840
841 siginit (EV_A);
842 }
843
844 postfork = 0;
845} 2116}
846
847#if EV_MULTIPLICITY
848struct ev_loop *
849ev_loop_new (int methods)
850{
851 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
852
853 memset (loop, 0, sizeof (struct ev_loop));
854
855 loop_init (EV_A_ methods);
856
857 if (ev_method (EV_A))
858 return loop;
859
860 return 0;
861}
862
863void
864ev_loop_destroy (EV_P)
865{
866 loop_destroy (EV_A);
867 ev_free (loop);
868}
869
870void
871ev_loop_fork (EV_P)
872{
873 postfork = 1;
874}
875
876#endif 2117#endif
877 2118
878#if EV_MULTIPLICITY 2119#if EV_MULTIPLICITY
879struct ev_loop * 2120struct ev_loop *
880#else 2121#else
881int 2122int
882#endif 2123#endif
883ev_default_loop (int methods) 2124ev_default_loop (unsigned int flags)
884{ 2125{
885 if (sigpipe [0] == sigpipe [1])
886 if (pipe (sigpipe))
887 return 0;
888
889 if (!default_loop) 2126 if (!ev_default_loop_ptr)
890 { 2127 {
891#if EV_MULTIPLICITY 2128#if EV_MULTIPLICITY
892 struct ev_loop *loop = default_loop = &default_loop_struct; 2129 EV_P = ev_default_loop_ptr = &default_loop_struct;
893#else 2130#else
894 default_loop = 1; 2131 ev_default_loop_ptr = 1;
895#endif 2132#endif
896 2133
897 loop_init (EV_A_ methods); 2134 loop_init (EV_A_ flags);
898 2135
899 if (ev_method (EV_A)) 2136 if (ev_backend (EV_A))
900 { 2137 {
901 siginit (EV_A); 2138#if EV_CHILD_ENABLE
902
903#ifndef WIN32
904 ev_signal_init (&childev, childcb, SIGCHLD); 2139 ev_signal_init (&childev, childcb, SIGCHLD);
905 ev_set_priority (&childev, EV_MAXPRI); 2140 ev_set_priority (&childev, EV_MAXPRI);
906 ev_signal_start (EV_A_ &childev); 2141 ev_signal_start (EV_A_ &childev);
907 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2142 ev_unref (EV_A); /* child watcher should not keep loop alive */
908#endif 2143#endif
909 } 2144 }
910 else 2145 else
911 default_loop = 0; 2146 ev_default_loop_ptr = 0;
912 } 2147 }
913 2148
914 return default_loop; 2149 return ev_default_loop_ptr;
915} 2150}
916 2151
917void 2152void
918ev_default_destroy (void) 2153ev_loop_fork (EV_P)
919{ 2154{
920#if EV_MULTIPLICITY 2155 postfork = 1; /* must be in line with ev_default_fork */
921 struct ev_loop *loop = default_loop;
922#endif
923
924#ifndef WIN32
925 ev_ref (EV_A); /* child watcher */
926 ev_signal_stop (EV_A_ &childev);
927#endif
928
929 ev_ref (EV_A); /* signal watcher */
930 ev_io_stop (EV_A_ &sigev);
931
932 close (sigpipe [0]); sigpipe [0] = 0;
933 close (sigpipe [1]); sigpipe [1] = 0;
934
935 loop_destroy (EV_A);
936}
937
938void
939ev_default_fork (void)
940{
941#if EV_MULTIPLICITY
942 struct ev_loop *loop = default_loop;
943#endif
944
945 if (method)
946 postfork = 1;
947} 2156}
948 2157
949/*****************************************************************************/ 2158/*****************************************************************************/
950 2159
951static int 2160void
952any_pending (EV_P) 2161ev_invoke (EV_P_ void *w, int revents)
2162{
2163 EV_CB_INVOKE ((W)w, revents);
2164}
2165
2166unsigned int
2167ev_pending_count (EV_P)
953{ 2168{
954 int pri; 2169 int pri;
2170 unsigned int count = 0;
955 2171
956 for (pri = NUMPRI; pri--; ) 2172 for (pri = NUMPRI; pri--; )
957 if (pendingcnt [pri]) 2173 count += pendingcnt [pri];
958 return 1;
959 2174
960 return 0; 2175 return count;
961} 2176}
962 2177
963static void 2178void noinline
964call_pending (EV_P) 2179ev_invoke_pending (EV_P)
965{ 2180{
966 int pri; 2181 int pri;
967 2182
968 for (pri = NUMPRI; pri--; ) 2183 for (pri = NUMPRI; pri--; )
969 while (pendingcnt [pri]) 2184 while (pendingcnt [pri])
970 { 2185 {
971 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2186 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
972 2187
973 if (p->w)
974 {
975 p->w->pending = 0; 2188 p->w->pending = 0;
976 EV_CB_INVOKE (p->w, p->events); 2189 EV_CB_INVOKE (p->w, p->events);
977 } 2190 EV_FREQUENT_CHECK;
978 } 2191 }
979} 2192}
980 2193
981static void 2194#if EV_IDLE_ENABLE
2195/* make idle watchers pending. this handles the "call-idle */
2196/* only when higher priorities are idle" logic */
2197inline_size void
2198idle_reify (EV_P)
2199{
2200 if (expect_false (idleall))
2201 {
2202 int pri;
2203
2204 for (pri = NUMPRI; pri--; )
2205 {
2206 if (pendingcnt [pri])
2207 break;
2208
2209 if (idlecnt [pri])
2210 {
2211 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2212 break;
2213 }
2214 }
2215 }
2216}
2217#endif
2218
2219/* make timers pending */
2220inline_size void
982timers_reify (EV_P) 2221timers_reify (EV_P)
983{ 2222{
2223 EV_FREQUENT_CHECK;
2224
984 while (timercnt && ((WT)timers [0])->at <= mn_now) 2225 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
985 { 2226 {
986 struct ev_timer *w = timers [0]; 2227 do
987
988 assert (("inactive timer on timer heap detected", ev_is_active (w)));
989
990 /* first reschedule or stop timer */
991 if (w->repeat)
992 { 2228 {
2229 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2230
2231 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2232
2233 /* first reschedule or stop timer */
2234 if (w->repeat)
2235 {
2236 ev_at (w) += w->repeat;
2237 if (ev_at (w) < mn_now)
2238 ev_at (w) = mn_now;
2239
993 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2240 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
994 2241
995 ((WT)w)->at += w->repeat; 2242 ANHE_at_cache (timers [HEAP0]);
996 if (((WT)w)->at < mn_now)
997 ((WT)w)->at = mn_now;
998
999 downheap ((WT *)timers, timercnt, 0); 2243 downheap (timers, timercnt, HEAP0);
2244 }
2245 else
2246 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2247
2248 EV_FREQUENT_CHECK;
2249 feed_reverse (EV_A_ (W)w);
1000 } 2250 }
1001 else 2251 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1002 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1003 2252
1004 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2253 feed_reverse_done (EV_A_ EV_TIMER);
2254 }
2255}
2256
2257#if EV_PERIODIC_ENABLE
2258
2259static void noinline
2260periodic_recalc (EV_P_ ev_periodic *w)
2261{
2262 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2263 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2264
2265 /* the above almost always errs on the low side */
2266 while (at <= ev_rt_now)
1005 } 2267 {
1006} 2268 ev_tstamp nat = at + w->interval;
1007 2269
1008#if EV_PERIODICS 2270 /* when resolution fails us, we use ev_rt_now */
1009static void 2271 if (expect_false (nat == at))
2272 {
2273 at = ev_rt_now;
2274 break;
2275 }
2276
2277 at = nat;
2278 }
2279
2280 ev_at (w) = at;
2281}
2282
2283/* make periodics pending */
2284inline_size void
1010periodics_reify (EV_P) 2285periodics_reify (EV_P)
1011{ 2286{
2287 EV_FREQUENT_CHECK;
2288
1012 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2289 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1013 { 2290 {
1014 struct ev_periodic *w = periodics [0]; 2291 int feed_count = 0;
1015 2292
2293 do
2294 {
2295 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2296
1016 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2297 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1017 2298
1018 /* first reschedule or stop timer */ 2299 /* first reschedule or stop timer */
2300 if (w->reschedule_cb)
2301 {
2302 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2303
2304 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2305
2306 ANHE_at_cache (periodics [HEAP0]);
2307 downheap (periodics, periodiccnt, HEAP0);
2308 }
2309 else if (w->interval)
2310 {
2311 periodic_recalc (EV_A_ w);
2312 ANHE_at_cache (periodics [HEAP0]);
2313 downheap (periodics, periodiccnt, HEAP0);
2314 }
2315 else
2316 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2317
2318 EV_FREQUENT_CHECK;
2319 feed_reverse (EV_A_ (W)w);
2320 }
2321 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2322
2323 feed_reverse_done (EV_A_ EV_PERIODIC);
2324 }
2325}
2326
2327/* simply recalculate all periodics */
2328/* TODO: maybe ensure that at least one event happens when jumping forward? */
2329static void noinline
2330periodics_reschedule (EV_P)
2331{
2332 int i;
2333
2334 /* adjust periodics after time jump */
2335 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2336 {
2337 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2338
1019 if (w->reschedule_cb) 2339 if (w->reschedule_cb)
2340 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2341 else if (w->interval)
2342 periodic_recalc (EV_A_ w);
2343
2344 ANHE_at_cache (periodics [i]);
2345 }
2346
2347 reheap (periodics, periodiccnt);
2348}
2349#endif
2350
2351/* adjust all timers by a given offset */
2352static void noinline
2353timers_reschedule (EV_P_ ev_tstamp adjust)
2354{
2355 int i;
2356
2357 for (i = 0; i < timercnt; ++i)
2358 {
2359 ANHE *he = timers + i + HEAP0;
2360 ANHE_w (*he)->at += adjust;
2361 ANHE_at_cache (*he);
2362 }
2363}
2364
2365/* fetch new monotonic and realtime times from the kernel */
2366/* also detect if there was a timejump, and act accordingly */
2367inline_speed void
2368time_update (EV_P_ ev_tstamp max_block)
2369{
2370#if EV_USE_MONOTONIC
2371 if (expect_true (have_monotonic))
2372 {
2373 int i;
2374 ev_tstamp odiff = rtmn_diff;
2375
2376 mn_now = get_clock ();
2377
2378 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2379 /* interpolate in the meantime */
2380 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1020 { 2381 {
1021 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2382 ev_rt_now = rtmn_diff + mn_now;
1022 2383 return;
1023 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1024 downheap ((WT *)periodics, periodiccnt, 0);
1025 } 2384 }
1026 else if (w->interval)
1027 {
1028 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1029 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1030 downheap ((WT *)periodics, periodiccnt, 0);
1031 }
1032 else
1033 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1034 2385
1035 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1036 }
1037}
1038
1039static void
1040periodics_reschedule (EV_P)
1041{
1042 int i;
1043
1044 /* adjust periodics after time jump */
1045 for (i = 0; i < periodiccnt; ++i)
1046 {
1047 struct ev_periodic *w = periodics [i];
1048
1049 if (w->reschedule_cb)
1050 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1051 else if (w->interval)
1052 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1053 }
1054
1055 /* now rebuild the heap */
1056 for (i = periodiccnt >> 1; i--; )
1057 downheap ((WT *)periodics, periodiccnt, i);
1058}
1059#endif
1060
1061inline int
1062time_update_monotonic (EV_P)
1063{
1064 mn_now = get_clock ();
1065
1066 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1067 {
1068 ev_rt_now = rtmn_diff + mn_now;
1069 return 0;
1070 }
1071 else
1072 {
1073 now_floor = mn_now; 2386 now_floor = mn_now;
1074 ev_rt_now = ev_time (); 2387 ev_rt_now = ev_time ();
1075 return 1;
1076 }
1077}
1078 2388
1079static void 2389 /* loop a few times, before making important decisions.
1080time_update (EV_P) 2390 * on the choice of "4": one iteration isn't enough,
1081{ 2391 * in case we get preempted during the calls to
1082 int i; 2392 * ev_time and get_clock. a second call is almost guaranteed
1083 2393 * to succeed in that case, though. and looping a few more times
1084#if EV_USE_MONOTONIC 2394 * doesn't hurt either as we only do this on time-jumps or
1085 if (expect_true (have_monotonic)) 2395 * in the unlikely event of having been preempted here.
1086 { 2396 */
1087 if (time_update_monotonic (EV_A)) 2397 for (i = 4; --i; )
1088 { 2398 {
1089 ev_tstamp odiff = rtmn_diff; 2399 ev_tstamp diff;
1090
1091 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1092 {
1093 rtmn_diff = ev_rt_now - mn_now; 2400 rtmn_diff = ev_rt_now - mn_now;
1094 2401
1095 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2402 diff = odiff - rtmn_diff;
2403
2404 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1096 return; /* all is well */ 2405 return; /* all is well */
1097 2406
1098 ev_rt_now = ev_time (); 2407 ev_rt_now = ev_time ();
1099 mn_now = get_clock (); 2408 mn_now = get_clock ();
1100 now_floor = mn_now; 2409 now_floor = mn_now;
1101 } 2410 }
1102 2411
2412 /* no timer adjustment, as the monotonic clock doesn't jump */
2413 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1103# if EV_PERIODICS 2414# if EV_PERIODIC_ENABLE
2415 periodics_reschedule (EV_A);
2416# endif
2417 }
2418 else
2419#endif
2420 {
2421 ev_rt_now = ev_time ();
2422
2423 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2424 {
2425 /* adjust timers. this is easy, as the offset is the same for all of them */
2426 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2427#if EV_PERIODIC_ENABLE
1104 periodics_reschedule (EV_A); 2428 periodics_reschedule (EV_A);
1105# endif 2429#endif
1106 /* no timer adjustment, as the monotonic clock doesn't jump */
1107 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1108 } 2430 }
1109 }
1110 else
1111#endif
1112 {
1113 ev_rt_now = ev_time ();
1114
1115 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1116 {
1117#if EV_PERIODICS
1118 periodics_reschedule (EV_A);
1119#endif
1120
1121 /* adjust timers. this is easy, as the offset is the same for all */
1122 for (i = 0; i < timercnt; ++i)
1123 ((WT)timers [i])->at += ev_rt_now - mn_now;
1124 }
1125 2431
1126 mn_now = ev_rt_now; 2432 mn_now = ev_rt_now;
1127 } 2433 }
1128} 2434}
1129 2435
1130void 2436void
1131ev_ref (EV_P)
1132{
1133 ++activecnt;
1134}
1135
1136void
1137ev_unref (EV_P)
1138{
1139 --activecnt;
1140}
1141
1142static int loop_done;
1143
1144void
1145ev_loop (EV_P_ int flags) 2437ev_run (EV_P_ int flags)
1146{ 2438{
1147 double block; 2439#if EV_FEATURE_API
1148 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2440 ++loop_depth;
2441#endif
2442
2443 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2444
2445 loop_done = EVBREAK_CANCEL;
2446
2447 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1149 2448
1150 do 2449 do
1151 { 2450 {
2451#if EV_VERIFY >= 2
2452 ev_verify (EV_A);
2453#endif
2454
2455#ifndef _WIN32
2456 if (expect_false (curpid)) /* penalise the forking check even more */
2457 if (expect_false (getpid () != curpid))
2458 {
2459 curpid = getpid ();
2460 postfork = 1;
2461 }
2462#endif
2463
2464#if EV_FORK_ENABLE
2465 /* we might have forked, so queue fork handlers */
2466 if (expect_false (postfork))
2467 if (forkcnt)
2468 {
2469 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2470 EV_INVOKE_PENDING;
2471 }
2472#endif
2473
2474#if EV_PREPARE_ENABLE
1152 /* queue check watchers (and execute them) */ 2475 /* queue prepare watchers (and execute them) */
1153 if (expect_false (preparecnt)) 2476 if (expect_false (preparecnt))
1154 { 2477 {
1155 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2478 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1156 call_pending (EV_A); 2479 EV_INVOKE_PENDING;
1157 } 2480 }
2481#endif
2482
2483 if (expect_false (loop_done))
2484 break;
1158 2485
1159 /* we might have forked, so reify kernel state if necessary */ 2486 /* we might have forked, so reify kernel state if necessary */
1160 if (expect_false (postfork)) 2487 if (expect_false (postfork))
1161 loop_fork (EV_A); 2488 loop_fork (EV_A);
1162 2489
1163 /* update fd-related kernel structures */ 2490 /* update fd-related kernel structures */
1164 fd_reify (EV_A); 2491 fd_reify (EV_A);
1165 2492
1166 /* calculate blocking time */ 2493 /* calculate blocking time */
2494 {
2495 ev_tstamp waittime = 0.;
2496 ev_tstamp sleeptime = 0.;
1167 2497
1168 /* we only need this for !monotonic clock or timers, but as we basically 2498 /* remember old timestamp for io_blocktime calculation */
1169 always have timers, we just calculate it always */ 2499 ev_tstamp prev_mn_now = mn_now;
1170#if EV_USE_MONOTONIC 2500
1171 if (expect_true (have_monotonic)) 2501 /* update time to cancel out callback processing overhead */
1172 time_update_monotonic (EV_A); 2502 time_update (EV_A_ 1e100);
1173 else 2503
1174#endif 2504 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1175 { 2505 {
1176 ev_rt_now = ev_time ();
1177 mn_now = ev_rt_now;
1178 }
1179
1180 if (flags & EVLOOP_NONBLOCK || idlecnt)
1181 block = 0.;
1182 else
1183 {
1184 block = MAX_BLOCKTIME; 2506 waittime = MAX_BLOCKTIME;
1185 2507
1186 if (timercnt) 2508 if (timercnt)
1187 { 2509 {
1188 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2510 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1189 if (block > to) block = to; 2511 if (waittime > to) waittime = to;
1190 } 2512 }
1191 2513
1192#if EV_PERIODICS 2514#if EV_PERIODIC_ENABLE
1193 if (periodiccnt) 2515 if (periodiccnt)
1194 { 2516 {
1195 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2517 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1196 if (block > to) block = to; 2518 if (waittime > to) waittime = to;
1197 } 2519 }
1198#endif 2520#endif
1199 2521
1200 if (block < 0.) block = 0.; 2522 /* don't let timeouts decrease the waittime below timeout_blocktime */
2523 if (expect_false (waittime < timeout_blocktime))
2524 waittime = timeout_blocktime;
2525
2526 /* extra check because io_blocktime is commonly 0 */
2527 if (expect_false (io_blocktime))
2528 {
2529 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2530
2531 if (sleeptime > waittime - backend_fudge)
2532 sleeptime = waittime - backend_fudge;
2533
2534 if (expect_true (sleeptime > 0.))
2535 {
2536 ev_sleep (sleeptime);
2537 waittime -= sleeptime;
2538 }
2539 }
1201 } 2540 }
1202 2541
1203 method_poll (EV_A_ block); 2542#if EV_FEATURE_API
2543 ++loop_count;
2544#endif
2545 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
2546 backend_poll (EV_A_ waittime);
2547 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
1204 2548
1205 /* update ev_rt_now, do magic */ 2549 /* update ev_rt_now, do magic */
1206 time_update (EV_A); 2550 time_update (EV_A_ waittime + sleeptime);
2551 }
1207 2552
1208 /* queue pending timers and reschedule them */ 2553 /* queue pending timers and reschedule them */
1209 timers_reify (EV_A); /* relative timers called last */ 2554 timers_reify (EV_A); /* relative timers called last */
1210#if EV_PERIODICS 2555#if EV_PERIODIC_ENABLE
1211 periodics_reify (EV_A); /* absolute timers called first */ 2556 periodics_reify (EV_A); /* absolute timers called first */
1212#endif 2557#endif
1213 2558
2559#if EV_IDLE_ENABLE
1214 /* queue idle watchers unless io or timers are pending */ 2560 /* queue idle watchers unless other events are pending */
1215 if (idlecnt && !any_pending (EV_A)) 2561 idle_reify (EV_A);
1216 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2562#endif
1217 2563
2564#if EV_CHECK_ENABLE
1218 /* queue check watchers, to be executed first */ 2565 /* queue check watchers, to be executed first */
1219 if (checkcnt) 2566 if (expect_false (checkcnt))
1220 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2567 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2568#endif
1221 2569
1222 call_pending (EV_A); 2570 EV_INVOKE_PENDING;
1223 } 2571 }
1224 while (activecnt && !loop_done); 2572 while (expect_true (
2573 activecnt
2574 && !loop_done
2575 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2576 ));
1225 2577
1226 if (loop_done != 2) 2578 if (loop_done == EVBREAK_ONE)
1227 loop_done = 0; 2579 loop_done = EVBREAK_CANCEL;
1228}
1229 2580
2581#if EV_FEATURE_API
2582 --loop_depth;
2583#endif
2584}
2585
1230void 2586void
1231ev_unloop (EV_P_ int how) 2587ev_break (EV_P_ int how)
1232{ 2588{
1233 loop_done = how; 2589 loop_done = how;
1234} 2590}
1235 2591
2592void
2593ev_ref (EV_P)
2594{
2595 ++activecnt;
2596}
2597
2598void
2599ev_unref (EV_P)
2600{
2601 --activecnt;
2602}
2603
2604void
2605ev_now_update (EV_P)
2606{
2607 time_update (EV_A_ 1e100);
2608}
2609
2610void
2611ev_suspend (EV_P)
2612{
2613 ev_now_update (EV_A);
2614}
2615
2616void
2617ev_resume (EV_P)
2618{
2619 ev_tstamp mn_prev = mn_now;
2620
2621 ev_now_update (EV_A);
2622 timers_reschedule (EV_A_ mn_now - mn_prev);
2623#if EV_PERIODIC_ENABLE
2624 /* TODO: really do this? */
2625 periodics_reschedule (EV_A);
2626#endif
2627}
2628
1236/*****************************************************************************/ 2629/*****************************************************************************/
2630/* singly-linked list management, used when the expected list length is short */
1237 2631
1238inline void 2632inline_size void
1239wlist_add (WL *head, WL elem) 2633wlist_add (WL *head, WL elem)
1240{ 2634{
1241 elem->next = *head; 2635 elem->next = *head;
1242 *head = elem; 2636 *head = elem;
1243} 2637}
1244 2638
1245inline void 2639inline_size void
1246wlist_del (WL *head, WL elem) 2640wlist_del (WL *head, WL elem)
1247{ 2641{
1248 while (*head) 2642 while (*head)
1249 { 2643 {
1250 if (*head == elem) 2644 if (expect_true (*head == elem))
1251 { 2645 {
1252 *head = elem->next; 2646 *head = elem->next;
1253 return; 2647 break;
1254 } 2648 }
1255 2649
1256 head = &(*head)->next; 2650 head = &(*head)->next;
1257 } 2651 }
1258} 2652}
1259 2653
2654/* internal, faster, version of ev_clear_pending */
1260inline void 2655inline_speed void
1261ev_clear_pending (EV_P_ W w) 2656clear_pending (EV_P_ W w)
1262{ 2657{
1263 if (w->pending) 2658 if (w->pending)
1264 { 2659 {
1265 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2660 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1266 w->pending = 0; 2661 w->pending = 0;
1267 } 2662 }
1268} 2663}
1269 2664
2665int
2666ev_clear_pending (EV_P_ void *w)
2667{
2668 W w_ = (W)w;
2669 int pending = w_->pending;
2670
2671 if (expect_true (pending))
2672 {
2673 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2674 p->w = (W)&pending_w;
2675 w_->pending = 0;
2676 return p->events;
2677 }
2678 else
2679 return 0;
2680}
2681
1270inline void 2682inline_size void
2683pri_adjust (EV_P_ W w)
2684{
2685 int pri = ev_priority (w);
2686 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2687 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2688 ev_set_priority (w, pri);
2689}
2690
2691inline_speed void
1271ev_start (EV_P_ W w, int active) 2692ev_start (EV_P_ W w, int active)
1272{ 2693{
1273 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2694 pri_adjust (EV_A_ w);
1274 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1275
1276 w->active = active; 2695 w->active = active;
1277 ev_ref (EV_A); 2696 ev_ref (EV_A);
1278} 2697}
1279 2698
1280inline void 2699inline_size void
1281ev_stop (EV_P_ W w) 2700ev_stop (EV_P_ W w)
1282{ 2701{
1283 ev_unref (EV_A); 2702 ev_unref (EV_A);
1284 w->active = 0; 2703 w->active = 0;
1285} 2704}
1286 2705
1287/*****************************************************************************/ 2706/*****************************************************************************/
1288 2707
1289void 2708void noinline
1290ev_io_start (EV_P_ struct ev_io *w) 2709ev_io_start (EV_P_ ev_io *w)
1291{ 2710{
1292 int fd = w->fd; 2711 int fd = w->fd;
1293 2712
2713 if (expect_false (ev_is_active (w)))
2714 return;
2715
2716 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2717 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2718
2719 EV_FREQUENT_CHECK;
2720
2721 ev_start (EV_A_ (W)w, 1);
2722 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2723 wlist_add (&anfds[fd].head, (WL)w);
2724
2725 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2726 w->events &= ~EV__IOFDSET;
2727
2728 EV_FREQUENT_CHECK;
2729}
2730
2731void noinline
2732ev_io_stop (EV_P_ ev_io *w)
2733{
2734 clear_pending (EV_A_ (W)w);
2735 if (expect_false (!ev_is_active (w)))
2736 return;
2737
2738 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2739
2740 EV_FREQUENT_CHECK;
2741
2742 wlist_del (&anfds[w->fd].head, (WL)w);
2743 ev_stop (EV_A_ (W)w);
2744
2745 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2746
2747 EV_FREQUENT_CHECK;
2748}
2749
2750void noinline
2751ev_timer_start (EV_P_ ev_timer *w)
2752{
2753 if (expect_false (ev_is_active (w)))
2754 return;
2755
2756 ev_at (w) += mn_now;
2757
2758 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2759
2760 EV_FREQUENT_CHECK;
2761
2762 ++timercnt;
2763 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2764 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2765 ANHE_w (timers [ev_active (w)]) = (WT)w;
2766 ANHE_at_cache (timers [ev_active (w)]);
2767 upheap (timers, ev_active (w));
2768
2769 EV_FREQUENT_CHECK;
2770
2771 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2772}
2773
2774void noinline
2775ev_timer_stop (EV_P_ ev_timer *w)
2776{
2777 clear_pending (EV_A_ (W)w);
2778 if (expect_false (!ev_is_active (w)))
2779 return;
2780
2781 EV_FREQUENT_CHECK;
2782
2783 {
2784 int active = ev_active (w);
2785
2786 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2787
2788 --timercnt;
2789
2790 if (expect_true (active < timercnt + HEAP0))
2791 {
2792 timers [active] = timers [timercnt + HEAP0];
2793 adjustheap (timers, timercnt, active);
2794 }
2795 }
2796
2797 ev_at (w) -= mn_now;
2798
2799 ev_stop (EV_A_ (W)w);
2800
2801 EV_FREQUENT_CHECK;
2802}
2803
2804void noinline
2805ev_timer_again (EV_P_ ev_timer *w)
2806{
2807 EV_FREQUENT_CHECK;
2808
1294 if (ev_is_active (w)) 2809 if (ev_is_active (w))
1295 return;
1296
1297 assert (("ev_io_start called with negative fd", fd >= 0));
1298
1299 ev_start (EV_A_ (W)w, 1);
1300 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1301 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1302
1303 fd_change (EV_A_ fd);
1304}
1305
1306void
1307ev_io_stop (EV_P_ struct ev_io *w)
1308{
1309 ev_clear_pending (EV_A_ (W)w);
1310 if (!ev_is_active (w))
1311 return;
1312
1313 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1314
1315 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1316 ev_stop (EV_A_ (W)w);
1317
1318 fd_change (EV_A_ w->fd);
1319}
1320
1321void
1322ev_timer_start (EV_P_ struct ev_timer *w)
1323{
1324 if (ev_is_active (w))
1325 return;
1326
1327 ((WT)w)->at += mn_now;
1328
1329 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1330
1331 ev_start (EV_A_ (W)w, ++timercnt);
1332 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1333 timers [timercnt - 1] = w;
1334 upheap ((WT *)timers, timercnt - 1);
1335
1336 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1337}
1338
1339void
1340ev_timer_stop (EV_P_ struct ev_timer *w)
1341{
1342 ev_clear_pending (EV_A_ (W)w);
1343 if (!ev_is_active (w))
1344 return;
1345
1346 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1347
1348 if (((W)w)->active < timercnt--)
1349 {
1350 timers [((W)w)->active - 1] = timers [timercnt];
1351 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1352 }
1353
1354 ((WT)w)->at -= mn_now;
1355
1356 ev_stop (EV_A_ (W)w);
1357}
1358
1359void
1360ev_timer_again (EV_P_ struct ev_timer *w)
1361{
1362 if (ev_is_active (w))
1363 { 2810 {
1364 if (w->repeat) 2811 if (w->repeat)
1365 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat); 2812 {
2813 ev_at (w) = mn_now + w->repeat;
2814 ANHE_at_cache (timers [ev_active (w)]);
2815 adjustheap (timers, timercnt, ev_active (w));
2816 }
1366 else 2817 else
1367 ev_timer_stop (EV_A_ w); 2818 ev_timer_stop (EV_A_ w);
1368 } 2819 }
1369 else if (w->repeat) 2820 else if (w->repeat)
2821 {
2822 ev_at (w) = w->repeat;
1370 ev_timer_start (EV_A_ w); 2823 ev_timer_start (EV_A_ w);
1371} 2824 }
1372 2825
2826 EV_FREQUENT_CHECK;
2827}
2828
2829ev_tstamp
2830ev_timer_remaining (EV_P_ ev_timer *w)
2831{
2832 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2833}
2834
1373#if EV_PERIODICS 2835#if EV_PERIODIC_ENABLE
1374void 2836void noinline
1375ev_periodic_start (EV_P_ struct ev_periodic *w) 2837ev_periodic_start (EV_P_ ev_periodic *w)
1376{ 2838{
1377 if (ev_is_active (w)) 2839 if (expect_false (ev_is_active (w)))
1378 return; 2840 return;
1379 2841
1380 if (w->reschedule_cb) 2842 if (w->reschedule_cb)
1381 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2843 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1382 else if (w->interval) 2844 else if (w->interval)
1383 { 2845 {
1384 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2846 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1385 /* this formula differs from the one in periodic_reify because we do not always round up */ 2847 periodic_recalc (EV_A_ w);
1386 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1387 } 2848 }
2849 else
2850 ev_at (w) = w->offset;
1388 2851
2852 EV_FREQUENT_CHECK;
2853
2854 ++periodiccnt;
1389 ev_start (EV_A_ (W)w, ++periodiccnt); 2855 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1390 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2856 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1391 periodics [periodiccnt - 1] = w; 2857 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1392 upheap ((WT *)periodics, periodiccnt - 1); 2858 ANHE_at_cache (periodics [ev_active (w)]);
2859 upheap (periodics, ev_active (w));
1393 2860
2861 EV_FREQUENT_CHECK;
2862
1394 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2863 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1395} 2864}
1396 2865
1397void 2866void noinline
1398ev_periodic_stop (EV_P_ struct ev_periodic *w) 2867ev_periodic_stop (EV_P_ ev_periodic *w)
1399{ 2868{
1400 ev_clear_pending (EV_A_ (W)w); 2869 clear_pending (EV_A_ (W)w);
1401 if (!ev_is_active (w)) 2870 if (expect_false (!ev_is_active (w)))
1402 return; 2871 return;
1403 2872
2873 EV_FREQUENT_CHECK;
2874
2875 {
2876 int active = ev_active (w);
2877
1404 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2878 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1405 2879
1406 if (((W)w)->active < periodiccnt--) 2880 --periodiccnt;
2881
2882 if (expect_true (active < periodiccnt + HEAP0))
1407 { 2883 {
1408 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2884 periodics [active] = periodics [periodiccnt + HEAP0];
1409 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2885 adjustheap (periodics, periodiccnt, active);
1410 } 2886 }
2887 }
1411 2888
1412 ev_stop (EV_A_ (W)w); 2889 ev_stop (EV_A_ (W)w);
1413}
1414 2890
1415void 2891 EV_FREQUENT_CHECK;
2892}
2893
2894void noinline
1416ev_periodic_again (EV_P_ struct ev_periodic *w) 2895ev_periodic_again (EV_P_ ev_periodic *w)
1417{ 2896{
1418 /* TODO: use adjustheap and recalculation */ 2897 /* TODO: use adjustheap and recalculation */
1419 ev_periodic_stop (EV_A_ w); 2898 ev_periodic_stop (EV_A_ w);
1420 ev_periodic_start (EV_A_ w); 2899 ev_periodic_start (EV_A_ w);
1421} 2900}
1422#endif 2901#endif
1423 2902
1424void
1425ev_idle_start (EV_P_ struct ev_idle *w)
1426{
1427 if (ev_is_active (w))
1428 return;
1429
1430 ev_start (EV_A_ (W)w, ++idlecnt);
1431 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1432 idles [idlecnt - 1] = w;
1433}
1434
1435void
1436ev_idle_stop (EV_P_ struct ev_idle *w)
1437{
1438 ev_clear_pending (EV_A_ (W)w);
1439 if (ev_is_active (w))
1440 return;
1441
1442 idles [((W)w)->active - 1] = idles [--idlecnt];
1443 ev_stop (EV_A_ (W)w);
1444}
1445
1446void
1447ev_prepare_start (EV_P_ struct ev_prepare *w)
1448{
1449 if (ev_is_active (w))
1450 return;
1451
1452 ev_start (EV_A_ (W)w, ++preparecnt);
1453 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1454 prepares [preparecnt - 1] = w;
1455}
1456
1457void
1458ev_prepare_stop (EV_P_ struct ev_prepare *w)
1459{
1460 ev_clear_pending (EV_A_ (W)w);
1461 if (ev_is_active (w))
1462 return;
1463
1464 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1465 ev_stop (EV_A_ (W)w);
1466}
1467
1468void
1469ev_check_start (EV_P_ struct ev_check *w)
1470{
1471 if (ev_is_active (w))
1472 return;
1473
1474 ev_start (EV_A_ (W)w, ++checkcnt);
1475 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1476 checks [checkcnt - 1] = w;
1477}
1478
1479void
1480ev_check_stop (EV_P_ struct ev_check *w)
1481{
1482 ev_clear_pending (EV_A_ (W)w);
1483 if (!ev_is_active (w))
1484 return;
1485
1486 checks [((W)w)->active - 1] = checks [--checkcnt];
1487 ev_stop (EV_A_ (W)w);
1488}
1489
1490#ifndef SA_RESTART 2903#ifndef SA_RESTART
1491# define SA_RESTART 0 2904# define SA_RESTART 0
1492#endif 2905#endif
1493 2906
1494void 2907#if EV_SIGNAL_ENABLE
2908
2909void noinline
1495ev_signal_start (EV_P_ struct ev_signal *w) 2910ev_signal_start (EV_P_ ev_signal *w)
1496{ 2911{
2912 if (expect_false (ev_is_active (w)))
2913 return;
2914
2915 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2916
1497#if EV_MULTIPLICITY 2917#if EV_MULTIPLICITY
1498 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2918 assert (("libev: a signal must not be attached to two different loops",
2919 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2920
2921 signals [w->signum - 1].loop = EV_A;
2922#endif
2923
2924 EV_FREQUENT_CHECK;
2925
2926#if EV_USE_SIGNALFD
2927 if (sigfd == -2)
2928 {
2929 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2930 if (sigfd < 0 && errno == EINVAL)
2931 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2932
2933 if (sigfd >= 0)
2934 {
2935 fd_intern (sigfd); /* doing it twice will not hurt */
2936
2937 sigemptyset (&sigfd_set);
2938
2939 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2940 ev_set_priority (&sigfd_w, EV_MAXPRI);
2941 ev_io_start (EV_A_ &sigfd_w);
2942 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2943 }
2944 }
2945
2946 if (sigfd >= 0)
2947 {
2948 /* TODO: check .head */
2949 sigaddset (&sigfd_set, w->signum);
2950 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2951
2952 signalfd (sigfd, &sigfd_set, 0);
2953 }
2954#endif
2955
2956 ev_start (EV_A_ (W)w, 1);
2957 wlist_add (&signals [w->signum - 1].head, (WL)w);
2958
2959 if (!((WL)w)->next)
2960# if EV_USE_SIGNALFD
2961 if (sigfd < 0) /*TODO*/
1499#endif 2962# endif
1500 if (ev_is_active (w)) 2963 {
2964# ifdef _WIN32
2965 evpipe_init (EV_A);
2966
2967 signal (w->signum, ev_sighandler);
2968# else
2969 struct sigaction sa;
2970
2971 evpipe_init (EV_A);
2972
2973 sa.sa_handler = ev_sighandler;
2974 sigfillset (&sa.sa_mask);
2975 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2976 sigaction (w->signum, &sa, 0);
2977
2978 if (origflags & EVFLAG_NOSIGMASK)
2979 {
2980 sigemptyset (&sa.sa_mask);
2981 sigaddset (&sa.sa_mask, w->signum);
2982 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2983 }
2984#endif
2985 }
2986
2987 EV_FREQUENT_CHECK;
2988}
2989
2990void noinline
2991ev_signal_stop (EV_P_ ev_signal *w)
2992{
2993 clear_pending (EV_A_ (W)w);
2994 if (expect_false (!ev_is_active (w)))
1501 return; 2995 return;
1502 2996
1503 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2997 EV_FREQUENT_CHECK;
2998
2999 wlist_del (&signals [w->signum - 1].head, (WL)w);
3000 ev_stop (EV_A_ (W)w);
3001
3002 if (!signals [w->signum - 1].head)
3003 {
3004#if EV_MULTIPLICITY
3005 signals [w->signum - 1].loop = 0; /* unattach from signal */
3006#endif
3007#if EV_USE_SIGNALFD
3008 if (sigfd >= 0)
3009 {
3010 sigset_t ss;
3011
3012 sigemptyset (&ss);
3013 sigaddset (&ss, w->signum);
3014 sigdelset (&sigfd_set, w->signum);
3015
3016 signalfd (sigfd, &sigfd_set, 0);
3017 sigprocmask (SIG_UNBLOCK, &ss, 0);
3018 }
3019 else
3020#endif
3021 signal (w->signum, SIG_DFL);
3022 }
3023
3024 EV_FREQUENT_CHECK;
3025}
3026
3027#endif
3028
3029#if EV_CHILD_ENABLE
3030
3031void
3032ev_child_start (EV_P_ ev_child *w)
3033{
3034#if EV_MULTIPLICITY
3035 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
3036#endif
3037 if (expect_false (ev_is_active (w)))
3038 return;
3039
3040 EV_FREQUENT_CHECK;
1504 3041
1505 ev_start (EV_A_ (W)w, 1); 3042 ev_start (EV_A_ (W)w, 1);
1506 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3043 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1507 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1508 3044
1509 if (!((WL)w)->next) 3045 EV_FREQUENT_CHECK;
3046}
3047
3048void
3049ev_child_stop (EV_P_ ev_child *w)
3050{
3051 clear_pending (EV_A_ (W)w);
3052 if (expect_false (!ev_is_active (w)))
3053 return;
3054
3055 EV_FREQUENT_CHECK;
3056
3057 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3058 ev_stop (EV_A_ (W)w);
3059
3060 EV_FREQUENT_CHECK;
3061}
3062
3063#endif
3064
3065#if EV_STAT_ENABLE
3066
3067# ifdef _WIN32
3068# undef lstat
3069# define lstat(a,b) _stati64 (a,b)
3070# endif
3071
3072#define DEF_STAT_INTERVAL 5.0074891
3073#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
3074#define MIN_STAT_INTERVAL 0.1074891
3075
3076static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
3077
3078#if EV_USE_INOTIFY
3079
3080/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3081# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
3082
3083static void noinline
3084infy_add (EV_P_ ev_stat *w)
3085{
3086 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
3087
3088 if (w->wd >= 0)
3089 {
3090 struct statfs sfs;
3091
3092 /* now local changes will be tracked by inotify, but remote changes won't */
3093 /* unless the filesystem is known to be local, we therefore still poll */
3094 /* also do poll on <2.6.25, but with normal frequency */
3095
3096 if (!fs_2625)
3097 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3098 else if (!statfs (w->path, &sfs)
3099 && (sfs.f_type == 0x1373 /* devfs */
3100 || sfs.f_type == 0xEF53 /* ext2/3 */
3101 || sfs.f_type == 0x3153464a /* jfs */
3102 || sfs.f_type == 0x52654973 /* reiser3 */
3103 || sfs.f_type == 0x01021994 /* tempfs */
3104 || sfs.f_type == 0x58465342 /* xfs */))
3105 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3106 else
3107 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1510 { 3108 }
1511#if WIN32 3109 else
1512 signal (w->signum, sighandler); 3110 {
3111 /* can't use inotify, continue to stat */
3112 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3113
3114 /* if path is not there, monitor some parent directory for speedup hints */
3115 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3116 /* but an efficiency issue only */
3117 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
3118 {
3119 char path [4096];
3120 strcpy (path, w->path);
3121
3122 do
3123 {
3124 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
3125 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
3126
3127 char *pend = strrchr (path, '/');
3128
3129 if (!pend || pend == path)
3130 break;
3131
3132 *pend = 0;
3133 w->wd = inotify_add_watch (fs_fd, path, mask);
3134 }
3135 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
3136 }
3137 }
3138
3139 if (w->wd >= 0)
3140 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3141
3142 /* now re-arm timer, if required */
3143 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3144 ev_timer_again (EV_A_ &w->timer);
3145 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3146}
3147
3148static void noinline
3149infy_del (EV_P_ ev_stat *w)
3150{
3151 int slot;
3152 int wd = w->wd;
3153
3154 if (wd < 0)
3155 return;
3156
3157 w->wd = -2;
3158 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
3159 wlist_del (&fs_hash [slot].head, (WL)w);
3160
3161 /* remove this watcher, if others are watching it, they will rearm */
3162 inotify_rm_watch (fs_fd, wd);
3163}
3164
3165static void noinline
3166infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
3167{
3168 if (slot < 0)
3169 /* overflow, need to check for all hash slots */
3170 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3171 infy_wd (EV_A_ slot, wd, ev);
3172 else
3173 {
3174 WL w_;
3175
3176 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
3177 {
3178 ev_stat *w = (ev_stat *)w_;
3179 w_ = w_->next; /* lets us remove this watcher and all before it */
3180
3181 if (w->wd == wd || wd == -1)
3182 {
3183 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
3184 {
3185 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3186 w->wd = -1;
3187 infy_add (EV_A_ w); /* re-add, no matter what */
3188 }
3189
3190 stat_timer_cb (EV_A_ &w->timer, 0);
3191 }
3192 }
3193 }
3194}
3195
3196static void
3197infy_cb (EV_P_ ev_io *w, int revents)
3198{
3199 char buf [EV_INOTIFY_BUFSIZE];
3200 int ofs;
3201 int len = read (fs_fd, buf, sizeof (buf));
3202
3203 for (ofs = 0; ofs < len; )
3204 {
3205 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
3206 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3207 ofs += sizeof (struct inotify_event) + ev->len;
3208 }
3209}
3210
3211inline_size void
3212ev_check_2625 (EV_P)
3213{
3214 /* kernels < 2.6.25 are borked
3215 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3216 */
3217 if (ev_linux_version () < 0x020619)
3218 return;
3219
3220 fs_2625 = 1;
3221}
3222
3223inline_size int
3224infy_newfd (void)
3225{
3226#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3227 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3228 if (fd >= 0)
3229 return fd;
3230#endif
3231 return inotify_init ();
3232}
3233
3234inline_size void
3235infy_init (EV_P)
3236{
3237 if (fs_fd != -2)
3238 return;
3239
3240 fs_fd = -1;
3241
3242 ev_check_2625 (EV_A);
3243
3244 fs_fd = infy_newfd ();
3245
3246 if (fs_fd >= 0)
3247 {
3248 fd_intern (fs_fd);
3249 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3250 ev_set_priority (&fs_w, EV_MAXPRI);
3251 ev_io_start (EV_A_ &fs_w);
3252 ev_unref (EV_A);
3253 }
3254}
3255
3256inline_size void
3257infy_fork (EV_P)
3258{
3259 int slot;
3260
3261 if (fs_fd < 0)
3262 return;
3263
3264 ev_ref (EV_A);
3265 ev_io_stop (EV_A_ &fs_w);
3266 close (fs_fd);
3267 fs_fd = infy_newfd ();
3268
3269 if (fs_fd >= 0)
3270 {
3271 fd_intern (fs_fd);
3272 ev_io_set (&fs_w, fs_fd, EV_READ);
3273 ev_io_start (EV_A_ &fs_w);
3274 ev_unref (EV_A);
3275 }
3276
3277 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
3278 {
3279 WL w_ = fs_hash [slot].head;
3280 fs_hash [slot].head = 0;
3281
3282 while (w_)
3283 {
3284 ev_stat *w = (ev_stat *)w_;
3285 w_ = w_->next; /* lets us add this watcher */
3286
3287 w->wd = -1;
3288
3289 if (fs_fd >= 0)
3290 infy_add (EV_A_ w); /* re-add, no matter what */
3291 else
3292 {
3293 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3294 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3295 ev_timer_again (EV_A_ &w->timer);
3296 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3297 }
3298 }
3299 }
3300}
3301
3302#endif
3303
3304#ifdef _WIN32
3305# define EV_LSTAT(p,b) _stati64 (p, b)
1513#else 3306#else
1514 struct sigaction sa; 3307# define EV_LSTAT(p,b) lstat (p, b)
1515 sa.sa_handler = sighandler;
1516 sigfillset (&sa.sa_mask);
1517 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1518 sigaction (w->signum, &sa, 0);
1519#endif 3308#endif
1520 }
1521}
1522 3309
1523void 3310void
1524ev_signal_stop (EV_P_ struct ev_signal *w) 3311ev_stat_stat (EV_P_ ev_stat *w)
1525{ 3312{
1526 ev_clear_pending (EV_A_ (W)w); 3313 if (lstat (w->path, &w->attr) < 0)
1527 if (!ev_is_active (w)) 3314 w->attr.st_nlink = 0;
3315 else if (!w->attr.st_nlink)
3316 w->attr.st_nlink = 1;
3317}
3318
3319static void noinline
3320stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3321{
3322 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3323
3324 ev_statdata prev = w->attr;
3325 ev_stat_stat (EV_A_ w);
3326
3327 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3328 if (
3329 prev.st_dev != w->attr.st_dev
3330 || prev.st_ino != w->attr.st_ino
3331 || prev.st_mode != w->attr.st_mode
3332 || prev.st_nlink != w->attr.st_nlink
3333 || prev.st_uid != w->attr.st_uid
3334 || prev.st_gid != w->attr.st_gid
3335 || prev.st_rdev != w->attr.st_rdev
3336 || prev.st_size != w->attr.st_size
3337 || prev.st_atime != w->attr.st_atime
3338 || prev.st_mtime != w->attr.st_mtime
3339 || prev.st_ctime != w->attr.st_ctime
3340 ) {
3341 /* we only update w->prev on actual differences */
3342 /* in case we test more often than invoke the callback, */
3343 /* to ensure that prev is always different to attr */
3344 w->prev = prev;
3345
3346 #if EV_USE_INOTIFY
3347 if (fs_fd >= 0)
3348 {
3349 infy_del (EV_A_ w);
3350 infy_add (EV_A_ w);
3351 ev_stat_stat (EV_A_ w); /* avoid race... */
3352 }
3353 #endif
3354
3355 ev_feed_event (EV_A_ w, EV_STAT);
3356 }
3357}
3358
3359void
3360ev_stat_start (EV_P_ ev_stat *w)
3361{
3362 if (expect_false (ev_is_active (w)))
1528 return; 3363 return;
1529 3364
1530 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3365 ev_stat_stat (EV_A_ w);
3366
3367 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3368 w->interval = MIN_STAT_INTERVAL;
3369
3370 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3371 ev_set_priority (&w->timer, ev_priority (w));
3372
3373#if EV_USE_INOTIFY
3374 infy_init (EV_A);
3375
3376 if (fs_fd >= 0)
3377 infy_add (EV_A_ w);
3378 else
3379#endif
3380 {
3381 ev_timer_again (EV_A_ &w->timer);
3382 ev_unref (EV_A);
3383 }
3384
3385 ev_start (EV_A_ (W)w, 1);
3386
3387 EV_FREQUENT_CHECK;
3388}
3389
3390void
3391ev_stat_stop (EV_P_ ev_stat *w)
3392{
3393 clear_pending (EV_A_ (W)w);
3394 if (expect_false (!ev_is_active (w)))
3395 return;
3396
3397 EV_FREQUENT_CHECK;
3398
3399#if EV_USE_INOTIFY
3400 infy_del (EV_A_ w);
3401#endif
3402
3403 if (ev_is_active (&w->timer))
3404 {
3405 ev_ref (EV_A);
3406 ev_timer_stop (EV_A_ &w->timer);
3407 }
3408
1531 ev_stop (EV_A_ (W)w); 3409 ev_stop (EV_A_ (W)w);
1532 3410
1533 if (!signals [w->signum - 1].head) 3411 EV_FREQUENT_CHECK;
1534 signal (w->signum, SIG_DFL);
1535} 3412}
3413#endif
1536 3414
3415#if EV_IDLE_ENABLE
1537void 3416void
1538ev_child_start (EV_P_ struct ev_child *w) 3417ev_idle_start (EV_P_ ev_idle *w)
1539{ 3418{
1540#if EV_MULTIPLICITY
1541 assert (("child watchers are only supported in the default loop", loop == default_loop));
1542#endif
1543 if (ev_is_active (w)) 3419 if (expect_false (ev_is_active (w)))
1544 return; 3420 return;
1545 3421
3422 pri_adjust (EV_A_ (W)w);
3423
3424 EV_FREQUENT_CHECK;
3425
3426 {
3427 int active = ++idlecnt [ABSPRI (w)];
3428
3429 ++idleall;
3430 ev_start (EV_A_ (W)w, active);
3431
3432 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3433 idles [ABSPRI (w)][active - 1] = w;
3434 }
3435
3436 EV_FREQUENT_CHECK;
3437}
3438
3439void
3440ev_idle_stop (EV_P_ ev_idle *w)
3441{
3442 clear_pending (EV_A_ (W)w);
3443 if (expect_false (!ev_is_active (w)))
3444 return;
3445
3446 EV_FREQUENT_CHECK;
3447
3448 {
3449 int active = ev_active (w);
3450
3451 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3452 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3453
3454 ev_stop (EV_A_ (W)w);
3455 --idleall;
3456 }
3457
3458 EV_FREQUENT_CHECK;
3459}
3460#endif
3461
3462#if EV_PREPARE_ENABLE
3463void
3464ev_prepare_start (EV_P_ ev_prepare *w)
3465{
3466 if (expect_false (ev_is_active (w)))
3467 return;
3468
3469 EV_FREQUENT_CHECK;
3470
3471 ev_start (EV_A_ (W)w, ++preparecnt);
3472 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3473 prepares [preparecnt - 1] = w;
3474
3475 EV_FREQUENT_CHECK;
3476}
3477
3478void
3479ev_prepare_stop (EV_P_ ev_prepare *w)
3480{
3481 clear_pending (EV_A_ (W)w);
3482 if (expect_false (!ev_is_active (w)))
3483 return;
3484
3485 EV_FREQUENT_CHECK;
3486
3487 {
3488 int active = ev_active (w);
3489
3490 prepares [active - 1] = prepares [--preparecnt];
3491 ev_active (prepares [active - 1]) = active;
3492 }
3493
3494 ev_stop (EV_A_ (W)w);
3495
3496 EV_FREQUENT_CHECK;
3497}
3498#endif
3499
3500#if EV_CHECK_ENABLE
3501void
3502ev_check_start (EV_P_ ev_check *w)
3503{
3504 if (expect_false (ev_is_active (w)))
3505 return;
3506
3507 EV_FREQUENT_CHECK;
3508
3509 ev_start (EV_A_ (W)w, ++checkcnt);
3510 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3511 checks [checkcnt - 1] = w;
3512
3513 EV_FREQUENT_CHECK;
3514}
3515
3516void
3517ev_check_stop (EV_P_ ev_check *w)
3518{
3519 clear_pending (EV_A_ (W)w);
3520 if (expect_false (!ev_is_active (w)))
3521 return;
3522
3523 EV_FREQUENT_CHECK;
3524
3525 {
3526 int active = ev_active (w);
3527
3528 checks [active - 1] = checks [--checkcnt];
3529 ev_active (checks [active - 1]) = active;
3530 }
3531
3532 ev_stop (EV_A_ (W)w);
3533
3534 EV_FREQUENT_CHECK;
3535}
3536#endif
3537
3538#if EV_EMBED_ENABLE
3539void noinline
3540ev_embed_sweep (EV_P_ ev_embed *w)
3541{
3542 ev_run (w->other, EVRUN_NOWAIT);
3543}
3544
3545static void
3546embed_io_cb (EV_P_ ev_io *io, int revents)
3547{
3548 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3549
3550 if (ev_cb (w))
3551 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3552 else
3553 ev_run (w->other, EVRUN_NOWAIT);
3554}
3555
3556static void
3557embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3558{
3559 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3560
3561 {
3562 EV_P = w->other;
3563
3564 while (fdchangecnt)
3565 {
3566 fd_reify (EV_A);
3567 ev_run (EV_A_ EVRUN_NOWAIT);
3568 }
3569 }
3570}
3571
3572static void
3573embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3574{
3575 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3576
3577 ev_embed_stop (EV_A_ w);
3578
3579 {
3580 EV_P = w->other;
3581
3582 ev_loop_fork (EV_A);
3583 ev_run (EV_A_ EVRUN_NOWAIT);
3584 }
3585
3586 ev_embed_start (EV_A_ w);
3587}
3588
3589#if 0
3590static void
3591embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3592{
3593 ev_idle_stop (EV_A_ idle);
3594}
3595#endif
3596
3597void
3598ev_embed_start (EV_P_ ev_embed *w)
3599{
3600 if (expect_false (ev_is_active (w)))
3601 return;
3602
3603 {
3604 EV_P = w->other;
3605 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3606 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3607 }
3608
3609 EV_FREQUENT_CHECK;
3610
3611 ev_set_priority (&w->io, ev_priority (w));
3612 ev_io_start (EV_A_ &w->io);
3613
3614 ev_prepare_init (&w->prepare, embed_prepare_cb);
3615 ev_set_priority (&w->prepare, EV_MINPRI);
3616 ev_prepare_start (EV_A_ &w->prepare);
3617
3618 ev_fork_init (&w->fork, embed_fork_cb);
3619 ev_fork_start (EV_A_ &w->fork);
3620
3621 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3622
1546 ev_start (EV_A_ (W)w, 1); 3623 ev_start (EV_A_ (W)w, 1);
1547 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1548}
1549 3624
3625 EV_FREQUENT_CHECK;
3626}
3627
1550void 3628void
1551ev_child_stop (EV_P_ struct ev_child *w) 3629ev_embed_stop (EV_P_ ev_embed *w)
1552{ 3630{
1553 ev_clear_pending (EV_A_ (W)w); 3631 clear_pending (EV_A_ (W)w);
1554 if (!ev_is_active (w)) 3632 if (expect_false (!ev_is_active (w)))
1555 return; 3633 return;
1556 3634
1557 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3635 EV_FREQUENT_CHECK;
3636
3637 ev_io_stop (EV_A_ &w->io);
3638 ev_prepare_stop (EV_A_ &w->prepare);
3639 ev_fork_stop (EV_A_ &w->fork);
3640
1558 ev_stop (EV_A_ (W)w); 3641 ev_stop (EV_A_ (W)w);
3642
3643 EV_FREQUENT_CHECK;
1559} 3644}
3645#endif
3646
3647#if EV_FORK_ENABLE
3648void
3649ev_fork_start (EV_P_ ev_fork *w)
3650{
3651 if (expect_false (ev_is_active (w)))
3652 return;
3653
3654 EV_FREQUENT_CHECK;
3655
3656 ev_start (EV_A_ (W)w, ++forkcnt);
3657 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3658 forks [forkcnt - 1] = w;
3659
3660 EV_FREQUENT_CHECK;
3661}
3662
3663void
3664ev_fork_stop (EV_P_ ev_fork *w)
3665{
3666 clear_pending (EV_A_ (W)w);
3667 if (expect_false (!ev_is_active (w)))
3668 return;
3669
3670 EV_FREQUENT_CHECK;
3671
3672 {
3673 int active = ev_active (w);
3674
3675 forks [active - 1] = forks [--forkcnt];
3676 ev_active (forks [active - 1]) = active;
3677 }
3678
3679 ev_stop (EV_A_ (W)w);
3680
3681 EV_FREQUENT_CHECK;
3682}
3683#endif
3684
3685#if EV_CLEANUP_ENABLE
3686void
3687ev_cleanup_start (EV_P_ ev_cleanup *w)
3688{
3689 if (expect_false (ev_is_active (w)))
3690 return;
3691
3692 EV_FREQUENT_CHECK;
3693
3694 ev_start (EV_A_ (W)w, ++cleanupcnt);
3695 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3696 cleanups [cleanupcnt - 1] = w;
3697
3698 /* cleanup watchers should never keep a refcount on the loop */
3699 ev_unref (EV_A);
3700 EV_FREQUENT_CHECK;
3701}
3702
3703void
3704ev_cleanup_stop (EV_P_ ev_cleanup *w)
3705{
3706 clear_pending (EV_A_ (W)w);
3707 if (expect_false (!ev_is_active (w)))
3708 return;
3709
3710 EV_FREQUENT_CHECK;
3711 ev_ref (EV_A);
3712
3713 {
3714 int active = ev_active (w);
3715
3716 cleanups [active - 1] = cleanups [--cleanupcnt];
3717 ev_active (cleanups [active - 1]) = active;
3718 }
3719
3720 ev_stop (EV_A_ (W)w);
3721
3722 EV_FREQUENT_CHECK;
3723}
3724#endif
3725
3726#if EV_ASYNC_ENABLE
3727void
3728ev_async_start (EV_P_ ev_async *w)
3729{
3730 if (expect_false (ev_is_active (w)))
3731 return;
3732
3733 w->sent = 0;
3734
3735 evpipe_init (EV_A);
3736
3737 EV_FREQUENT_CHECK;
3738
3739 ev_start (EV_A_ (W)w, ++asynccnt);
3740 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3741 asyncs [asynccnt - 1] = w;
3742
3743 EV_FREQUENT_CHECK;
3744}
3745
3746void
3747ev_async_stop (EV_P_ ev_async *w)
3748{
3749 clear_pending (EV_A_ (W)w);
3750 if (expect_false (!ev_is_active (w)))
3751 return;
3752
3753 EV_FREQUENT_CHECK;
3754
3755 {
3756 int active = ev_active (w);
3757
3758 asyncs [active - 1] = asyncs [--asynccnt];
3759 ev_active (asyncs [active - 1]) = active;
3760 }
3761
3762 ev_stop (EV_A_ (W)w);
3763
3764 EV_FREQUENT_CHECK;
3765}
3766
3767void
3768ev_async_send (EV_P_ ev_async *w)
3769{
3770 w->sent = 1;
3771 evpipe_write (EV_A_ &async_pending);
3772}
3773#endif
1560 3774
1561/*****************************************************************************/ 3775/*****************************************************************************/
1562 3776
1563struct ev_once 3777struct ev_once
1564{ 3778{
1565 struct ev_io io; 3779 ev_io io;
1566 struct ev_timer to; 3780 ev_timer to;
1567 void (*cb)(int revents, void *arg); 3781 void (*cb)(int revents, void *arg);
1568 void *arg; 3782 void *arg;
1569}; 3783};
1570 3784
1571static void 3785static void
1572once_cb (EV_P_ struct ev_once *once, int revents) 3786once_cb (EV_P_ struct ev_once *once, int revents)
1573{ 3787{
1574 void (*cb)(int revents, void *arg) = once->cb; 3788 void (*cb)(int revents, void *arg) = once->cb;
1575 void *arg = once->arg; 3789 void *arg = once->arg;
1576 3790
1577 ev_io_stop (EV_A_ &once->io); 3791 ev_io_stop (EV_A_ &once->io);
1578 ev_timer_stop (EV_A_ &once->to); 3792 ev_timer_stop (EV_A_ &once->to);
1579 ev_free (once); 3793 ev_free (once);
1580 3794
1581 cb (revents, arg); 3795 cb (revents, arg);
1582} 3796}
1583 3797
1584static void 3798static void
1585once_cb_io (EV_P_ struct ev_io *w, int revents) 3799once_cb_io (EV_P_ ev_io *w, int revents)
1586{ 3800{
1587 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3801 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3802
3803 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1588} 3804}
1589 3805
1590static void 3806static void
1591once_cb_to (EV_P_ struct ev_timer *w, int revents) 3807once_cb_to (EV_P_ ev_timer *w, int revents)
1592{ 3808{
1593 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3809 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3810
3811 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1594} 3812}
1595 3813
1596void 3814void
1597ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3815ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1598{ 3816{
1599 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3817 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1600 3818
1601 if (!once) 3819 if (expect_false (!once))
3820 {
1602 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3821 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
1603 else 3822 return;
1604 { 3823 }
3824
1605 once->cb = cb; 3825 once->cb = cb;
1606 once->arg = arg; 3826 once->arg = arg;
1607 3827
1608 ev_init (&once->io, once_cb_io); 3828 ev_init (&once->io, once_cb_io);
1609 if (fd >= 0) 3829 if (fd >= 0)
3830 {
3831 ev_io_set (&once->io, fd, events);
3832 ev_io_start (EV_A_ &once->io);
3833 }
3834
3835 ev_init (&once->to, once_cb_to);
3836 if (timeout >= 0.)
3837 {
3838 ev_timer_set (&once->to, timeout, 0.);
3839 ev_timer_start (EV_A_ &once->to);
3840 }
3841}
3842
3843/*****************************************************************************/
3844
3845#if EV_WALK_ENABLE
3846void
3847ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3848{
3849 int i, j;
3850 ev_watcher_list *wl, *wn;
3851
3852 if (types & (EV_IO | EV_EMBED))
3853 for (i = 0; i < anfdmax; ++i)
3854 for (wl = anfds [i].head; wl; )
1610 { 3855 {
1611 ev_io_set (&once->io, fd, events); 3856 wn = wl->next;
1612 ev_io_start (EV_A_ &once->io); 3857
3858#if EV_EMBED_ENABLE
3859 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3860 {
3861 if (types & EV_EMBED)
3862 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3863 }
3864 else
3865#endif
3866#if EV_USE_INOTIFY
3867 if (ev_cb ((ev_io *)wl) == infy_cb)
3868 ;
3869 else
3870#endif
3871 if ((ev_io *)wl != &pipe_w)
3872 if (types & EV_IO)
3873 cb (EV_A_ EV_IO, wl);
3874
3875 wl = wn;
1613 } 3876 }
1614 3877
1615 ev_init (&once->to, once_cb_to); 3878 if (types & (EV_TIMER | EV_STAT))
1616 if (timeout >= 0.) 3879 for (i = timercnt + HEAP0; i-- > HEAP0; )
3880#if EV_STAT_ENABLE
3881 /*TODO: timer is not always active*/
3882 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1617 { 3883 {
1618 ev_timer_set (&once->to, timeout, 0.); 3884 if (types & EV_STAT)
1619 ev_timer_start (EV_A_ &once->to); 3885 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1620 } 3886 }
1621 } 3887 else
1622} 3888#endif
3889 if (types & EV_TIMER)
3890 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
1623 3891
1624#ifdef __cplusplus 3892#if EV_PERIODIC_ENABLE
1625} 3893 if (types & EV_PERIODIC)
3894 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3895 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3896#endif
3897
3898#if EV_IDLE_ENABLE
3899 if (types & EV_IDLE)
3900 for (j = NUMPRI; i--; )
3901 for (i = idlecnt [j]; i--; )
3902 cb (EV_A_ EV_IDLE, idles [j][i]);
3903#endif
3904
3905#if EV_FORK_ENABLE
3906 if (types & EV_FORK)
3907 for (i = forkcnt; i--; )
3908 if (ev_cb (forks [i]) != embed_fork_cb)
3909 cb (EV_A_ EV_FORK, forks [i]);
3910#endif
3911
3912#if EV_ASYNC_ENABLE
3913 if (types & EV_ASYNC)
3914 for (i = asynccnt; i--; )
3915 cb (EV_A_ EV_ASYNC, asyncs [i]);
3916#endif
3917
3918#if EV_PREPARE_ENABLE
3919 if (types & EV_PREPARE)
3920 for (i = preparecnt; i--; )
3921# if EV_EMBED_ENABLE
3922 if (ev_cb (prepares [i]) != embed_prepare_cb)
1626#endif 3923# endif
3924 cb (EV_A_ EV_PREPARE, prepares [i]);
3925#endif
1627 3926
3927#if EV_CHECK_ENABLE
3928 if (types & EV_CHECK)
3929 for (i = checkcnt; i--; )
3930 cb (EV_A_ EV_CHECK, checks [i]);
3931#endif
3932
3933#if EV_SIGNAL_ENABLE
3934 if (types & EV_SIGNAL)
3935 for (i = 0; i < EV_NSIG - 1; ++i)
3936 for (wl = signals [i].head; wl; )
3937 {
3938 wn = wl->next;
3939 cb (EV_A_ EV_SIGNAL, wl);
3940 wl = wn;
3941 }
3942#endif
3943
3944#if EV_CHILD_ENABLE
3945 if (types & EV_CHILD)
3946 for (i = (EV_PID_HASHSIZE); i--; )
3947 for (wl = childs [i]; wl; )
3948 {
3949 wn = wl->next;
3950 cb (EV_A_ EV_CHILD, wl);
3951 wl = wn;
3952 }
3953#endif
3954/* EV_STAT 0x00001000 /* stat data changed */
3955/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3956}
3957#endif
3958
3959#if EV_MULTIPLICITY
3960 #include "ev_wrap.h"
3961#endif
3962
3963EV_CPP(})
3964

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines