ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.66 by root, Sun Nov 4 23:30:53 2007 UTC vs.
Revision 1.96 by root, Sun Nov 11 01:50:36 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1 40# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1 41# define EV_USE_REALTIME 1
37# endif 42# endif
38 43
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 44# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 45# define EV_USE_SELECT 1
41# endif 46# endif
42 47
43# if HAVE_POLL && HAVE_POLL_H 48# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 49# define EV_USE_POLL 1
45# endif 50# endif
46 51
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 53# define EV_USE_EPOLL 1
49# endif 54# endif
50 55
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 56# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 57# define EV_USE_KQUEUE 1
53# endif 58# endif
54 59
55#endif 60#endif
56 61
57#include <math.h> 62#include <math.h>
58#include <stdlib.h> 63#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 64#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 65#include <stddef.h>
63 66
64#include <stdio.h> 67#include <stdio.h>
65 68
66#include <assert.h> 69#include <assert.h>
67#include <errno.h> 70#include <errno.h>
68#include <sys/types.h> 71#include <sys/types.h>
72#include <time.h>
73
74#include <signal.h>
75
69#ifndef WIN32 76#ifndef WIN32
77# include <unistd.h>
78# include <sys/time.h>
70# include <sys/wait.h> 79# include <sys/wait.h>
71#endif 80#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 81/**/
76 82
77#ifndef EV_USE_MONOTONIC 83#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 84# define EV_USE_MONOTONIC 1
79#endif 85#endif
94# define EV_USE_KQUEUE 0 100# define EV_USE_KQUEUE 0
95#endif 101#endif
96 102
97#ifndef EV_USE_WIN32 103#ifndef EV_USE_WIN32
98# ifdef WIN32 104# ifdef WIN32
105# define EV_USE_WIN32 0 /* it does not exist, use select */
106# undef EV_USE_SELECT
99# define EV_USE_WIN32 1 107# define EV_USE_SELECT 1
100# else 108# else
101# define EV_USE_WIN32 0 109# define EV_USE_WIN32 0
102# endif 110# endif
103#endif 111#endif
104 112
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 135
136#ifdef EV_H
137# include EV_H
138#else
128#include "ev.h" 139# include "ev.h"
140#endif
129 141
130#if __GNUC__ >= 3 142#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 143# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 144# define inline inline
133#else 145#else
145typedef struct ev_watcher_list *WL; 157typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 158typedef struct ev_watcher_time *WT;
147 159
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 160static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 161
162#include "ev_win32.c"
163
150/*****************************************************************************/ 164/*****************************************************************************/
151 165
166static void (*syserr_cb)(const char *msg);
167
168void ev_set_syserr_cb (void (*cb)(const char *msg))
169{
170 syserr_cb = cb;
171}
172
173static void
174syserr (const char *msg)
175{
176 if (!msg)
177 msg = "(libev) system error";
178
179 if (syserr_cb)
180 syserr_cb (msg);
181 else
182 {
183 perror (msg);
184 abort ();
185 }
186}
187
188static void *(*alloc)(void *ptr, long size);
189
190void ev_set_allocator (void *(*cb)(void *ptr, long size))
191{
192 alloc = cb;
193}
194
195static void *
196ev_realloc (void *ptr, long size)
197{
198 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
199
200 if (!ptr && size)
201 {
202 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
203 abort ();
204 }
205
206 return ptr;
207}
208
209#define ev_malloc(size) ev_realloc (0, (size))
210#define ev_free(ptr) ev_realloc ((ptr), 0)
211
212/*****************************************************************************/
213
152typedef struct 214typedef struct
153{ 215{
154 struct ev_watcher_list *head; 216 WL head;
155 unsigned char events; 217 unsigned char events;
156 unsigned char reify; 218 unsigned char reify;
157} ANFD; 219} ANFD;
158 220
159typedef struct 221typedef struct
162 int events; 224 int events;
163} ANPENDING; 225} ANPENDING;
164 226
165#if EV_MULTIPLICITY 227#if EV_MULTIPLICITY
166 228
167struct ev_loop 229 struct ev_loop
168{ 230 {
231 ev_tstamp ev_rt_now;
169# define VAR(name,decl) decl; 232 #define VAR(name,decl) decl;
170# include "ev_vars.h" 233 #include "ev_vars.h"
171};
172# undef VAR 234 #undef VAR
235 };
173# include "ev_wrap.h" 236 #include "ev_wrap.h"
237
238 struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop;
174 240
175#else 241#else
176 242
243 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 244 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 245 #include "ev_vars.h"
179# undef VAR 246 #undef VAR
247
248 static int default_loop;
180 249
181#endif 250#endif
182 251
183/*****************************************************************************/ 252/*****************************************************************************/
184 253
185inline ev_tstamp 254ev_tstamp
186ev_time (void) 255ev_time (void)
187{ 256{
188#if EV_USE_REALTIME 257#if EV_USE_REALTIME
189 struct timespec ts; 258 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 259 clock_gettime (CLOCK_REALTIME, &ts);
209#endif 278#endif
210 279
211 return ev_time (); 280 return ev_time ();
212} 281}
213 282
283#if EV_MULTIPLICITY
214ev_tstamp 284ev_tstamp
215ev_now (EV_P) 285ev_now (EV_P)
216{ 286{
217 return rt_now; 287 return ev_rt_now;
218} 288}
289#endif
219 290
220#define array_roundsize(base,n) ((n) | 4 & ~3) 291#define array_roundsize(type,n) ((n) | 4 & ~3)
221 292
222#define array_needsize(base,cur,cnt,init) \ 293#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 294 if (expect_false ((cnt) > cur)) \
224 { \ 295 { \
225 int newcnt = cur; \ 296 int newcnt = cur; \
226 do \ 297 do \
227 { \ 298 { \
228 newcnt = array_roundsize (base, newcnt << 1); \ 299 newcnt = array_roundsize (type, newcnt << 1); \
229 } \ 300 } \
230 while ((cnt) > newcnt); \ 301 while ((cnt) > newcnt); \
231 \ 302 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 303 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
233 init (base + cur, newcnt - cur); \ 304 init (base + cur, newcnt - cur); \
234 cur = newcnt; \ 305 cur = newcnt; \
235 } 306 }
307
308#define array_slim(type,stem) \
309 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
310 { \
311 stem ## max = array_roundsize (stem ## cnt >> 1); \
312 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
313 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
314 }
315
316/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
317/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
318#define array_free_microshit(stem) \
319 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
236 320
237#define array_free(stem, idx) \ 321#define array_free(stem, idx) \
238 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 322 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
239 323
240/*****************************************************************************/ 324/*****************************************************************************/
241 325
242static void 326static void
243anfds_init (ANFD *base, int count) 327anfds_init (ANFD *base, int count)
250 334
251 ++base; 335 ++base;
252 } 336 }
253} 337}
254 338
255static void 339void
256event (EV_P_ W w, int events) 340ev_feed_event (EV_P_ void *w, int revents)
257{ 341{
342 W w_ = (W)w;
343
258 if (w->pending) 344 if (w_->pending)
259 { 345 {
260 pendings [ABSPRI (w)][w->pending - 1].events |= events; 346 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
261 return; 347 return;
262 } 348 }
263 349
264 w->pending = ++pendingcnt [ABSPRI (w)]; 350 w_->pending = ++pendingcnt [ABSPRI (w_)];
265 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 351 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
266 pendings [ABSPRI (w)][w->pending - 1].w = w; 352 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
267 pendings [ABSPRI (w)][w->pending - 1].events = events; 353 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
268} 354}
269 355
270static void 356static void
271queue_events (EV_P_ W *events, int eventcnt, int type) 357queue_events (EV_P_ W *events, int eventcnt, int type)
272{ 358{
273 int i; 359 int i;
274 360
275 for (i = 0; i < eventcnt; ++i) 361 for (i = 0; i < eventcnt; ++i)
276 event (EV_A_ events [i], type); 362 ev_feed_event (EV_A_ events [i], type);
277} 363}
278 364
279static void 365inline void
280fd_event (EV_P_ int fd, int events) 366fd_event (EV_P_ int fd, int revents)
281{ 367{
282 ANFD *anfd = anfds + fd; 368 ANFD *anfd = anfds + fd;
283 struct ev_io *w; 369 struct ev_io *w;
284 370
285 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
286 { 372 {
287 int ev = w->events & events; 373 int ev = w->events & revents;
288 374
289 if (ev) 375 if (ev)
290 event (EV_A_ (W)w, ev); 376 ev_feed_event (EV_A_ (W)w, ev);
291 } 377 }
378}
379
380void
381ev_feed_fd_event (EV_P_ int fd, int revents)
382{
383 fd_event (EV_A_ fd, revents);
292} 384}
293 385
294/*****************************************************************************/ 386/*****************************************************************************/
295 387
296static void 388static void
319} 411}
320 412
321static void 413static void
322fd_change (EV_P_ int fd) 414fd_change (EV_P_ int fd)
323{ 415{
324 if (anfds [fd].reify || fdchangecnt < 0) 416 if (anfds [fd].reify)
325 return; 417 return;
326 418
327 anfds [fd].reify = 1; 419 anfds [fd].reify = 1;
328 420
329 ++fdchangecnt; 421 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 422 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
331 fdchanges [fdchangecnt - 1] = fd; 423 fdchanges [fdchangecnt - 1] = fd;
332} 424}
333 425
334static void 426static void
335fd_kill (EV_P_ int fd) 427fd_kill (EV_P_ int fd)
337 struct ev_io *w; 429 struct ev_io *w;
338 430
339 while ((w = (struct ev_io *)anfds [fd].head)) 431 while ((w = (struct ev_io *)anfds [fd].head))
340 { 432 {
341 ev_io_stop (EV_A_ w); 433 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 434 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 435 }
436}
437
438static int
439fd_valid (int fd)
440{
441#ifdef WIN32
442 return !!win32_get_osfhandle (fd);
443#else
444 return fcntl (fd, F_GETFD) != -1;
445#endif
344} 446}
345 447
346/* called on EBADF to verify fds */ 448/* called on EBADF to verify fds */
347static void 449static void
348fd_ebadf (EV_P) 450fd_ebadf (EV_P)
349{ 451{
350 int fd; 452 int fd;
351 453
352 for (fd = 0; fd < anfdmax; ++fd) 454 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 455 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 456 if (!fd_valid (fd) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd); 457 fd_kill (EV_A_ fd);
356} 458}
357 459
358/* called on ENOMEM in select/poll to kill some fds and retry */ 460/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 461static void
362 int fd; 464 int fd;
363 465
364 for (fd = anfdmax; fd--; ) 466 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 467 if (anfds [fd].events)
366 { 468 {
367 close (fd);
368 fd_kill (EV_A_ fd); 469 fd_kill (EV_A_ fd);
369 return; 470 return;
370 } 471 }
371} 472}
372 473
373/* susually called after fork if method needs to re-arm all fds from scratch */ 474/* usually called after fork if method needs to re-arm all fds from scratch */
374static void 475static void
375fd_rearm_all (EV_P) 476fd_rearm_all (EV_P)
376{ 477{
377 int fd; 478 int fd;
378 479
426 527
427 heap [k] = w; 528 heap [k] = w;
428 ((W)heap [k])->active = k + 1; 529 ((W)heap [k])->active = k + 1;
429} 530}
430 531
532inline void
533adjustheap (WT *heap, int N, int k, ev_tstamp at)
534{
535 ev_tstamp old_at = heap [k]->at;
536 heap [k]->at = at;
537
538 if (old_at < at)
539 downheap (heap, N, k);
540 else
541 upheap (heap, k);
542}
543
431/*****************************************************************************/ 544/*****************************************************************************/
432 545
433typedef struct 546typedef struct
434{ 547{
435 struct ev_watcher_list *head; 548 WL head;
436 sig_atomic_t volatile gotsig; 549 sig_atomic_t volatile gotsig;
437} ANSIG; 550} ANSIG;
438 551
439static ANSIG *signals; 552static ANSIG *signals;
440static int signalmax; 553static int signalmax;
456} 569}
457 570
458static void 571static void
459sighandler (int signum) 572sighandler (int signum)
460{ 573{
574#if WIN32
575 signal (signum, sighandler);
576#endif
577
461 signals [signum - 1].gotsig = 1; 578 signals [signum - 1].gotsig = 1;
462 579
463 if (!gotsig) 580 if (!gotsig)
464 { 581 {
465 int old_errno = errno; 582 int old_errno = errno;
466 gotsig = 1; 583 gotsig = 1;
584#ifdef WIN32
585 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
586#else
467 write (sigpipe [1], &signum, 1); 587 write (sigpipe [1], &signum, 1);
588#endif
468 errno = old_errno; 589 errno = old_errno;
469 } 590 }
470} 591}
471 592
593void
594ev_feed_signal_event (EV_P_ int signum)
595{
596 WL w;
597
598#if EV_MULTIPLICITY
599 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
600#endif
601
602 --signum;
603
604 if (signum < 0 || signum >= signalmax)
605 return;
606
607 signals [signum].gotsig = 0;
608
609 for (w = signals [signum].head; w; w = w->next)
610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
611}
612
472static void 613static void
473sigcb (EV_P_ struct ev_io *iow, int revents) 614sigcb (EV_P_ struct ev_io *iow, int revents)
474{ 615{
475 struct ev_watcher_list *w;
476 int signum; 616 int signum;
477 617
618#ifdef WIN32
619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
620#else
478 read (sigpipe [0], &revents, 1); 621 read (sigpipe [0], &revents, 1);
622#endif
479 gotsig = 0; 623 gotsig = 0;
480 624
481 for (signum = signalmax; signum--; ) 625 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig) 626 if (signals [signum].gotsig)
483 { 627 ev_feed_signal_event (EV_A_ signum + 1);
484 signals [signum].gotsig = 0;
485
486 for (w = signals [signum].head; w; w = w->next)
487 event (EV_A_ (W)w, EV_SIGNAL);
488 }
489} 628}
490 629
491static void 630static void
492siginit (EV_P) 631siginit (EV_P)
493{ 632{
505 ev_unref (EV_A); /* child watcher should not keep loop alive */ 644 ev_unref (EV_A); /* child watcher should not keep loop alive */
506} 645}
507 646
508/*****************************************************************************/ 647/*****************************************************************************/
509 648
649static struct ev_child *childs [PID_HASHSIZE];
650
510#ifndef WIN32 651#ifndef WIN32
511 652
512static struct ev_child *childs [PID_HASHSIZE];
513static struct ev_signal childev; 653static struct ev_signal childev;
514 654
515#ifndef WCONTINUED 655#ifndef WCONTINUED
516# define WCONTINUED 0 656# define WCONTINUED 0
517#endif 657#endif
525 if (w->pid == pid || !w->pid) 665 if (w->pid == pid || !w->pid)
526 { 666 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 667 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid; 668 w->rpid = pid;
529 w->rstatus = status; 669 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD); 670 ev_feed_event (EV_A_ (W)w, EV_CHILD);
531 } 671 }
532} 672}
533 673
534static void 674static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 675childcb (EV_P_ struct ev_signal *sw, int revents)
537 int pid, status; 677 int pid, status;
538 678
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 679 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 680 {
541 /* make sure we are called again until all childs have been reaped */ 681 /* make sure we are called again until all childs have been reaped */
542 event (EV_A_ (W)sw, EV_SIGNAL); 682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 683
544 child_reap (EV_A_ sw, pid, pid, status); 684 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 685 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 } 686 }
547} 687}
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 744 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605 have_monotonic = 1; 745 have_monotonic = 1;
606 } 746 }
607#endif 747#endif
608 748
609 rt_now = ev_time (); 749 ev_rt_now = ev_time ();
610 mn_now = get_clock (); 750 mn_now = get_clock ();
611 now_floor = mn_now; 751 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now; 752 rtmn_diff = ev_rt_now - mn_now;
613 753
614 if (methods == EVMETHOD_AUTO) 754 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBEV_METHODS")) 755 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS")); 756 methods = atoi (getenv ("LIBEV_METHODS"));
617 else 757 else
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 771 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632#endif 772#endif
633#if EV_USE_SELECT 773#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635#endif 775#endif
776
777 ev_init (&sigev, sigcb);
778 ev_set_priority (&sigev, EV_MAXPRI);
636 } 779 }
637} 780}
638 781
639void 782void
640loop_destroy (EV_P) 783loop_destroy (EV_P)
658#endif 801#endif
659 802
660 for (i = NUMPRI; i--; ) 803 for (i = NUMPRI; i--; )
661 array_free (pending, [i]); 804 array_free (pending, [i]);
662 805
806 /* have to use the microsoft-never-gets-it-right macro */
663 array_free (fdchange, ); 807 array_free_microshit (fdchange);
664 array_free (timer, ); 808 array_free_microshit (timer);
809#if EV_PERIODICS
665 array_free (periodic, ); 810 array_free_microshit (periodic);
811#endif
666 array_free (idle, ); 812 array_free_microshit (idle);
667 array_free (prepare, ); 813 array_free_microshit (prepare);
668 array_free (check, ); 814 array_free_microshit (check);
669 815
670 method = 0; 816 method = 0;
671 /*TODO*/
672} 817}
673 818
674void 819static void
675loop_fork (EV_P) 820loop_fork (EV_P)
676{ 821{
677 /*TODO*/
678#if EV_USE_EPOLL 822#if EV_USE_EPOLL
679 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 823 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
680#endif 824#endif
681#if EV_USE_KQUEUE 825#if EV_USE_KQUEUE
682 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 826 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
683#endif 827#endif
828
829 if (ev_is_active (&sigev))
830 {
831 /* default loop */
832
833 ev_ref (EV_A);
834 ev_io_stop (EV_A_ &sigev);
835 close (sigpipe [0]);
836 close (sigpipe [1]);
837
838 while (pipe (sigpipe))
839 syserr ("(libev) error creating pipe");
840
841 siginit (EV_A);
842 }
843
844 postfork = 0;
684} 845}
685 846
686#if EV_MULTIPLICITY 847#if EV_MULTIPLICITY
687struct ev_loop * 848struct ev_loop *
688ev_loop_new (int methods) 849ev_loop_new (int methods)
689{ 850{
690 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 851 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
852
853 memset (loop, 0, sizeof (struct ev_loop));
691 854
692 loop_init (EV_A_ methods); 855 loop_init (EV_A_ methods);
693 856
694 if (ev_method (EV_A)) 857 if (ev_method (EV_A))
695 return loop; 858 return loop;
699 862
700void 863void
701ev_loop_destroy (EV_P) 864ev_loop_destroy (EV_P)
702{ 865{
703 loop_destroy (EV_A); 866 loop_destroy (EV_A);
704 free (loop); 867 ev_free (loop);
705} 868}
706 869
707void 870void
708ev_loop_fork (EV_P) 871ev_loop_fork (EV_P)
709{ 872{
710 loop_fork (EV_A); 873 postfork = 1;
711} 874}
712 875
713#endif 876#endif
714 877
715#if EV_MULTIPLICITY 878#if EV_MULTIPLICITY
716struct ev_loop default_loop_struct;
717static struct ev_loop *default_loop;
718
719struct ev_loop * 879struct ev_loop *
720#else 880#else
721static int default_loop;
722
723int 881int
724#endif 882#endif
725ev_default_loop (int methods) 883ev_default_loop (int methods)
726{ 884{
727 if (sigpipe [0] == sigpipe [1]) 885 if (sigpipe [0] == sigpipe [1])
738 896
739 loop_init (EV_A_ methods); 897 loop_init (EV_A_ methods);
740 898
741 if (ev_method (EV_A)) 899 if (ev_method (EV_A))
742 { 900 {
743 ev_watcher_init (&sigev, sigcb);
744 ev_set_priority (&sigev, EV_MAXPRI);
745 siginit (EV_A); 901 siginit (EV_A);
746 902
747#ifndef WIN32 903#ifndef WIN32
748 ev_signal_init (&childev, childcb, SIGCHLD); 904 ev_signal_init (&childev, childcb, SIGCHLD);
749 ev_set_priority (&childev, EV_MAXPRI); 905 ev_set_priority (&childev, EV_MAXPRI);
763{ 919{
764#if EV_MULTIPLICITY 920#if EV_MULTIPLICITY
765 struct ev_loop *loop = default_loop; 921 struct ev_loop *loop = default_loop;
766#endif 922#endif
767 923
924#ifndef WIN32
768 ev_ref (EV_A); /* child watcher */ 925 ev_ref (EV_A); /* child watcher */
769 ev_signal_stop (EV_A_ &childev); 926 ev_signal_stop (EV_A_ &childev);
927#endif
770 928
771 ev_ref (EV_A); /* signal watcher */ 929 ev_ref (EV_A); /* signal watcher */
772 ev_io_stop (EV_A_ &sigev); 930 ev_io_stop (EV_A_ &sigev);
773 931
774 close (sigpipe [0]); sigpipe [0] = 0; 932 close (sigpipe [0]); sigpipe [0] = 0;
782{ 940{
783#if EV_MULTIPLICITY 941#if EV_MULTIPLICITY
784 struct ev_loop *loop = default_loop; 942 struct ev_loop *loop = default_loop;
785#endif 943#endif
786 944
787 loop_fork (EV_A); 945 if (method)
788 946 postfork = 1;
789 ev_io_stop (EV_A_ &sigev);
790 close (sigpipe [0]);
791 close (sigpipe [1]);
792 pipe (sigpipe);
793
794 ev_ref (EV_A); /* signal watcher */
795 siginit (EV_A);
796} 947}
797 948
798/*****************************************************************************/ 949/*****************************************************************************/
950
951static int
952any_pending (EV_P)
953{
954 int pri;
955
956 for (pri = NUMPRI; pri--; )
957 if (pendingcnt [pri])
958 return 1;
959
960 return 0;
961}
799 962
800static void 963static void
801call_pending (EV_P) 964call_pending (EV_P)
802{ 965{
803 int pri; 966 int pri;
808 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 971 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
809 972
810 if (p->w) 973 if (p->w)
811 { 974 {
812 p->w->pending = 0; 975 p->w->pending = 0;
813 p->w->cb (EV_A_ p->w, p->events); 976 EV_CB_INVOKE (p->w, p->events);
814 } 977 }
815 } 978 }
816} 979}
817 980
818static void 981static void
826 989
827 /* first reschedule or stop timer */ 990 /* first reschedule or stop timer */
828 if (w->repeat) 991 if (w->repeat)
829 { 992 {
830 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 993 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
994
831 ((WT)w)->at = mn_now + w->repeat; 995 ((WT)w)->at += w->repeat;
996 if (((WT)w)->at < mn_now)
997 ((WT)w)->at = mn_now;
998
832 downheap ((WT *)timers, timercnt, 0); 999 downheap ((WT *)timers, timercnt, 0);
833 } 1000 }
834 else 1001 else
835 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1002 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
836 1003
837 event (EV_A_ (W)w, EV_TIMEOUT); 1004 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
838 } 1005 }
839} 1006}
840 1007
1008#if EV_PERIODICS
841static void 1009static void
842periodics_reify (EV_P) 1010periodics_reify (EV_P)
843{ 1011{
844 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1012 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
845 { 1013 {
846 struct ev_periodic *w = periodics [0]; 1014 struct ev_periodic *w = periodics [0];
847 1015
848 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1016 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
849 1017
850 /* first reschedule or stop timer */ 1018 /* first reschedule or stop timer */
851 if (w->interval) 1019 if (w->reschedule_cb)
852 { 1020 {
1021 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1022
1023 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1024 downheap ((WT *)periodics, periodiccnt, 0);
1025 }
1026 else if (w->interval)
1027 {
853 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1028 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
854 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1029 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
855 downheap ((WT *)periodics, periodiccnt, 0); 1030 downheap ((WT *)periodics, periodiccnt, 0);
856 } 1031 }
857 else 1032 else
858 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1033 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
859 1034
860 event (EV_A_ (W)w, EV_PERIODIC); 1035 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
861 } 1036 }
862} 1037}
863 1038
864static void 1039static void
865periodics_reschedule (EV_P) 1040periodics_reschedule (EV_P)
869 /* adjust periodics after time jump */ 1044 /* adjust periodics after time jump */
870 for (i = 0; i < periodiccnt; ++i) 1045 for (i = 0; i < periodiccnt; ++i)
871 { 1046 {
872 struct ev_periodic *w = periodics [i]; 1047 struct ev_periodic *w = periodics [i];
873 1048
1049 if (w->reschedule_cb)
1050 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
874 if (w->interval) 1051 else if (w->interval)
875 {
876 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1052 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
877
878 if (fabs (diff) >= 1e-4)
879 {
880 ev_periodic_stop (EV_A_ w);
881 ev_periodic_start (EV_A_ w);
882
883 i = 0; /* restart loop, inefficient, but time jumps should be rare */
884 }
885 }
886 } 1053 }
1054
1055 /* now rebuild the heap */
1056 for (i = periodiccnt >> 1; i--; )
1057 downheap ((WT *)periodics, periodiccnt, i);
887} 1058}
1059#endif
888 1060
889inline int 1061inline int
890time_update_monotonic (EV_P) 1062time_update_monotonic (EV_P)
891{ 1063{
892 mn_now = get_clock (); 1064 mn_now = get_clock ();
893 1065
894 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1066 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
895 { 1067 {
896 rt_now = rtmn_diff + mn_now; 1068 ev_rt_now = rtmn_diff + mn_now;
897 return 0; 1069 return 0;
898 } 1070 }
899 else 1071 else
900 { 1072 {
901 now_floor = mn_now; 1073 now_floor = mn_now;
902 rt_now = ev_time (); 1074 ev_rt_now = ev_time ();
903 return 1; 1075 return 1;
904 } 1076 }
905} 1077}
906 1078
907static void 1079static void
916 { 1088 {
917 ev_tstamp odiff = rtmn_diff; 1089 ev_tstamp odiff = rtmn_diff;
918 1090
919 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1091 for (i = 4; --i; ) /* loop a few times, before making important decisions */
920 { 1092 {
921 rtmn_diff = rt_now - mn_now; 1093 rtmn_diff = ev_rt_now - mn_now;
922 1094
923 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1095 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
924 return; /* all is well */ 1096 return; /* all is well */
925 1097
926 rt_now = ev_time (); 1098 ev_rt_now = ev_time ();
927 mn_now = get_clock (); 1099 mn_now = get_clock ();
928 now_floor = mn_now; 1100 now_floor = mn_now;
929 } 1101 }
930 1102
1103# if EV_PERIODICS
931 periodics_reschedule (EV_A); 1104 periodics_reschedule (EV_A);
1105# endif
932 /* no timer adjustment, as the monotonic clock doesn't jump */ 1106 /* no timer adjustment, as the monotonic clock doesn't jump */
933 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1107 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
934 } 1108 }
935 } 1109 }
936 else 1110 else
937#endif 1111#endif
938 { 1112 {
939 rt_now = ev_time (); 1113 ev_rt_now = ev_time ();
940 1114
941 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1115 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
942 { 1116 {
1117#if EV_PERIODICS
943 periodics_reschedule (EV_A); 1118 periodics_reschedule (EV_A);
1119#endif
944 1120
945 /* adjust timers. this is easy, as the offset is the same for all */ 1121 /* adjust timers. this is easy, as the offset is the same for all */
946 for (i = 0; i < timercnt; ++i) 1122 for (i = 0; i < timercnt; ++i)
947 ((WT)timers [i])->at += rt_now - mn_now; 1123 ((WT)timers [i])->at += ev_rt_now - mn_now;
948 } 1124 }
949 1125
950 mn_now = rt_now; 1126 mn_now = ev_rt_now;
951 } 1127 }
952} 1128}
953 1129
954void 1130void
955ev_ref (EV_P) 1131ev_ref (EV_P)
978 { 1154 {
979 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1155 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
980 call_pending (EV_A); 1156 call_pending (EV_A);
981 } 1157 }
982 1158
1159 /* we might have forked, so reify kernel state if necessary */
1160 if (expect_false (postfork))
1161 loop_fork (EV_A);
1162
983 /* update fd-related kernel structures */ 1163 /* update fd-related kernel structures */
984 fd_reify (EV_A); 1164 fd_reify (EV_A);
985 1165
986 /* calculate blocking time */ 1166 /* calculate blocking time */
987 1167
988 /* we only need this for !monotonic clockor timers, but as we basically 1168 /* we only need this for !monotonic clock or timers, but as we basically
989 always have timers, we just calculate it always */ 1169 always have timers, we just calculate it always */
990#if EV_USE_MONOTONIC 1170#if EV_USE_MONOTONIC
991 if (expect_true (have_monotonic)) 1171 if (expect_true (have_monotonic))
992 time_update_monotonic (EV_A); 1172 time_update_monotonic (EV_A);
993 else 1173 else
994#endif 1174#endif
995 { 1175 {
996 rt_now = ev_time (); 1176 ev_rt_now = ev_time ();
997 mn_now = rt_now; 1177 mn_now = ev_rt_now;
998 } 1178 }
999 1179
1000 if (flags & EVLOOP_NONBLOCK || idlecnt) 1180 if (flags & EVLOOP_NONBLOCK || idlecnt)
1001 block = 0.; 1181 block = 0.;
1002 else 1182 else
1007 { 1187 {
1008 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1188 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1009 if (block > to) block = to; 1189 if (block > to) block = to;
1010 } 1190 }
1011 1191
1192#if EV_PERIODICS
1012 if (periodiccnt) 1193 if (periodiccnt)
1013 { 1194 {
1014 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1195 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1015 if (block > to) block = to; 1196 if (block > to) block = to;
1016 } 1197 }
1198#endif
1017 1199
1018 if (block < 0.) block = 0.; 1200 if (block < 0.) block = 0.;
1019 } 1201 }
1020 1202
1021 method_poll (EV_A_ block); 1203 method_poll (EV_A_ block);
1022 1204
1023 /* update rt_now, do magic */ 1205 /* update ev_rt_now, do magic */
1024 time_update (EV_A); 1206 time_update (EV_A);
1025 1207
1026 /* queue pending timers and reschedule them */ 1208 /* queue pending timers and reschedule them */
1027 timers_reify (EV_A); /* relative timers called last */ 1209 timers_reify (EV_A); /* relative timers called last */
1210#if EV_PERIODICS
1028 periodics_reify (EV_A); /* absolute timers called first */ 1211 periodics_reify (EV_A); /* absolute timers called first */
1212#endif
1029 1213
1030 /* queue idle watchers unless io or timers are pending */ 1214 /* queue idle watchers unless io or timers are pending */
1031 if (!pendingcnt) 1215 if (idlecnt && !any_pending (EV_A))
1032 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1216 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1033 1217
1034 /* queue check watchers, to be executed first */ 1218 /* queue check watchers, to be executed first */
1035 if (checkcnt) 1219 if (checkcnt)
1036 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1220 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1111 return; 1295 return;
1112 1296
1113 assert (("ev_io_start called with negative fd", fd >= 0)); 1297 assert (("ev_io_start called with negative fd", fd >= 0));
1114 1298
1115 ev_start (EV_A_ (W)w, 1); 1299 ev_start (EV_A_ (W)w, 1);
1116 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1300 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1117 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1301 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1118 1302
1119 fd_change (EV_A_ fd); 1303 fd_change (EV_A_ fd);
1120} 1304}
1121 1305
1124{ 1308{
1125 ev_clear_pending (EV_A_ (W)w); 1309 ev_clear_pending (EV_A_ (W)w);
1126 if (!ev_is_active (w)) 1310 if (!ev_is_active (w))
1127 return; 1311 return;
1128 1312
1313 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1314
1129 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1315 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1130 ev_stop (EV_A_ (W)w); 1316 ev_stop (EV_A_ (W)w);
1131 1317
1132 fd_change (EV_A_ w->fd); 1318 fd_change (EV_A_ w->fd);
1133} 1319}
1141 ((WT)w)->at += mn_now; 1327 ((WT)w)->at += mn_now;
1142 1328
1143 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1329 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1144 1330
1145 ev_start (EV_A_ (W)w, ++timercnt); 1331 ev_start (EV_A_ (W)w, ++timercnt);
1146 array_needsize (timers, timermax, timercnt, ); 1332 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1147 timers [timercnt - 1] = w; 1333 timers [timercnt - 1] = w;
1148 upheap ((WT *)timers, timercnt - 1); 1334 upheap ((WT *)timers, timercnt - 1);
1149 1335
1150 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1336 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1151} 1337}
1163 { 1349 {
1164 timers [((W)w)->active - 1] = timers [timercnt]; 1350 timers [((W)w)->active - 1] = timers [timercnt];
1165 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1351 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1166 } 1352 }
1167 1353
1168 ((WT)w)->at = w->repeat; 1354 ((WT)w)->at -= mn_now;
1169 1355
1170 ev_stop (EV_A_ (W)w); 1356 ev_stop (EV_A_ (W)w);
1171} 1357}
1172 1358
1173void 1359void
1174ev_timer_again (EV_P_ struct ev_timer *w) 1360ev_timer_again (EV_P_ struct ev_timer *w)
1175{ 1361{
1176 if (ev_is_active (w)) 1362 if (ev_is_active (w))
1177 { 1363 {
1178 if (w->repeat) 1364 if (w->repeat)
1179 {
1180 ((WT)w)->at = mn_now + w->repeat;
1181 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1365 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1182 }
1183 else 1366 else
1184 ev_timer_stop (EV_A_ w); 1367 ev_timer_stop (EV_A_ w);
1185 } 1368 }
1186 else if (w->repeat) 1369 else if (w->repeat)
1187 ev_timer_start (EV_A_ w); 1370 ev_timer_start (EV_A_ w);
1188} 1371}
1189 1372
1373#if EV_PERIODICS
1190void 1374void
1191ev_periodic_start (EV_P_ struct ev_periodic *w) 1375ev_periodic_start (EV_P_ struct ev_periodic *w)
1192{ 1376{
1193 if (ev_is_active (w)) 1377 if (ev_is_active (w))
1194 return; 1378 return;
1195 1379
1380 if (w->reschedule_cb)
1381 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1382 else if (w->interval)
1383 {
1196 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1384 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1197
1198 /* this formula differs from the one in periodic_reify because we do not always round up */ 1385 /* this formula differs from the one in periodic_reify because we do not always round up */
1199 if (w->interval)
1200 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1386 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1387 }
1201 1388
1202 ev_start (EV_A_ (W)w, ++periodiccnt); 1389 ev_start (EV_A_ (W)w, ++periodiccnt);
1203 array_needsize (periodics, periodicmax, periodiccnt, ); 1390 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1204 periodics [periodiccnt - 1] = w; 1391 periodics [periodiccnt - 1] = w;
1205 upheap ((WT *)periodics, periodiccnt - 1); 1392 upheap ((WT *)periodics, periodiccnt - 1);
1206 1393
1207 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1394 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1208} 1395}
1224 1411
1225 ev_stop (EV_A_ (W)w); 1412 ev_stop (EV_A_ (W)w);
1226} 1413}
1227 1414
1228void 1415void
1416ev_periodic_again (EV_P_ struct ev_periodic *w)
1417{
1418 /* TODO: use adjustheap and recalculation */
1419 ev_periodic_stop (EV_A_ w);
1420 ev_periodic_start (EV_A_ w);
1421}
1422#endif
1423
1424void
1229ev_idle_start (EV_P_ struct ev_idle *w) 1425ev_idle_start (EV_P_ struct ev_idle *w)
1230{ 1426{
1231 if (ev_is_active (w)) 1427 if (ev_is_active (w))
1232 return; 1428 return;
1233 1429
1234 ev_start (EV_A_ (W)w, ++idlecnt); 1430 ev_start (EV_A_ (W)w, ++idlecnt);
1235 array_needsize (idles, idlemax, idlecnt, ); 1431 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1236 idles [idlecnt - 1] = w; 1432 idles [idlecnt - 1] = w;
1237} 1433}
1238 1434
1239void 1435void
1240ev_idle_stop (EV_P_ struct ev_idle *w) 1436ev_idle_stop (EV_P_ struct ev_idle *w)
1252{ 1448{
1253 if (ev_is_active (w)) 1449 if (ev_is_active (w))
1254 return; 1450 return;
1255 1451
1256 ev_start (EV_A_ (W)w, ++preparecnt); 1452 ev_start (EV_A_ (W)w, ++preparecnt);
1257 array_needsize (prepares, preparemax, preparecnt, ); 1453 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1258 prepares [preparecnt - 1] = w; 1454 prepares [preparecnt - 1] = w;
1259} 1455}
1260 1456
1261void 1457void
1262ev_prepare_stop (EV_P_ struct ev_prepare *w) 1458ev_prepare_stop (EV_P_ struct ev_prepare *w)
1274{ 1470{
1275 if (ev_is_active (w)) 1471 if (ev_is_active (w))
1276 return; 1472 return;
1277 1473
1278 ev_start (EV_A_ (W)w, ++checkcnt); 1474 ev_start (EV_A_ (W)w, ++checkcnt);
1279 array_needsize (checks, checkmax, checkcnt, ); 1475 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1280 checks [checkcnt - 1] = w; 1476 checks [checkcnt - 1] = w;
1281} 1477}
1282 1478
1283void 1479void
1284ev_check_stop (EV_P_ struct ev_check *w) 1480ev_check_stop (EV_P_ struct ev_check *w)
1285{ 1481{
1286 ev_clear_pending (EV_A_ (W)w); 1482 ev_clear_pending (EV_A_ (W)w);
1287 if (ev_is_active (w)) 1483 if (!ev_is_active (w))
1288 return; 1484 return;
1289 1485
1290 checks [((W)w)->active - 1] = checks [--checkcnt]; 1486 checks [((W)w)->active - 1] = checks [--checkcnt];
1291 ev_stop (EV_A_ (W)w); 1487 ev_stop (EV_A_ (W)w);
1292} 1488}
1305 return; 1501 return;
1306 1502
1307 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1503 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1308 1504
1309 ev_start (EV_A_ (W)w, 1); 1505 ev_start (EV_A_ (W)w, 1);
1310 array_needsize (signals, signalmax, w->signum, signals_init); 1506 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1311 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1507 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1312 1508
1313 if (!((WL)w)->next) 1509 if (!((WL)w)->next)
1314 { 1510 {
1511#if WIN32
1512 signal (w->signum, sighandler);
1513#else
1315 struct sigaction sa; 1514 struct sigaction sa;
1316 sa.sa_handler = sighandler; 1515 sa.sa_handler = sighandler;
1317 sigfillset (&sa.sa_mask); 1516 sigfillset (&sa.sa_mask);
1318 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1517 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1319 sigaction (w->signum, &sa, 0); 1518 sigaction (w->signum, &sa, 0);
1519#endif
1320 } 1520 }
1321} 1521}
1322 1522
1323void 1523void
1324ev_signal_stop (EV_P_ struct ev_signal *w) 1524ev_signal_stop (EV_P_ struct ev_signal *w)
1349 1549
1350void 1550void
1351ev_child_stop (EV_P_ struct ev_child *w) 1551ev_child_stop (EV_P_ struct ev_child *w)
1352{ 1552{
1353 ev_clear_pending (EV_A_ (W)w); 1553 ev_clear_pending (EV_A_ (W)w);
1354 if (ev_is_active (w)) 1554 if (!ev_is_active (w))
1355 return; 1555 return;
1356 1556
1357 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1557 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1358 ev_stop (EV_A_ (W)w); 1558 ev_stop (EV_A_ (W)w);
1359} 1559}
1374 void (*cb)(int revents, void *arg) = once->cb; 1574 void (*cb)(int revents, void *arg) = once->cb;
1375 void *arg = once->arg; 1575 void *arg = once->arg;
1376 1576
1377 ev_io_stop (EV_A_ &once->io); 1577 ev_io_stop (EV_A_ &once->io);
1378 ev_timer_stop (EV_A_ &once->to); 1578 ev_timer_stop (EV_A_ &once->to);
1379 free (once); 1579 ev_free (once);
1380 1580
1381 cb (revents, arg); 1581 cb (revents, arg);
1382} 1582}
1383 1583
1384static void 1584static void
1394} 1594}
1395 1595
1396void 1596void
1397ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1597ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1398{ 1598{
1399 struct ev_once *once = malloc (sizeof (struct ev_once)); 1599 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1400 1600
1401 if (!once) 1601 if (!once)
1402 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1602 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1403 else 1603 else
1404 { 1604 {
1405 once->cb = cb; 1605 once->cb = cb;
1406 once->arg = arg; 1606 once->arg = arg;
1407 1607
1408 ev_watcher_init (&once->io, once_cb_io); 1608 ev_init (&once->io, once_cb_io);
1409 if (fd >= 0) 1609 if (fd >= 0)
1410 { 1610 {
1411 ev_io_set (&once->io, fd, events); 1611 ev_io_set (&once->io, fd, events);
1412 ev_io_start (EV_A_ &once->io); 1612 ev_io_start (EV_A_ &once->io);
1413 } 1613 }
1414 1614
1415 ev_watcher_init (&once->to, once_cb_to); 1615 ev_init (&once->to, once_cb_to);
1416 if (timeout >= 0.) 1616 if (timeout >= 0.)
1417 { 1617 {
1418 ev_timer_set (&once->to, timeout, 0.); 1618 ev_timer_set (&once->to, timeout, 0.);
1419 ev_timer_start (EV_A_ &once->to); 1619 ev_timer_start (EV_A_ &once->to);
1420 } 1620 }
1421 } 1621 }
1422} 1622}
1423 1623
1624#ifdef __cplusplus
1625}
1626#endif
1627

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines