ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.75 by root, Tue Nov 6 19:29:20 2007 UTC vs.
Revision 1.96 by root, Sun Nov 11 01:50:36 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1 40# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1 41# define EV_USE_REALTIME 1
37# endif 42# endif
38 43
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 44# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 45# define EV_USE_SELECT 1
41# endif 46# endif
42 47
43# if HAVE_POLL && HAVE_POLL_H 48# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 49# define EV_USE_POLL 1
45# endif 50# endif
46 51
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 52# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 53# define EV_USE_EPOLL 1
49# endif 54# endif
50 55
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 56# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 57# define EV_USE_KQUEUE 1
53# endif 58# endif
54 59
55#endif 60#endif
56 61
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 131#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 132#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 133#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 134/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130 135
136#ifdef EV_H
137# include EV_H
138#else
131#include "ev.h" 139# include "ev.h"
140#endif
132 141
133#if __GNUC__ >= 3 142#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value)) 143# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline 144# define inline inline
136#else 145#else
215 int events; 224 int events;
216} ANPENDING; 225} ANPENDING;
217 226
218#if EV_MULTIPLICITY 227#if EV_MULTIPLICITY
219 228
220struct ev_loop 229 struct ev_loop
221{ 230 {
231 ev_tstamp ev_rt_now;
222# define VAR(name,decl) decl; 232 #define VAR(name,decl) decl;
223# include "ev_vars.h" 233 #include "ev_vars.h"
224};
225# undef VAR 234 #undef VAR
235 };
226# include "ev_wrap.h" 236 #include "ev_wrap.h"
237
238 struct ev_loop default_loop_struct;
239 static struct ev_loop *default_loop;
227 240
228#else 241#else
229 242
243 ev_tstamp ev_rt_now;
230# define VAR(name,decl) static decl; 244 #define VAR(name,decl) static decl;
231# include "ev_vars.h" 245 #include "ev_vars.h"
232# undef VAR 246 #undef VAR
247
248 static int default_loop;
233 249
234#endif 250#endif
235 251
236/*****************************************************************************/ 252/*****************************************************************************/
237 253
238inline ev_tstamp 254ev_tstamp
239ev_time (void) 255ev_time (void)
240{ 256{
241#if EV_USE_REALTIME 257#if EV_USE_REALTIME
242 struct timespec ts; 258 struct timespec ts;
243 clock_gettime (CLOCK_REALTIME, &ts); 259 clock_gettime (CLOCK_REALTIME, &ts);
262#endif 278#endif
263 279
264 return ev_time (); 280 return ev_time ();
265} 281}
266 282
283#if EV_MULTIPLICITY
267ev_tstamp 284ev_tstamp
268ev_now (EV_P) 285ev_now (EV_P)
269{ 286{
270 return rt_now; 287 return ev_rt_now;
271} 288}
289#endif
272 290
273#define array_roundsize(type,n) ((n) | 4 & ~3) 291#define array_roundsize(type,n) ((n) | 4 & ~3)
274 292
275#define array_needsize(type,base,cur,cnt,init) \ 293#define array_needsize(type,base,cur,cnt,init) \
276 if (expect_false ((cnt) > cur)) \ 294 if (expect_false ((cnt) > cur)) \
316 334
317 ++base; 335 ++base;
318 } 336 }
319} 337}
320 338
321static void 339void
322event (EV_P_ W w, int events) 340ev_feed_event (EV_P_ void *w, int revents)
323{ 341{
342 W w_ = (W)w;
343
324 if (w->pending) 344 if (w_->pending)
325 { 345 {
326 pendings [ABSPRI (w)][w->pending - 1].events |= events; 346 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
327 return; 347 return;
328 } 348 }
329 349
330 w->pending = ++pendingcnt [ABSPRI (w)]; 350 w_->pending = ++pendingcnt [ABSPRI (w_)];
331 array_needsize (ANPENDING, pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], (void)); 351 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
332 pendings [ABSPRI (w)][w->pending - 1].w = w; 352 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
333 pendings [ABSPRI (w)][w->pending - 1].events = events; 353 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
334} 354}
335 355
336static void 356static void
337queue_events (EV_P_ W *events, int eventcnt, int type) 357queue_events (EV_P_ W *events, int eventcnt, int type)
338{ 358{
339 int i; 359 int i;
340 360
341 for (i = 0; i < eventcnt; ++i) 361 for (i = 0; i < eventcnt; ++i)
342 event (EV_A_ events [i], type); 362 ev_feed_event (EV_A_ events [i], type);
343} 363}
344 364
345static void 365inline void
346fd_event (EV_P_ int fd, int events) 366fd_event (EV_P_ int fd, int revents)
347{ 367{
348 ANFD *anfd = anfds + fd; 368 ANFD *anfd = anfds + fd;
349 struct ev_io *w; 369 struct ev_io *w;
350 370
351 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 371 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
352 { 372 {
353 int ev = w->events & events; 373 int ev = w->events & revents;
354 374
355 if (ev) 375 if (ev)
356 event (EV_A_ (W)w, ev); 376 ev_feed_event (EV_A_ (W)w, ev);
357 } 377 }
378}
379
380void
381ev_feed_fd_event (EV_P_ int fd, int revents)
382{
383 fd_event (EV_A_ fd, revents);
358} 384}
359 385
360/*****************************************************************************/ 386/*****************************************************************************/
361 387
362static void 388static void
403 struct ev_io *w; 429 struct ev_io *w;
404 430
405 while ((w = (struct ev_io *)anfds [fd].head)) 431 while ((w = (struct ev_io *)anfds [fd].head))
406 { 432 {
407 ev_io_stop (EV_A_ w); 433 ev_io_stop (EV_A_ w);
408 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 434 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
409 } 435 }
410} 436}
411 437
412static int 438static int
413fd_valid (int fd) 439fd_valid (int fd)
501 527
502 heap [k] = w; 528 heap [k] = w;
503 ((W)heap [k])->active = k + 1; 529 ((W)heap [k])->active = k + 1;
504} 530}
505 531
532inline void
533adjustheap (WT *heap, int N, int k, ev_tstamp at)
534{
535 ev_tstamp old_at = heap [k]->at;
536 heap [k]->at = at;
537
538 if (old_at < at)
539 downheap (heap, N, k);
540 else
541 upheap (heap, k);
542}
543
506/*****************************************************************************/ 544/*****************************************************************************/
507 545
508typedef struct 546typedef struct
509{ 547{
510 WL head; 548 WL head;
550#endif 588#endif
551 errno = old_errno; 589 errno = old_errno;
552 } 590 }
553} 591}
554 592
593void
594ev_feed_signal_event (EV_P_ int signum)
595{
596 WL w;
597
598#if EV_MULTIPLICITY
599 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
600#endif
601
602 --signum;
603
604 if (signum < 0 || signum >= signalmax)
605 return;
606
607 signals [signum].gotsig = 0;
608
609 for (w = signals [signum].head; w; w = w->next)
610 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
611}
612
555static void 613static void
556sigcb (EV_P_ struct ev_io *iow, int revents) 614sigcb (EV_P_ struct ev_io *iow, int revents)
557{ 615{
558 WL w;
559 int signum; 616 int signum;
560 617
561#ifdef WIN32 618#ifdef WIN32
562 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 619 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
563#else 620#else
565#endif 622#endif
566 gotsig = 0; 623 gotsig = 0;
567 624
568 for (signum = signalmax; signum--; ) 625 for (signum = signalmax; signum--; )
569 if (signals [signum].gotsig) 626 if (signals [signum].gotsig)
570 { 627 ev_feed_signal_event (EV_A_ signum + 1);
571 signals [signum].gotsig = 0;
572
573 for (w = signals [signum].head; w; w = w->next)
574 event (EV_A_ (W)w, EV_SIGNAL);
575 }
576} 628}
577 629
578static void 630static void
579siginit (EV_P) 631siginit (EV_P)
580{ 632{
613 if (w->pid == pid || !w->pid) 665 if (w->pid == pid || !w->pid)
614 { 666 {
615 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 667 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
616 w->rpid = pid; 668 w->rpid = pid;
617 w->rstatus = status; 669 w->rstatus = status;
618 event (EV_A_ (W)w, EV_CHILD); 670 ev_feed_event (EV_A_ (W)w, EV_CHILD);
619 } 671 }
620} 672}
621 673
622static void 674static void
623childcb (EV_P_ struct ev_signal *sw, int revents) 675childcb (EV_P_ struct ev_signal *sw, int revents)
625 int pid, status; 677 int pid, status;
626 678
627 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 679 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
628 { 680 {
629 /* make sure we are called again until all childs have been reaped */ 681 /* make sure we are called again until all childs have been reaped */
630 event (EV_A_ (W)sw, EV_SIGNAL); 682 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
631 683
632 child_reap (EV_A_ sw, pid, pid, status); 684 child_reap (EV_A_ sw, pid, pid, status);
633 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 685 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
634 } 686 }
635} 687}
692 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 744 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
693 have_monotonic = 1; 745 have_monotonic = 1;
694 } 746 }
695#endif 747#endif
696 748
697 rt_now = ev_time (); 749 ev_rt_now = ev_time ();
698 mn_now = get_clock (); 750 mn_now = get_clock ();
699 now_floor = mn_now; 751 now_floor = mn_now;
700 rtmn_diff = rt_now - mn_now; 752 rtmn_diff = ev_rt_now - mn_now;
701 753
702 if (methods == EVMETHOD_AUTO) 754 if (methods == EVMETHOD_AUTO)
703 if (!enable_secure () && getenv ("LIBEV_METHODS")) 755 if (!enable_secure () && getenv ("LIBEV_METHODS"))
704 methods = atoi (getenv ("LIBEV_METHODS")); 756 methods = atoi (getenv ("LIBEV_METHODS"));
705 else 757 else
720#endif 772#endif
721#if EV_USE_SELECT 773#if EV_USE_SELECT
722 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 774 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
723#endif 775#endif
724 776
725 ev_watcher_init (&sigev, sigcb); 777 ev_init (&sigev, sigcb);
726 ev_set_priority (&sigev, EV_MAXPRI); 778 ev_set_priority (&sigev, EV_MAXPRI);
727 } 779 }
728} 780}
729 781
730void 782void
752 array_free (pending, [i]); 804 array_free (pending, [i]);
753 805
754 /* have to use the microsoft-never-gets-it-right macro */ 806 /* have to use the microsoft-never-gets-it-right macro */
755 array_free_microshit (fdchange); 807 array_free_microshit (fdchange);
756 array_free_microshit (timer); 808 array_free_microshit (timer);
809#if EV_PERIODICS
757 array_free_microshit (periodic); 810 array_free_microshit (periodic);
811#endif
758 array_free_microshit (idle); 812 array_free_microshit (idle);
759 array_free_microshit (prepare); 813 array_free_microshit (prepare);
760 array_free_microshit (check); 814 array_free_microshit (check);
761 815
762 method = 0; 816 method = 0;
820} 874}
821 875
822#endif 876#endif
823 877
824#if EV_MULTIPLICITY 878#if EV_MULTIPLICITY
825struct ev_loop default_loop_struct;
826static struct ev_loop *default_loop;
827
828struct ev_loop * 879struct ev_loop *
829#else 880#else
830static int default_loop;
831
832int 881int
833#endif 882#endif
834ev_default_loop (int methods) 883ev_default_loop (int methods)
835{ 884{
836 if (sigpipe [0] == sigpipe [1]) 885 if (sigpipe [0] == sigpipe [1])
897 postfork = 1; 946 postfork = 1;
898} 947}
899 948
900/*****************************************************************************/ 949/*****************************************************************************/
901 950
951static int
952any_pending (EV_P)
953{
954 int pri;
955
956 for (pri = NUMPRI; pri--; )
957 if (pendingcnt [pri])
958 return 1;
959
960 return 0;
961}
962
902static void 963static void
903call_pending (EV_P) 964call_pending (EV_P)
904{ 965{
905 int pri; 966 int pri;
906 967
910 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 971 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
911 972
912 if (p->w) 973 if (p->w)
913 { 974 {
914 p->w->pending = 0; 975 p->w->pending = 0;
915 p->w->cb (EV_A_ p->w, p->events); 976 EV_CB_INVOKE (p->w, p->events);
916 } 977 }
917 } 978 }
918} 979}
919 980
920static void 981static void
928 989
929 /* first reschedule or stop timer */ 990 /* first reschedule or stop timer */
930 if (w->repeat) 991 if (w->repeat)
931 { 992 {
932 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 993 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
994
933 ((WT)w)->at = mn_now + w->repeat; 995 ((WT)w)->at += w->repeat;
996 if (((WT)w)->at < mn_now)
997 ((WT)w)->at = mn_now;
998
934 downheap ((WT *)timers, timercnt, 0); 999 downheap ((WT *)timers, timercnt, 0);
935 } 1000 }
936 else 1001 else
937 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1002 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
938 1003
939 event (EV_A_ (W)w, EV_TIMEOUT); 1004 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
940 } 1005 }
941} 1006}
942 1007
1008#if EV_PERIODICS
943static void 1009static void
944periodics_reify (EV_P) 1010periodics_reify (EV_P)
945{ 1011{
946 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1012 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
947 { 1013 {
948 struct ev_periodic *w = periodics [0]; 1014 struct ev_periodic *w = periodics [0];
949 1015
950 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1016 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
951 1017
952 /* first reschedule or stop timer */ 1018 /* first reschedule or stop timer */
953 if (w->interval) 1019 if (w->reschedule_cb)
954 { 1020 {
1021 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1022
1023 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1024 downheap ((WT *)periodics, periodiccnt, 0);
1025 }
1026 else if (w->interval)
1027 {
955 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1028 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
956 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1029 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
957 downheap ((WT *)periodics, periodiccnt, 0); 1030 downheap ((WT *)periodics, periodiccnt, 0);
958 } 1031 }
959 else 1032 else
960 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1033 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
961 1034
962 event (EV_A_ (W)w, EV_PERIODIC); 1035 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
963 } 1036 }
964} 1037}
965 1038
966static void 1039static void
967periodics_reschedule (EV_P) 1040periodics_reschedule (EV_P)
971 /* adjust periodics after time jump */ 1044 /* adjust periodics after time jump */
972 for (i = 0; i < periodiccnt; ++i) 1045 for (i = 0; i < periodiccnt; ++i)
973 { 1046 {
974 struct ev_periodic *w = periodics [i]; 1047 struct ev_periodic *w = periodics [i];
975 1048
1049 if (w->reschedule_cb)
1050 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
976 if (w->interval) 1051 else if (w->interval)
977 {
978 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1052 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
979
980 if (fabs (diff) >= 1e-4)
981 {
982 ev_periodic_stop (EV_A_ w);
983 ev_periodic_start (EV_A_ w);
984
985 i = 0; /* restart loop, inefficient, but time jumps should be rare */
986 }
987 }
988 } 1053 }
1054
1055 /* now rebuild the heap */
1056 for (i = periodiccnt >> 1; i--; )
1057 downheap ((WT *)periodics, periodiccnt, i);
989} 1058}
1059#endif
990 1060
991inline int 1061inline int
992time_update_monotonic (EV_P) 1062time_update_monotonic (EV_P)
993{ 1063{
994 mn_now = get_clock (); 1064 mn_now = get_clock ();
995 1065
996 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1066 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
997 { 1067 {
998 rt_now = rtmn_diff + mn_now; 1068 ev_rt_now = rtmn_diff + mn_now;
999 return 0; 1069 return 0;
1000 } 1070 }
1001 else 1071 else
1002 { 1072 {
1003 now_floor = mn_now; 1073 now_floor = mn_now;
1004 rt_now = ev_time (); 1074 ev_rt_now = ev_time ();
1005 return 1; 1075 return 1;
1006 } 1076 }
1007} 1077}
1008 1078
1009static void 1079static void
1018 { 1088 {
1019 ev_tstamp odiff = rtmn_diff; 1089 ev_tstamp odiff = rtmn_diff;
1020 1090
1021 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1091 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1022 { 1092 {
1023 rtmn_diff = rt_now - mn_now; 1093 rtmn_diff = ev_rt_now - mn_now;
1024 1094
1025 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1095 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1026 return; /* all is well */ 1096 return; /* all is well */
1027 1097
1028 rt_now = ev_time (); 1098 ev_rt_now = ev_time ();
1029 mn_now = get_clock (); 1099 mn_now = get_clock ();
1030 now_floor = mn_now; 1100 now_floor = mn_now;
1031 } 1101 }
1032 1102
1103# if EV_PERIODICS
1033 periodics_reschedule (EV_A); 1104 periodics_reschedule (EV_A);
1105# endif
1034 /* no timer adjustment, as the monotonic clock doesn't jump */ 1106 /* no timer adjustment, as the monotonic clock doesn't jump */
1035 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1107 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1036 } 1108 }
1037 } 1109 }
1038 else 1110 else
1039#endif 1111#endif
1040 { 1112 {
1041 rt_now = ev_time (); 1113 ev_rt_now = ev_time ();
1042 1114
1043 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1115 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1044 { 1116 {
1117#if EV_PERIODICS
1045 periodics_reschedule (EV_A); 1118 periodics_reschedule (EV_A);
1119#endif
1046 1120
1047 /* adjust timers. this is easy, as the offset is the same for all */ 1121 /* adjust timers. this is easy, as the offset is the same for all */
1048 for (i = 0; i < timercnt; ++i) 1122 for (i = 0; i < timercnt; ++i)
1049 ((WT)timers [i])->at += rt_now - mn_now; 1123 ((WT)timers [i])->at += ev_rt_now - mn_now;
1050 } 1124 }
1051 1125
1052 mn_now = rt_now; 1126 mn_now = ev_rt_now;
1053 } 1127 }
1054} 1128}
1055 1129
1056void 1130void
1057ev_ref (EV_P) 1131ev_ref (EV_P)
1089 /* update fd-related kernel structures */ 1163 /* update fd-related kernel structures */
1090 fd_reify (EV_A); 1164 fd_reify (EV_A);
1091 1165
1092 /* calculate blocking time */ 1166 /* calculate blocking time */
1093 1167
1094 /* we only need this for !monotonic clockor timers, but as we basically 1168 /* we only need this for !monotonic clock or timers, but as we basically
1095 always have timers, we just calculate it always */ 1169 always have timers, we just calculate it always */
1096#if EV_USE_MONOTONIC 1170#if EV_USE_MONOTONIC
1097 if (expect_true (have_monotonic)) 1171 if (expect_true (have_monotonic))
1098 time_update_monotonic (EV_A); 1172 time_update_monotonic (EV_A);
1099 else 1173 else
1100#endif 1174#endif
1101 { 1175 {
1102 rt_now = ev_time (); 1176 ev_rt_now = ev_time ();
1103 mn_now = rt_now; 1177 mn_now = ev_rt_now;
1104 } 1178 }
1105 1179
1106 if (flags & EVLOOP_NONBLOCK || idlecnt) 1180 if (flags & EVLOOP_NONBLOCK || idlecnt)
1107 block = 0.; 1181 block = 0.;
1108 else 1182 else
1113 { 1187 {
1114 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1188 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
1115 if (block > to) block = to; 1189 if (block > to) block = to;
1116 } 1190 }
1117 1191
1192#if EV_PERIODICS
1118 if (periodiccnt) 1193 if (periodiccnt)
1119 { 1194 {
1120 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1195 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1121 if (block > to) block = to; 1196 if (block > to) block = to;
1122 } 1197 }
1198#endif
1123 1199
1124 if (block < 0.) block = 0.; 1200 if (block < 0.) block = 0.;
1125 } 1201 }
1126 1202
1127 method_poll (EV_A_ block); 1203 method_poll (EV_A_ block);
1128 1204
1129 /* update rt_now, do magic */ 1205 /* update ev_rt_now, do magic */
1130 time_update (EV_A); 1206 time_update (EV_A);
1131 1207
1132 /* queue pending timers and reschedule them */ 1208 /* queue pending timers and reschedule them */
1133 timers_reify (EV_A); /* relative timers called last */ 1209 timers_reify (EV_A); /* relative timers called last */
1210#if EV_PERIODICS
1134 periodics_reify (EV_A); /* absolute timers called first */ 1211 periodics_reify (EV_A); /* absolute timers called first */
1212#endif
1135 1213
1136 /* queue idle watchers unless io or timers are pending */ 1214 /* queue idle watchers unless io or timers are pending */
1137 if (!pendingcnt) 1215 if (idlecnt && !any_pending (EV_A))
1138 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1216 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1139 1217
1140 /* queue check watchers, to be executed first */ 1218 /* queue check watchers, to be executed first */
1141 if (checkcnt) 1219 if (checkcnt)
1142 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1220 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1230{ 1308{
1231 ev_clear_pending (EV_A_ (W)w); 1309 ev_clear_pending (EV_A_ (W)w);
1232 if (!ev_is_active (w)) 1310 if (!ev_is_active (w))
1233 return; 1311 return;
1234 1312
1313 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1314
1235 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1315 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1236 ev_stop (EV_A_ (W)w); 1316 ev_stop (EV_A_ (W)w);
1237 1317
1238 fd_change (EV_A_ w->fd); 1318 fd_change (EV_A_ w->fd);
1239} 1319}
1269 { 1349 {
1270 timers [((W)w)->active - 1] = timers [timercnt]; 1350 timers [((W)w)->active - 1] = timers [timercnt];
1271 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1351 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1272 } 1352 }
1273 1353
1274 ((WT)w)->at = w->repeat; 1354 ((WT)w)->at -= mn_now;
1275 1355
1276 ev_stop (EV_A_ (W)w); 1356 ev_stop (EV_A_ (W)w);
1277} 1357}
1278 1358
1279void 1359void
1280ev_timer_again (EV_P_ struct ev_timer *w) 1360ev_timer_again (EV_P_ struct ev_timer *w)
1281{ 1361{
1282 if (ev_is_active (w)) 1362 if (ev_is_active (w))
1283 { 1363 {
1284 if (w->repeat) 1364 if (w->repeat)
1285 {
1286 ((WT)w)->at = mn_now + w->repeat;
1287 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1365 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1288 }
1289 else 1366 else
1290 ev_timer_stop (EV_A_ w); 1367 ev_timer_stop (EV_A_ w);
1291 } 1368 }
1292 else if (w->repeat) 1369 else if (w->repeat)
1293 ev_timer_start (EV_A_ w); 1370 ev_timer_start (EV_A_ w);
1294} 1371}
1295 1372
1373#if EV_PERIODICS
1296void 1374void
1297ev_periodic_start (EV_P_ struct ev_periodic *w) 1375ev_periodic_start (EV_P_ struct ev_periodic *w)
1298{ 1376{
1299 if (ev_is_active (w)) 1377 if (ev_is_active (w))
1300 return; 1378 return;
1301 1379
1380 if (w->reschedule_cb)
1381 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1382 else if (w->interval)
1383 {
1302 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1384 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1303
1304 /* this formula differs from the one in periodic_reify because we do not always round up */ 1385 /* this formula differs from the one in periodic_reify because we do not always round up */
1305 if (w->interval)
1306 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1386 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1387 }
1307 1388
1308 ev_start (EV_A_ (W)w, ++periodiccnt); 1389 ev_start (EV_A_ (W)w, ++periodiccnt);
1309 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1390 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1310 periodics [periodiccnt - 1] = w; 1391 periodics [periodiccnt - 1] = w;
1311 upheap ((WT *)periodics, periodiccnt - 1); 1392 upheap ((WT *)periodics, periodiccnt - 1);
1330 1411
1331 ev_stop (EV_A_ (W)w); 1412 ev_stop (EV_A_ (W)w);
1332} 1413}
1333 1414
1334void 1415void
1416ev_periodic_again (EV_P_ struct ev_periodic *w)
1417{
1418 /* TODO: use adjustheap and recalculation */
1419 ev_periodic_stop (EV_A_ w);
1420 ev_periodic_start (EV_A_ w);
1421}
1422#endif
1423
1424void
1335ev_idle_start (EV_P_ struct ev_idle *w) 1425ev_idle_start (EV_P_ struct ev_idle *w)
1336{ 1426{
1337 if (ev_is_active (w)) 1427 if (ev_is_active (w))
1338 return; 1428 return;
1339 1429
1388 1478
1389void 1479void
1390ev_check_stop (EV_P_ struct ev_check *w) 1480ev_check_stop (EV_P_ struct ev_check *w)
1391{ 1481{
1392 ev_clear_pending (EV_A_ (W)w); 1482 ev_clear_pending (EV_A_ (W)w);
1393 if (ev_is_active (w)) 1483 if (!ev_is_active (w))
1394 return; 1484 return;
1395 1485
1396 checks [((W)w)->active - 1] = checks [--checkcnt]; 1486 checks [((W)w)->active - 1] = checks [--checkcnt];
1397 ev_stop (EV_A_ (W)w); 1487 ev_stop (EV_A_ (W)w);
1398} 1488}
1459 1549
1460void 1550void
1461ev_child_stop (EV_P_ struct ev_child *w) 1551ev_child_stop (EV_P_ struct ev_child *w)
1462{ 1552{
1463 ev_clear_pending (EV_A_ (W)w); 1553 ev_clear_pending (EV_A_ (W)w);
1464 if (ev_is_active (w)) 1554 if (!ev_is_active (w))
1465 return; 1555 return;
1466 1556
1467 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1557 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1468 ev_stop (EV_A_ (W)w); 1558 ev_stop (EV_A_ (W)w);
1469} 1559}
1513 else 1603 else
1514 { 1604 {
1515 once->cb = cb; 1605 once->cb = cb;
1516 once->arg = arg; 1606 once->arg = arg;
1517 1607
1518 ev_watcher_init (&once->io, once_cb_io); 1608 ev_init (&once->io, once_cb_io);
1519 if (fd >= 0) 1609 if (fd >= 0)
1520 { 1610 {
1521 ev_io_set (&once->io, fd, events); 1611 ev_io_set (&once->io, fd, events);
1522 ev_io_start (EV_A_ &once->io); 1612 ev_io_start (EV_A_ &once->io);
1523 } 1613 }
1524 1614
1525 ev_watcher_init (&once->to, once_cb_to); 1615 ev_init (&once->to, once_cb_to);
1526 if (timeout >= 0.) 1616 if (timeout >= 0.)
1527 { 1617 {
1528 ev_timer_set (&once->to, timeout, 0.); 1618 ev_timer_set (&once->to, timeout, 0.);
1529 ev_timer_start (EV_A_ &once->to); 1619 ev_timer_start (EV_A_ &once->to);
1530 } 1620 }
1531 } 1621 }
1532} 1622}
1533 1623
1624#ifdef __cplusplus
1625}
1626#endif
1627

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines