ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.97 by root, Sun Nov 11 01:53:07 2007 UTC vs.
Revision 1.320 by root, Fri Dec 4 20:25:06 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
38 65
39# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
42# endif 69# endif
43# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
45# endif 72# endif
73# else
74# ifndef EV_USE_MONOTONIC
75# define EV_USE_MONOTONIC 0
46# endif 76# endif
77# ifndef EV_USE_REALTIME
78# define EV_USE_REALTIME 0
79# endif
80# endif
47 81
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
90# ifndef EV_USE_SELECT
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
49# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
93# else
94# define EV_USE_SELECT 0
50# endif 95# endif
96# endif
51 97
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 98# ifndef EV_USE_POLL
99# if HAVE_POLL && HAVE_POLL_H
53# define EV_USE_POLL 1 100# define EV_USE_POLL 1
101# else
102# define EV_USE_POLL 0
54# endif 103# endif
55 104# endif
56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 105
106# ifndef EV_USE_EPOLL
107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
57# define EV_USE_EPOLL 1 108# define EV_USE_EPOLL 1
109# else
110# define EV_USE_EPOLL 0
58# endif 111# endif
59 112# endif
113
114# ifndef EV_USE_KQUEUE
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
61# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
117# else
118# define EV_USE_KQUEUE 0
62# endif 119# endif
120# endif
121
122# ifndef EV_USE_PORT
123# if HAVE_PORT_H && HAVE_PORT_CREATE
124# define EV_USE_PORT 1
125# else
126# define EV_USE_PORT 0
127# endif
128# endif
63 129
130# ifndef EV_USE_INOTIFY
131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
132# define EV_USE_INOTIFY 1
133# else
134# define EV_USE_INOTIFY 0
135# endif
136# endif
137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
64#endif 154#endif
65 155
66#include <math.h> 156#include <math.h>
67#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
68#include <fcntl.h> 159#include <fcntl.h>
69#include <stddef.h> 160#include <stddef.h>
70 161
71#include <stdio.h> 162#include <stdio.h>
72 163
75#include <sys/types.h> 166#include <sys/types.h>
76#include <time.h> 167#include <time.h>
77 168
78#include <signal.h> 169#include <signal.h>
79 170
80#ifndef WIN32
81# include <unistd.h>
82# include <sys/time.h>
83# include <sys/wait.h>
84#endif
85/**/
86
87#ifndef EV_USE_MONOTONIC
88# define EV_USE_MONOTONIC 1
89#endif
90
91#ifndef EV_USE_SELECT
92# define EV_USE_SELECT 1
93#endif
94
95#ifndef EV_USE_POLL
96# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
97#endif
98
99#ifndef EV_USE_EPOLL
100# define EV_USE_EPOLL 0
101#endif
102
103#ifndef EV_USE_KQUEUE
104# define EV_USE_KQUEUE 0
105#endif
106
107#ifndef EV_USE_WIN32
108# ifdef WIN32
109# define EV_USE_WIN32 0 /* it does not exist, use select */
110# undef EV_USE_SELECT
111# define EV_USE_SELECT 1
112# else
113# define EV_USE_WIN32 0
114# endif
115#endif
116
117#ifndef EV_USE_REALTIME
118# define EV_USE_REALTIME 1
119#endif
120
121/**/
122
123#ifndef CLOCK_MONOTONIC
124# undef EV_USE_MONOTONIC
125# define EV_USE_MONOTONIC 0
126#endif
127
128#ifndef CLOCK_REALTIME
129# undef EV_USE_REALTIME
130# define EV_USE_REALTIME 0
131#endif
132
133/**/
134
135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
139
140#ifdef EV_H 171#ifdef EV_H
141# include EV_H 172# include EV_H
142#else 173#else
143# include "ev.h" 174# include "ev.h"
144#endif 175#endif
145 176
177#ifndef _WIN32
178# include <sys/time.h>
179# include <sys/wait.h>
180# include <unistd.h>
181#else
182# include <io.h>
183# define WIN32_LEAN_AND_MEAN
184# include <windows.h>
185# ifndef EV_SELECT_IS_WINSOCKET
186# define EV_SELECT_IS_WINSOCKET 1
187# endif
188#endif
189
190/* this block tries to deduce configuration from header-defined symbols and defaults */
191
192/* try to deduce the maximum number of signals on this platform */
193#if defined (EV_NSIG)
194/* use what's provided */
195#elif defined (NSIG)
196# define EV_NSIG (NSIG)
197#elif defined(_NSIG)
198# define EV_NSIG (_NSIG)
199#elif defined (SIGMAX)
200# define EV_NSIG (SIGMAX+1)
201#elif defined (SIG_MAX)
202# define EV_NSIG (SIG_MAX+1)
203#elif defined (_SIG_MAX)
204# define EV_NSIG (_SIG_MAX+1)
205#elif defined (MAXSIG)
206# define EV_NSIG (MAXSIG+1)
207#elif defined (MAX_SIG)
208# define EV_NSIG (MAX_SIG+1)
209#elif defined (SIGARRAYSIZE)
210# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
211#elif defined (_sys_nsig)
212# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
213#else
214# error "unable to find value for NSIG, please report"
215/* to make it compile regardless, just remove the above line */
216# define EV_NSIG 65
217#endif
218
219#ifndef EV_USE_CLOCK_SYSCALL
220# if __linux && __GLIBC__ >= 2
221# define EV_USE_CLOCK_SYSCALL 1
222# else
223# define EV_USE_CLOCK_SYSCALL 0
224# endif
225#endif
226
227#ifndef EV_USE_MONOTONIC
228# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
229# define EV_USE_MONOTONIC 1
230# else
231# define EV_USE_MONOTONIC 0
232# endif
233#endif
234
235#ifndef EV_USE_REALTIME
236# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
237#endif
238
239#ifndef EV_USE_NANOSLEEP
240# if _POSIX_C_SOURCE >= 199309L
241# define EV_USE_NANOSLEEP 1
242# else
243# define EV_USE_NANOSLEEP 0
244# endif
245#endif
246
247#ifndef EV_USE_SELECT
248# define EV_USE_SELECT 1
249#endif
250
251#ifndef EV_USE_POLL
252# ifdef _WIN32
253# define EV_USE_POLL 0
254# else
255# define EV_USE_POLL 1
256# endif
257#endif
258
259#ifndef EV_USE_EPOLL
260# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
261# define EV_USE_EPOLL 1
262# else
263# define EV_USE_EPOLL 0
264# endif
265#endif
266
267#ifndef EV_USE_KQUEUE
268# define EV_USE_KQUEUE 0
269#endif
270
271#ifndef EV_USE_PORT
272# define EV_USE_PORT 0
273#endif
274
275#ifndef EV_USE_INOTIFY
276# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
277# define EV_USE_INOTIFY 1
278# else
279# define EV_USE_INOTIFY 0
280# endif
281#endif
282
283#ifndef EV_PID_HASHSIZE
284# if EV_MINIMAL
285# define EV_PID_HASHSIZE 1
286# else
287# define EV_PID_HASHSIZE 16
288# endif
289#endif
290
291#ifndef EV_INOTIFY_HASHSIZE
292# if EV_MINIMAL
293# define EV_INOTIFY_HASHSIZE 1
294# else
295# define EV_INOTIFY_HASHSIZE 16
296# endif
297#endif
298
299#ifndef EV_USE_EVENTFD
300# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
301# define EV_USE_EVENTFD 1
302# else
303# define EV_USE_EVENTFD 0
304# endif
305#endif
306
307#ifndef EV_USE_SIGNALFD
308# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
309# define EV_USE_SIGNALFD 1
310# else
311# define EV_USE_SIGNALFD 0
312# endif
313#endif
314
315#if 0 /* debugging */
316# define EV_VERIFY 3
317# define EV_USE_4HEAP 1
318# define EV_HEAP_CACHE_AT 1
319#endif
320
321#ifndef EV_VERIFY
322# define EV_VERIFY !EV_MINIMAL
323#endif
324
325#ifndef EV_USE_4HEAP
326# define EV_USE_4HEAP !EV_MINIMAL
327#endif
328
329#ifndef EV_HEAP_CACHE_AT
330# define EV_HEAP_CACHE_AT !EV_MINIMAL
331#endif
332
333/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
334/* which makes programs even slower. might work on other unices, too. */
335#if EV_USE_CLOCK_SYSCALL
336# include <syscall.h>
337# ifdef SYS_clock_gettime
338# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
339# undef EV_USE_MONOTONIC
340# define EV_USE_MONOTONIC 1
341# else
342# undef EV_USE_CLOCK_SYSCALL
343# define EV_USE_CLOCK_SYSCALL 0
344# endif
345#endif
346
347/* this block fixes any misconfiguration where we know we run into trouble otherwise */
348
349#ifndef CLOCK_MONOTONIC
350# undef EV_USE_MONOTONIC
351# define EV_USE_MONOTONIC 0
352#endif
353
354#ifndef CLOCK_REALTIME
355# undef EV_USE_REALTIME
356# define EV_USE_REALTIME 0
357#endif
358
359#if !EV_STAT_ENABLE
360# undef EV_USE_INOTIFY
361# define EV_USE_INOTIFY 0
362#endif
363
364#if !EV_USE_NANOSLEEP
365# ifndef _WIN32
366# include <sys/select.h>
367# endif
368#endif
369
370#if EV_USE_INOTIFY
371# include <sys/utsname.h>
372# include <sys/statfs.h>
373# include <sys/inotify.h>
374/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
375# ifndef IN_DONT_FOLLOW
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378# endif
379#endif
380
381#if EV_SELECT_IS_WINSOCKET
382# include <winsock.h>
383#endif
384
385#if EV_USE_EVENTFD
386/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
387# include <stdint.h>
388# ifndef EFD_NONBLOCK
389# define EFD_NONBLOCK O_NONBLOCK
390# endif
391# ifndef EFD_CLOEXEC
392# ifdef O_CLOEXEC
393# define EFD_CLOEXEC O_CLOEXEC
394# else
395# define EFD_CLOEXEC 02000000
396# endif
397# endif
398# ifdef __cplusplus
399extern "C" {
400# endif
401int eventfd (unsigned int initval, int flags);
402# ifdef __cplusplus
403}
404# endif
405#endif
406
407#if EV_USE_SIGNALFD
408/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
409# include <stdint.h>
410# ifndef SFD_NONBLOCK
411# define SFD_NONBLOCK O_NONBLOCK
412# endif
413# ifndef SFD_CLOEXEC
414# ifdef O_CLOEXEC
415# define SFD_CLOEXEC O_CLOEXEC
416# else
417# define SFD_CLOEXEC 02000000
418# endif
419# endif
420# ifdef __cplusplus
421extern "C" {
422# endif
423int signalfd (int fd, const sigset_t *mask, int flags);
424
425struct signalfd_siginfo
426{
427 uint32_t ssi_signo;
428 char pad[128 - sizeof (uint32_t)];
429};
430# ifdef __cplusplus
431}
432# endif
433#endif
434
435
436/**/
437
438#if EV_VERIFY >= 3
439# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
440#else
441# define EV_FREQUENT_CHECK do { } while (0)
442#endif
443
444/*
445 * This is used to avoid floating point rounding problems.
446 * It is added to ev_rt_now when scheduling periodics
447 * to ensure progress, time-wise, even when rounding
448 * errors are against us.
449 * This value is good at least till the year 4000.
450 * Better solutions welcome.
451 */
452#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
453
454#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
455#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
456
146#if __GNUC__ >= 3 457#if __GNUC__ >= 4
147# define expect(expr,value) __builtin_expect ((expr),(value)) 458# define expect(expr,value) __builtin_expect ((expr),(value))
148# define inline inline 459# define noinline __attribute__ ((noinline))
149#else 460#else
150# define expect(expr,value) (expr) 461# define expect(expr,value) (expr)
151# define inline static 462# define noinline
463# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
464# define inline
465# endif
152#endif 466#endif
153 467
154#define expect_false(expr) expect ((expr) != 0, 0) 468#define expect_false(expr) expect ((expr) != 0, 0)
155#define expect_true(expr) expect ((expr) != 0, 1) 469#define expect_true(expr) expect ((expr) != 0, 1)
470#define inline_size static inline
156 471
472#if EV_MINIMAL
473# define inline_speed static noinline
474#else
475# define inline_speed static inline
476#endif
477
157#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 478#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
479
480#if EV_MINPRI == EV_MAXPRI
481# define ABSPRI(w) (((W)w), 0)
482#else
158#define ABSPRI(w) ((w)->priority - EV_MINPRI) 483# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
484#endif
159 485
486#define EMPTY /* required for microsofts broken pseudo-c compiler */
487#define EMPTY2(a,b) /* used to suppress some warnings */
488
160typedef struct ev_watcher *W; 489typedef ev_watcher *W;
161typedef struct ev_watcher_list *WL; 490typedef ev_watcher_list *WL;
162typedef struct ev_watcher_time *WT; 491typedef ev_watcher_time *WT;
163 492
493#define ev_active(w) ((W)(w))->active
494#define ev_at(w) ((WT)(w))->at
495
496#if EV_USE_REALTIME
497/* sig_atomic_t is used to avoid per-thread variables or locking but still */
498/* giving it a reasonably high chance of working on typical architetcures */
499static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
500#endif
501
502#if EV_USE_MONOTONIC
164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 503static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
504#endif
165 505
506#ifndef EV_FD_TO_WIN32_HANDLE
507# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
508#endif
509#ifndef EV_WIN32_HANDLE_TO_FD
510# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
511#endif
512#ifndef EV_WIN32_CLOSE_FD
513# define EV_WIN32_CLOSE_FD(fd) close (fd)
514#endif
515
516#ifdef _WIN32
166#include "ev_win32.c" 517# include "ev_win32.c"
518#endif
167 519
168/*****************************************************************************/ 520/*****************************************************************************/
169 521
170static void (*syserr_cb)(const char *msg); 522static void (*syserr_cb)(const char *msg);
171 523
524void
172void ev_set_syserr_cb (void (*cb)(const char *msg)) 525ev_set_syserr_cb (void (*cb)(const char *msg))
173{ 526{
174 syserr_cb = cb; 527 syserr_cb = cb;
175} 528}
176 529
177static void 530static void noinline
178syserr (const char *msg) 531ev_syserr (const char *msg)
179{ 532{
180 if (!msg) 533 if (!msg)
181 msg = "(libev) system error"; 534 msg = "(libev) system error";
182 535
183 if (syserr_cb) 536 if (syserr_cb)
187 perror (msg); 540 perror (msg);
188 abort (); 541 abort ();
189 } 542 }
190} 543}
191 544
545static void *
546ev_realloc_emul (void *ptr, long size)
547{
548 /* some systems, notably openbsd and darwin, fail to properly
549 * implement realloc (x, 0) (as required by both ansi c-98 and
550 * the single unix specification, so work around them here.
551 */
552
553 if (size)
554 return realloc (ptr, size);
555
556 free (ptr);
557 return 0;
558}
559
192static void *(*alloc)(void *ptr, long size); 560static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
193 561
562void
194void ev_set_allocator (void *(*cb)(void *ptr, long size)) 563ev_set_allocator (void *(*cb)(void *ptr, long size))
195{ 564{
196 alloc = cb; 565 alloc = cb;
197} 566}
198 567
199static void * 568inline_speed void *
200ev_realloc (void *ptr, long size) 569ev_realloc (void *ptr, long size)
201{ 570{
202 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 571 ptr = alloc (ptr, size);
203 572
204 if (!ptr && size) 573 if (!ptr && size)
205 { 574 {
206 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 575 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
207 abort (); 576 abort ();
213#define ev_malloc(size) ev_realloc (0, (size)) 582#define ev_malloc(size) ev_realloc (0, (size))
214#define ev_free(ptr) ev_realloc ((ptr), 0) 583#define ev_free(ptr) ev_realloc ((ptr), 0)
215 584
216/*****************************************************************************/ 585/*****************************************************************************/
217 586
587/* set in reify when reification needed */
588#define EV_ANFD_REIFY 1
589
590/* file descriptor info structure */
218typedef struct 591typedef struct
219{ 592{
220 WL head; 593 WL head;
221 unsigned char events; 594 unsigned char events; /* the events watched for */
595 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
596 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
222 unsigned char reify; 597 unsigned char unused;
598#if EV_USE_EPOLL
599 unsigned int egen; /* generation counter to counter epoll bugs */
600#endif
601#if EV_SELECT_IS_WINSOCKET
602 SOCKET handle;
603#endif
223} ANFD; 604} ANFD;
224 605
606/* stores the pending event set for a given watcher */
225typedef struct 607typedef struct
226{ 608{
227 W w; 609 W w;
228 int events; 610 int events; /* the pending event set for the given watcher */
229} ANPENDING; 611} ANPENDING;
612
613#if EV_USE_INOTIFY
614/* hash table entry per inotify-id */
615typedef struct
616{
617 WL head;
618} ANFS;
619#endif
620
621/* Heap Entry */
622#if EV_HEAP_CACHE_AT
623 /* a heap element */
624 typedef struct {
625 ev_tstamp at;
626 WT w;
627 } ANHE;
628
629 #define ANHE_w(he) (he).w /* access watcher, read-write */
630 #define ANHE_at(he) (he).at /* access cached at, read-only */
631 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
632#else
633 /* a heap element */
634 typedef WT ANHE;
635
636 #define ANHE_w(he) (he)
637 #define ANHE_at(he) (he)->at
638 #define ANHE_at_cache(he)
639#endif
230 640
231#if EV_MULTIPLICITY 641#if EV_MULTIPLICITY
232 642
233 struct ev_loop 643 struct ev_loop
234 { 644 {
235 ev_tstamp ev_rt_now; 645 ev_tstamp ev_rt_now;
646 #define ev_rt_now ((loop)->ev_rt_now)
236 #define VAR(name,decl) decl; 647 #define VAR(name,decl) decl;
237 #include "ev_vars.h" 648 #include "ev_vars.h"
238 #undef VAR 649 #undef VAR
239 }; 650 };
240 #include "ev_wrap.h" 651 #include "ev_wrap.h"
241 652
242 struct ev_loop default_loop_struct; 653 static struct ev_loop default_loop_struct;
243 static struct ev_loop *default_loop; 654 struct ev_loop *ev_default_loop_ptr;
244 655
245#else 656#else
246 657
247 ev_tstamp ev_rt_now; 658 ev_tstamp ev_rt_now;
248 #define VAR(name,decl) static decl; 659 #define VAR(name,decl) static decl;
249 #include "ev_vars.h" 660 #include "ev_vars.h"
250 #undef VAR 661 #undef VAR
251 662
252 static int default_loop; 663 static int ev_default_loop_ptr;
253 664
254#endif 665#endif
666
667#if EV_MINIMAL < 2
668# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
669# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
670# define EV_INVOKE_PENDING invoke_cb (EV_A)
671#else
672# define EV_RELEASE_CB (void)0
673# define EV_ACQUIRE_CB (void)0
674# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
675#endif
676
677#define EVUNLOOP_RECURSE 0x80
255 678
256/*****************************************************************************/ 679/*****************************************************************************/
257 680
681#ifndef EV_HAVE_EV_TIME
258ev_tstamp 682ev_tstamp
259ev_time (void) 683ev_time (void)
260{ 684{
261#if EV_USE_REALTIME 685#if EV_USE_REALTIME
686 if (expect_true (have_realtime))
687 {
262 struct timespec ts; 688 struct timespec ts;
263 clock_gettime (CLOCK_REALTIME, &ts); 689 clock_gettime (CLOCK_REALTIME, &ts);
264 return ts.tv_sec + ts.tv_nsec * 1e-9; 690 return ts.tv_sec + ts.tv_nsec * 1e-9;
265#else 691 }
692#endif
693
266 struct timeval tv; 694 struct timeval tv;
267 gettimeofday (&tv, 0); 695 gettimeofday (&tv, 0);
268 return tv.tv_sec + tv.tv_usec * 1e-6; 696 return tv.tv_sec + tv.tv_usec * 1e-6;
269#endif
270} 697}
698#endif
271 699
272inline ev_tstamp 700inline_size ev_tstamp
273get_clock (void) 701get_clock (void)
274{ 702{
275#if EV_USE_MONOTONIC 703#if EV_USE_MONOTONIC
276 if (expect_true (have_monotonic)) 704 if (expect_true (have_monotonic))
277 { 705 {
290{ 718{
291 return ev_rt_now; 719 return ev_rt_now;
292} 720}
293#endif 721#endif
294 722
295#define array_roundsize(type,n) ((n) | 4 & ~3) 723void
724ev_sleep (ev_tstamp delay)
725{
726 if (delay > 0.)
727 {
728#if EV_USE_NANOSLEEP
729 struct timespec ts;
730
731 ts.tv_sec = (time_t)delay;
732 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
733
734 nanosleep (&ts, 0);
735#elif defined(_WIN32)
736 Sleep ((unsigned long)(delay * 1e3));
737#else
738 struct timeval tv;
739
740 tv.tv_sec = (time_t)delay;
741 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
742
743 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
744 /* something not guaranteed by newer posix versions, but guaranteed */
745 /* by older ones */
746 select (0, 0, 0, 0, &tv);
747#endif
748 }
749}
750
751/*****************************************************************************/
752
753#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
754
755/* find a suitable new size for the given array, */
756/* hopefully by rounding to a ncie-to-malloc size */
757inline_size int
758array_nextsize (int elem, int cur, int cnt)
759{
760 int ncur = cur + 1;
761
762 do
763 ncur <<= 1;
764 while (cnt > ncur);
765
766 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
767 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
768 {
769 ncur *= elem;
770 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
771 ncur = ncur - sizeof (void *) * 4;
772 ncur /= elem;
773 }
774
775 return ncur;
776}
777
778static noinline void *
779array_realloc (int elem, void *base, int *cur, int cnt)
780{
781 *cur = array_nextsize (elem, *cur, cnt);
782 return ev_realloc (base, elem * *cur);
783}
784
785#define array_init_zero(base,count) \
786 memset ((void *)(base), 0, sizeof (*(base)) * (count))
296 787
297#define array_needsize(type,base,cur,cnt,init) \ 788#define array_needsize(type,base,cur,cnt,init) \
298 if (expect_false ((cnt) > cur)) \ 789 if (expect_false ((cnt) > (cur))) \
299 { \ 790 { \
300 int newcnt = cur; \ 791 int ocur_ = (cur); \
301 do \ 792 (base) = (type *)array_realloc \
302 { \ 793 (sizeof (type), (base), &(cur), (cnt)); \
303 newcnt = array_roundsize (type, newcnt << 1); \ 794 init ((base) + (ocur_), (cur) - ocur_); \
304 } \
305 while ((cnt) > newcnt); \
306 \
307 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
308 init (base + cur, newcnt - cur); \
309 cur = newcnt; \
310 } 795 }
311 796
797#if 0
312#define array_slim(type,stem) \ 798#define array_slim(type,stem) \
313 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 799 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
314 { \ 800 { \
315 stem ## max = array_roundsize (stem ## cnt >> 1); \ 801 stem ## max = array_roundsize (stem ## cnt >> 1); \
316 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 802 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
317 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 803 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
318 } 804 }
319 805#endif
320/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
321/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
322#define array_free_microshit(stem) \
323 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
324 806
325#define array_free(stem, idx) \ 807#define array_free(stem, idx) \
326 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 808 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
327 809
328/*****************************************************************************/ 810/*****************************************************************************/
329 811
330static void 812/* dummy callback for pending events */
331anfds_init (ANFD *base, int count) 813static void noinline
814pendingcb (EV_P_ ev_prepare *w, int revents)
332{ 815{
333 while (count--)
334 {
335 base->head = 0;
336 base->events = EV_NONE;
337 base->reify = 0;
338
339 ++base;
340 }
341} 816}
342 817
343void 818void noinline
344ev_feed_event (EV_P_ void *w, int revents) 819ev_feed_event (EV_P_ void *w, int revents)
345{ 820{
346 W w_ = (W)w; 821 W w_ = (W)w;
822 int pri = ABSPRI (w_);
347 823
348 if (w_->pending) 824 if (expect_false (w_->pending))
825 pendings [pri][w_->pending - 1].events |= revents;
826 else
349 { 827 {
828 w_->pending = ++pendingcnt [pri];
829 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
830 pendings [pri][w_->pending - 1].w = w_;
350 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 831 pendings [pri][w_->pending - 1].events = revents;
351 return;
352 } 832 }
353
354 w_->pending = ++pendingcnt [ABSPRI (w_)];
355 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
356 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
357 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
358} 833}
359 834
360static void 835inline_speed void
836feed_reverse (EV_P_ W w)
837{
838 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
839 rfeeds [rfeedcnt++] = w;
840}
841
842inline_size void
843feed_reverse_done (EV_P_ int revents)
844{
845 do
846 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
847 while (rfeedcnt);
848}
849
850inline_speed void
361queue_events (EV_P_ W *events, int eventcnt, int type) 851queue_events (EV_P_ W *events, int eventcnt, int type)
362{ 852{
363 int i; 853 int i;
364 854
365 for (i = 0; i < eventcnt; ++i) 855 for (i = 0; i < eventcnt; ++i)
366 ev_feed_event (EV_A_ events [i], type); 856 ev_feed_event (EV_A_ events [i], type);
367} 857}
368 858
859/*****************************************************************************/
860
369inline void 861inline_speed void
370fd_event (EV_P_ int fd, int revents) 862fd_event_nc (EV_P_ int fd, int revents)
371{ 863{
372 ANFD *anfd = anfds + fd; 864 ANFD *anfd = anfds + fd;
373 struct ev_io *w; 865 ev_io *w;
374 866
375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 867 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
376 { 868 {
377 int ev = w->events & revents; 869 int ev = w->events & revents;
378 870
379 if (ev) 871 if (ev)
380 ev_feed_event (EV_A_ (W)w, ev); 872 ev_feed_event (EV_A_ (W)w, ev);
381 } 873 }
382} 874}
383 875
876/* do not submit kernel events for fds that have reify set */
877/* because that means they changed while we were polling for new events */
878inline_speed void
879fd_event (EV_P_ int fd, int revents)
880{
881 ANFD *anfd = anfds + fd;
882
883 if (expect_true (!anfd->reify))
884 fd_event_nc (EV_A_ fd, revents);
885}
886
384void 887void
385ev_feed_fd_event (EV_P_ int fd, int revents) 888ev_feed_fd_event (EV_P_ int fd, int revents)
386{ 889{
890 if (fd >= 0 && fd < anfdmax)
387 fd_event (EV_A_ fd, revents); 891 fd_event_nc (EV_A_ fd, revents);
388} 892}
389 893
390/*****************************************************************************/ 894/* make sure the external fd watch events are in-sync */
391 895/* with the kernel/libev internal state */
392static void 896inline_size void
393fd_reify (EV_P) 897fd_reify (EV_P)
394{ 898{
395 int i; 899 int i;
396 900
397 for (i = 0; i < fdchangecnt; ++i) 901 for (i = 0; i < fdchangecnt; ++i)
398 { 902 {
399 int fd = fdchanges [i]; 903 int fd = fdchanges [i];
400 ANFD *anfd = anfds + fd; 904 ANFD *anfd = anfds + fd;
401 struct ev_io *w; 905 ev_io *w;
402 906
403 int events = 0; 907 unsigned char events = 0;
404 908
405 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 909 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
406 events |= w->events; 910 events |= (unsigned char)w->events;
407 911
912#if EV_SELECT_IS_WINSOCKET
913 if (events)
914 {
915 unsigned long arg;
916 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
917 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
918 }
919#endif
920
921 {
922 unsigned char o_events = anfd->events;
923 unsigned char o_reify = anfd->reify;
924
408 anfd->reify = 0; 925 anfd->reify = 0;
409
410 method_modify (EV_A_ fd, anfd->events, events);
411 anfd->events = events; 926 anfd->events = events;
927
928 if (o_events != events || o_reify & EV__IOFDSET)
929 backend_modify (EV_A_ fd, o_events, events);
930 }
412 } 931 }
413 932
414 fdchangecnt = 0; 933 fdchangecnt = 0;
415} 934}
416 935
417static void 936/* something about the given fd changed */
937inline_size void
418fd_change (EV_P_ int fd) 938fd_change (EV_P_ int fd, int flags)
419{ 939{
420 if (anfds [fd].reify) 940 unsigned char reify = anfds [fd].reify;
421 return;
422
423 anfds [fd].reify = 1; 941 anfds [fd].reify |= flags;
424 942
943 if (expect_true (!reify))
944 {
425 ++fdchangecnt; 945 ++fdchangecnt;
426 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 946 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
427 fdchanges [fdchangecnt - 1] = fd; 947 fdchanges [fdchangecnt - 1] = fd;
948 }
428} 949}
429 950
430static void 951/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
952inline_speed void
431fd_kill (EV_P_ int fd) 953fd_kill (EV_P_ int fd)
432{ 954{
433 struct ev_io *w; 955 ev_io *w;
434 956
435 while ((w = (struct ev_io *)anfds [fd].head)) 957 while ((w = (ev_io *)anfds [fd].head))
436 { 958 {
437 ev_io_stop (EV_A_ w); 959 ev_io_stop (EV_A_ w);
438 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 960 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
439 } 961 }
440} 962}
441 963
442static int 964/* check whether the given fd is atcually valid, for error recovery */
965inline_size int
443fd_valid (int fd) 966fd_valid (int fd)
444{ 967{
445#ifdef WIN32 968#ifdef _WIN32
446 return !!win32_get_osfhandle (fd); 969 return _get_osfhandle (fd) != -1;
447#else 970#else
448 return fcntl (fd, F_GETFD) != -1; 971 return fcntl (fd, F_GETFD) != -1;
449#endif 972#endif
450} 973}
451 974
452/* called on EBADF to verify fds */ 975/* called on EBADF to verify fds */
453static void 976static void noinline
454fd_ebadf (EV_P) 977fd_ebadf (EV_P)
455{ 978{
456 int fd; 979 int fd;
457 980
458 for (fd = 0; fd < anfdmax; ++fd) 981 for (fd = 0; fd < anfdmax; ++fd)
459 if (anfds [fd].events) 982 if (anfds [fd].events)
460 if (!fd_valid (fd) == -1 && errno == EBADF) 983 if (!fd_valid (fd) && errno == EBADF)
461 fd_kill (EV_A_ fd); 984 fd_kill (EV_A_ fd);
462} 985}
463 986
464/* called on ENOMEM in select/poll to kill some fds and retry */ 987/* called on ENOMEM in select/poll to kill some fds and retry */
465static void 988static void noinline
466fd_enomem (EV_P) 989fd_enomem (EV_P)
467{ 990{
468 int fd; 991 int fd;
469 992
470 for (fd = anfdmax; fd--; ) 993 for (fd = anfdmax; fd--; )
471 if (anfds [fd].events) 994 if (anfds [fd].events)
472 { 995 {
473 fd_kill (EV_A_ fd); 996 fd_kill (EV_A_ fd);
474 return; 997 break;
475 } 998 }
476} 999}
477 1000
478/* usually called after fork if method needs to re-arm all fds from scratch */ 1001/* usually called after fork if backend needs to re-arm all fds from scratch */
479static void 1002static void noinline
480fd_rearm_all (EV_P) 1003fd_rearm_all (EV_P)
481{ 1004{
482 int fd; 1005 int fd;
483 1006
484 /* this should be highly optimised to not do anything but set a flag */
485 for (fd = 0; fd < anfdmax; ++fd) 1007 for (fd = 0; fd < anfdmax; ++fd)
486 if (anfds [fd].events) 1008 if (anfds [fd].events)
487 { 1009 {
488 anfds [fd].events = 0; 1010 anfds [fd].events = 0;
489 fd_change (EV_A_ fd); 1011 anfds [fd].emask = 0;
1012 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
490 } 1013 }
491} 1014}
492 1015
493/*****************************************************************************/ 1016/*****************************************************************************/
494 1017
1018/*
1019 * the heap functions want a real array index. array index 0 uis guaranteed to not
1020 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1021 * the branching factor of the d-tree.
1022 */
1023
1024/*
1025 * at the moment we allow libev the luxury of two heaps,
1026 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1027 * which is more cache-efficient.
1028 * the difference is about 5% with 50000+ watchers.
1029 */
1030#if EV_USE_4HEAP
1031
1032#define DHEAP 4
1033#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1034#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1035#define UPHEAP_DONE(p,k) ((p) == (k))
1036
1037/* away from the root */
1038inline_speed void
1039downheap (ANHE *heap, int N, int k)
1040{
1041 ANHE he = heap [k];
1042 ANHE *E = heap + N + HEAP0;
1043
1044 for (;;)
1045 {
1046 ev_tstamp minat;
1047 ANHE *minpos;
1048 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1049
1050 /* find minimum child */
1051 if (expect_true (pos + DHEAP - 1 < E))
1052 {
1053 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1054 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1055 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1056 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1057 }
1058 else if (pos < E)
1059 {
1060 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1061 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1062 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1063 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1064 }
1065 else
1066 break;
1067
1068 if (ANHE_at (he) <= minat)
1069 break;
1070
1071 heap [k] = *minpos;
1072 ev_active (ANHE_w (*minpos)) = k;
1073
1074 k = minpos - heap;
1075 }
1076
1077 heap [k] = he;
1078 ev_active (ANHE_w (he)) = k;
1079}
1080
1081#else /* 4HEAP */
1082
1083#define HEAP0 1
1084#define HPARENT(k) ((k) >> 1)
1085#define UPHEAP_DONE(p,k) (!(p))
1086
1087/* away from the root */
1088inline_speed void
1089downheap (ANHE *heap, int N, int k)
1090{
1091 ANHE he = heap [k];
1092
1093 for (;;)
1094 {
1095 int c = k << 1;
1096
1097 if (c >= N + HEAP0)
1098 break;
1099
1100 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1101 ? 1 : 0;
1102
1103 if (ANHE_at (he) <= ANHE_at (heap [c]))
1104 break;
1105
1106 heap [k] = heap [c];
1107 ev_active (ANHE_w (heap [k])) = k;
1108
1109 k = c;
1110 }
1111
1112 heap [k] = he;
1113 ev_active (ANHE_w (he)) = k;
1114}
1115#endif
1116
1117/* towards the root */
1118inline_speed void
1119upheap (ANHE *heap, int k)
1120{
1121 ANHE he = heap [k];
1122
1123 for (;;)
1124 {
1125 int p = HPARENT (k);
1126
1127 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1128 break;
1129
1130 heap [k] = heap [p];
1131 ev_active (ANHE_w (heap [k])) = k;
1132 k = p;
1133 }
1134
1135 heap [k] = he;
1136 ev_active (ANHE_w (he)) = k;
1137}
1138
1139/* move an element suitably so it is in a correct place */
1140inline_size void
1141adjustheap (ANHE *heap, int N, int k)
1142{
1143 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1144 upheap (heap, k);
1145 else
1146 downheap (heap, N, k);
1147}
1148
1149/* rebuild the heap: this function is used only once and executed rarely */
1150inline_size void
1151reheap (ANHE *heap, int N)
1152{
1153 int i;
1154
1155 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1156 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1157 for (i = 0; i < N; ++i)
1158 upheap (heap, i + HEAP0);
1159}
1160
1161/*****************************************************************************/
1162
1163/* associate signal watchers to a signal signal */
1164typedef struct
1165{
1166 EV_ATOMIC_T pending;
1167#if EV_MULTIPLICITY
1168 EV_P;
1169#endif
1170 WL head;
1171} ANSIG;
1172
1173static ANSIG signals [EV_NSIG - 1];
1174
1175/*****************************************************************************/
1176
1177/* used to prepare libev internal fd's */
1178/* this is not fork-safe */
1179inline_speed void
1180fd_intern (int fd)
1181{
1182#ifdef _WIN32
1183 unsigned long arg = 1;
1184 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1185#else
1186 fcntl (fd, F_SETFD, FD_CLOEXEC);
1187 fcntl (fd, F_SETFL, O_NONBLOCK);
1188#endif
1189}
1190
1191static void noinline
1192evpipe_init (EV_P)
1193{
1194 if (!ev_is_active (&pipe_w))
1195 {
1196#if EV_USE_EVENTFD
1197 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1198 if (evfd < 0 && errno == EINVAL)
1199 evfd = eventfd (0, 0);
1200
1201 if (evfd >= 0)
1202 {
1203 evpipe [0] = -1;
1204 fd_intern (evfd); /* doing it twice doesn't hurt */
1205 ev_io_set (&pipe_w, evfd, EV_READ);
1206 }
1207 else
1208#endif
1209 {
1210 while (pipe (evpipe))
1211 ev_syserr ("(libev) error creating signal/async pipe");
1212
1213 fd_intern (evpipe [0]);
1214 fd_intern (evpipe [1]);
1215 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1216 }
1217
1218 ev_io_start (EV_A_ &pipe_w);
1219 ev_unref (EV_A); /* watcher should not keep loop alive */
1220 }
1221}
1222
1223inline_size void
1224evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1225{
1226 if (!*flag)
1227 {
1228 int old_errno = errno; /* save errno because write might clobber it */
1229
1230 *flag = 1;
1231
1232#if EV_USE_EVENTFD
1233 if (evfd >= 0)
1234 {
1235 uint64_t counter = 1;
1236 write (evfd, &counter, sizeof (uint64_t));
1237 }
1238 else
1239#endif
1240 write (evpipe [1], &old_errno, 1);
1241
1242 errno = old_errno;
1243 }
1244}
1245
1246/* called whenever the libev signal pipe */
1247/* got some events (signal, async) */
495static void 1248static void
496upheap (WT *heap, int k) 1249pipecb (EV_P_ ev_io *iow, int revents)
497{ 1250{
498 WT w = heap [k]; 1251 int i;
499 1252
500 while (k && heap [k >> 1]->at > w->at) 1253#if EV_USE_EVENTFD
501 { 1254 if (evfd >= 0)
502 heap [k] = heap [k >> 1];
503 ((W)heap [k])->active = k + 1;
504 k >>= 1;
505 } 1255 {
1256 uint64_t counter;
1257 read (evfd, &counter, sizeof (uint64_t));
1258 }
1259 else
1260#endif
1261 {
1262 char dummy;
1263 read (evpipe [0], &dummy, 1);
1264 }
506 1265
507 heap [k] = w; 1266 if (sig_pending)
508 ((W)heap [k])->active = k + 1; 1267 {
1268 sig_pending = 0;
509 1269
1270 for (i = EV_NSIG - 1; i--; )
1271 if (expect_false (signals [i].pending))
1272 ev_feed_signal_event (EV_A_ i + 1);
1273 }
1274
1275#if EV_ASYNC_ENABLE
1276 if (async_pending)
1277 {
1278 async_pending = 0;
1279
1280 for (i = asynccnt; i--; )
1281 if (asyncs [i]->sent)
1282 {
1283 asyncs [i]->sent = 0;
1284 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1285 }
1286 }
1287#endif
510} 1288}
1289
1290/*****************************************************************************/
511 1291
512static void 1292static void
513downheap (WT *heap, int N, int k)
514{
515 WT w = heap [k];
516
517 while (k < (N >> 1))
518 {
519 int j = k << 1;
520
521 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
522 ++j;
523
524 if (w->at <= heap [j]->at)
525 break;
526
527 heap [k] = heap [j];
528 ((W)heap [k])->active = k + 1;
529 k = j;
530 }
531
532 heap [k] = w;
533 ((W)heap [k])->active = k + 1;
534}
535
536inline void
537adjustheap (WT *heap, int N, int k, ev_tstamp at)
538{
539 ev_tstamp old_at = heap [k]->at;
540 heap [k]->at = at;
541
542 if (old_at < at)
543 downheap (heap, N, k);
544 else
545 upheap (heap, k);
546}
547
548/*****************************************************************************/
549
550typedef struct
551{
552 WL head;
553 sig_atomic_t volatile gotsig;
554} ANSIG;
555
556static ANSIG *signals;
557static int signalmax;
558
559static int sigpipe [2];
560static sig_atomic_t volatile gotsig;
561static struct ev_io sigev;
562
563static void
564signals_init (ANSIG *base, int count)
565{
566 while (count--)
567 {
568 base->head = 0;
569 base->gotsig = 0;
570
571 ++base;
572 }
573}
574
575static void
576sighandler (int signum) 1293ev_sighandler (int signum)
577{ 1294{
1295#if EV_MULTIPLICITY
1296 EV_P = signals [signum - 1].loop;
1297#endif
1298
578#if WIN32 1299#if _WIN32
579 signal (signum, sighandler); 1300 signal (signum, ev_sighandler);
580#endif 1301#endif
581 1302
582 signals [signum - 1].gotsig = 1; 1303 signals [signum - 1].pending = 1;
583 1304 evpipe_write (EV_A_ &sig_pending);
584 if (!gotsig)
585 {
586 int old_errno = errno;
587 gotsig = 1;
588#ifdef WIN32
589 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
590#else
591 write (sigpipe [1], &signum, 1);
592#endif
593 errno = old_errno;
594 }
595} 1305}
596 1306
597void 1307void noinline
598ev_feed_signal_event (EV_P_ int signum) 1308ev_feed_signal_event (EV_P_ int signum)
599{ 1309{
600 WL w; 1310 WL w;
601 1311
1312 if (expect_false (signum <= 0 || signum > EV_NSIG))
1313 return;
1314
1315 --signum;
1316
602#if EV_MULTIPLICITY 1317#if EV_MULTIPLICITY
603 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 1318 /* it is permissible to try to feed a signal to the wrong loop */
604#endif 1319 /* or, likely more useful, feeding a signal nobody is waiting for */
605 1320
606 --signum; 1321 if (expect_false (signals [signum].loop != EV_A))
607
608 if (signum < 0 || signum >= signalmax)
609 return; 1322 return;
1323#endif
610 1324
611 signals [signum].gotsig = 0; 1325 signals [signum].pending = 0;
612 1326
613 for (w = signals [signum].head; w; w = w->next) 1327 for (w = signals [signum].head; w; w = w->next)
614 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1328 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
615} 1329}
616 1330
1331#if EV_USE_SIGNALFD
617static void 1332static void
618sigcb (EV_P_ struct ev_io *iow, int revents) 1333sigfdcb (EV_P_ ev_io *iow, int revents)
619{ 1334{
620 int signum; 1335 struct signalfd_siginfo si[2], *sip; /* these structs are big */
621 1336
622#ifdef WIN32 1337 for (;;)
623 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT); 1338 {
624#else 1339 ssize_t res = read (sigfd, si, sizeof (si));
625 read (sigpipe [0], &revents, 1);
626#endif
627 gotsig = 0;
628 1340
629 for (signum = signalmax; signum--; ) 1341 /* not ISO-C, as res might be -1, but works with SuS */
630 if (signals [signum].gotsig) 1342 for (sip = si; (char *)sip < (char *)si + res; ++sip)
631 ev_feed_signal_event (EV_A_ signum + 1); 1343 ev_feed_signal_event (EV_A_ sip->ssi_signo);
632}
633 1344
634static void 1345 if (res < (ssize_t)sizeof (si))
635siginit (EV_P) 1346 break;
636{ 1347 }
637#ifndef WIN32
638 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
639 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
640
641 /* rather than sort out wether we really need nb, set it */
642 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
643 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
644#endif
645
646 ev_io_set (&sigev, sigpipe [0], EV_READ);
647 ev_io_start (EV_A_ &sigev);
648 ev_unref (EV_A); /* child watcher should not keep loop alive */
649} 1348}
1349#endif
650 1350
651/*****************************************************************************/ 1351/*****************************************************************************/
652 1352
653static struct ev_child *childs [PID_HASHSIZE]; 1353static WL childs [EV_PID_HASHSIZE];
654 1354
655#ifndef WIN32 1355#ifndef _WIN32
656 1356
657static struct ev_signal childev; 1357static ev_signal childev;
1358
1359#ifndef WIFCONTINUED
1360# define WIFCONTINUED(status) 0
1361#endif
1362
1363/* handle a single child status event */
1364inline_speed void
1365child_reap (EV_P_ int chain, int pid, int status)
1366{
1367 ev_child *w;
1368 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1369
1370 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1371 {
1372 if ((w->pid == pid || !w->pid)
1373 && (!traced || (w->flags & 1)))
1374 {
1375 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1376 w->rpid = pid;
1377 w->rstatus = status;
1378 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1379 }
1380 }
1381}
658 1382
659#ifndef WCONTINUED 1383#ifndef WCONTINUED
660# define WCONTINUED 0 1384# define WCONTINUED 0
661#endif 1385#endif
662 1386
1387/* called on sigchld etc., calls waitpid */
663static void 1388static void
664child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
665{
666 struct ev_child *w;
667
668 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
669 if (w->pid == pid || !w->pid)
670 {
671 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
672 w->rpid = pid;
673 w->rstatus = status;
674 ev_feed_event (EV_A_ (W)w, EV_CHILD);
675 }
676}
677
678static void
679childcb (EV_P_ struct ev_signal *sw, int revents) 1389childcb (EV_P_ ev_signal *sw, int revents)
680{ 1390{
681 int pid, status; 1391 int pid, status;
682 1392
1393 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
683 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1394 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
684 { 1395 if (!WCONTINUED
1396 || errno != EINVAL
1397 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1398 return;
1399
685 /* make sure we are called again until all childs have been reaped */ 1400 /* make sure we are called again until all children have been reaped */
1401 /* we need to do it this way so that the callback gets called before we continue */
686 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1402 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
687 1403
688 child_reap (EV_A_ sw, pid, pid, status); 1404 child_reap (EV_A_ pid, pid, status);
1405 if (EV_PID_HASHSIZE > 1)
689 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1406 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
690 }
691} 1407}
692 1408
693#endif 1409#endif
694 1410
695/*****************************************************************************/ 1411/*****************************************************************************/
696 1412
1413#if EV_USE_PORT
1414# include "ev_port.c"
1415#endif
697#if EV_USE_KQUEUE 1416#if EV_USE_KQUEUE
698# include "ev_kqueue.c" 1417# include "ev_kqueue.c"
699#endif 1418#endif
700#if EV_USE_EPOLL 1419#if EV_USE_EPOLL
701# include "ev_epoll.c" 1420# include "ev_epoll.c"
718{ 1437{
719 return EV_VERSION_MINOR; 1438 return EV_VERSION_MINOR;
720} 1439}
721 1440
722/* return true if we are running with elevated privileges and should ignore env variables */ 1441/* return true if we are running with elevated privileges and should ignore env variables */
723static int 1442int inline_size
724enable_secure (void) 1443enable_secure (void)
725{ 1444{
726#ifdef WIN32 1445#ifdef _WIN32
727 return 0; 1446 return 0;
728#else 1447#else
729 return getuid () != geteuid () 1448 return getuid () != geteuid ()
730 || getgid () != getegid (); 1449 || getgid () != getegid ();
731#endif 1450#endif
732} 1451}
733 1452
734int 1453unsigned int
735ev_method (EV_P) 1454ev_supported_backends (void)
736{ 1455{
737 return method; 1456 unsigned int flags = 0;
738}
739 1457
740static void 1458 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
741loop_init (EV_P_ int methods) 1459 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1460 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1461 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1462 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1463
1464 return flags;
1465}
1466
1467unsigned int
1468ev_recommended_backends (void)
742{ 1469{
743 if (!method) 1470 unsigned int flags = ev_supported_backends ();
1471
1472#ifndef __NetBSD__
1473 /* kqueue is borked on everything but netbsd apparently */
1474 /* it usually doesn't work correctly on anything but sockets and pipes */
1475 flags &= ~EVBACKEND_KQUEUE;
1476#endif
1477#ifdef __APPLE__
1478 /* only select works correctly on that "unix-certified" platform */
1479 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1480 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1481#endif
1482
1483 return flags;
1484}
1485
1486unsigned int
1487ev_embeddable_backends (void)
1488{
1489 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1490
1491 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1492 /* please fix it and tell me how to detect the fix */
1493 flags &= ~EVBACKEND_EPOLL;
1494
1495 return flags;
1496}
1497
1498unsigned int
1499ev_backend (EV_P)
1500{
1501 return backend;
1502}
1503
1504#if EV_MINIMAL < 2
1505unsigned int
1506ev_loop_count (EV_P)
1507{
1508 return loop_count;
1509}
1510
1511unsigned int
1512ev_loop_depth (EV_P)
1513{
1514 return loop_depth;
1515}
1516
1517void
1518ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1519{
1520 io_blocktime = interval;
1521}
1522
1523void
1524ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1525{
1526 timeout_blocktime = interval;
1527}
1528
1529void
1530ev_set_userdata (EV_P_ void *data)
1531{
1532 userdata = data;
1533}
1534
1535void *
1536ev_userdata (EV_P)
1537{
1538 return userdata;
1539}
1540
1541void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1542{
1543 invoke_cb = invoke_pending_cb;
1544}
1545
1546void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1547{
1548 release_cb = release;
1549 acquire_cb = acquire;
1550}
1551#endif
1552
1553/* initialise a loop structure, must be zero-initialised */
1554static void noinline
1555loop_init (EV_P_ unsigned int flags)
1556{
1557 if (!backend)
744 { 1558 {
1559#if EV_USE_REALTIME
1560 if (!have_realtime)
1561 {
1562 struct timespec ts;
1563
1564 if (!clock_gettime (CLOCK_REALTIME, &ts))
1565 have_realtime = 1;
1566 }
1567#endif
1568
745#if EV_USE_MONOTONIC 1569#if EV_USE_MONOTONIC
1570 if (!have_monotonic)
1571 {
1572 struct timespec ts;
1573
1574 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1575 have_monotonic = 1;
1576 }
1577#endif
1578
1579 /* pid check not overridable via env */
1580#ifndef _WIN32
1581 if (flags & EVFLAG_FORKCHECK)
1582 curpid = getpid ();
1583#endif
1584
1585 if (!(flags & EVFLAG_NOENV)
1586 && !enable_secure ()
1587 && getenv ("LIBEV_FLAGS"))
1588 flags = atoi (getenv ("LIBEV_FLAGS"));
1589
1590 ev_rt_now = ev_time ();
1591 mn_now = get_clock ();
1592 now_floor = mn_now;
1593 rtmn_diff = ev_rt_now - mn_now;
1594#if EV_MINIMAL < 2
1595 invoke_cb = ev_invoke_pending;
1596#endif
1597
1598 io_blocktime = 0.;
1599 timeout_blocktime = 0.;
1600 backend = 0;
1601 backend_fd = -1;
1602 sig_pending = 0;
1603#if EV_ASYNC_ENABLE
1604 async_pending = 0;
1605#endif
1606#if EV_USE_INOTIFY
1607 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1608#endif
1609#if EV_USE_SIGNALFD
1610 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1611#endif
1612
1613 if (!(flags & 0x0000ffffU))
1614 flags |= ev_recommended_backends ();
1615
1616#if EV_USE_PORT
1617 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1618#endif
1619#if EV_USE_KQUEUE
1620 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1621#endif
1622#if EV_USE_EPOLL
1623 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1624#endif
1625#if EV_USE_POLL
1626 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1627#endif
1628#if EV_USE_SELECT
1629 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1630#endif
1631
1632 ev_prepare_init (&pending_w, pendingcb);
1633
1634 ev_init (&pipe_w, pipecb);
1635 ev_set_priority (&pipe_w, EV_MAXPRI);
1636 }
1637}
1638
1639/* free up a loop structure */
1640static void noinline
1641loop_destroy (EV_P)
1642{
1643 int i;
1644
1645 if (ev_is_active (&pipe_w))
1646 {
1647 /*ev_ref (EV_A);*/
1648 /*ev_io_stop (EV_A_ &pipe_w);*/
1649
1650#if EV_USE_EVENTFD
1651 if (evfd >= 0)
1652 close (evfd);
1653#endif
1654
1655 if (evpipe [0] >= 0)
1656 {
1657 EV_WIN32_CLOSE_FD (evpipe [0]);
1658 EV_WIN32_CLOSE_FD (evpipe [1]);
1659 }
1660 }
1661
1662#if EV_USE_SIGNALFD
1663 if (ev_is_active (&sigfd_w))
1664 close (sigfd);
1665#endif
1666
1667#if EV_USE_INOTIFY
1668 if (fs_fd >= 0)
1669 close (fs_fd);
1670#endif
1671
1672 if (backend_fd >= 0)
1673 close (backend_fd);
1674
1675#if EV_USE_PORT
1676 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1677#endif
1678#if EV_USE_KQUEUE
1679 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1680#endif
1681#if EV_USE_EPOLL
1682 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1683#endif
1684#if EV_USE_POLL
1685 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1686#endif
1687#if EV_USE_SELECT
1688 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1689#endif
1690
1691 for (i = NUMPRI; i--; )
1692 {
1693 array_free (pending, [i]);
1694#if EV_IDLE_ENABLE
1695 array_free (idle, [i]);
1696#endif
1697 }
1698
1699 ev_free (anfds); anfds = 0; anfdmax = 0;
1700
1701 /* have to use the microsoft-never-gets-it-right macro */
1702 array_free (rfeed, EMPTY);
1703 array_free (fdchange, EMPTY);
1704 array_free (timer, EMPTY);
1705#if EV_PERIODIC_ENABLE
1706 array_free (periodic, EMPTY);
1707#endif
1708#if EV_FORK_ENABLE
1709 array_free (fork, EMPTY);
1710#endif
1711 array_free (prepare, EMPTY);
1712 array_free (check, EMPTY);
1713#if EV_ASYNC_ENABLE
1714 array_free (async, EMPTY);
1715#endif
1716
1717 backend = 0;
1718}
1719
1720#if EV_USE_INOTIFY
1721inline_size void infy_fork (EV_P);
1722#endif
1723
1724inline_size void
1725loop_fork (EV_P)
1726{
1727#if EV_USE_PORT
1728 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1729#endif
1730#if EV_USE_KQUEUE
1731 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1732#endif
1733#if EV_USE_EPOLL
1734 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1735#endif
1736#if EV_USE_INOTIFY
1737 infy_fork (EV_A);
1738#endif
1739
1740 if (ev_is_active (&pipe_w))
1741 {
1742 /* this "locks" the handlers against writing to the pipe */
1743 /* while we modify the fd vars */
1744 sig_pending = 1;
1745#if EV_ASYNC_ENABLE
1746 async_pending = 1;
1747#endif
1748
1749 ev_ref (EV_A);
1750 ev_io_stop (EV_A_ &pipe_w);
1751
1752#if EV_USE_EVENTFD
1753 if (evfd >= 0)
1754 close (evfd);
1755#endif
1756
1757 if (evpipe [0] >= 0)
1758 {
1759 EV_WIN32_CLOSE_FD (evpipe [0]);
1760 EV_WIN32_CLOSE_FD (evpipe [1]);
1761 }
1762
1763 evpipe_init (EV_A);
1764 /* now iterate over everything, in case we missed something */
1765 pipecb (EV_A_ &pipe_w, EV_READ);
1766 }
1767
1768 postfork = 0;
1769}
1770
1771#if EV_MULTIPLICITY
1772
1773struct ev_loop *
1774ev_loop_new (unsigned int flags)
1775{
1776 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1777
1778 memset (EV_A, 0, sizeof (struct ev_loop));
1779 loop_init (EV_A_ flags);
1780
1781 if (ev_backend (EV_A))
1782 return EV_A;
1783
1784 return 0;
1785}
1786
1787void
1788ev_loop_destroy (EV_P)
1789{
1790 loop_destroy (EV_A);
1791 ev_free (loop);
1792}
1793
1794void
1795ev_loop_fork (EV_P)
1796{
1797 postfork = 1; /* must be in line with ev_default_fork */
1798}
1799#endif /* multiplicity */
1800
1801#if EV_VERIFY
1802static void noinline
1803verify_watcher (EV_P_ W w)
1804{
1805 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1806
1807 if (w->pending)
1808 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1809}
1810
1811static void noinline
1812verify_heap (EV_P_ ANHE *heap, int N)
1813{
1814 int i;
1815
1816 for (i = HEAP0; i < N + HEAP0; ++i)
1817 {
1818 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1819 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1820 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1821
1822 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1823 }
1824}
1825
1826static void noinline
1827array_verify (EV_P_ W *ws, int cnt)
1828{
1829 while (cnt--)
1830 {
1831 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1832 verify_watcher (EV_A_ ws [cnt]);
1833 }
1834}
1835#endif
1836
1837#if EV_MINIMAL < 2
1838void
1839ev_loop_verify (EV_P)
1840{
1841#if EV_VERIFY
1842 int i;
1843 WL w;
1844
1845 assert (activecnt >= -1);
1846
1847 assert (fdchangemax >= fdchangecnt);
1848 for (i = 0; i < fdchangecnt; ++i)
1849 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1850
1851 assert (anfdmax >= 0);
1852 for (i = 0; i < anfdmax; ++i)
1853 for (w = anfds [i].head; w; w = w->next)
746 { 1854 {
747 struct timespec ts; 1855 verify_watcher (EV_A_ (W)w);
748 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1856 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
749 have_monotonic = 1; 1857 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
750 } 1858 }
751#endif
752 1859
753 ev_rt_now = ev_time (); 1860 assert (timermax >= timercnt);
754 mn_now = get_clock (); 1861 verify_heap (EV_A_ timers, timercnt);
755 now_floor = mn_now;
756 rtmn_diff = ev_rt_now - mn_now;
757 1862
758 if (methods == EVMETHOD_AUTO) 1863#if EV_PERIODIC_ENABLE
759 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1864 assert (periodicmax >= periodiccnt);
760 methods = atoi (getenv ("LIBEV_METHODS")); 1865 verify_heap (EV_A_ periodics, periodiccnt);
761 else
762 methods = EVMETHOD_ANY;
763
764 method = 0;
765#if EV_USE_WIN32
766 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
767#endif
768#if EV_USE_KQUEUE
769 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
770#endif
771#if EV_USE_EPOLL
772 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
773#endif
774#if EV_USE_POLL
775 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
776#endif
777#if EV_USE_SELECT
778 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
779#endif
780
781 ev_init (&sigev, sigcb);
782 ev_set_priority (&sigev, EV_MAXPRI);
783 }
784}
785
786void
787loop_destroy (EV_P)
788{
789 int i;
790
791#if EV_USE_WIN32
792 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
793#endif
794#if EV_USE_KQUEUE
795 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
796#endif
797#if EV_USE_EPOLL
798 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
799#endif
800#if EV_USE_POLL
801 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
802#endif
803#if EV_USE_SELECT
804 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
805#endif 1866#endif
806 1867
807 for (i = NUMPRI; i--; ) 1868 for (i = NUMPRI; i--; )
808 array_free (pending, [i]); 1869 {
1870 assert (pendingmax [i] >= pendingcnt [i]);
1871#if EV_IDLE_ENABLE
1872 assert (idleall >= 0);
1873 assert (idlemax [i] >= idlecnt [i]);
1874 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1875#endif
1876 }
809 1877
810 /* have to use the microsoft-never-gets-it-right macro */ 1878#if EV_FORK_ENABLE
811 array_free_microshit (fdchange); 1879 assert (forkmax >= forkcnt);
812 array_free_microshit (timer); 1880 array_verify (EV_A_ (W *)forks, forkcnt);
813#if EV_PERIODICS 1881#endif
814 array_free_microshit (periodic); 1882
1883#if EV_ASYNC_ENABLE
1884 assert (asyncmax >= asynccnt);
1885 array_verify (EV_A_ (W *)asyncs, asynccnt);
1886#endif
1887
1888 assert (preparemax >= preparecnt);
1889 array_verify (EV_A_ (W *)prepares, preparecnt);
1890
1891 assert (checkmax >= checkcnt);
1892 array_verify (EV_A_ (W *)checks, checkcnt);
1893
1894# if 0
1895 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1896 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
815#endif 1897# endif
816 array_free_microshit (idle);
817 array_free_microshit (prepare);
818 array_free_microshit (check);
819
820 method = 0;
821}
822
823static void
824loop_fork (EV_P)
825{
826#if EV_USE_EPOLL
827 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
828#endif 1898#endif
829#if EV_USE_KQUEUE
830 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
831#endif
832
833 if (ev_is_active (&sigev))
834 {
835 /* default loop */
836
837 ev_ref (EV_A);
838 ev_io_stop (EV_A_ &sigev);
839 close (sigpipe [0]);
840 close (sigpipe [1]);
841
842 while (pipe (sigpipe))
843 syserr ("(libev) error creating pipe");
844
845 siginit (EV_A);
846 }
847
848 postfork = 0;
849} 1899}
1900#endif
850 1901
851#if EV_MULTIPLICITY 1902#if EV_MULTIPLICITY
852struct ev_loop * 1903struct ev_loop *
853ev_loop_new (int methods) 1904ev_default_loop_init (unsigned int flags)
854{
855 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
856
857 memset (loop, 0, sizeof (struct ev_loop));
858
859 loop_init (EV_A_ methods);
860
861 if (ev_method (EV_A))
862 return loop;
863
864 return 0;
865}
866
867void
868ev_loop_destroy (EV_P)
869{
870 loop_destroy (EV_A);
871 ev_free (loop);
872}
873
874void
875ev_loop_fork (EV_P)
876{
877 postfork = 1;
878}
879
880#endif
881
882#if EV_MULTIPLICITY
883struct ev_loop *
884#else 1905#else
885int 1906int
1907ev_default_loop (unsigned int flags)
886#endif 1908#endif
887ev_default_loop (int methods)
888{ 1909{
889 if (sigpipe [0] == sigpipe [1])
890 if (pipe (sigpipe))
891 return 0;
892
893 if (!default_loop) 1910 if (!ev_default_loop_ptr)
894 { 1911 {
895#if EV_MULTIPLICITY 1912#if EV_MULTIPLICITY
896 struct ev_loop *loop = default_loop = &default_loop_struct; 1913 EV_P = ev_default_loop_ptr = &default_loop_struct;
897#else 1914#else
898 default_loop = 1; 1915 ev_default_loop_ptr = 1;
899#endif 1916#endif
900 1917
901 loop_init (EV_A_ methods); 1918 loop_init (EV_A_ flags);
902 1919
903 if (ev_method (EV_A)) 1920 if (ev_backend (EV_A))
904 { 1921 {
905 siginit (EV_A);
906
907#ifndef WIN32 1922#ifndef _WIN32
908 ev_signal_init (&childev, childcb, SIGCHLD); 1923 ev_signal_init (&childev, childcb, SIGCHLD);
909 ev_set_priority (&childev, EV_MAXPRI); 1924 ev_set_priority (&childev, EV_MAXPRI);
910 ev_signal_start (EV_A_ &childev); 1925 ev_signal_start (EV_A_ &childev);
911 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1926 ev_unref (EV_A); /* child watcher should not keep loop alive */
912#endif 1927#endif
913 } 1928 }
914 else 1929 else
915 default_loop = 0; 1930 ev_default_loop_ptr = 0;
916 } 1931 }
917 1932
918 return default_loop; 1933 return ev_default_loop_ptr;
919} 1934}
920 1935
921void 1936void
922ev_default_destroy (void) 1937ev_default_destroy (void)
923{ 1938{
924#if EV_MULTIPLICITY 1939#if EV_MULTIPLICITY
925 struct ev_loop *loop = default_loop; 1940 EV_P = ev_default_loop_ptr;
926#endif 1941#endif
927 1942
1943 ev_default_loop_ptr = 0;
1944
928#ifndef WIN32 1945#ifndef _WIN32
929 ev_ref (EV_A); /* child watcher */ 1946 ev_ref (EV_A); /* child watcher */
930 ev_signal_stop (EV_A_ &childev); 1947 ev_signal_stop (EV_A_ &childev);
931#endif 1948#endif
932 1949
933 ev_ref (EV_A); /* signal watcher */
934 ev_io_stop (EV_A_ &sigev);
935
936 close (sigpipe [0]); sigpipe [0] = 0;
937 close (sigpipe [1]); sigpipe [1] = 0;
938
939 loop_destroy (EV_A); 1950 loop_destroy (EV_A);
940} 1951}
941 1952
942void 1953void
943ev_default_fork (void) 1954ev_default_fork (void)
944{ 1955{
945#if EV_MULTIPLICITY 1956#if EV_MULTIPLICITY
946 struct ev_loop *loop = default_loop; 1957 EV_P = ev_default_loop_ptr;
947#endif 1958#endif
948 1959
949 if (method) 1960 postfork = 1; /* must be in line with ev_loop_fork */
950 postfork = 1;
951} 1961}
952 1962
953/*****************************************************************************/ 1963/*****************************************************************************/
954 1964
955static int 1965void
956any_pending (EV_P) 1966ev_invoke (EV_P_ void *w, int revents)
1967{
1968 EV_CB_INVOKE ((W)w, revents);
1969}
1970
1971unsigned int
1972ev_pending_count (EV_P)
957{ 1973{
958 int pri; 1974 int pri;
1975 unsigned int count = 0;
959 1976
960 for (pri = NUMPRI; pri--; ) 1977 for (pri = NUMPRI; pri--; )
961 if (pendingcnt [pri]) 1978 count += pendingcnt [pri];
962 return 1;
963 1979
964 return 0; 1980 return count;
965} 1981}
966 1982
967static void 1983void noinline
968call_pending (EV_P) 1984ev_invoke_pending (EV_P)
969{ 1985{
970 int pri; 1986 int pri;
971 1987
972 for (pri = NUMPRI; pri--; ) 1988 for (pri = NUMPRI; pri--; )
973 while (pendingcnt [pri]) 1989 while (pendingcnt [pri])
974 { 1990 {
975 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1991 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
976 1992
977 if (p->w) 1993 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
978 { 1994 /* ^ this is no longer true, as pending_w could be here */
1995
979 p->w->pending = 0; 1996 p->w->pending = 0;
980 EV_CB_INVOKE (p->w, p->events); 1997 EV_CB_INVOKE (p->w, p->events);
981 } 1998 EV_FREQUENT_CHECK;
982 } 1999 }
983} 2000}
984 2001
985static void 2002#if EV_IDLE_ENABLE
2003/* make idle watchers pending. this handles the "call-idle */
2004/* only when higher priorities are idle" logic */
2005inline_size void
2006idle_reify (EV_P)
2007{
2008 if (expect_false (idleall))
2009 {
2010 int pri;
2011
2012 for (pri = NUMPRI; pri--; )
2013 {
2014 if (pendingcnt [pri])
2015 break;
2016
2017 if (idlecnt [pri])
2018 {
2019 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
2020 break;
2021 }
2022 }
2023 }
2024}
2025#endif
2026
2027/* make timers pending */
2028inline_size void
986timers_reify (EV_P) 2029timers_reify (EV_P)
987{ 2030{
2031 EV_FREQUENT_CHECK;
2032
988 while (timercnt && ((WT)timers [0])->at <= mn_now) 2033 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
989 { 2034 {
990 struct ev_timer *w = timers [0]; 2035 do
991
992 assert (("inactive timer on timer heap detected", ev_is_active (w)));
993
994 /* first reschedule or stop timer */
995 if (w->repeat)
996 { 2036 {
2037 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2038
2039 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2040
2041 /* first reschedule or stop timer */
2042 if (w->repeat)
2043 {
2044 ev_at (w) += w->repeat;
2045 if (ev_at (w) < mn_now)
2046 ev_at (w) = mn_now;
2047
997 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2048 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
998 2049
999 ((WT)w)->at += w->repeat; 2050 ANHE_at_cache (timers [HEAP0]);
1000 if (((WT)w)->at < mn_now)
1001 ((WT)w)->at = mn_now;
1002
1003 downheap ((WT *)timers, timercnt, 0); 2051 downheap (timers, timercnt, HEAP0);
2052 }
2053 else
2054 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2055
2056 EV_FREQUENT_CHECK;
2057 feed_reverse (EV_A_ (W)w);
1004 } 2058 }
1005 else 2059 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1006 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1007 2060
1008 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 2061 feed_reverse_done (EV_A_ EV_TIMEOUT);
1009 } 2062 }
1010} 2063}
1011 2064
1012#if EV_PERIODICS 2065#if EV_PERIODIC_ENABLE
1013static void 2066/* make periodics pending */
2067inline_size void
1014periodics_reify (EV_P) 2068periodics_reify (EV_P)
1015{ 2069{
2070 EV_FREQUENT_CHECK;
2071
1016 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 2072 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1017 { 2073 {
1018 struct ev_periodic *w = periodics [0]; 2074 int feed_count = 0;
1019 2075
2076 do
2077 {
2078 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2079
1020 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 2080 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1021 2081
1022 /* first reschedule or stop timer */ 2082 /* first reschedule or stop timer */
2083 if (w->reschedule_cb)
2084 {
2085 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2086
2087 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2088
2089 ANHE_at_cache (periodics [HEAP0]);
2090 downheap (periodics, periodiccnt, HEAP0);
2091 }
2092 else if (w->interval)
2093 {
2094 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2095 /* if next trigger time is not sufficiently in the future, put it there */
2096 /* this might happen because of floating point inexactness */
2097 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2098 {
2099 ev_at (w) += w->interval;
2100
2101 /* if interval is unreasonably low we might still have a time in the past */
2102 /* so correct this. this will make the periodic very inexact, but the user */
2103 /* has effectively asked to get triggered more often than possible */
2104 if (ev_at (w) < ev_rt_now)
2105 ev_at (w) = ev_rt_now;
2106 }
2107
2108 ANHE_at_cache (periodics [HEAP0]);
2109 downheap (periodics, periodiccnt, HEAP0);
2110 }
2111 else
2112 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2113
2114 EV_FREQUENT_CHECK;
2115 feed_reverse (EV_A_ (W)w);
2116 }
2117 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2118
2119 feed_reverse_done (EV_A_ EV_PERIODIC);
2120 }
2121}
2122
2123/* simply recalculate all periodics */
2124/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2125static void noinline
2126periodics_reschedule (EV_P)
2127{
2128 int i;
2129
2130 /* adjust periodics after time jump */
2131 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2132 {
2133 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2134
1023 if (w->reschedule_cb) 2135 if (w->reschedule_cb)
2136 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2137 else if (w->interval)
2138 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2139
2140 ANHE_at_cache (periodics [i]);
2141 }
2142
2143 reheap (periodics, periodiccnt);
2144}
2145#endif
2146
2147/* adjust all timers by a given offset */
2148static void noinline
2149timers_reschedule (EV_P_ ev_tstamp adjust)
2150{
2151 int i;
2152
2153 for (i = 0; i < timercnt; ++i)
2154 {
2155 ANHE *he = timers + i + HEAP0;
2156 ANHE_w (*he)->at += adjust;
2157 ANHE_at_cache (*he);
2158 }
2159}
2160
2161/* fetch new monotonic and realtime times from the kernel */
2162/* also detetc if there was a timejump, and act accordingly */
2163inline_speed void
2164time_update (EV_P_ ev_tstamp max_block)
2165{
2166#if EV_USE_MONOTONIC
2167 if (expect_true (have_monotonic))
2168 {
2169 int i;
2170 ev_tstamp odiff = rtmn_diff;
2171
2172 mn_now = get_clock ();
2173
2174 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2175 /* interpolate in the meantime */
2176 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1024 { 2177 {
1025 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 2178 ev_rt_now = rtmn_diff + mn_now;
1026 2179 return;
1027 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1028 downheap ((WT *)periodics, periodiccnt, 0);
1029 } 2180 }
1030 else if (w->interval)
1031 {
1032 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1033 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1034 downheap ((WT *)periodics, periodiccnt, 0);
1035 }
1036 else
1037 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1038 2181
1039 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1040 }
1041}
1042
1043static void
1044periodics_reschedule (EV_P)
1045{
1046 int i;
1047
1048 /* adjust periodics after time jump */
1049 for (i = 0; i < periodiccnt; ++i)
1050 {
1051 struct ev_periodic *w = periodics [i];
1052
1053 if (w->reschedule_cb)
1054 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1055 else if (w->interval)
1056 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1057 }
1058
1059 /* now rebuild the heap */
1060 for (i = periodiccnt >> 1; i--; )
1061 downheap ((WT *)periodics, periodiccnt, i);
1062}
1063#endif
1064
1065inline int
1066time_update_monotonic (EV_P)
1067{
1068 mn_now = get_clock ();
1069
1070 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1071 {
1072 ev_rt_now = rtmn_diff + mn_now;
1073 return 0;
1074 }
1075 else
1076 {
1077 now_floor = mn_now; 2182 now_floor = mn_now;
1078 ev_rt_now = ev_time (); 2183 ev_rt_now = ev_time ();
1079 return 1;
1080 }
1081}
1082 2184
1083static void 2185 /* loop a few times, before making important decisions.
1084time_update (EV_P) 2186 * on the choice of "4": one iteration isn't enough,
1085{ 2187 * in case we get preempted during the calls to
1086 int i; 2188 * ev_time and get_clock. a second call is almost guaranteed
1087 2189 * to succeed in that case, though. and looping a few more times
1088#if EV_USE_MONOTONIC 2190 * doesn't hurt either as we only do this on time-jumps or
1089 if (expect_true (have_monotonic)) 2191 * in the unlikely event of having been preempted here.
1090 { 2192 */
1091 if (time_update_monotonic (EV_A)) 2193 for (i = 4; --i; )
1092 { 2194 {
1093 ev_tstamp odiff = rtmn_diff;
1094
1095 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1096 {
1097 rtmn_diff = ev_rt_now - mn_now; 2195 rtmn_diff = ev_rt_now - mn_now;
1098 2196
1099 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2197 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1100 return; /* all is well */ 2198 return; /* all is well */
1101 2199
1102 ev_rt_now = ev_time (); 2200 ev_rt_now = ev_time ();
1103 mn_now = get_clock (); 2201 mn_now = get_clock ();
1104 now_floor = mn_now; 2202 now_floor = mn_now;
1105 } 2203 }
1106 2204
2205 /* no timer adjustment, as the monotonic clock doesn't jump */
2206 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1107# if EV_PERIODICS 2207# if EV_PERIODIC_ENABLE
2208 periodics_reschedule (EV_A);
2209# endif
2210 }
2211 else
2212#endif
2213 {
2214 ev_rt_now = ev_time ();
2215
2216 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
2217 {
2218 /* adjust timers. this is easy, as the offset is the same for all of them */
2219 timers_reschedule (EV_A_ ev_rt_now - mn_now);
2220#if EV_PERIODIC_ENABLE
1108 periodics_reschedule (EV_A); 2221 periodics_reschedule (EV_A);
1109# endif 2222#endif
1110 /* no timer adjustment, as the monotonic clock doesn't jump */
1111 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1112 } 2223 }
1113 }
1114 else
1115#endif
1116 {
1117 ev_rt_now = ev_time ();
1118
1119 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1120 {
1121#if EV_PERIODICS
1122 periodics_reschedule (EV_A);
1123#endif
1124
1125 /* adjust timers. this is easy, as the offset is the same for all */
1126 for (i = 0; i < timercnt; ++i)
1127 ((WT)timers [i])->at += ev_rt_now - mn_now;
1128 }
1129 2224
1130 mn_now = ev_rt_now; 2225 mn_now = ev_rt_now;
1131 } 2226 }
1132} 2227}
1133 2228
1134void 2229void
1135ev_ref (EV_P)
1136{
1137 ++activecnt;
1138}
1139
1140void
1141ev_unref (EV_P)
1142{
1143 --activecnt;
1144}
1145
1146static int loop_done;
1147
1148void
1149ev_loop (EV_P_ int flags) 2230ev_loop (EV_P_ int flags)
1150{ 2231{
1151 double block; 2232#if EV_MINIMAL < 2
1152 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 2233 ++loop_depth;
2234#endif
2235
2236 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2237
2238 loop_done = EVUNLOOP_CANCEL;
2239
2240 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1153 2241
1154 do 2242 do
1155 { 2243 {
2244#if EV_VERIFY >= 2
2245 ev_loop_verify (EV_A);
2246#endif
2247
2248#ifndef _WIN32
2249 if (expect_false (curpid)) /* penalise the forking check even more */
2250 if (expect_false (getpid () != curpid))
2251 {
2252 curpid = getpid ();
2253 postfork = 1;
2254 }
2255#endif
2256
2257#if EV_FORK_ENABLE
2258 /* we might have forked, so queue fork handlers */
2259 if (expect_false (postfork))
2260 if (forkcnt)
2261 {
2262 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
2263 EV_INVOKE_PENDING;
2264 }
2265#endif
2266
1156 /* queue check watchers (and execute them) */ 2267 /* queue prepare watchers (and execute them) */
1157 if (expect_false (preparecnt)) 2268 if (expect_false (preparecnt))
1158 { 2269 {
1159 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2270 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1160 call_pending (EV_A); 2271 EV_INVOKE_PENDING;
1161 } 2272 }
2273
2274 if (expect_false (loop_done))
2275 break;
1162 2276
1163 /* we might have forked, so reify kernel state if necessary */ 2277 /* we might have forked, so reify kernel state if necessary */
1164 if (expect_false (postfork)) 2278 if (expect_false (postfork))
1165 loop_fork (EV_A); 2279 loop_fork (EV_A);
1166 2280
1167 /* update fd-related kernel structures */ 2281 /* update fd-related kernel structures */
1168 fd_reify (EV_A); 2282 fd_reify (EV_A);
1169 2283
1170 /* calculate blocking time */ 2284 /* calculate blocking time */
2285 {
2286 ev_tstamp waittime = 0.;
2287 ev_tstamp sleeptime = 0.;
1171 2288
1172 /* we only need this for !monotonic clock or timers, but as we basically 2289 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1173 always have timers, we just calculate it always */
1174#if EV_USE_MONOTONIC
1175 if (expect_true (have_monotonic))
1176 time_update_monotonic (EV_A);
1177 else
1178#endif
1179 { 2290 {
1180 ev_rt_now = ev_time (); 2291 /* remember old timestamp for io_blocktime calculation */
1181 mn_now = ev_rt_now; 2292 ev_tstamp prev_mn_now = mn_now;
1182 }
1183 2293
1184 if (flags & EVLOOP_NONBLOCK || idlecnt) 2294 /* update time to cancel out callback processing overhead */
1185 block = 0.; 2295 time_update (EV_A_ 1e100);
1186 else 2296
1187 {
1188 block = MAX_BLOCKTIME; 2297 waittime = MAX_BLOCKTIME;
1189 2298
1190 if (timercnt) 2299 if (timercnt)
1191 { 2300 {
1192 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 2301 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1193 if (block > to) block = to; 2302 if (waittime > to) waittime = to;
1194 } 2303 }
1195 2304
1196#if EV_PERIODICS 2305#if EV_PERIODIC_ENABLE
1197 if (periodiccnt) 2306 if (periodiccnt)
1198 { 2307 {
1199 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 2308 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1200 if (block > to) block = to; 2309 if (waittime > to) waittime = to;
1201 } 2310 }
1202#endif 2311#endif
1203 2312
1204 if (block < 0.) block = 0.; 2313 /* don't let timeouts decrease the waittime below timeout_blocktime */
2314 if (expect_false (waittime < timeout_blocktime))
2315 waittime = timeout_blocktime;
2316
2317 /* extra check because io_blocktime is commonly 0 */
2318 if (expect_false (io_blocktime))
2319 {
2320 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2321
2322 if (sleeptime > waittime - backend_fudge)
2323 sleeptime = waittime - backend_fudge;
2324
2325 if (expect_true (sleeptime > 0.))
2326 {
2327 ev_sleep (sleeptime);
2328 waittime -= sleeptime;
2329 }
2330 }
1205 } 2331 }
1206 2332
1207 method_poll (EV_A_ block); 2333#if EV_MINIMAL < 2
2334 ++loop_count;
2335#endif
2336 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
2337 backend_poll (EV_A_ waittime);
2338 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1208 2339
1209 /* update ev_rt_now, do magic */ 2340 /* update ev_rt_now, do magic */
1210 time_update (EV_A); 2341 time_update (EV_A_ waittime + sleeptime);
2342 }
1211 2343
1212 /* queue pending timers and reschedule them */ 2344 /* queue pending timers and reschedule them */
1213 timers_reify (EV_A); /* relative timers called last */ 2345 timers_reify (EV_A); /* relative timers called last */
1214#if EV_PERIODICS 2346#if EV_PERIODIC_ENABLE
1215 periodics_reify (EV_A); /* absolute timers called first */ 2347 periodics_reify (EV_A); /* absolute timers called first */
1216#endif 2348#endif
1217 2349
2350#if EV_IDLE_ENABLE
1218 /* queue idle watchers unless io or timers are pending */ 2351 /* queue idle watchers unless other events are pending */
1219 if (idlecnt && !any_pending (EV_A)) 2352 idle_reify (EV_A);
1220 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 2353#endif
1221 2354
1222 /* queue check watchers, to be executed first */ 2355 /* queue check watchers, to be executed first */
1223 if (checkcnt) 2356 if (expect_false (checkcnt))
1224 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2357 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1225 2358
1226 call_pending (EV_A); 2359 EV_INVOKE_PENDING;
1227 } 2360 }
1228 while (activecnt && !loop_done); 2361 while (expect_true (
2362 activecnt
2363 && !loop_done
2364 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2365 ));
1229 2366
1230 if (loop_done != 2) 2367 if (loop_done == EVUNLOOP_ONE)
1231 loop_done = 0; 2368 loop_done = EVUNLOOP_CANCEL;
2369
2370#if EV_MINIMAL < 2
2371 --loop_depth;
2372#endif
1232} 2373}
1233 2374
1234void 2375void
1235ev_unloop (EV_P_ int how) 2376ev_unloop (EV_P_ int how)
1236{ 2377{
1237 loop_done = how; 2378 loop_done = how;
1238} 2379}
1239 2380
2381void
2382ev_ref (EV_P)
2383{
2384 ++activecnt;
2385}
2386
2387void
2388ev_unref (EV_P)
2389{
2390 --activecnt;
2391}
2392
2393void
2394ev_now_update (EV_P)
2395{
2396 time_update (EV_A_ 1e100);
2397}
2398
2399void
2400ev_suspend (EV_P)
2401{
2402 ev_now_update (EV_A);
2403}
2404
2405void
2406ev_resume (EV_P)
2407{
2408 ev_tstamp mn_prev = mn_now;
2409
2410 ev_now_update (EV_A);
2411 timers_reschedule (EV_A_ mn_now - mn_prev);
2412#if EV_PERIODIC_ENABLE
2413 /* TODO: really do this? */
2414 periodics_reschedule (EV_A);
2415#endif
2416}
2417
1240/*****************************************************************************/ 2418/*****************************************************************************/
2419/* singly-linked list management, used when the expected list length is short */
1241 2420
1242inline void 2421inline_size void
1243wlist_add (WL *head, WL elem) 2422wlist_add (WL *head, WL elem)
1244{ 2423{
1245 elem->next = *head; 2424 elem->next = *head;
1246 *head = elem; 2425 *head = elem;
1247} 2426}
1248 2427
1249inline void 2428inline_size void
1250wlist_del (WL *head, WL elem) 2429wlist_del (WL *head, WL elem)
1251{ 2430{
1252 while (*head) 2431 while (*head)
1253 { 2432 {
1254 if (*head == elem) 2433 if (expect_true (*head == elem))
1255 { 2434 {
1256 *head = elem->next; 2435 *head = elem->next;
1257 return; 2436 break;
1258 } 2437 }
1259 2438
1260 head = &(*head)->next; 2439 head = &(*head)->next;
1261 } 2440 }
1262} 2441}
1263 2442
2443/* internal, faster, version of ev_clear_pending */
1264inline void 2444inline_speed void
1265ev_clear_pending (EV_P_ W w) 2445clear_pending (EV_P_ W w)
1266{ 2446{
1267 if (w->pending) 2447 if (w->pending)
1268 { 2448 {
1269 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2449 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1270 w->pending = 0; 2450 w->pending = 0;
1271 } 2451 }
1272} 2452}
1273 2453
2454int
2455ev_clear_pending (EV_P_ void *w)
2456{
2457 W w_ = (W)w;
2458 int pending = w_->pending;
2459
2460 if (expect_true (pending))
2461 {
2462 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2463 p->w = (W)&pending_w;
2464 w_->pending = 0;
2465 return p->events;
2466 }
2467 else
2468 return 0;
2469}
2470
1274inline void 2471inline_size void
2472pri_adjust (EV_P_ W w)
2473{
2474 int pri = ev_priority (w);
2475 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
2476 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
2477 ev_set_priority (w, pri);
2478}
2479
2480inline_speed void
1275ev_start (EV_P_ W w, int active) 2481ev_start (EV_P_ W w, int active)
1276{ 2482{
1277 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 2483 pri_adjust (EV_A_ w);
1278 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1279
1280 w->active = active; 2484 w->active = active;
1281 ev_ref (EV_A); 2485 ev_ref (EV_A);
1282} 2486}
1283 2487
1284inline void 2488inline_size void
1285ev_stop (EV_P_ W w) 2489ev_stop (EV_P_ W w)
1286{ 2490{
1287 ev_unref (EV_A); 2491 ev_unref (EV_A);
1288 w->active = 0; 2492 w->active = 0;
1289} 2493}
1290 2494
1291/*****************************************************************************/ 2495/*****************************************************************************/
1292 2496
1293void 2497void noinline
1294ev_io_start (EV_P_ struct ev_io *w) 2498ev_io_start (EV_P_ ev_io *w)
1295{ 2499{
1296 int fd = w->fd; 2500 int fd = w->fd;
1297 2501
2502 if (expect_false (ev_is_active (w)))
2503 return;
2504
2505 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2506 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2507
2508 EV_FREQUENT_CHECK;
2509
2510 ev_start (EV_A_ (W)w, 1);
2511 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
2512 wlist_add (&anfds[fd].head, (WL)w);
2513
2514 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2515 w->events &= ~EV__IOFDSET;
2516
2517 EV_FREQUENT_CHECK;
2518}
2519
2520void noinline
2521ev_io_stop (EV_P_ ev_io *w)
2522{
2523 clear_pending (EV_A_ (W)w);
2524 if (expect_false (!ev_is_active (w)))
2525 return;
2526
2527 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2528
2529 EV_FREQUENT_CHECK;
2530
2531 wlist_del (&anfds[w->fd].head, (WL)w);
2532 ev_stop (EV_A_ (W)w);
2533
2534 fd_change (EV_A_ w->fd, 1);
2535
2536 EV_FREQUENT_CHECK;
2537}
2538
2539void noinline
2540ev_timer_start (EV_P_ ev_timer *w)
2541{
2542 if (expect_false (ev_is_active (w)))
2543 return;
2544
2545 ev_at (w) += mn_now;
2546
2547 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
2548
2549 EV_FREQUENT_CHECK;
2550
2551 ++timercnt;
2552 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
2553 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
2554 ANHE_w (timers [ev_active (w)]) = (WT)w;
2555 ANHE_at_cache (timers [ev_active (w)]);
2556 upheap (timers, ev_active (w));
2557
2558 EV_FREQUENT_CHECK;
2559
2560 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
2561}
2562
2563void noinline
2564ev_timer_stop (EV_P_ ev_timer *w)
2565{
2566 clear_pending (EV_A_ (W)w);
2567 if (expect_false (!ev_is_active (w)))
2568 return;
2569
2570 EV_FREQUENT_CHECK;
2571
2572 {
2573 int active = ev_active (w);
2574
2575 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2576
2577 --timercnt;
2578
2579 if (expect_true (active < timercnt + HEAP0))
2580 {
2581 timers [active] = timers [timercnt + HEAP0];
2582 adjustheap (timers, timercnt, active);
2583 }
2584 }
2585
2586 EV_FREQUENT_CHECK;
2587
2588 ev_at (w) -= mn_now;
2589
2590 ev_stop (EV_A_ (W)w);
2591}
2592
2593void noinline
2594ev_timer_again (EV_P_ ev_timer *w)
2595{
2596 EV_FREQUENT_CHECK;
2597
1298 if (ev_is_active (w)) 2598 if (ev_is_active (w))
1299 return;
1300
1301 assert (("ev_io_start called with negative fd", fd >= 0));
1302
1303 ev_start (EV_A_ (W)w, 1);
1304 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1305 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1306
1307 fd_change (EV_A_ fd);
1308}
1309
1310void
1311ev_io_stop (EV_P_ struct ev_io *w)
1312{
1313 ev_clear_pending (EV_A_ (W)w);
1314 if (!ev_is_active (w))
1315 return;
1316
1317 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1318
1319 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1320 ev_stop (EV_A_ (W)w);
1321
1322 fd_change (EV_A_ w->fd);
1323}
1324
1325void
1326ev_timer_start (EV_P_ struct ev_timer *w)
1327{
1328 if (ev_is_active (w))
1329 return;
1330
1331 ((WT)w)->at += mn_now;
1332
1333 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1334
1335 ev_start (EV_A_ (W)w, ++timercnt);
1336 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1337 timers [timercnt - 1] = w;
1338 upheap ((WT *)timers, timercnt - 1);
1339
1340 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1341}
1342
1343void
1344ev_timer_stop (EV_P_ struct ev_timer *w)
1345{
1346 ev_clear_pending (EV_A_ (W)w);
1347 if (!ev_is_active (w))
1348 return;
1349
1350 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1351
1352 if (((W)w)->active < timercnt--)
1353 {
1354 timers [((W)w)->active - 1] = timers [timercnt];
1355 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1356 }
1357
1358 ((WT)w)->at -= mn_now;
1359
1360 ev_stop (EV_A_ (W)w);
1361}
1362
1363void
1364ev_timer_again (EV_P_ struct ev_timer *w)
1365{
1366 if (ev_is_active (w))
1367 { 2599 {
1368 if (w->repeat) 2600 if (w->repeat)
1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat); 2601 {
2602 ev_at (w) = mn_now + w->repeat;
2603 ANHE_at_cache (timers [ev_active (w)]);
2604 adjustheap (timers, timercnt, ev_active (w));
2605 }
1370 else 2606 else
1371 ev_timer_stop (EV_A_ w); 2607 ev_timer_stop (EV_A_ w);
1372 } 2608 }
1373 else if (w->repeat) 2609 else if (w->repeat)
2610 {
2611 ev_at (w) = w->repeat;
1374 ev_timer_start (EV_A_ w); 2612 ev_timer_start (EV_A_ w);
1375} 2613 }
1376 2614
2615 EV_FREQUENT_CHECK;
2616}
2617
2618ev_tstamp
2619ev_timer_remaining (EV_P_ ev_timer *w)
2620{
2621 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
2622}
2623
1377#if EV_PERIODICS 2624#if EV_PERIODIC_ENABLE
1378void 2625void noinline
1379ev_periodic_start (EV_P_ struct ev_periodic *w) 2626ev_periodic_start (EV_P_ ev_periodic *w)
1380{ 2627{
1381 if (ev_is_active (w)) 2628 if (expect_false (ev_is_active (w)))
1382 return; 2629 return;
1383 2630
1384 if (w->reschedule_cb) 2631 if (w->reschedule_cb)
1385 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2632 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1386 else if (w->interval) 2633 else if (w->interval)
1387 { 2634 {
1388 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2635 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1389 /* this formula differs from the one in periodic_reify because we do not always round up */ 2636 /* this formula differs from the one in periodic_reify because we do not always round up */
1390 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2637 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1391 } 2638 }
2639 else
2640 ev_at (w) = w->offset;
1392 2641
2642 EV_FREQUENT_CHECK;
2643
2644 ++periodiccnt;
1393 ev_start (EV_A_ (W)w, ++periodiccnt); 2645 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1394 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2646 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1395 periodics [periodiccnt - 1] = w; 2647 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1396 upheap ((WT *)periodics, periodiccnt - 1); 2648 ANHE_at_cache (periodics [ev_active (w)]);
2649 upheap (periodics, ev_active (w));
1397 2650
2651 EV_FREQUENT_CHECK;
2652
1398 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2653 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1399} 2654}
1400 2655
1401void 2656void noinline
1402ev_periodic_stop (EV_P_ struct ev_periodic *w) 2657ev_periodic_stop (EV_P_ ev_periodic *w)
1403{ 2658{
1404 ev_clear_pending (EV_A_ (W)w); 2659 clear_pending (EV_A_ (W)w);
1405 if (!ev_is_active (w)) 2660 if (expect_false (!ev_is_active (w)))
1406 return; 2661 return;
1407 2662
2663 EV_FREQUENT_CHECK;
2664
2665 {
2666 int active = ev_active (w);
2667
1408 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2668 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1409 2669
1410 if (((W)w)->active < periodiccnt--) 2670 --periodiccnt;
2671
2672 if (expect_true (active < periodiccnt + HEAP0))
1411 { 2673 {
1412 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2674 periodics [active] = periodics [periodiccnt + HEAP0];
1413 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2675 adjustheap (periodics, periodiccnt, active);
1414 } 2676 }
2677 }
2678
2679 EV_FREQUENT_CHECK;
1415 2680
1416 ev_stop (EV_A_ (W)w); 2681 ev_stop (EV_A_ (W)w);
1417} 2682}
1418 2683
1419void 2684void noinline
1420ev_periodic_again (EV_P_ struct ev_periodic *w) 2685ev_periodic_again (EV_P_ ev_periodic *w)
1421{ 2686{
1422 /* TODO: use adjustheap and recalculation */ 2687 /* TODO: use adjustheap and recalculation */
1423 ev_periodic_stop (EV_A_ w); 2688 ev_periodic_stop (EV_A_ w);
1424 ev_periodic_start (EV_A_ w); 2689 ev_periodic_start (EV_A_ w);
1425} 2690}
1426#endif 2691#endif
1427 2692
1428void
1429ev_idle_start (EV_P_ struct ev_idle *w)
1430{
1431 if (ev_is_active (w))
1432 return;
1433
1434 ev_start (EV_A_ (W)w, ++idlecnt);
1435 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1436 idles [idlecnt - 1] = w;
1437}
1438
1439void
1440ev_idle_stop (EV_P_ struct ev_idle *w)
1441{
1442 ev_clear_pending (EV_A_ (W)w);
1443 if (ev_is_active (w))
1444 return;
1445
1446 idles [((W)w)->active - 1] = idles [--idlecnt];
1447 ev_stop (EV_A_ (W)w);
1448}
1449
1450void
1451ev_prepare_start (EV_P_ struct ev_prepare *w)
1452{
1453 if (ev_is_active (w))
1454 return;
1455
1456 ev_start (EV_A_ (W)w, ++preparecnt);
1457 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1458 prepares [preparecnt - 1] = w;
1459}
1460
1461void
1462ev_prepare_stop (EV_P_ struct ev_prepare *w)
1463{
1464 ev_clear_pending (EV_A_ (W)w);
1465 if (ev_is_active (w))
1466 return;
1467
1468 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1469 ev_stop (EV_A_ (W)w);
1470}
1471
1472void
1473ev_check_start (EV_P_ struct ev_check *w)
1474{
1475 if (ev_is_active (w))
1476 return;
1477
1478 ev_start (EV_A_ (W)w, ++checkcnt);
1479 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1480 checks [checkcnt - 1] = w;
1481}
1482
1483void
1484ev_check_stop (EV_P_ struct ev_check *w)
1485{
1486 ev_clear_pending (EV_A_ (W)w);
1487 if (!ev_is_active (w))
1488 return;
1489
1490 checks [((W)w)->active - 1] = checks [--checkcnt];
1491 ev_stop (EV_A_ (W)w);
1492}
1493
1494#ifndef SA_RESTART 2693#ifndef SA_RESTART
1495# define SA_RESTART 0 2694# define SA_RESTART 0
1496#endif 2695#endif
1497 2696
1498void 2697void noinline
1499ev_signal_start (EV_P_ struct ev_signal *w) 2698ev_signal_start (EV_P_ ev_signal *w)
1500{ 2699{
2700 if (expect_false (ev_is_active (w)))
2701 return;
2702
2703 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2704
1501#if EV_MULTIPLICITY 2705#if EV_MULTIPLICITY
1502 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2706 assert (("libev: a signal must not be attached to two different loops",
2707 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2708
2709 signals [w->signum - 1].loop = EV_A;
2710#endif
2711
2712 EV_FREQUENT_CHECK;
2713
2714#if EV_USE_SIGNALFD
2715 if (sigfd == -2)
2716 {
2717 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2718 if (sigfd < 0 && errno == EINVAL)
2719 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2720
2721 if (sigfd >= 0)
2722 {
2723 fd_intern (sigfd); /* doing it twice will not hurt */
2724
2725 sigemptyset (&sigfd_set);
2726
2727 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2728 ev_set_priority (&sigfd_w, EV_MAXPRI);
2729 ev_io_start (EV_A_ &sigfd_w);
2730 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2731 }
2732 }
2733
2734 if (sigfd >= 0)
2735 {
2736 /* TODO: check .head */
2737 sigaddset (&sigfd_set, w->signum);
2738 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2739
2740 signalfd (sigfd, &sigfd_set, 0);
2741 }
2742#endif
2743
2744 ev_start (EV_A_ (W)w, 1);
2745 wlist_add (&signals [w->signum - 1].head, (WL)w);
2746
2747 if (!((WL)w)->next)
2748# if EV_USE_SIGNALFD
2749 if (sigfd < 0) /*TODO*/
1503#endif 2750# endif
1504 if (ev_is_active (w)) 2751 {
2752# if _WIN32
2753 evpipe_init (EV_A);
2754
2755 signal (w->signum, ev_sighandler);
2756# else
2757 struct sigaction sa;
2758
2759 evpipe_init (EV_A);
2760
2761 sa.sa_handler = ev_sighandler;
2762 sigfillset (&sa.sa_mask);
2763 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2764 sigaction (w->signum, &sa, 0);
2765
2766 sigemptyset (&sa.sa_mask);
2767 sigaddset (&sa.sa_mask, w->signum);
2768 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2769#endif
2770 }
2771
2772 EV_FREQUENT_CHECK;
2773}
2774
2775void noinline
2776ev_signal_stop (EV_P_ ev_signal *w)
2777{
2778 clear_pending (EV_A_ (W)w);
2779 if (expect_false (!ev_is_active (w)))
1505 return; 2780 return;
1506 2781
1507 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2782 EV_FREQUENT_CHECK;
2783
2784 wlist_del (&signals [w->signum - 1].head, (WL)w);
2785 ev_stop (EV_A_ (W)w);
2786
2787 if (!signals [w->signum - 1].head)
2788 {
2789#if EV_MULTIPLICITY
2790 signals [w->signum - 1].loop = 0; /* unattach from signal */
2791#endif
2792#if EV_USE_SIGNALFD
2793 if (sigfd >= 0)
2794 {
2795 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2796 sigdelset (&sigfd_set, w->signum);
2797 signalfd (sigfd, &sigfd_set, 0);
2798 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2799 /*TODO: maybe unblock signal? */
2800 }
2801 else
2802#endif
2803 signal (w->signum, SIG_DFL);
2804 }
2805
2806 EV_FREQUENT_CHECK;
2807}
2808
2809void
2810ev_child_start (EV_P_ ev_child *w)
2811{
2812#if EV_MULTIPLICITY
2813 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2814#endif
2815 if (expect_false (ev_is_active (w)))
2816 return;
2817
2818 EV_FREQUENT_CHECK;
1508 2819
1509 ev_start (EV_A_ (W)w, 1); 2820 ev_start (EV_A_ (W)w, 1);
1510 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2821 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1511 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1512 2822
1513 if (!((WL)w)->next) 2823 EV_FREQUENT_CHECK;
2824}
2825
2826void
2827ev_child_stop (EV_P_ ev_child *w)
2828{
2829 clear_pending (EV_A_ (W)w);
2830 if (expect_false (!ev_is_active (w)))
2831 return;
2832
2833 EV_FREQUENT_CHECK;
2834
2835 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2836 ev_stop (EV_A_ (W)w);
2837
2838 EV_FREQUENT_CHECK;
2839}
2840
2841#if EV_STAT_ENABLE
2842
2843# ifdef _WIN32
2844# undef lstat
2845# define lstat(a,b) _stati64 (a,b)
2846# endif
2847
2848#define DEF_STAT_INTERVAL 5.0074891
2849#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2850#define MIN_STAT_INTERVAL 0.1074891
2851
2852static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2853
2854#if EV_USE_INOTIFY
2855# define EV_INOTIFY_BUFSIZE 8192
2856
2857static void noinline
2858infy_add (EV_P_ ev_stat *w)
2859{
2860 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2861
2862 if (w->wd >= 0)
2863 {
2864 struct statfs sfs;
2865
2866 /* now local changes will be tracked by inotify, but remote changes won't */
2867 /* unless the filesystem is known to be local, we therefore still poll */
2868 /* also do poll on <2.6.25, but with normal frequency */
2869
2870 if (!fs_2625)
2871 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2872 else if (!statfs (w->path, &sfs)
2873 && (sfs.f_type == 0x1373 /* devfs */
2874 || sfs.f_type == 0xEF53 /* ext2/3 */
2875 || sfs.f_type == 0x3153464a /* jfs */
2876 || sfs.f_type == 0x52654973 /* reiser3 */
2877 || sfs.f_type == 0x01021994 /* tempfs */
2878 || sfs.f_type == 0x58465342 /* xfs */))
2879 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2880 else
2881 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1514 { 2882 }
1515#if WIN32 2883 else
1516 signal (w->signum, sighandler); 2884 {
2885 /* can't use inotify, continue to stat */
2886 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2887
2888 /* if path is not there, monitor some parent directory for speedup hints */
2889 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2890 /* but an efficiency issue only */
2891 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2892 {
2893 char path [4096];
2894 strcpy (path, w->path);
2895
2896 do
2897 {
2898 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2899 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2900
2901 char *pend = strrchr (path, '/');
2902
2903 if (!pend || pend == path)
2904 break;
2905
2906 *pend = 0;
2907 w->wd = inotify_add_watch (fs_fd, path, mask);
2908 }
2909 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2910 }
2911 }
2912
2913 if (w->wd >= 0)
2914 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2915
2916 /* now re-arm timer, if required */
2917 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2918 ev_timer_again (EV_A_ &w->timer);
2919 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2920}
2921
2922static void noinline
2923infy_del (EV_P_ ev_stat *w)
2924{
2925 int slot;
2926 int wd = w->wd;
2927
2928 if (wd < 0)
2929 return;
2930
2931 w->wd = -2;
2932 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2933 wlist_del (&fs_hash [slot].head, (WL)w);
2934
2935 /* remove this watcher, if others are watching it, they will rearm */
2936 inotify_rm_watch (fs_fd, wd);
2937}
2938
2939static void noinline
2940infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2941{
2942 if (slot < 0)
2943 /* overflow, need to check for all hash slots */
2944 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2945 infy_wd (EV_A_ slot, wd, ev);
2946 else
2947 {
2948 WL w_;
2949
2950 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2951 {
2952 ev_stat *w = (ev_stat *)w_;
2953 w_ = w_->next; /* lets us remove this watcher and all before it */
2954
2955 if (w->wd == wd || wd == -1)
2956 {
2957 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2958 {
2959 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2960 w->wd = -1;
2961 infy_add (EV_A_ w); /* re-add, no matter what */
2962 }
2963
2964 stat_timer_cb (EV_A_ &w->timer, 0);
2965 }
2966 }
2967 }
2968}
2969
2970static void
2971infy_cb (EV_P_ ev_io *w, int revents)
2972{
2973 char buf [EV_INOTIFY_BUFSIZE];
2974 struct inotify_event *ev = (struct inotify_event *)buf;
2975 int ofs;
2976 int len = read (fs_fd, buf, sizeof (buf));
2977
2978 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2979 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2980}
2981
2982inline_size void
2983check_2625 (EV_P)
2984{
2985 /* kernels < 2.6.25 are borked
2986 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2987 */
2988 struct utsname buf;
2989 int major, minor, micro;
2990
2991 if (uname (&buf))
2992 return;
2993
2994 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2995 return;
2996
2997 if (major < 2
2998 || (major == 2 && minor < 6)
2999 || (major == 2 && minor == 6 && micro < 25))
3000 return;
3001
3002 fs_2625 = 1;
3003}
3004
3005inline_size int
3006infy_newfd (void)
3007{
3008#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3009 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3010 if (fd >= 0)
3011 return fd;
3012#endif
3013 return inotify_init ();
3014}
3015
3016inline_size void
3017infy_init (EV_P)
3018{
3019 if (fs_fd != -2)
3020 return;
3021
3022 fs_fd = -1;
3023
3024 check_2625 (EV_A);
3025
3026 fs_fd = infy_newfd ();
3027
3028 if (fs_fd >= 0)
3029 {
3030 fd_intern (fs_fd);
3031 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
3032 ev_set_priority (&fs_w, EV_MAXPRI);
3033 ev_io_start (EV_A_ &fs_w);
3034 ev_unref (EV_A);
3035 }
3036}
3037
3038inline_size void
3039infy_fork (EV_P)
3040{
3041 int slot;
3042
3043 if (fs_fd < 0)
3044 return;
3045
3046 ev_ref (EV_A);
3047 ev_io_stop (EV_A_ &fs_w);
3048 close (fs_fd);
3049 fs_fd = infy_newfd ();
3050
3051 if (fs_fd >= 0)
3052 {
3053 fd_intern (fs_fd);
3054 ev_io_set (&fs_w, fs_fd, EV_READ);
3055 ev_io_start (EV_A_ &fs_w);
3056 ev_unref (EV_A);
3057 }
3058
3059 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
3060 {
3061 WL w_ = fs_hash [slot].head;
3062 fs_hash [slot].head = 0;
3063
3064 while (w_)
3065 {
3066 ev_stat *w = (ev_stat *)w_;
3067 w_ = w_->next; /* lets us add this watcher */
3068
3069 w->wd = -1;
3070
3071 if (fs_fd >= 0)
3072 infy_add (EV_A_ w); /* re-add, no matter what */
3073 else
3074 {
3075 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3076 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3077 ev_timer_again (EV_A_ &w->timer);
3078 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3079 }
3080 }
3081 }
3082}
3083
3084#endif
3085
3086#ifdef _WIN32
3087# define EV_LSTAT(p,b) _stati64 (p, b)
1517#else 3088#else
1518 struct sigaction sa; 3089# define EV_LSTAT(p,b) lstat (p, b)
1519 sa.sa_handler = sighandler;
1520 sigfillset (&sa.sa_mask);
1521 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1522 sigaction (w->signum, &sa, 0);
1523#endif 3090#endif
1524 }
1525}
1526 3091
1527void 3092void
1528ev_signal_stop (EV_P_ struct ev_signal *w) 3093ev_stat_stat (EV_P_ ev_stat *w)
1529{ 3094{
1530 ev_clear_pending (EV_A_ (W)w); 3095 if (lstat (w->path, &w->attr) < 0)
1531 if (!ev_is_active (w)) 3096 w->attr.st_nlink = 0;
3097 else if (!w->attr.st_nlink)
3098 w->attr.st_nlink = 1;
3099}
3100
3101static void noinline
3102stat_timer_cb (EV_P_ ev_timer *w_, int revents)
3103{
3104 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
3105
3106 ev_statdata prev = w->attr;
3107 ev_stat_stat (EV_A_ w);
3108
3109 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
3110 if (
3111 prev.st_dev != w->attr.st_dev
3112 || prev.st_ino != w->attr.st_ino
3113 || prev.st_mode != w->attr.st_mode
3114 || prev.st_nlink != w->attr.st_nlink
3115 || prev.st_uid != w->attr.st_uid
3116 || prev.st_gid != w->attr.st_gid
3117 || prev.st_rdev != w->attr.st_rdev
3118 || prev.st_size != w->attr.st_size
3119 || prev.st_atime != w->attr.st_atime
3120 || prev.st_mtime != w->attr.st_mtime
3121 || prev.st_ctime != w->attr.st_ctime
3122 ) {
3123 /* we only update w->prev on actual differences */
3124 /* in case we test more often than invoke the callback, */
3125 /* to ensure that prev is always different to attr */
3126 w->prev = prev;
3127
3128 #if EV_USE_INOTIFY
3129 if (fs_fd >= 0)
3130 {
3131 infy_del (EV_A_ w);
3132 infy_add (EV_A_ w);
3133 ev_stat_stat (EV_A_ w); /* avoid race... */
3134 }
3135 #endif
3136
3137 ev_feed_event (EV_A_ w, EV_STAT);
3138 }
3139}
3140
3141void
3142ev_stat_start (EV_P_ ev_stat *w)
3143{
3144 if (expect_false (ev_is_active (w)))
1532 return; 3145 return;
1533 3146
1534 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3147 ev_stat_stat (EV_A_ w);
3148
3149 if (w->interval < MIN_STAT_INTERVAL && w->interval)
3150 w->interval = MIN_STAT_INTERVAL;
3151
3152 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
3153 ev_set_priority (&w->timer, ev_priority (w));
3154
3155#if EV_USE_INOTIFY
3156 infy_init (EV_A);
3157
3158 if (fs_fd >= 0)
3159 infy_add (EV_A_ w);
3160 else
3161#endif
3162 {
3163 ev_timer_again (EV_A_ &w->timer);
3164 ev_unref (EV_A);
3165 }
3166
3167 ev_start (EV_A_ (W)w, 1);
3168
3169 EV_FREQUENT_CHECK;
3170}
3171
3172void
3173ev_stat_stop (EV_P_ ev_stat *w)
3174{
3175 clear_pending (EV_A_ (W)w);
3176 if (expect_false (!ev_is_active (w)))
3177 return;
3178
3179 EV_FREQUENT_CHECK;
3180
3181#if EV_USE_INOTIFY
3182 infy_del (EV_A_ w);
3183#endif
3184
3185 if (ev_is_active (&w->timer))
3186 {
3187 ev_ref (EV_A);
3188 ev_timer_stop (EV_A_ &w->timer);
3189 }
3190
1535 ev_stop (EV_A_ (W)w); 3191 ev_stop (EV_A_ (W)w);
1536 3192
1537 if (!signals [w->signum - 1].head) 3193 EV_FREQUENT_CHECK;
1538 signal (w->signum, SIG_DFL);
1539} 3194}
3195#endif
1540 3196
3197#if EV_IDLE_ENABLE
1541void 3198void
1542ev_child_start (EV_P_ struct ev_child *w) 3199ev_idle_start (EV_P_ ev_idle *w)
1543{ 3200{
1544#if EV_MULTIPLICITY
1545 assert (("child watchers are only supported in the default loop", loop == default_loop));
1546#endif
1547 if (ev_is_active (w)) 3201 if (expect_false (ev_is_active (w)))
1548 return; 3202 return;
1549 3203
3204 pri_adjust (EV_A_ (W)w);
3205
3206 EV_FREQUENT_CHECK;
3207
3208 {
3209 int active = ++idlecnt [ABSPRI (w)];
3210
3211 ++idleall;
3212 ev_start (EV_A_ (W)w, active);
3213
3214 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
3215 idles [ABSPRI (w)][active - 1] = w;
3216 }
3217
3218 EV_FREQUENT_CHECK;
3219}
3220
3221void
3222ev_idle_stop (EV_P_ ev_idle *w)
3223{
3224 clear_pending (EV_A_ (W)w);
3225 if (expect_false (!ev_is_active (w)))
3226 return;
3227
3228 EV_FREQUENT_CHECK;
3229
3230 {
3231 int active = ev_active (w);
3232
3233 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
3234 ev_active (idles [ABSPRI (w)][active - 1]) = active;
3235
3236 ev_stop (EV_A_ (W)w);
3237 --idleall;
3238 }
3239
3240 EV_FREQUENT_CHECK;
3241}
3242#endif
3243
3244void
3245ev_prepare_start (EV_P_ ev_prepare *w)
3246{
3247 if (expect_false (ev_is_active (w)))
3248 return;
3249
3250 EV_FREQUENT_CHECK;
3251
3252 ev_start (EV_A_ (W)w, ++preparecnt);
3253 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
3254 prepares [preparecnt - 1] = w;
3255
3256 EV_FREQUENT_CHECK;
3257}
3258
3259void
3260ev_prepare_stop (EV_P_ ev_prepare *w)
3261{
3262 clear_pending (EV_A_ (W)w);
3263 if (expect_false (!ev_is_active (w)))
3264 return;
3265
3266 EV_FREQUENT_CHECK;
3267
3268 {
3269 int active = ev_active (w);
3270
3271 prepares [active - 1] = prepares [--preparecnt];
3272 ev_active (prepares [active - 1]) = active;
3273 }
3274
3275 ev_stop (EV_A_ (W)w);
3276
3277 EV_FREQUENT_CHECK;
3278}
3279
3280void
3281ev_check_start (EV_P_ ev_check *w)
3282{
3283 if (expect_false (ev_is_active (w)))
3284 return;
3285
3286 EV_FREQUENT_CHECK;
3287
3288 ev_start (EV_A_ (W)w, ++checkcnt);
3289 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
3290 checks [checkcnt - 1] = w;
3291
3292 EV_FREQUENT_CHECK;
3293}
3294
3295void
3296ev_check_stop (EV_P_ ev_check *w)
3297{
3298 clear_pending (EV_A_ (W)w);
3299 if (expect_false (!ev_is_active (w)))
3300 return;
3301
3302 EV_FREQUENT_CHECK;
3303
3304 {
3305 int active = ev_active (w);
3306
3307 checks [active - 1] = checks [--checkcnt];
3308 ev_active (checks [active - 1]) = active;
3309 }
3310
3311 ev_stop (EV_A_ (W)w);
3312
3313 EV_FREQUENT_CHECK;
3314}
3315
3316#if EV_EMBED_ENABLE
3317void noinline
3318ev_embed_sweep (EV_P_ ev_embed *w)
3319{
3320 ev_loop (w->other, EVLOOP_NONBLOCK);
3321}
3322
3323static void
3324embed_io_cb (EV_P_ ev_io *io, int revents)
3325{
3326 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
3327
3328 if (ev_cb (w))
3329 ev_feed_event (EV_A_ (W)w, EV_EMBED);
3330 else
3331 ev_loop (w->other, EVLOOP_NONBLOCK);
3332}
3333
3334static void
3335embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3336{
3337 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3338
3339 {
3340 EV_P = w->other;
3341
3342 while (fdchangecnt)
3343 {
3344 fd_reify (EV_A);
3345 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3346 }
3347 }
3348}
3349
3350static void
3351embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3352{
3353 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3354
3355 ev_embed_stop (EV_A_ w);
3356
3357 {
3358 EV_P = w->other;
3359
3360 ev_loop_fork (EV_A);
3361 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3362 }
3363
3364 ev_embed_start (EV_A_ w);
3365}
3366
3367#if 0
3368static void
3369embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3370{
3371 ev_idle_stop (EV_A_ idle);
3372}
3373#endif
3374
3375void
3376ev_embed_start (EV_P_ ev_embed *w)
3377{
3378 if (expect_false (ev_is_active (w)))
3379 return;
3380
3381 {
3382 EV_P = w->other;
3383 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
3384 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
3385 }
3386
3387 EV_FREQUENT_CHECK;
3388
3389 ev_set_priority (&w->io, ev_priority (w));
3390 ev_io_start (EV_A_ &w->io);
3391
3392 ev_prepare_init (&w->prepare, embed_prepare_cb);
3393 ev_set_priority (&w->prepare, EV_MINPRI);
3394 ev_prepare_start (EV_A_ &w->prepare);
3395
3396 ev_fork_init (&w->fork, embed_fork_cb);
3397 ev_fork_start (EV_A_ &w->fork);
3398
3399 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3400
1550 ev_start (EV_A_ (W)w, 1); 3401 ev_start (EV_A_ (W)w, 1);
1551 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1552}
1553 3402
3403 EV_FREQUENT_CHECK;
3404}
3405
1554void 3406void
1555ev_child_stop (EV_P_ struct ev_child *w) 3407ev_embed_stop (EV_P_ ev_embed *w)
1556{ 3408{
1557 ev_clear_pending (EV_A_ (W)w); 3409 clear_pending (EV_A_ (W)w);
1558 if (!ev_is_active (w)) 3410 if (expect_false (!ev_is_active (w)))
1559 return; 3411 return;
1560 3412
1561 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 3413 EV_FREQUENT_CHECK;
3414
3415 ev_io_stop (EV_A_ &w->io);
3416 ev_prepare_stop (EV_A_ &w->prepare);
3417 ev_fork_stop (EV_A_ &w->fork);
3418
3419 EV_FREQUENT_CHECK;
3420}
3421#endif
3422
3423#if EV_FORK_ENABLE
3424void
3425ev_fork_start (EV_P_ ev_fork *w)
3426{
3427 if (expect_false (ev_is_active (w)))
3428 return;
3429
3430 EV_FREQUENT_CHECK;
3431
3432 ev_start (EV_A_ (W)w, ++forkcnt);
3433 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
3434 forks [forkcnt - 1] = w;
3435
3436 EV_FREQUENT_CHECK;
3437}
3438
3439void
3440ev_fork_stop (EV_P_ ev_fork *w)
3441{
3442 clear_pending (EV_A_ (W)w);
3443 if (expect_false (!ev_is_active (w)))
3444 return;
3445
3446 EV_FREQUENT_CHECK;
3447
3448 {
3449 int active = ev_active (w);
3450
3451 forks [active - 1] = forks [--forkcnt];
3452 ev_active (forks [active - 1]) = active;
3453 }
3454
1562 ev_stop (EV_A_ (W)w); 3455 ev_stop (EV_A_ (W)w);
3456
3457 EV_FREQUENT_CHECK;
1563} 3458}
3459#endif
3460
3461#if EV_ASYNC_ENABLE
3462void
3463ev_async_start (EV_P_ ev_async *w)
3464{
3465 if (expect_false (ev_is_active (w)))
3466 return;
3467
3468 evpipe_init (EV_A);
3469
3470 EV_FREQUENT_CHECK;
3471
3472 ev_start (EV_A_ (W)w, ++asynccnt);
3473 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3474 asyncs [asynccnt - 1] = w;
3475
3476 EV_FREQUENT_CHECK;
3477}
3478
3479void
3480ev_async_stop (EV_P_ ev_async *w)
3481{
3482 clear_pending (EV_A_ (W)w);
3483 if (expect_false (!ev_is_active (w)))
3484 return;
3485
3486 EV_FREQUENT_CHECK;
3487
3488 {
3489 int active = ev_active (w);
3490
3491 asyncs [active - 1] = asyncs [--asynccnt];
3492 ev_active (asyncs [active - 1]) = active;
3493 }
3494
3495 ev_stop (EV_A_ (W)w);
3496
3497 EV_FREQUENT_CHECK;
3498}
3499
3500void
3501ev_async_send (EV_P_ ev_async *w)
3502{
3503 w->sent = 1;
3504 evpipe_write (EV_A_ &async_pending);
3505}
3506#endif
1564 3507
1565/*****************************************************************************/ 3508/*****************************************************************************/
1566 3509
1567struct ev_once 3510struct ev_once
1568{ 3511{
1569 struct ev_io io; 3512 ev_io io;
1570 struct ev_timer to; 3513 ev_timer to;
1571 void (*cb)(int revents, void *arg); 3514 void (*cb)(int revents, void *arg);
1572 void *arg; 3515 void *arg;
1573}; 3516};
1574 3517
1575static void 3518static void
1576once_cb (EV_P_ struct ev_once *once, int revents) 3519once_cb (EV_P_ struct ev_once *once, int revents)
1577{ 3520{
1578 void (*cb)(int revents, void *arg) = once->cb; 3521 void (*cb)(int revents, void *arg) = once->cb;
1579 void *arg = once->arg; 3522 void *arg = once->arg;
1580 3523
1581 ev_io_stop (EV_A_ &once->io); 3524 ev_io_stop (EV_A_ &once->io);
1582 ev_timer_stop (EV_A_ &once->to); 3525 ev_timer_stop (EV_A_ &once->to);
1583 ev_free (once); 3526 ev_free (once);
1584 3527
1585 cb (revents, arg); 3528 cb (revents, arg);
1586} 3529}
1587 3530
1588static void 3531static void
1589once_cb_io (EV_P_ struct ev_io *w, int revents) 3532once_cb_io (EV_P_ ev_io *w, int revents)
1590{ 3533{
1591 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3534 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3535
3536 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
1592} 3537}
1593 3538
1594static void 3539static void
1595once_cb_to (EV_P_ struct ev_timer *w, int revents) 3540once_cb_to (EV_P_ ev_timer *w, int revents)
1596{ 3541{
1597 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3542 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3543
3544 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
1598} 3545}
1599 3546
1600void 3547void
1601ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3548ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1602{ 3549{
1603 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3550 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1604 3551
1605 if (!once) 3552 if (expect_false (!once))
3553 {
1606 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3554 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1607 else 3555 return;
1608 { 3556 }
3557
1609 once->cb = cb; 3558 once->cb = cb;
1610 once->arg = arg; 3559 once->arg = arg;
1611 3560
1612 ev_init (&once->io, once_cb_io); 3561 ev_init (&once->io, once_cb_io);
1613 if (fd >= 0) 3562 if (fd >= 0)
3563 {
3564 ev_io_set (&once->io, fd, events);
3565 ev_io_start (EV_A_ &once->io);
3566 }
3567
3568 ev_init (&once->to, once_cb_to);
3569 if (timeout >= 0.)
3570 {
3571 ev_timer_set (&once->to, timeout, 0.);
3572 ev_timer_start (EV_A_ &once->to);
3573 }
3574}
3575
3576/*****************************************************************************/
3577
3578#if EV_WALK_ENABLE
3579void
3580ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3581{
3582 int i, j;
3583 ev_watcher_list *wl, *wn;
3584
3585 if (types & (EV_IO | EV_EMBED))
3586 for (i = 0; i < anfdmax; ++i)
3587 for (wl = anfds [i].head; wl; )
1614 { 3588 {
1615 ev_io_set (&once->io, fd, events); 3589 wn = wl->next;
1616 ev_io_start (EV_A_ &once->io); 3590
3591#if EV_EMBED_ENABLE
3592 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3593 {
3594 if (types & EV_EMBED)
3595 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3596 }
3597 else
3598#endif
3599#if EV_USE_INOTIFY
3600 if (ev_cb ((ev_io *)wl) == infy_cb)
3601 ;
3602 else
3603#endif
3604 if ((ev_io *)wl != &pipe_w)
3605 if (types & EV_IO)
3606 cb (EV_A_ EV_IO, wl);
3607
3608 wl = wn;
1617 } 3609 }
1618 3610
1619 ev_init (&once->to, once_cb_to); 3611 if (types & (EV_TIMER | EV_STAT))
1620 if (timeout >= 0.) 3612 for (i = timercnt + HEAP0; i-- > HEAP0; )
3613#if EV_STAT_ENABLE
3614 /*TODO: timer is not always active*/
3615 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
1621 { 3616 {
1622 ev_timer_set (&once->to, timeout, 0.); 3617 if (types & EV_STAT)
1623 ev_timer_start (EV_A_ &once->to); 3618 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
1624 } 3619 }
1625 } 3620 else
3621#endif
3622 if (types & EV_TIMER)
3623 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3624
3625#if EV_PERIODIC_ENABLE
3626 if (types & EV_PERIODIC)
3627 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3628 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3629#endif
3630
3631#if EV_IDLE_ENABLE
3632 if (types & EV_IDLE)
3633 for (j = NUMPRI; i--; )
3634 for (i = idlecnt [j]; i--; )
3635 cb (EV_A_ EV_IDLE, idles [j][i]);
3636#endif
3637
3638#if EV_FORK_ENABLE
3639 if (types & EV_FORK)
3640 for (i = forkcnt; i--; )
3641 if (ev_cb (forks [i]) != embed_fork_cb)
3642 cb (EV_A_ EV_FORK, forks [i]);
3643#endif
3644
3645#if EV_ASYNC_ENABLE
3646 if (types & EV_ASYNC)
3647 for (i = asynccnt; i--; )
3648 cb (EV_A_ EV_ASYNC, asyncs [i]);
3649#endif
3650
3651 if (types & EV_PREPARE)
3652 for (i = preparecnt; i--; )
3653#if EV_EMBED_ENABLE
3654 if (ev_cb (prepares [i]) != embed_prepare_cb)
3655#endif
3656 cb (EV_A_ EV_PREPARE, prepares [i]);
3657
3658 if (types & EV_CHECK)
3659 for (i = checkcnt; i--; )
3660 cb (EV_A_ EV_CHECK, checks [i]);
3661
3662 if (types & EV_SIGNAL)
3663 for (i = 0; i < EV_NSIG - 1; ++i)
3664 for (wl = signals [i].head; wl; )
3665 {
3666 wn = wl->next;
3667 cb (EV_A_ EV_SIGNAL, wl);
3668 wl = wn;
3669 }
3670
3671 if (types & EV_CHILD)
3672 for (i = EV_PID_HASHSIZE; i--; )
3673 for (wl = childs [i]; wl; )
3674 {
3675 wn = wl->next;
3676 cb (EV_A_ EV_CHILD, wl);
3677 wl = wn;
3678 }
3679/* EV_STAT 0x00001000 /* stat data changed */
3680/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
1626} 3681}
3682#endif
3683
3684#if EV_MULTIPLICITY
3685 #include "ev_wrap.h"
3686#endif
1627 3687
1628#ifdef __cplusplus 3688#ifdef __cplusplus
1629} 3689}
1630#endif 3690#endif
1631 3691

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines