ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.53 by root, Sat Nov 3 22:31:11 2007 UTC vs.
Revision 1.97 by root, Sun Nov 11 01:53:07 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
38
39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1
45# endif
46# endif
47
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
49# define EV_USE_SELECT 1
50# endif
51
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
53# define EV_USE_POLL 1
54# endif
55
56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
57# define EV_USE_EPOLL 1
58# endif
59
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
61# define EV_USE_KQUEUE 1
62# endif
63
33#endif 64#endif
34 65
35#include <math.h> 66#include <math.h>
36#include <stdlib.h> 67#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 68#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 69#include <stddef.h>
41 70
42#include <stdio.h> 71#include <stdio.h>
43 72
44#include <assert.h> 73#include <assert.h>
45#include <errno.h> 74#include <errno.h>
46#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
47#ifndef WIN32 80#ifndef WIN32
81# include <unistd.h>
82# include <sys/time.h>
48# include <sys/wait.h> 83# include <sys/wait.h>
49#endif 84#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 85/**/
54 86
55#ifndef EV_USE_MONOTONIC 87#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 88# define EV_USE_MONOTONIC 1
57#endif 89#endif
58 90
59#ifndef EV_USE_SELECT 91#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
61#endif 93#endif
62 94
63#ifndef EV_USEV_POLL 95#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 96# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif 97#endif
66 98
67#ifndef EV_USE_EPOLL 99#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 100# define EV_USE_EPOLL 0
69#endif 101#endif
70 102
71#ifndef EV_USE_KQUEUE 103#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 104# define EV_USE_KQUEUE 0
105#endif
106
107#ifndef EV_USE_WIN32
108# ifdef WIN32
109# define EV_USE_WIN32 0 /* it does not exist, use select */
110# undef EV_USE_SELECT
111# define EV_USE_SELECT 1
112# else
113# define EV_USE_WIN32 0
114# endif
73#endif 115#endif
74 116
75#ifndef EV_USE_REALTIME 117#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 118# define EV_USE_REALTIME 1
77#endif 119#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 139
140#ifdef EV_H
141# include EV_H
142#else
98#include "ev.h" 143# include "ev.h"
144#endif
99 145
100#if __GNUC__ >= 3 146#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value)) 147# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline 148# define inline inline
103#else 149#else
113 159
114typedef struct ev_watcher *W; 160typedef struct ev_watcher *W;
115typedef struct ev_watcher_list *WL; 161typedef struct ev_watcher_list *WL;
116typedef struct ev_watcher_time *WT; 162typedef struct ev_watcher_time *WT;
117 163
164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
165
166#include "ev_win32.c"
167
118/*****************************************************************************/ 168/*****************************************************************************/
119 169
170static void (*syserr_cb)(const char *msg);
171
172void ev_set_syserr_cb (void (*cb)(const char *msg))
173{
174 syserr_cb = cb;
175}
176
177static void
178syserr (const char *msg)
179{
180 if (!msg)
181 msg = "(libev) system error";
182
183 if (syserr_cb)
184 syserr_cb (msg);
185 else
186 {
187 perror (msg);
188 abort ();
189 }
190}
191
192static void *(*alloc)(void *ptr, long size);
193
194void ev_set_allocator (void *(*cb)(void *ptr, long size))
195{
196 alloc = cb;
197}
198
199static void *
200ev_realloc (void *ptr, long size)
201{
202 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
203
204 if (!ptr && size)
205 {
206 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
207 abort ();
208 }
209
210 return ptr;
211}
212
213#define ev_malloc(size) ev_realloc (0, (size))
214#define ev_free(ptr) ev_realloc ((ptr), 0)
215
216/*****************************************************************************/
217
120typedef struct 218typedef struct
121{ 219{
122 struct ev_watcher_list *head; 220 WL head;
123 unsigned char events; 221 unsigned char events;
124 unsigned char reify; 222 unsigned char reify;
125} ANFD; 223} ANFD;
126 224
127typedef struct 225typedef struct
128{ 226{
129 W w; 227 W w;
130 int events; 228 int events;
131} ANPENDING; 229} ANPENDING;
132 230
133#ifdef EV_MULTIPLICITY 231#if EV_MULTIPLICITY
232
134struct ev_loop 233 struct ev_loop
135{ 234 {
235 ev_tstamp ev_rt_now;
136# define VAR(name,decl) decl 236 #define VAR(name,decl) decl;
137# include "ev_vars.h" 237 #include "ev_vars.h"
138}; 238 #undef VAR
239 };
240 #include "ev_wrap.h"
241
242 struct ev_loop default_loop_struct;
243 static struct ev_loop *default_loop;
244
139#else 245#else
246
247 ev_tstamp ev_rt_now;
140# define VAR(name,decl) static decl 248 #define VAR(name,decl) static decl;
141# include "ev_vars.h" 249 #include "ev_vars.h"
142#endif
143#undef VAR 250 #undef VAR
251
252 static int default_loop;
253
254#endif
144 255
145/*****************************************************************************/ 256/*****************************************************************************/
146 257
147inline ev_tstamp 258ev_tstamp
148ev_time (void) 259ev_time (void)
149{ 260{
150#if EV_USE_REALTIME 261#if EV_USE_REALTIME
151 struct timespec ts; 262 struct timespec ts;
152 clock_gettime (CLOCK_REALTIME, &ts); 263 clock_gettime (CLOCK_REALTIME, &ts);
171#endif 282#endif
172 283
173 return ev_time (); 284 return ev_time ();
174} 285}
175 286
287#if EV_MULTIPLICITY
176ev_tstamp 288ev_tstamp
177ev_now (EV_P) 289ev_now (EV_P)
178{ 290{
179 return rt_now; 291 return ev_rt_now;
180} 292}
293#endif
181 294
182#define array_roundsize(base,n) ((n) | 4 & ~3) 295#define array_roundsize(type,n) ((n) | 4 & ~3)
183 296
184#define array_needsize(base,cur,cnt,init) \ 297#define array_needsize(type,base,cur,cnt,init) \
185 if (expect_false ((cnt) > cur)) \ 298 if (expect_false ((cnt) > cur)) \
186 { \ 299 { \
187 int newcnt = cur; \ 300 int newcnt = cur; \
188 do \ 301 do \
189 { \ 302 { \
190 newcnt = array_roundsize (base, newcnt << 1); \ 303 newcnt = array_roundsize (type, newcnt << 1); \
191 } \ 304 } \
192 while ((cnt) > newcnt); \ 305 while ((cnt) > newcnt); \
193 \ 306 \
194 base = realloc (base, sizeof (*base) * (newcnt)); \ 307 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
195 init (base + cur, newcnt - cur); \ 308 init (base + cur, newcnt - cur); \
196 cur = newcnt; \ 309 cur = newcnt; \
197 } 310 }
311
312#define array_slim(type,stem) \
313 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
314 { \
315 stem ## max = array_roundsize (stem ## cnt >> 1); \
316 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
317 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
318 }
319
320/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
321/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
322#define array_free_microshit(stem) \
323 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
324
325#define array_free(stem, idx) \
326 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
198 327
199/*****************************************************************************/ 328/*****************************************************************************/
200 329
201static void 330static void
202anfds_init (ANFD *base, int count) 331anfds_init (ANFD *base, int count)
209 338
210 ++base; 339 ++base;
211 } 340 }
212} 341}
213 342
214static void 343void
215event (EV_P_ W w, int events) 344ev_feed_event (EV_P_ void *w, int revents)
216{ 345{
346 W w_ = (W)w;
347
217 if (w->pending) 348 if (w_->pending)
218 { 349 {
219 pendings [ABSPRI (w)][w->pending - 1].events |= events; 350 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
220 return; 351 return;
221 } 352 }
222 353
223 w->pending = ++pendingcnt [ABSPRI (w)]; 354 w_->pending = ++pendingcnt [ABSPRI (w_)];
224 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 355 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
225 pendings [ABSPRI (w)][w->pending - 1].w = w; 356 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
226 pendings [ABSPRI (w)][w->pending - 1].events = events; 357 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
227} 358}
228 359
229static void 360static void
230queue_events (EV_P_ W *events, int eventcnt, int type) 361queue_events (EV_P_ W *events, int eventcnt, int type)
231{ 362{
232 int i; 363 int i;
233 364
234 for (i = 0; i < eventcnt; ++i) 365 for (i = 0; i < eventcnt; ++i)
235 event (EV_A_ events [i], type); 366 ev_feed_event (EV_A_ events [i], type);
236} 367}
237 368
238static void 369inline void
239fd_event (EV_P_ int fd, int events) 370fd_event (EV_P_ int fd, int revents)
240{ 371{
241 ANFD *anfd = anfds + fd; 372 ANFD *anfd = anfds + fd;
242 struct ev_io *w; 373 struct ev_io *w;
243 374
244 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
245 { 376 {
246 int ev = w->events & events; 377 int ev = w->events & revents;
247 378
248 if (ev) 379 if (ev)
249 event (EV_A_ (W)w, ev); 380 ev_feed_event (EV_A_ (W)w, ev);
250 } 381 }
382}
383
384void
385ev_feed_fd_event (EV_P_ int fd, int revents)
386{
387 fd_event (EV_A_ fd, revents);
251} 388}
252 389
253/*****************************************************************************/ 390/*****************************************************************************/
254 391
255static void 392static void
268 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 405 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
269 events |= w->events; 406 events |= w->events;
270 407
271 anfd->reify = 0; 408 anfd->reify = 0;
272 409
273 if (anfd->events != events)
274 {
275 method_modify (EV_A_ fd, anfd->events, events); 410 method_modify (EV_A_ fd, anfd->events, events);
276 anfd->events = events; 411 anfd->events = events;
277 }
278 } 412 }
279 413
280 fdchangecnt = 0; 414 fdchangecnt = 0;
281} 415}
282 416
283static void 417static void
284fd_change (EV_P_ int fd) 418fd_change (EV_P_ int fd)
285{ 419{
286 if (anfds [fd].reify || fdchangecnt < 0) 420 if (anfds [fd].reify)
287 return; 421 return;
288 422
289 anfds [fd].reify = 1; 423 anfds [fd].reify = 1;
290 424
291 ++fdchangecnt; 425 ++fdchangecnt;
292 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 426 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
293 fdchanges [fdchangecnt - 1] = fd; 427 fdchanges [fdchangecnt - 1] = fd;
294} 428}
295 429
296static void 430static void
297fd_kill (EV_P_ int fd) 431fd_kill (EV_P_ int fd)
299 struct ev_io *w; 433 struct ev_io *w;
300 434
301 while ((w = (struct ev_io *)anfds [fd].head)) 435 while ((w = (struct ev_io *)anfds [fd].head))
302 { 436 {
303 ev_io_stop (EV_A_ w); 437 ev_io_stop (EV_A_ w);
304 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 438 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
305 } 439 }
440}
441
442static int
443fd_valid (int fd)
444{
445#ifdef WIN32
446 return !!win32_get_osfhandle (fd);
447#else
448 return fcntl (fd, F_GETFD) != -1;
449#endif
306} 450}
307 451
308/* called on EBADF to verify fds */ 452/* called on EBADF to verify fds */
309static void 453static void
310fd_ebadf (EV_P) 454fd_ebadf (EV_P)
311{ 455{
312 int fd; 456 int fd;
313 457
314 for (fd = 0; fd < anfdmax; ++fd) 458 for (fd = 0; fd < anfdmax; ++fd)
315 if (anfds [fd].events) 459 if (anfds [fd].events)
316 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 460 if (!fd_valid (fd) == -1 && errno == EBADF)
317 fd_kill (EV_A_ fd); 461 fd_kill (EV_A_ fd);
318} 462}
319 463
320/* called on ENOMEM in select/poll to kill some fds and retry */ 464/* called on ENOMEM in select/poll to kill some fds and retry */
321static void 465static void
322fd_enomem (EV_P) 466fd_enomem (EV_P)
323{ 467{
324 int fd = anfdmax; 468 int fd;
325 469
326 while (fd--) 470 for (fd = anfdmax; fd--; )
327 if (anfds [fd].events) 471 if (anfds [fd].events)
328 { 472 {
329 close (fd);
330 fd_kill (EV_A_ fd); 473 fd_kill (EV_A_ fd);
331 return; 474 return;
332 } 475 }
333} 476}
334 477
478/* usually called after fork if method needs to re-arm all fds from scratch */
479static void
480fd_rearm_all (EV_P)
481{
482 int fd;
483
484 /* this should be highly optimised to not do anything but set a flag */
485 for (fd = 0; fd < anfdmax; ++fd)
486 if (anfds [fd].events)
487 {
488 anfds [fd].events = 0;
489 fd_change (EV_A_ fd);
490 }
491}
492
335/*****************************************************************************/ 493/*****************************************************************************/
336 494
337static void 495static void
338upheap (WT *timers, int k) 496upheap (WT *heap, int k)
339{ 497{
340 WT w = timers [k]; 498 WT w = heap [k];
341 499
342 while (k && timers [k >> 1]->at > w->at) 500 while (k && heap [k >> 1]->at > w->at)
343 { 501 {
344 timers [k] = timers [k >> 1]; 502 heap [k] = heap [k >> 1];
345 timers [k]->active = k + 1; 503 ((W)heap [k])->active = k + 1;
346 k >>= 1; 504 k >>= 1;
347 } 505 }
348 506
349 timers [k] = w; 507 heap [k] = w;
350 timers [k]->active = k + 1; 508 ((W)heap [k])->active = k + 1;
351 509
352} 510}
353 511
354static void 512static void
355downheap (WT *timers, int N, int k) 513downheap (WT *heap, int N, int k)
356{ 514{
357 WT w = timers [k]; 515 WT w = heap [k];
358 516
359 while (k < (N >> 1)) 517 while (k < (N >> 1))
360 { 518 {
361 int j = k << 1; 519 int j = k << 1;
362 520
363 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 521 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
364 ++j; 522 ++j;
365 523
366 if (w->at <= timers [j]->at) 524 if (w->at <= heap [j]->at)
367 break; 525 break;
368 526
369 timers [k] = timers [j]; 527 heap [k] = heap [j];
370 timers [k]->active = k + 1; 528 ((W)heap [k])->active = k + 1;
371 k = j; 529 k = j;
372 } 530 }
373 531
374 timers [k] = w; 532 heap [k] = w;
375 timers [k]->active = k + 1; 533 ((W)heap [k])->active = k + 1;
534}
535
536inline void
537adjustheap (WT *heap, int N, int k, ev_tstamp at)
538{
539 ev_tstamp old_at = heap [k]->at;
540 heap [k]->at = at;
541
542 if (old_at < at)
543 downheap (heap, N, k);
544 else
545 upheap (heap, k);
376} 546}
377 547
378/*****************************************************************************/ 548/*****************************************************************************/
379 549
380typedef struct 550typedef struct
381{ 551{
382 struct ev_watcher_list *head; 552 WL head;
383 sig_atomic_t volatile gotsig; 553 sig_atomic_t volatile gotsig;
384} ANSIG; 554} ANSIG;
385 555
386static ANSIG *signals; 556static ANSIG *signals;
387static int signalmax; 557static int signalmax;
388 558
389static int sigpipe [2]; 559static int sigpipe [2];
390static sig_atomic_t volatile gotsig; 560static sig_atomic_t volatile gotsig;
561static struct ev_io sigev;
391 562
392static void 563static void
393signals_init (ANSIG *base, int count) 564signals_init (ANSIG *base, int count)
394{ 565{
395 while (count--) 566 while (count--)
402} 573}
403 574
404static void 575static void
405sighandler (int signum) 576sighandler (int signum)
406{ 577{
578#if WIN32
579 signal (signum, sighandler);
580#endif
581
407 signals [signum - 1].gotsig = 1; 582 signals [signum - 1].gotsig = 1;
408 583
409 if (!gotsig) 584 if (!gotsig)
410 { 585 {
411 int old_errno = errno; 586 int old_errno = errno;
412 gotsig = 1; 587 gotsig = 1;
588#ifdef WIN32
589 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
590#else
413 write (sigpipe [1], &signum, 1); 591 write (sigpipe [1], &signum, 1);
592#endif
414 errno = old_errno; 593 errno = old_errno;
415 } 594 }
416} 595}
417 596
597void
598ev_feed_signal_event (EV_P_ int signum)
599{
600 WL w;
601
602#if EV_MULTIPLICITY
603 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
604#endif
605
606 --signum;
607
608 if (signum < 0 || signum >= signalmax)
609 return;
610
611 signals [signum].gotsig = 0;
612
613 for (w = signals [signum].head; w; w = w->next)
614 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
615}
616
418static void 617static void
419sigcb (EV_P_ struct ev_io *iow, int revents) 618sigcb (EV_P_ struct ev_io *iow, int revents)
420{ 619{
421 struct ev_watcher_list *w;
422 int signum; 620 int signum;
423 621
622#ifdef WIN32
623 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
624#else
424 read (sigpipe [0], &revents, 1); 625 read (sigpipe [0], &revents, 1);
626#endif
425 gotsig = 0; 627 gotsig = 0;
426 628
427 for (signum = signalmax; signum--; ) 629 for (signum = signalmax; signum--; )
428 if (signals [signum].gotsig) 630 if (signals [signum].gotsig)
429 { 631 ev_feed_signal_event (EV_A_ signum + 1);
430 signals [signum].gotsig = 0;
431
432 for (w = signals [signum].head; w; w = w->next)
433 event (EV_A_ (W)w, EV_SIGNAL);
434 }
435} 632}
436 633
437static void 634static void
438siginit (EV_P) 635siginit (EV_P)
439{ 636{
445 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 642 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
446 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 643 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
447#endif 644#endif
448 645
449 ev_io_set (&sigev, sigpipe [0], EV_READ); 646 ev_io_set (&sigev, sigpipe [0], EV_READ);
450 ev_io_start (&sigev); 647 ev_io_start (EV_A_ &sigev);
451 ev_unref (EV_A); /* child watcher should not keep loop alive */ 648 ev_unref (EV_A); /* child watcher should not keep loop alive */
452} 649}
453 650
454/*****************************************************************************/ 651/*****************************************************************************/
455 652
653static struct ev_child *childs [PID_HASHSIZE];
654
456#ifndef WIN32 655#ifndef WIN32
656
657static struct ev_signal childev;
457 658
458#ifndef WCONTINUED 659#ifndef WCONTINUED
459# define WCONTINUED 0 660# define WCONTINUED 0
460#endif 661#endif
461 662
465 struct ev_child *w; 666 struct ev_child *w;
466 667
467 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 668 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
468 if (w->pid == pid || !w->pid) 669 if (w->pid == pid || !w->pid)
469 { 670 {
470 w->priority = sw->priority; /* need to do it *now* */ 671 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
471 w->rpid = pid; 672 w->rpid = pid;
472 w->rstatus = status; 673 w->rstatus = status;
473 event (EV_A_ (W)w, EV_CHILD); 674 ev_feed_event (EV_A_ (W)w, EV_CHILD);
474 } 675 }
475} 676}
476 677
477static void 678static void
478childcb (EV_P_ struct ev_signal *sw, int revents) 679childcb (EV_P_ struct ev_signal *sw, int revents)
480 int pid, status; 681 int pid, status;
481 682
482 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 683 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
483 { 684 {
484 /* make sure we are called again until all childs have been reaped */ 685 /* make sure we are called again until all childs have been reaped */
485 event (EV_A_ (W)sw, EV_SIGNAL); 686 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
486 687
487 child_reap (EV_A_ sw, pid, pid, status); 688 child_reap (EV_A_ sw, pid, pid, status);
488 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 689 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
489 } 690 }
490} 691}
497# include "ev_kqueue.c" 698# include "ev_kqueue.c"
498#endif 699#endif
499#if EV_USE_EPOLL 700#if EV_USE_EPOLL
500# include "ev_epoll.c" 701# include "ev_epoll.c"
501#endif 702#endif
502#if EV_USEV_POLL 703#if EV_USE_POLL
503# include "ev_poll.c" 704# include "ev_poll.c"
504#endif 705#endif
505#if EV_USE_SELECT 706#if EV_USE_SELECT
506# include "ev_select.c" 707# include "ev_select.c"
507#endif 708#endif
534ev_method (EV_P) 735ev_method (EV_P)
535{ 736{
536 return method; 737 return method;
537} 738}
538 739
539int 740static void
540ev_init (EV_P_ int methods) 741loop_init (EV_P_ int methods)
541{ 742{
542#ifdef EV_MULTIPLICITY
543 memset (loop, 0, sizeof (struct ev_loop));
544#endif
545
546 if (!method) 743 if (!method)
547 { 744 {
548#if EV_USE_MONOTONIC 745#if EV_USE_MONOTONIC
549 { 746 {
550 struct timespec ts; 747 struct timespec ts;
551 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 748 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
552 have_monotonic = 1; 749 have_monotonic = 1;
553 } 750 }
554#endif 751#endif
555 752
556 rt_now = ev_time (); 753 ev_rt_now = ev_time ();
557 mn_now = get_clock (); 754 mn_now = get_clock ();
558 now_floor = mn_now; 755 now_floor = mn_now;
559 diff = rt_now - mn_now; 756 rtmn_diff = ev_rt_now - mn_now;
560
561 if (pipe (sigpipe))
562 return 0;
563 757
564 if (methods == EVMETHOD_AUTO) 758 if (methods == EVMETHOD_AUTO)
565 if (!enable_secure () && getenv ("LIBmethodS")) 759 if (!enable_secure () && getenv ("LIBEV_METHODS"))
566 methods = atoi (getenv ("LIBmethodS")); 760 methods = atoi (getenv ("LIBEV_METHODS"));
567 else 761 else
568 methods = EVMETHOD_ANY; 762 methods = EVMETHOD_ANY;
569 763
570 method = 0; 764 method = 0;
765#if EV_USE_WIN32
766 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
767#endif
571#if EV_USE_KQUEUE 768#if EV_USE_KQUEUE
572 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 769 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
573#endif 770#endif
574#if EV_USE_EPOLL 771#if EV_USE_EPOLL
575 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 772 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
576#endif 773#endif
577#if EV_USEV_POLL 774#if EV_USE_POLL
578 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 775 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
579#endif 776#endif
580#if EV_USE_SELECT 777#if EV_USE_SELECT
581 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 778 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
582#endif 779#endif
583 780
781 ev_init (&sigev, sigcb);
782 ev_set_priority (&sigev, EV_MAXPRI);
783 }
784}
785
786void
787loop_destroy (EV_P)
788{
789 int i;
790
791#if EV_USE_WIN32
792 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
793#endif
794#if EV_USE_KQUEUE
795 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
796#endif
797#if EV_USE_EPOLL
798 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
799#endif
800#if EV_USE_POLL
801 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
802#endif
803#if EV_USE_SELECT
804 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
805#endif
806
807 for (i = NUMPRI; i--; )
808 array_free (pending, [i]);
809
810 /* have to use the microsoft-never-gets-it-right macro */
811 array_free_microshit (fdchange);
812 array_free_microshit (timer);
813#if EV_PERIODICS
814 array_free_microshit (periodic);
815#endif
816 array_free_microshit (idle);
817 array_free_microshit (prepare);
818 array_free_microshit (check);
819
820 method = 0;
821}
822
823static void
824loop_fork (EV_P)
825{
826#if EV_USE_EPOLL
827 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
828#endif
829#if EV_USE_KQUEUE
830 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
831#endif
832
833 if (ev_is_active (&sigev))
834 {
835 /* default loop */
836
837 ev_ref (EV_A);
838 ev_io_stop (EV_A_ &sigev);
839 close (sigpipe [0]);
840 close (sigpipe [1]);
841
842 while (pipe (sigpipe))
843 syserr ("(libev) error creating pipe");
844
845 siginit (EV_A);
846 }
847
848 postfork = 0;
849}
850
851#if EV_MULTIPLICITY
852struct ev_loop *
853ev_loop_new (int methods)
854{
855 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
856
857 memset (loop, 0, sizeof (struct ev_loop));
858
859 loop_init (EV_A_ methods);
860
861 if (ev_method (EV_A))
862 return loop;
863
864 return 0;
865}
866
867void
868ev_loop_destroy (EV_P)
869{
870 loop_destroy (EV_A);
871 ev_free (loop);
872}
873
874void
875ev_loop_fork (EV_P)
876{
877 postfork = 1;
878}
879
880#endif
881
882#if EV_MULTIPLICITY
883struct ev_loop *
884#else
885int
886#endif
887ev_default_loop (int methods)
888{
889 if (sigpipe [0] == sigpipe [1])
890 if (pipe (sigpipe))
891 return 0;
892
893 if (!default_loop)
894 {
895#if EV_MULTIPLICITY
896 struct ev_loop *loop = default_loop = &default_loop_struct;
897#else
898 default_loop = 1;
899#endif
900
901 loop_init (EV_A_ methods);
902
584 if (method) 903 if (ev_method (EV_A))
585 { 904 {
586 ev_watcher_init (&sigev, sigcb);
587 ev_set_priority (&sigev, EV_MAXPRI);
588 siginit (EV_A); 905 siginit (EV_A);
589 906
590#ifndef WIN32 907#ifndef WIN32
591 ev_signal_init (&childev, childcb, SIGCHLD); 908 ev_signal_init (&childev, childcb, SIGCHLD);
592 ev_set_priority (&childev, EV_MAXPRI); 909 ev_set_priority (&childev, EV_MAXPRI);
593 ev_signal_start (EV_A_ &childev); 910 ev_signal_start (EV_A_ &childev);
594 ev_unref (EV_A); /* child watcher should not keep loop alive */ 911 ev_unref (EV_A); /* child watcher should not keep loop alive */
595#endif 912#endif
596 } 913 }
914 else
915 default_loop = 0;
597 } 916 }
598 917
599 return method; 918 return default_loop;
919}
920
921void
922ev_default_destroy (void)
923{
924#if EV_MULTIPLICITY
925 struct ev_loop *loop = default_loop;
926#endif
927
928#ifndef WIN32
929 ev_ref (EV_A); /* child watcher */
930 ev_signal_stop (EV_A_ &childev);
931#endif
932
933 ev_ref (EV_A); /* signal watcher */
934 ev_io_stop (EV_A_ &sigev);
935
936 close (sigpipe [0]); sigpipe [0] = 0;
937 close (sigpipe [1]); sigpipe [1] = 0;
938
939 loop_destroy (EV_A);
940}
941
942void
943ev_default_fork (void)
944{
945#if EV_MULTIPLICITY
946 struct ev_loop *loop = default_loop;
947#endif
948
949 if (method)
950 postfork = 1;
600} 951}
601 952
602/*****************************************************************************/ 953/*****************************************************************************/
603 954
604void 955static int
605ev_fork_prepare (void) 956any_pending (EV_P)
606{ 957{
607 /* nop */ 958 int pri;
608}
609 959
610void 960 for (pri = NUMPRI; pri--; )
611ev_fork_parent (void) 961 if (pendingcnt [pri])
612{ 962 return 1;
613 /* nop */
614}
615 963
616void 964 return 0;
617ev_fork_child (void)
618{
619#if EV_USE_EPOLL
620 if (method == EVMETHOD_EPOLL)
621 epoll_postfork_child ();
622#endif
623
624 ev_io_stop (&sigev);
625 close (sigpipe [0]);
626 close (sigpipe [1]);
627 pipe (sigpipe);
628 siginit ();
629} 965}
630
631/*****************************************************************************/
632 966
633static void 967static void
634call_pending (EV_P) 968call_pending (EV_P)
635{ 969{
636 int pri; 970 int pri;
641 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 975 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
642 976
643 if (p->w) 977 if (p->w)
644 { 978 {
645 p->w->pending = 0; 979 p->w->pending = 0;
646 p->w->cb (EV_A_ p->w, p->events); 980 EV_CB_INVOKE (p->w, p->events);
647 } 981 }
648 } 982 }
649} 983}
650 984
651static void 985static void
652timers_reify (EV_P) 986timers_reify (EV_P)
653{ 987{
654 while (timercnt && timers [0]->at <= mn_now) 988 while (timercnt && ((WT)timers [0])->at <= mn_now)
655 { 989 {
656 struct ev_timer *w = timers [0]; 990 struct ev_timer *w = timers [0];
991
992 assert (("inactive timer on timer heap detected", ev_is_active (w)));
657 993
658 /* first reschedule or stop timer */ 994 /* first reschedule or stop timer */
659 if (w->repeat) 995 if (w->repeat)
660 { 996 {
661 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 997 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
998
662 w->at = mn_now + w->repeat; 999 ((WT)w)->at += w->repeat;
1000 if (((WT)w)->at < mn_now)
1001 ((WT)w)->at = mn_now;
1002
663 downheap ((WT *)timers, timercnt, 0); 1003 downheap ((WT *)timers, timercnt, 0);
664 } 1004 }
665 else 1005 else
666 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1006 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
667 1007
668 event ((W)w, EV_TIMEOUT); 1008 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
669 } 1009 }
670} 1010}
671 1011
1012#if EV_PERIODICS
672static void 1013static void
673periodics_reify (EV_P) 1014periodics_reify (EV_P)
674{ 1015{
675 while (periodiccnt && periodics [0]->at <= rt_now) 1016 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
676 { 1017 {
677 struct ev_periodic *w = periodics [0]; 1018 struct ev_periodic *w = periodics [0];
678 1019
1020 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1021
679 /* first reschedule or stop timer */ 1022 /* first reschedule or stop timer */
680 if (w->interval) 1023 if (w->reschedule_cb)
681 { 1024 {
1025 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1026
1027 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1028 downheap ((WT *)periodics, periodiccnt, 0);
1029 }
1030 else if (w->interval)
1031 {
682 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1032 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
683 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1033 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
684 downheap ((WT *)periodics, periodiccnt, 0); 1034 downheap ((WT *)periodics, periodiccnt, 0);
685 } 1035 }
686 else 1036 else
687 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1037 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
688 1038
689 event (EV_A_ (W)w, EV_PERIODIC); 1039 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
690 } 1040 }
691} 1041}
692 1042
693static void 1043static void
694periodics_reschedule (EV_P_ ev_tstamp diff) 1044periodics_reschedule (EV_P)
695{ 1045{
696 int i; 1046 int i;
697 1047
698 /* adjust periodics after time jump */ 1048 /* adjust periodics after time jump */
699 for (i = 0; i < periodiccnt; ++i) 1049 for (i = 0; i < periodiccnt; ++i)
700 { 1050 {
701 struct ev_periodic *w = periodics [i]; 1051 struct ev_periodic *w = periodics [i];
702 1052
1053 if (w->reschedule_cb)
1054 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
703 if (w->interval) 1055 else if (w->interval)
704 {
705 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1056 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
706
707 if (fabs (diff) >= 1e-4)
708 {
709 ev_periodic_stop (EV_A_ w);
710 ev_periodic_start (EV_A_ w);
711
712 i = 0; /* restart loop, inefficient, but time jumps should be rare */
713 }
714 }
715 } 1057 }
1058
1059 /* now rebuild the heap */
1060 for (i = periodiccnt >> 1; i--; )
1061 downheap ((WT *)periodics, periodiccnt, i);
716} 1062}
1063#endif
717 1064
718inline int 1065inline int
719time_update_monotonic (EV_P) 1066time_update_monotonic (EV_P)
720{ 1067{
721 mn_now = get_clock (); 1068 mn_now = get_clock ();
722 1069
723 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1070 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
724 { 1071 {
725 rt_now = mn_now + diff; 1072 ev_rt_now = rtmn_diff + mn_now;
726 return 0; 1073 return 0;
727 } 1074 }
728 else 1075 else
729 { 1076 {
730 now_floor = mn_now; 1077 now_floor = mn_now;
731 rt_now = ev_time (); 1078 ev_rt_now = ev_time ();
732 return 1; 1079 return 1;
733 } 1080 }
734} 1081}
735 1082
736static void 1083static void
741#if EV_USE_MONOTONIC 1088#if EV_USE_MONOTONIC
742 if (expect_true (have_monotonic)) 1089 if (expect_true (have_monotonic))
743 { 1090 {
744 if (time_update_monotonic (EV_A)) 1091 if (time_update_monotonic (EV_A))
745 { 1092 {
746 ev_tstamp odiff = diff; 1093 ev_tstamp odiff = rtmn_diff;
747 1094
748 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1095 for (i = 4; --i; ) /* loop a few times, before making important decisions */
749 { 1096 {
750 diff = rt_now - mn_now; 1097 rtmn_diff = ev_rt_now - mn_now;
751 1098
752 if (fabs (odiff - diff) < MIN_TIMEJUMP) 1099 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
753 return; /* all is well */ 1100 return; /* all is well */
754 1101
755 rt_now = ev_time (); 1102 ev_rt_now = ev_time ();
756 mn_now = get_clock (); 1103 mn_now = get_clock ();
757 now_floor = mn_now; 1104 now_floor = mn_now;
758 } 1105 }
759 1106
1107# if EV_PERIODICS
760 periodics_reschedule (EV_A_ diff - odiff); 1108 periodics_reschedule (EV_A);
1109# endif
761 /* no timer adjustment, as the monotonic clock doesn't jump */ 1110 /* no timer adjustment, as the monotonic clock doesn't jump */
1111 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
762 } 1112 }
763 } 1113 }
764 else 1114 else
765#endif 1115#endif
766 { 1116 {
767 rt_now = ev_time (); 1117 ev_rt_now = ev_time ();
768 1118
769 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1119 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
770 { 1120 {
1121#if EV_PERIODICS
771 periodics_reschedule (EV_A_ rt_now - mn_now); 1122 periodics_reschedule (EV_A);
1123#endif
772 1124
773 /* adjust timers. this is easy, as the offset is the same for all */ 1125 /* adjust timers. this is easy, as the offset is the same for all */
774 for (i = 0; i < timercnt; ++i) 1126 for (i = 0; i < timercnt; ++i)
775 timers [i]->at += diff; 1127 ((WT)timers [i])->at += ev_rt_now - mn_now;
776 } 1128 }
777 1129
778 mn_now = rt_now; 1130 mn_now = ev_rt_now;
779 } 1131 }
780} 1132}
781 1133
782void 1134void
783ev_ref (EV_P) 1135ev_ref (EV_P)
806 { 1158 {
807 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1159 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
808 call_pending (EV_A); 1160 call_pending (EV_A);
809 } 1161 }
810 1162
1163 /* we might have forked, so reify kernel state if necessary */
1164 if (expect_false (postfork))
1165 loop_fork (EV_A);
1166
811 /* update fd-related kernel structures */ 1167 /* update fd-related kernel structures */
812 fd_reify (EV_A); 1168 fd_reify (EV_A);
813 1169
814 /* calculate blocking time */ 1170 /* calculate blocking time */
815 1171
816 /* we only need this for !monotonic clockor timers, but as we basically 1172 /* we only need this for !monotonic clock or timers, but as we basically
817 always have timers, we just calculate it always */ 1173 always have timers, we just calculate it always */
818#if EV_USE_MONOTONIC 1174#if EV_USE_MONOTONIC
819 if (expect_true (have_monotonic)) 1175 if (expect_true (have_monotonic))
820 time_update_monotonic (EV_A); 1176 time_update_monotonic (EV_A);
821 else 1177 else
822#endif 1178#endif
823 { 1179 {
824 rt_now = ev_time (); 1180 ev_rt_now = ev_time ();
825 mn_now = rt_now; 1181 mn_now = ev_rt_now;
826 } 1182 }
827 1183
828 if (flags & EVLOOP_NONBLOCK || idlecnt) 1184 if (flags & EVLOOP_NONBLOCK || idlecnt)
829 block = 0.; 1185 block = 0.;
830 else 1186 else
831 { 1187 {
832 block = MAX_BLOCKTIME; 1188 block = MAX_BLOCKTIME;
833 1189
834 if (timercnt) 1190 if (timercnt)
835 { 1191 {
836 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1192 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
837 if (block > to) block = to; 1193 if (block > to) block = to;
838 } 1194 }
839 1195
1196#if EV_PERIODICS
840 if (periodiccnt) 1197 if (periodiccnt)
841 { 1198 {
842 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1199 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
843 if (block > to) block = to; 1200 if (block > to) block = to;
844 } 1201 }
1202#endif
845 1203
846 if (block < 0.) block = 0.; 1204 if (block < 0.) block = 0.;
847 } 1205 }
848 1206
849 method_poll (EV_A_ block); 1207 method_poll (EV_A_ block);
850 1208
851 /* update rt_now, do magic */ 1209 /* update ev_rt_now, do magic */
852 time_update (EV_A); 1210 time_update (EV_A);
853 1211
854 /* queue pending timers and reschedule them */ 1212 /* queue pending timers and reschedule them */
855 timers_reify (EV_A); /* relative timers called last */ 1213 timers_reify (EV_A); /* relative timers called last */
1214#if EV_PERIODICS
856 periodics_reify (EV_A); /* absolute timers called first */ 1215 periodics_reify (EV_A); /* absolute timers called first */
1216#endif
857 1217
858 /* queue idle watchers unless io or timers are pending */ 1218 /* queue idle watchers unless io or timers are pending */
859 if (!pendingcnt) 1219 if (idlecnt && !any_pending (EV_A))
860 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1220 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
861 1221
862 /* queue check watchers, to be executed first */ 1222 /* queue check watchers, to be executed first */
863 if (checkcnt) 1223 if (checkcnt)
864 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1224 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
939 return; 1299 return;
940 1300
941 assert (("ev_io_start called with negative fd", fd >= 0)); 1301 assert (("ev_io_start called with negative fd", fd >= 0));
942 1302
943 ev_start (EV_A_ (W)w, 1); 1303 ev_start (EV_A_ (W)w, 1);
944 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1304 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
945 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1305 wlist_add ((WL *)&anfds[fd].head, (WL)w);
946 1306
947 fd_change (EV_A_ fd); 1307 fd_change (EV_A_ fd);
948} 1308}
949 1309
952{ 1312{
953 ev_clear_pending (EV_A_ (W)w); 1313 ev_clear_pending (EV_A_ (W)w);
954 if (!ev_is_active (w)) 1314 if (!ev_is_active (w))
955 return; 1315 return;
956 1316
1317 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1318
957 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1319 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
958 ev_stop (EV_A_ (W)w); 1320 ev_stop (EV_A_ (W)w);
959 1321
960 fd_change (EV_A_ w->fd); 1322 fd_change (EV_A_ w->fd);
961} 1323}
964ev_timer_start (EV_P_ struct ev_timer *w) 1326ev_timer_start (EV_P_ struct ev_timer *w)
965{ 1327{
966 if (ev_is_active (w)) 1328 if (ev_is_active (w))
967 return; 1329 return;
968 1330
969 w->at += mn_now; 1331 ((WT)w)->at += mn_now;
970 1332
971 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1333 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
972 1334
973 ev_start (EV_A_ (W)w, ++timercnt); 1335 ev_start (EV_A_ (W)w, ++timercnt);
974 array_needsize (timers, timermax, timercnt, ); 1336 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
975 timers [timercnt - 1] = w; 1337 timers [timercnt - 1] = w;
976 upheap ((WT *)timers, timercnt - 1); 1338 upheap ((WT *)timers, timercnt - 1);
1339
1340 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
977} 1341}
978 1342
979void 1343void
980ev_timer_stop (EV_P_ struct ev_timer *w) 1344ev_timer_stop (EV_P_ struct ev_timer *w)
981{ 1345{
982 ev_clear_pending (EV_A_ (W)w); 1346 ev_clear_pending (EV_A_ (W)w);
983 if (!ev_is_active (w)) 1347 if (!ev_is_active (w))
984 return; 1348 return;
985 1349
1350 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1351
986 if (w->active < timercnt--) 1352 if (((W)w)->active < timercnt--)
987 { 1353 {
988 timers [w->active - 1] = timers [timercnt]; 1354 timers [((W)w)->active - 1] = timers [timercnt];
989 downheap ((WT *)timers, timercnt, w->active - 1); 1355 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
990 } 1356 }
991 1357
992 w->at = w->repeat; 1358 ((WT)w)->at -= mn_now;
993 1359
994 ev_stop (EV_A_ (W)w); 1360 ev_stop (EV_A_ (W)w);
995} 1361}
996 1362
997void 1363void
998ev_timer_again (EV_P_ struct ev_timer *w) 1364ev_timer_again (EV_P_ struct ev_timer *w)
999{ 1365{
1000 if (ev_is_active (w)) 1366 if (ev_is_active (w))
1001 { 1367 {
1002 if (w->repeat) 1368 if (w->repeat)
1003 {
1004 w->at = mn_now + w->repeat;
1005 downheap ((WT *)timers, timercnt, w->active - 1); 1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1006 }
1007 else 1370 else
1008 ev_timer_stop (EV_A_ w); 1371 ev_timer_stop (EV_A_ w);
1009 } 1372 }
1010 else if (w->repeat) 1373 else if (w->repeat)
1011 ev_timer_start (EV_A_ w); 1374 ev_timer_start (EV_A_ w);
1012} 1375}
1013 1376
1377#if EV_PERIODICS
1014void 1378void
1015ev_periodic_start (EV_P_ struct ev_periodic *w) 1379ev_periodic_start (EV_P_ struct ev_periodic *w)
1016{ 1380{
1017 if (ev_is_active (w)) 1381 if (ev_is_active (w))
1018 return; 1382 return;
1019 1383
1384 if (w->reschedule_cb)
1385 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1386 else if (w->interval)
1387 {
1020 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1388 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1021
1022 /* this formula differs from the one in periodic_reify because we do not always round up */ 1389 /* this formula differs from the one in periodic_reify because we do not always round up */
1023 if (w->interval)
1024 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1390 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1391 }
1025 1392
1026 ev_start (EV_A_ (W)w, ++periodiccnt); 1393 ev_start (EV_A_ (W)w, ++periodiccnt);
1027 array_needsize (periodics, periodicmax, periodiccnt, ); 1394 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1028 periodics [periodiccnt - 1] = w; 1395 periodics [periodiccnt - 1] = w;
1029 upheap ((WT *)periodics, periodiccnt - 1); 1396 upheap ((WT *)periodics, periodiccnt - 1);
1397
1398 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1030} 1399}
1031 1400
1032void 1401void
1033ev_periodic_stop (EV_P_ struct ev_periodic *w) 1402ev_periodic_stop (EV_P_ struct ev_periodic *w)
1034{ 1403{
1035 ev_clear_pending (EV_A_ (W)w); 1404 ev_clear_pending (EV_A_ (W)w);
1036 if (!ev_is_active (w)) 1405 if (!ev_is_active (w))
1037 return; 1406 return;
1038 1407
1408 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1409
1039 if (w->active < periodiccnt--) 1410 if (((W)w)->active < periodiccnt--)
1040 { 1411 {
1041 periodics [w->active - 1] = periodics [periodiccnt]; 1412 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1042 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1413 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1043 } 1414 }
1044 1415
1416 ev_stop (EV_A_ (W)w);
1417}
1418
1419void
1420ev_periodic_again (EV_P_ struct ev_periodic *w)
1421{
1422 /* TODO: use adjustheap and recalculation */
1423 ev_periodic_stop (EV_A_ w);
1424 ev_periodic_start (EV_A_ w);
1425}
1426#endif
1427
1428void
1429ev_idle_start (EV_P_ struct ev_idle *w)
1430{
1431 if (ev_is_active (w))
1432 return;
1433
1434 ev_start (EV_A_ (W)w, ++idlecnt);
1435 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1436 idles [idlecnt - 1] = w;
1437}
1438
1439void
1440ev_idle_stop (EV_P_ struct ev_idle *w)
1441{
1442 ev_clear_pending (EV_A_ (W)w);
1443 if (ev_is_active (w))
1444 return;
1445
1446 idles [((W)w)->active - 1] = idles [--idlecnt];
1447 ev_stop (EV_A_ (W)w);
1448}
1449
1450void
1451ev_prepare_start (EV_P_ struct ev_prepare *w)
1452{
1453 if (ev_is_active (w))
1454 return;
1455
1456 ev_start (EV_A_ (W)w, ++preparecnt);
1457 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1458 prepares [preparecnt - 1] = w;
1459}
1460
1461void
1462ev_prepare_stop (EV_P_ struct ev_prepare *w)
1463{
1464 ev_clear_pending (EV_A_ (W)w);
1465 if (ev_is_active (w))
1466 return;
1467
1468 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1469 ev_stop (EV_A_ (W)w);
1470}
1471
1472void
1473ev_check_start (EV_P_ struct ev_check *w)
1474{
1475 if (ev_is_active (w))
1476 return;
1477
1478 ev_start (EV_A_ (W)w, ++checkcnt);
1479 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1480 checks [checkcnt - 1] = w;
1481}
1482
1483void
1484ev_check_stop (EV_P_ struct ev_check *w)
1485{
1486 ev_clear_pending (EV_A_ (W)w);
1487 if (!ev_is_active (w))
1488 return;
1489
1490 checks [((W)w)->active - 1] = checks [--checkcnt];
1045 ev_stop (EV_A_ (W)w); 1491 ev_stop (EV_A_ (W)w);
1046} 1492}
1047 1493
1048#ifndef SA_RESTART 1494#ifndef SA_RESTART
1049# define SA_RESTART 0 1495# define SA_RESTART 0
1050#endif 1496#endif
1051 1497
1052void 1498void
1053ev_signal_start (EV_P_ struct ev_signal *w) 1499ev_signal_start (EV_P_ struct ev_signal *w)
1054{ 1500{
1501#if EV_MULTIPLICITY
1502 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1503#endif
1055 if (ev_is_active (w)) 1504 if (ev_is_active (w))
1056 return; 1505 return;
1057 1506
1058 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1507 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1059 1508
1060 ev_start (EV_A_ (W)w, 1); 1509 ev_start (EV_A_ (W)w, 1);
1061 array_needsize (signals, signalmax, w->signum, signals_init); 1510 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1062 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1511 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1063 1512
1064 if (!w->next) 1513 if (!((WL)w)->next)
1065 { 1514 {
1515#if WIN32
1516 signal (w->signum, sighandler);
1517#else
1066 struct sigaction sa; 1518 struct sigaction sa;
1067 sa.sa_handler = sighandler; 1519 sa.sa_handler = sighandler;
1068 sigfillset (&sa.sa_mask); 1520 sigfillset (&sa.sa_mask);
1069 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1521 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1070 sigaction (w->signum, &sa, 0); 1522 sigaction (w->signum, &sa, 0);
1523#endif
1071 } 1524 }
1072} 1525}
1073 1526
1074void 1527void
1075ev_signal_stop (EV_P_ struct ev_signal *w) 1528ev_signal_stop (EV_P_ struct ev_signal *w)
1084 if (!signals [w->signum - 1].head) 1537 if (!signals [w->signum - 1].head)
1085 signal (w->signum, SIG_DFL); 1538 signal (w->signum, SIG_DFL);
1086} 1539}
1087 1540
1088void 1541void
1089ev_idle_start (EV_P_ struct ev_idle *w)
1090{
1091 if (ev_is_active (w))
1092 return;
1093
1094 ev_start (EV_A_ (W)w, ++idlecnt);
1095 array_needsize (idles, idlemax, idlecnt, );
1096 idles [idlecnt - 1] = w;
1097}
1098
1099void
1100ev_idle_stop (EV_P_ struct ev_idle *w)
1101{
1102 ev_clear_pending (EV_A_ (W)w);
1103 if (ev_is_active (w))
1104 return;
1105
1106 idles [w->active - 1] = idles [--idlecnt];
1107 ev_stop (EV_A_ (W)w);
1108}
1109
1110void
1111ev_prepare_start (EV_P_ struct ev_prepare *w)
1112{
1113 if (ev_is_active (w))
1114 return;
1115
1116 ev_start (EV_A_ (W)w, ++preparecnt);
1117 array_needsize (prepares, preparemax, preparecnt, );
1118 prepares [preparecnt - 1] = w;
1119}
1120
1121void
1122ev_prepare_stop (EV_P_ struct ev_prepare *w)
1123{
1124 ev_clear_pending (EV_A_ (W)w);
1125 if (ev_is_active (w))
1126 return;
1127
1128 prepares [w->active - 1] = prepares [--preparecnt];
1129 ev_stop (EV_A_ (W)w);
1130}
1131
1132void
1133ev_check_start (EV_P_ struct ev_check *w)
1134{
1135 if (ev_is_active (w))
1136 return;
1137
1138 ev_start (EV_A_ (W)w, ++checkcnt);
1139 array_needsize (checks, checkmax, checkcnt, );
1140 checks [checkcnt - 1] = w;
1141}
1142
1143void
1144ev_check_stop (EV_P_ struct ev_check *w)
1145{
1146 ev_clear_pending (EV_A_ (W)w);
1147 if (ev_is_active (w))
1148 return;
1149
1150 checks [w->active - 1] = checks [--checkcnt];
1151 ev_stop (EV_A_ (W)w);
1152}
1153
1154void
1155ev_child_start (EV_P_ struct ev_child *w) 1542ev_child_start (EV_P_ struct ev_child *w)
1156{ 1543{
1544#if EV_MULTIPLICITY
1545 assert (("child watchers are only supported in the default loop", loop == default_loop));
1546#endif
1157 if (ev_is_active (w)) 1547 if (ev_is_active (w))
1158 return; 1548 return;
1159 1549
1160 ev_start (EV_A_ (W)w, 1); 1550 ev_start (EV_A_ (W)w, 1);
1161 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1551 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1163 1553
1164void 1554void
1165ev_child_stop (EV_P_ struct ev_child *w) 1555ev_child_stop (EV_P_ struct ev_child *w)
1166{ 1556{
1167 ev_clear_pending (EV_A_ (W)w); 1557 ev_clear_pending (EV_A_ (W)w);
1168 if (ev_is_active (w)) 1558 if (!ev_is_active (w))
1169 return; 1559 return;
1170 1560
1171 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1561 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1172 ev_stop (EV_A_ (W)w); 1562 ev_stop (EV_A_ (W)w);
1173} 1563}
1188 void (*cb)(int revents, void *arg) = once->cb; 1578 void (*cb)(int revents, void *arg) = once->cb;
1189 void *arg = once->arg; 1579 void *arg = once->arg;
1190 1580
1191 ev_io_stop (EV_A_ &once->io); 1581 ev_io_stop (EV_A_ &once->io);
1192 ev_timer_stop (EV_A_ &once->to); 1582 ev_timer_stop (EV_A_ &once->to);
1193 free (once); 1583 ev_free (once);
1194 1584
1195 cb (revents, arg); 1585 cb (revents, arg);
1196} 1586}
1197 1587
1198static void 1588static void
1208} 1598}
1209 1599
1210void 1600void
1211ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1601ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1212{ 1602{
1213 struct ev_once *once = malloc (sizeof (struct ev_once)); 1603 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1214 1604
1215 if (!once) 1605 if (!once)
1216 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1606 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1217 else 1607 else
1218 { 1608 {
1219 once->cb = cb; 1609 once->cb = cb;
1220 once->arg = arg; 1610 once->arg = arg;
1221 1611
1222 ev_watcher_init (&once->io, once_cb_io); 1612 ev_init (&once->io, once_cb_io);
1223 if (fd >= 0) 1613 if (fd >= 0)
1224 { 1614 {
1225 ev_io_set (&once->io, fd, events); 1615 ev_io_set (&once->io, fd, events);
1226 ev_io_start (EV_A_ &once->io); 1616 ev_io_start (EV_A_ &once->io);
1227 } 1617 }
1228 1618
1229 ev_watcher_init (&once->to, once_cb_to); 1619 ev_init (&once->to, once_cb_to);
1230 if (timeout >= 0.) 1620 if (timeout >= 0.)
1231 { 1621 {
1232 ev_timer_set (&once->to, timeout, 0.); 1622 ev_timer_set (&once->to, timeout, 0.);
1233 ev_timer_start (EV_A_ &once->to); 1623 ev_timer_start (EV_A_ &once->to);
1234 } 1624 }
1235 } 1625 }
1236} 1626}
1237 1627
1238/*****************************************************************************/ 1628#ifdef __cplusplus
1239
1240#if 0
1241
1242struct ev_io wio;
1243
1244static void
1245sin_cb (struct ev_io *w, int revents)
1246{
1247 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1248} 1629}
1249
1250static void
1251ocb (struct ev_timer *w, int revents)
1252{
1253 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1254 ev_timer_stop (w);
1255 ev_timer_start (w);
1256}
1257
1258static void
1259scb (struct ev_signal *w, int revents)
1260{
1261 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1262 ev_io_stop (&wio);
1263 ev_io_start (&wio);
1264}
1265
1266static void
1267gcb (struct ev_signal *w, int revents)
1268{
1269 fprintf (stderr, "generic %x\n", revents);
1270
1271}
1272
1273int main (void)
1274{
1275 ev_init (0);
1276
1277 ev_io_init (&wio, sin_cb, 0, EV_READ);
1278 ev_io_start (&wio);
1279
1280 struct ev_timer t[10000];
1281
1282#if 0
1283 int i;
1284 for (i = 0; i < 10000; ++i)
1285 {
1286 struct ev_timer *w = t + i;
1287 ev_watcher_init (w, ocb, i);
1288 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1289 ev_timer_start (w);
1290 if (drand48 () < 0.5)
1291 ev_timer_stop (w);
1292 }
1293#endif 1630#endif
1294 1631
1295 struct ev_timer t1;
1296 ev_timer_init (&t1, ocb, 5, 10);
1297 ev_timer_start (&t1);
1298
1299 struct ev_signal sig;
1300 ev_signal_init (&sig, scb, SIGQUIT);
1301 ev_signal_start (&sig);
1302
1303 struct ev_check cw;
1304 ev_check_init (&cw, gcb);
1305 ev_check_start (&cw);
1306
1307 struct ev_idle iw;
1308 ev_idle_init (&iw, gcb);
1309 ev_idle_start (&iw);
1310
1311 ev_loop (0);
1312
1313 return 0;
1314}
1315
1316#endif
1317
1318
1319
1320

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines