ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.58 by root, Sun Nov 4 16:52:52 2007 UTC vs.
Revision 1.97 by root, Sun Nov 11 01:53:07 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#ifndef EV_EMBED 31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
38
39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1
45# endif
46# endif
47
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
49# define EV_USE_SELECT 1
50# endif
51
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
53# define EV_USE_POLL 1
54# endif
55
56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
57# define EV_USE_EPOLL 1
58# endif
59
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
61# define EV_USE_KQUEUE 1
62# endif
63
33#endif 64#endif
34 65
35#include <math.h> 66#include <math.h>
36#include <stdlib.h> 67#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 68#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 69#include <stddef.h>
41 70
42#include <stdio.h> 71#include <stdio.h>
43 72
44#include <assert.h> 73#include <assert.h>
45#include <errno.h> 74#include <errno.h>
46#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
47#ifndef WIN32 80#ifndef WIN32
81# include <unistd.h>
82# include <sys/time.h>
48# include <sys/wait.h> 83# include <sys/wait.h>
49#endif 84#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 85/**/
54 86
55#ifndef EV_USE_MONOTONIC 87#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 88# define EV_USE_MONOTONIC 1
57#endif 89#endif
58 90
59#ifndef EV_USE_SELECT 91#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
61#endif 93#endif
62 94
63#ifndef EV_USEV_POLL 95#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 96# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif 97#endif
66 98
67#ifndef EV_USE_EPOLL 99#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 100# define EV_USE_EPOLL 0
69#endif 101#endif
70 102
71#ifndef EV_USE_KQUEUE 103#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 104# define EV_USE_KQUEUE 0
105#endif
106
107#ifndef EV_USE_WIN32
108# ifdef WIN32
109# define EV_USE_WIN32 0 /* it does not exist, use select */
110# undef EV_USE_SELECT
111# define EV_USE_SELECT 1
112# else
113# define EV_USE_WIN32 0
114# endif
73#endif 115#endif
74 116
75#ifndef EV_USE_REALTIME 117#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 118# define EV_USE_REALTIME 1
77#endif 119#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 139
98#ifndef EV_EMBED 140#ifdef EV_H
141# include EV_H
142#else
99# include "ev.h" 143# include "ev.h"
100#endif 144#endif
101 145
102#if __GNUC__ >= 3 146#if __GNUC__ >= 3
103# define expect(expr,value) __builtin_expect ((expr),(value)) 147# define expect(expr,value) __builtin_expect ((expr),(value))
117typedef struct ev_watcher_list *WL; 161typedef struct ev_watcher_list *WL;
118typedef struct ev_watcher_time *WT; 162typedef struct ev_watcher_time *WT;
119 163
120static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
121 165
166#include "ev_win32.c"
167
122/*****************************************************************************/ 168/*****************************************************************************/
123 169
170static void (*syserr_cb)(const char *msg);
171
172void ev_set_syserr_cb (void (*cb)(const char *msg))
173{
174 syserr_cb = cb;
175}
176
177static void
178syserr (const char *msg)
179{
180 if (!msg)
181 msg = "(libev) system error";
182
183 if (syserr_cb)
184 syserr_cb (msg);
185 else
186 {
187 perror (msg);
188 abort ();
189 }
190}
191
192static void *(*alloc)(void *ptr, long size);
193
194void ev_set_allocator (void *(*cb)(void *ptr, long size))
195{
196 alloc = cb;
197}
198
199static void *
200ev_realloc (void *ptr, long size)
201{
202 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
203
204 if (!ptr && size)
205 {
206 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
207 abort ();
208 }
209
210 return ptr;
211}
212
213#define ev_malloc(size) ev_realloc (0, (size))
214#define ev_free(ptr) ev_realloc ((ptr), 0)
215
216/*****************************************************************************/
217
124typedef struct 218typedef struct
125{ 219{
126 struct ev_watcher_list *head; 220 WL head;
127 unsigned char events; 221 unsigned char events;
128 unsigned char reify; 222 unsigned char reify;
129} ANFD; 223} ANFD;
130 224
131typedef struct 225typedef struct
134 int events; 228 int events;
135} ANPENDING; 229} ANPENDING;
136 230
137#if EV_MULTIPLICITY 231#if EV_MULTIPLICITY
138 232
139struct ev_loop 233 struct ev_loop
140{ 234 {
235 ev_tstamp ev_rt_now;
141# define VAR(name,decl) decl; 236 #define VAR(name,decl) decl;
142# include "ev_vars.h" 237 #include "ev_vars.h"
143};
144# undef VAR 238 #undef VAR
239 };
145# include "ev_wrap.h" 240 #include "ev_wrap.h"
241
242 struct ev_loop default_loop_struct;
243 static struct ev_loop *default_loop;
146 244
147#else 245#else
148 246
247 ev_tstamp ev_rt_now;
149# define VAR(name,decl) static decl; 248 #define VAR(name,decl) static decl;
150# include "ev_vars.h" 249 #include "ev_vars.h"
151# undef VAR 250 #undef VAR
251
252 static int default_loop;
152 253
153#endif 254#endif
154 255
155/*****************************************************************************/ 256/*****************************************************************************/
156 257
157inline ev_tstamp 258ev_tstamp
158ev_time (void) 259ev_time (void)
159{ 260{
160#if EV_USE_REALTIME 261#if EV_USE_REALTIME
161 struct timespec ts; 262 struct timespec ts;
162 clock_gettime (CLOCK_REALTIME, &ts); 263 clock_gettime (CLOCK_REALTIME, &ts);
181#endif 282#endif
182 283
183 return ev_time (); 284 return ev_time ();
184} 285}
185 286
287#if EV_MULTIPLICITY
186ev_tstamp 288ev_tstamp
187ev_now (EV_P) 289ev_now (EV_P)
188{ 290{
189 return rt_now; 291 return ev_rt_now;
190} 292}
293#endif
191 294
192#define array_roundsize(base,n) ((n) | 4 & ~3) 295#define array_roundsize(type,n) ((n) | 4 & ~3)
193 296
194#define array_needsize(base,cur,cnt,init) \ 297#define array_needsize(type,base,cur,cnt,init) \
195 if (expect_false ((cnt) > cur)) \ 298 if (expect_false ((cnt) > cur)) \
196 { \ 299 { \
197 int newcnt = cur; \ 300 int newcnt = cur; \
198 do \ 301 do \
199 { \ 302 { \
200 newcnt = array_roundsize (base, newcnt << 1); \ 303 newcnt = array_roundsize (type, newcnt << 1); \
201 } \ 304 } \
202 while ((cnt) > newcnt); \ 305 while ((cnt) > newcnt); \
203 \ 306 \
204 base = realloc (base, sizeof (*base) * (newcnt)); \ 307 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
205 init (base + cur, newcnt - cur); \ 308 init (base + cur, newcnt - cur); \
206 cur = newcnt; \ 309 cur = newcnt; \
207 } 310 }
311
312#define array_slim(type,stem) \
313 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
314 { \
315 stem ## max = array_roundsize (stem ## cnt >> 1); \
316 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
317 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
318 }
319
320/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
321/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
322#define array_free_microshit(stem) \
323 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
324
325#define array_free(stem, idx) \
326 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
208 327
209/*****************************************************************************/ 328/*****************************************************************************/
210 329
211static void 330static void
212anfds_init (ANFD *base, int count) 331anfds_init (ANFD *base, int count)
219 338
220 ++base; 339 ++base;
221 } 340 }
222} 341}
223 342
224static void 343void
225event (EV_P_ W w, int events) 344ev_feed_event (EV_P_ void *w, int revents)
226{ 345{
346 W w_ = (W)w;
347
227 if (w->pending) 348 if (w_->pending)
228 { 349 {
229 pendings [ABSPRI (w)][w->pending - 1].events |= events; 350 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
230 return; 351 return;
231 } 352 }
232 353
233 w->pending = ++pendingcnt [ABSPRI (w)]; 354 w_->pending = ++pendingcnt [ABSPRI (w_)];
234 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 355 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
235 pendings [ABSPRI (w)][w->pending - 1].w = w; 356 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
236 pendings [ABSPRI (w)][w->pending - 1].events = events; 357 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
237} 358}
238 359
239static void 360static void
240queue_events (EV_P_ W *events, int eventcnt, int type) 361queue_events (EV_P_ W *events, int eventcnt, int type)
241{ 362{
242 int i; 363 int i;
243 364
244 for (i = 0; i < eventcnt; ++i) 365 for (i = 0; i < eventcnt; ++i)
245 event (EV_A_ events [i], type); 366 ev_feed_event (EV_A_ events [i], type);
246} 367}
247 368
248static void 369inline void
249fd_event (EV_P_ int fd, int events) 370fd_event (EV_P_ int fd, int revents)
250{ 371{
251 ANFD *anfd = anfds + fd; 372 ANFD *anfd = anfds + fd;
252 struct ev_io *w; 373 struct ev_io *w;
253 374
254 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
255 { 376 {
256 int ev = w->events & events; 377 int ev = w->events & revents;
257 378
258 if (ev) 379 if (ev)
259 event (EV_A_ (W)w, ev); 380 ev_feed_event (EV_A_ (W)w, ev);
260 } 381 }
382}
383
384void
385ev_feed_fd_event (EV_P_ int fd, int revents)
386{
387 fd_event (EV_A_ fd, revents);
261} 388}
262 389
263/*****************************************************************************/ 390/*****************************************************************************/
264 391
265static void 392static void
278 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 405 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
279 events |= w->events; 406 events |= w->events;
280 407
281 anfd->reify = 0; 408 anfd->reify = 0;
282 409
283 if (anfd->events != events)
284 {
285 method_modify (EV_A_ fd, anfd->events, events); 410 method_modify (EV_A_ fd, anfd->events, events);
286 anfd->events = events; 411 anfd->events = events;
287 }
288 } 412 }
289 413
290 fdchangecnt = 0; 414 fdchangecnt = 0;
291} 415}
292 416
293static void 417static void
294fd_change (EV_P_ int fd) 418fd_change (EV_P_ int fd)
295{ 419{
296 if (anfds [fd].reify || fdchangecnt < 0) 420 if (anfds [fd].reify)
297 return; 421 return;
298 422
299 anfds [fd].reify = 1; 423 anfds [fd].reify = 1;
300 424
301 ++fdchangecnt; 425 ++fdchangecnt;
302 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 426 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
303 fdchanges [fdchangecnt - 1] = fd; 427 fdchanges [fdchangecnt - 1] = fd;
304} 428}
305 429
306static void 430static void
307fd_kill (EV_P_ int fd) 431fd_kill (EV_P_ int fd)
309 struct ev_io *w; 433 struct ev_io *w;
310 434
311 while ((w = (struct ev_io *)anfds [fd].head)) 435 while ((w = (struct ev_io *)anfds [fd].head))
312 { 436 {
313 ev_io_stop (EV_A_ w); 437 ev_io_stop (EV_A_ w);
314 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 438 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
315 } 439 }
440}
441
442static int
443fd_valid (int fd)
444{
445#ifdef WIN32
446 return !!win32_get_osfhandle (fd);
447#else
448 return fcntl (fd, F_GETFD) != -1;
449#endif
316} 450}
317 451
318/* called on EBADF to verify fds */ 452/* called on EBADF to verify fds */
319static void 453static void
320fd_ebadf (EV_P) 454fd_ebadf (EV_P)
321{ 455{
322 int fd; 456 int fd;
323 457
324 for (fd = 0; fd < anfdmax; ++fd) 458 for (fd = 0; fd < anfdmax; ++fd)
325 if (anfds [fd].events) 459 if (anfds [fd].events)
326 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 460 if (!fd_valid (fd) == -1 && errno == EBADF)
327 fd_kill (EV_A_ fd); 461 fd_kill (EV_A_ fd);
328} 462}
329 463
330/* called on ENOMEM in select/poll to kill some fds and retry */ 464/* called on ENOMEM in select/poll to kill some fds and retry */
331static void 465static void
332fd_enomem (EV_P) 466fd_enomem (EV_P)
333{ 467{
334 int fd = anfdmax; 468 int fd;
335 469
336 while (fd--) 470 for (fd = anfdmax; fd--; )
337 if (anfds [fd].events) 471 if (anfds [fd].events)
338 { 472 {
339 close (fd);
340 fd_kill (EV_A_ fd); 473 fd_kill (EV_A_ fd);
341 return; 474 return;
342 } 475 }
343} 476}
344 477
345/* susually called after fork if method needs to re-arm all fds from scratch */ 478/* usually called after fork if method needs to re-arm all fds from scratch */
346static void 479static void
347fd_rearm_all (EV_P) 480fd_rearm_all (EV_P)
348{ 481{
349 int fd; 482 int fd;
350 483
351 /* this should be highly optimised to not do anything but set a flag */ 484 /* this should be highly optimised to not do anything but set a flag */
352 for (fd = 0; fd < anfdmax; ++fd) 485 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 486 if (anfds [fd].events)
354 { 487 {
355 anfds [fd].events = 0; 488 anfds [fd].events = 0;
356 fd_change (fd); 489 fd_change (EV_A_ fd);
357 } 490 }
358} 491}
359 492
360/*****************************************************************************/ 493/*****************************************************************************/
361 494
365 WT w = heap [k]; 498 WT w = heap [k];
366 499
367 while (k && heap [k >> 1]->at > w->at) 500 while (k && heap [k >> 1]->at > w->at)
368 { 501 {
369 heap [k] = heap [k >> 1]; 502 heap [k] = heap [k >> 1];
370 heap [k]->active = k + 1; 503 ((W)heap [k])->active = k + 1;
371 k >>= 1; 504 k >>= 1;
372 } 505 }
373 506
374 heap [k] = w; 507 heap [k] = w;
375 heap [k]->active = k + 1; 508 ((W)heap [k])->active = k + 1;
376 509
377} 510}
378 511
379static void 512static void
380downheap (WT *heap, int N, int k) 513downheap (WT *heap, int N, int k)
390 523
391 if (w->at <= heap [j]->at) 524 if (w->at <= heap [j]->at)
392 break; 525 break;
393 526
394 heap [k] = heap [j]; 527 heap [k] = heap [j];
395 heap [k]->active = k + 1; 528 ((W)heap [k])->active = k + 1;
396 k = j; 529 k = j;
397 } 530 }
398 531
399 heap [k] = w; 532 heap [k] = w;
400 heap [k]->active = k + 1; 533 ((W)heap [k])->active = k + 1;
534}
535
536inline void
537adjustheap (WT *heap, int N, int k, ev_tstamp at)
538{
539 ev_tstamp old_at = heap [k]->at;
540 heap [k]->at = at;
541
542 if (old_at < at)
543 downheap (heap, N, k);
544 else
545 upheap (heap, k);
401} 546}
402 547
403/*****************************************************************************/ 548/*****************************************************************************/
404 549
405typedef struct 550typedef struct
406{ 551{
407 struct ev_watcher_list *head; 552 WL head;
408 sig_atomic_t volatile gotsig; 553 sig_atomic_t volatile gotsig;
409} ANSIG; 554} ANSIG;
410 555
411static ANSIG *signals; 556static ANSIG *signals;
412static int signalmax; 557static int signalmax;
413 558
414static int sigpipe [2]; 559static int sigpipe [2];
415static sig_atomic_t volatile gotsig; 560static sig_atomic_t volatile gotsig;
561static struct ev_io sigev;
416 562
417static void 563static void
418signals_init (ANSIG *base, int count) 564signals_init (ANSIG *base, int count)
419{ 565{
420 while (count--) 566 while (count--)
427} 573}
428 574
429static void 575static void
430sighandler (int signum) 576sighandler (int signum)
431{ 577{
578#if WIN32
579 signal (signum, sighandler);
580#endif
581
432 signals [signum - 1].gotsig = 1; 582 signals [signum - 1].gotsig = 1;
433 583
434 if (!gotsig) 584 if (!gotsig)
435 { 585 {
436 int old_errno = errno; 586 int old_errno = errno;
437 gotsig = 1; 587 gotsig = 1;
588#ifdef WIN32
589 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
590#else
438 write (sigpipe [1], &signum, 1); 591 write (sigpipe [1], &signum, 1);
592#endif
439 errno = old_errno; 593 errno = old_errno;
440 } 594 }
441} 595}
442 596
597void
598ev_feed_signal_event (EV_P_ int signum)
599{
600 WL w;
601
602#if EV_MULTIPLICITY
603 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
604#endif
605
606 --signum;
607
608 if (signum < 0 || signum >= signalmax)
609 return;
610
611 signals [signum].gotsig = 0;
612
613 for (w = signals [signum].head; w; w = w->next)
614 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
615}
616
443static void 617static void
444sigcb (EV_P_ struct ev_io *iow, int revents) 618sigcb (EV_P_ struct ev_io *iow, int revents)
445{ 619{
446 struct ev_watcher_list *w;
447 int signum; 620 int signum;
448 621
622#ifdef WIN32
623 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
624#else
449 read (sigpipe [0], &revents, 1); 625 read (sigpipe [0], &revents, 1);
626#endif
450 gotsig = 0; 627 gotsig = 0;
451 628
452 for (signum = signalmax; signum--; ) 629 for (signum = signalmax; signum--; )
453 if (signals [signum].gotsig) 630 if (signals [signum].gotsig)
454 { 631 ev_feed_signal_event (EV_A_ signum + 1);
455 signals [signum].gotsig = 0;
456
457 for (w = signals [signum].head; w; w = w->next)
458 event (EV_A_ (W)w, EV_SIGNAL);
459 }
460} 632}
461 633
462static void 634static void
463siginit (EV_P) 635siginit (EV_P)
464{ 636{
476 ev_unref (EV_A); /* child watcher should not keep loop alive */ 648 ev_unref (EV_A); /* child watcher should not keep loop alive */
477} 649}
478 650
479/*****************************************************************************/ 651/*****************************************************************************/
480 652
653static struct ev_child *childs [PID_HASHSIZE];
654
481#ifndef WIN32 655#ifndef WIN32
656
657static struct ev_signal childev;
482 658
483#ifndef WCONTINUED 659#ifndef WCONTINUED
484# define WCONTINUED 0 660# define WCONTINUED 0
485#endif 661#endif
486 662
490 struct ev_child *w; 666 struct ev_child *w;
491 667
492 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 668 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
493 if (w->pid == pid || !w->pid) 669 if (w->pid == pid || !w->pid)
494 { 670 {
495 w->priority = sw->priority; /* need to do it *now* */ 671 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
496 w->rpid = pid; 672 w->rpid = pid;
497 w->rstatus = status; 673 w->rstatus = status;
498 event (EV_A_ (W)w, EV_CHILD); 674 ev_feed_event (EV_A_ (W)w, EV_CHILD);
499 } 675 }
500} 676}
501 677
502static void 678static void
503childcb (EV_P_ struct ev_signal *sw, int revents) 679childcb (EV_P_ struct ev_signal *sw, int revents)
505 int pid, status; 681 int pid, status;
506 682
507 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 683 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
508 { 684 {
509 /* make sure we are called again until all childs have been reaped */ 685 /* make sure we are called again until all childs have been reaped */
510 event (EV_A_ (W)sw, EV_SIGNAL); 686 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
511 687
512 child_reap (EV_A_ sw, pid, pid, status); 688 child_reap (EV_A_ sw, pid, pid, status);
513 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 689 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
514 } 690 }
515} 691}
522# include "ev_kqueue.c" 698# include "ev_kqueue.c"
523#endif 699#endif
524#if EV_USE_EPOLL 700#if EV_USE_EPOLL
525# include "ev_epoll.c" 701# include "ev_epoll.c"
526#endif 702#endif
527#if EV_USEV_POLL 703#if EV_USE_POLL
528# include "ev_poll.c" 704# include "ev_poll.c"
529#endif 705#endif
530#if EV_USE_SELECT 706#if EV_USE_SELECT
531# include "ev_select.c" 707# include "ev_select.c"
532#endif 708#endif
572 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 748 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
573 have_monotonic = 1; 749 have_monotonic = 1;
574 } 750 }
575#endif 751#endif
576 752
577 rt_now = ev_time (); 753 ev_rt_now = ev_time ();
578 mn_now = get_clock (); 754 mn_now = get_clock ();
579 now_floor = mn_now; 755 now_floor = mn_now;
580 rtmn_diff = rt_now - mn_now; 756 rtmn_diff = ev_rt_now - mn_now;
581 757
582 if (methods == EVMETHOD_AUTO) 758 if (methods == EVMETHOD_AUTO)
583 if (!enable_secure () && getenv ("LIBEV_METHODS")) 759 if (!enable_secure () && getenv ("LIBEV_METHODS"))
584 methods = atoi (getenv ("LIBEV_METHODS")); 760 methods = atoi (getenv ("LIBEV_METHODS"));
585 else 761 else
586 methods = EVMETHOD_ANY; 762 methods = EVMETHOD_ANY;
587 763
588 method = 0; 764 method = 0;
765#if EV_USE_WIN32
766 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
767#endif
589#if EV_USE_KQUEUE 768#if EV_USE_KQUEUE
590 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 769 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
591#endif 770#endif
592#if EV_USE_EPOLL 771#if EV_USE_EPOLL
593 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 772 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
594#endif 773#endif
595#if EV_USEV_POLL 774#if EV_USE_POLL
596 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 775 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
597#endif 776#endif
598#if EV_USE_SELECT 777#if EV_USE_SELECT
599 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 778 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
600#endif 779#endif
780
781 ev_init (&sigev, sigcb);
782 ev_set_priority (&sigev, EV_MAXPRI);
601 } 783 }
602} 784}
603 785
604void 786void
605loop_destroy (EV_P) 787loop_destroy (EV_P)
606{ 788{
789 int i;
790
791#if EV_USE_WIN32
792 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
793#endif
607#if EV_USE_KQUEUE 794#if EV_USE_KQUEUE
608 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 795 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
609#endif 796#endif
610#if EV_USE_EPOLL 797#if EV_USE_EPOLL
611 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 798 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
612#endif 799#endif
613#if EV_USEV_POLL 800#if EV_USE_POLL
614 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 801 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
615#endif 802#endif
616#if EV_USE_SELECT 803#if EV_USE_SELECT
617 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 804 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
618#endif 805#endif
619 806
807 for (i = NUMPRI; i--; )
808 array_free (pending, [i]);
809
810 /* have to use the microsoft-never-gets-it-right macro */
811 array_free_microshit (fdchange);
812 array_free_microshit (timer);
813#if EV_PERIODICS
814 array_free_microshit (periodic);
815#endif
816 array_free_microshit (idle);
817 array_free_microshit (prepare);
818 array_free_microshit (check);
819
620 method = 0; 820 method = 0;
621 /*TODO*/
622} 821}
623 822
624void 823static void
625loop_fork (EV_P) 824loop_fork (EV_P)
626{ 825{
627 /*TODO*/
628#if EV_USE_EPOLL 826#if EV_USE_EPOLL
629 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 827 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
630#endif 828#endif
631#if EV_USE_KQUEUE 829#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 830 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
633#endif 831#endif
832
833 if (ev_is_active (&sigev))
834 {
835 /* default loop */
836
837 ev_ref (EV_A);
838 ev_io_stop (EV_A_ &sigev);
839 close (sigpipe [0]);
840 close (sigpipe [1]);
841
842 while (pipe (sigpipe))
843 syserr ("(libev) error creating pipe");
844
845 siginit (EV_A);
846 }
847
848 postfork = 0;
634} 849}
635 850
636#if EV_MULTIPLICITY 851#if EV_MULTIPLICITY
637struct ev_loop * 852struct ev_loop *
638ev_loop_new (int methods) 853ev_loop_new (int methods)
639{ 854{
640 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 855 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
856
857 memset (loop, 0, sizeof (struct ev_loop));
641 858
642 loop_init (EV_A_ methods); 859 loop_init (EV_A_ methods);
643 860
644 if (ev_methods (EV_A)) 861 if (ev_method (EV_A))
645 return loop; 862 return loop;
646 863
647 return 0; 864 return 0;
648} 865}
649 866
650void 867void
651ev_loop_destroy (EV_P) 868ev_loop_destroy (EV_P)
652{ 869{
653 loop_destroy (EV_A); 870 loop_destroy (EV_A);
654 free (loop); 871 ev_free (loop);
655} 872}
656 873
657void 874void
658ev_loop_fork (EV_P) 875ev_loop_fork (EV_P)
659{ 876{
660 loop_fork (EV_A); 877 postfork = 1;
661} 878}
662 879
663#endif 880#endif
664 881
665#if EV_MULTIPLICITY 882#if EV_MULTIPLICITY
666struct ev_loop default_loop_struct;
667static struct ev_loop *default_loop;
668
669struct ev_loop * 883struct ev_loop *
670#else 884#else
671static int default_loop;
672
673int 885int
674#endif 886#endif
675ev_default_loop (int methods) 887ev_default_loop (int methods)
676{ 888{
677 if (sigpipe [0] == sigpipe [1]) 889 if (sigpipe [0] == sigpipe [1])
688 900
689 loop_init (EV_A_ methods); 901 loop_init (EV_A_ methods);
690 902
691 if (ev_method (EV_A)) 903 if (ev_method (EV_A))
692 { 904 {
693 ev_watcher_init (&sigev, sigcb);
694 ev_set_priority (&sigev, EV_MAXPRI);
695 siginit (EV_A); 905 siginit (EV_A);
696 906
697#ifndef WIN32 907#ifndef WIN32
698 ev_signal_init (&childev, childcb, SIGCHLD); 908 ev_signal_init (&childev, childcb, SIGCHLD);
699 ev_set_priority (&childev, EV_MAXPRI); 909 ev_set_priority (&childev, EV_MAXPRI);
713{ 923{
714#if EV_MULTIPLICITY 924#if EV_MULTIPLICITY
715 struct ev_loop *loop = default_loop; 925 struct ev_loop *loop = default_loop;
716#endif 926#endif
717 927
928#ifndef WIN32
718 ev_ref (EV_A); /* child watcher */ 929 ev_ref (EV_A); /* child watcher */
719 ev_signal_stop (EV_A_ &childev); 930 ev_signal_stop (EV_A_ &childev);
931#endif
720 932
721 ev_ref (EV_A); /* signal watcher */ 933 ev_ref (EV_A); /* signal watcher */
722 ev_io_stop (EV_A_ &sigev); 934 ev_io_stop (EV_A_ &sigev);
723 935
724 close (sigpipe [0]); sigpipe [0] = 0; 936 close (sigpipe [0]); sigpipe [0] = 0;
726 938
727 loop_destroy (EV_A); 939 loop_destroy (EV_A);
728} 940}
729 941
730void 942void
731ev_default_fork (EV_P) 943ev_default_fork (void)
732{ 944{
733 loop_fork (EV_A); 945#if EV_MULTIPLICITY
946 struct ev_loop *loop = default_loop;
947#endif
734 948
735 ev_io_stop (EV_A_ &sigev); 949 if (method)
736 close (sigpipe [0]); 950 postfork = 1;
737 close (sigpipe [1]);
738 pipe (sigpipe);
739
740 ev_ref (EV_A); /* signal watcher */
741 siginit (EV_A);
742} 951}
743 952
744/*****************************************************************************/ 953/*****************************************************************************/
954
955static int
956any_pending (EV_P)
957{
958 int pri;
959
960 for (pri = NUMPRI; pri--; )
961 if (pendingcnt [pri])
962 return 1;
963
964 return 0;
965}
745 966
746static void 967static void
747call_pending (EV_P) 968call_pending (EV_P)
748{ 969{
749 int pri; 970 int pri;
754 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 975 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
755 976
756 if (p->w) 977 if (p->w)
757 { 978 {
758 p->w->pending = 0; 979 p->w->pending = 0;
759 p->w->cb (EV_A_ p->w, p->events); 980 EV_CB_INVOKE (p->w, p->events);
760 } 981 }
761 } 982 }
762} 983}
763 984
764static void 985static void
765timers_reify (EV_P) 986timers_reify (EV_P)
766{ 987{
767 while (timercnt && timers [0]->at <= mn_now) 988 while (timercnt && ((WT)timers [0])->at <= mn_now)
768 { 989 {
769 struct ev_timer *w = timers [0]; 990 struct ev_timer *w = timers [0];
991
992 assert (("inactive timer on timer heap detected", ev_is_active (w)));
770 993
771 /* first reschedule or stop timer */ 994 /* first reschedule or stop timer */
772 if (w->repeat) 995 if (w->repeat)
773 { 996 {
774 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 997 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
998
775 w->at = mn_now + w->repeat; 999 ((WT)w)->at += w->repeat;
1000 if (((WT)w)->at < mn_now)
1001 ((WT)w)->at = mn_now;
1002
776 downheap ((WT *)timers, timercnt, 0); 1003 downheap ((WT *)timers, timercnt, 0);
777 } 1004 }
778 else 1005 else
779 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1006 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
780 1007
781 event (EV_A_ (W)w, EV_TIMEOUT); 1008 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
782 } 1009 }
783} 1010}
784 1011
1012#if EV_PERIODICS
785static void 1013static void
786periodics_reify (EV_P) 1014periodics_reify (EV_P)
787{ 1015{
788 while (periodiccnt && periodics [0]->at <= rt_now) 1016 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
789 { 1017 {
790 struct ev_periodic *w = periodics [0]; 1018 struct ev_periodic *w = periodics [0];
791 1019
1020 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1021
792 /* first reschedule or stop timer */ 1022 /* first reschedule or stop timer */
793 if (w->interval) 1023 if (w->reschedule_cb)
794 { 1024 {
1025 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1026
1027 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1028 downheap ((WT *)periodics, periodiccnt, 0);
1029 }
1030 else if (w->interval)
1031 {
795 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1032 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
796 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1033 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
797 downheap ((WT *)periodics, periodiccnt, 0); 1034 downheap ((WT *)periodics, periodiccnt, 0);
798 } 1035 }
799 else 1036 else
800 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1037 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
801 1038
802 event (EV_A_ (W)w, EV_PERIODIC); 1039 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
803 } 1040 }
804} 1041}
805 1042
806static void 1043static void
807periodics_reschedule (EV_P) 1044periodics_reschedule (EV_P)
811 /* adjust periodics after time jump */ 1048 /* adjust periodics after time jump */
812 for (i = 0; i < periodiccnt; ++i) 1049 for (i = 0; i < periodiccnt; ++i)
813 { 1050 {
814 struct ev_periodic *w = periodics [i]; 1051 struct ev_periodic *w = periodics [i];
815 1052
1053 if (w->reschedule_cb)
1054 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
816 if (w->interval) 1055 else if (w->interval)
817 {
818 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1056 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
819
820 if (fabs (diff) >= 1e-4)
821 {
822 ev_periodic_stop (EV_A_ w);
823 ev_periodic_start (EV_A_ w);
824
825 i = 0; /* restart loop, inefficient, but time jumps should be rare */
826 }
827 }
828 } 1057 }
1058
1059 /* now rebuild the heap */
1060 for (i = periodiccnt >> 1; i--; )
1061 downheap ((WT *)periodics, periodiccnt, i);
829} 1062}
1063#endif
830 1064
831inline int 1065inline int
832time_update_monotonic (EV_P) 1066time_update_monotonic (EV_P)
833{ 1067{
834 mn_now = get_clock (); 1068 mn_now = get_clock ();
835 1069
836 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1070 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
837 { 1071 {
838 rt_now = rtmn_diff + mn_now; 1072 ev_rt_now = rtmn_diff + mn_now;
839 return 0; 1073 return 0;
840 } 1074 }
841 else 1075 else
842 { 1076 {
843 now_floor = mn_now; 1077 now_floor = mn_now;
844 rt_now = ev_time (); 1078 ev_rt_now = ev_time ();
845 return 1; 1079 return 1;
846 } 1080 }
847} 1081}
848 1082
849static void 1083static void
858 { 1092 {
859 ev_tstamp odiff = rtmn_diff; 1093 ev_tstamp odiff = rtmn_diff;
860 1094
861 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1095 for (i = 4; --i; ) /* loop a few times, before making important decisions */
862 { 1096 {
863 rtmn_diff = rt_now - mn_now; 1097 rtmn_diff = ev_rt_now - mn_now;
864 1098
865 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1099 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
866 return; /* all is well */ 1100 return; /* all is well */
867 1101
868 rt_now = ev_time (); 1102 ev_rt_now = ev_time ();
869 mn_now = get_clock (); 1103 mn_now = get_clock ();
870 now_floor = mn_now; 1104 now_floor = mn_now;
871 } 1105 }
872 1106
1107# if EV_PERIODICS
873 periodics_reschedule (EV_A); 1108 periodics_reschedule (EV_A);
1109# endif
874 /* no timer adjustment, as the monotonic clock doesn't jump */ 1110 /* no timer adjustment, as the monotonic clock doesn't jump */
875 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1111 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
876 } 1112 }
877 } 1113 }
878 else 1114 else
879#endif 1115#endif
880 { 1116 {
881 rt_now = ev_time (); 1117 ev_rt_now = ev_time ();
882 1118
883 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1119 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
884 { 1120 {
1121#if EV_PERIODICS
885 periodics_reschedule (EV_A); 1122 periodics_reschedule (EV_A);
1123#endif
886 1124
887 /* adjust timers. this is easy, as the offset is the same for all */ 1125 /* adjust timers. this is easy, as the offset is the same for all */
888 for (i = 0; i < timercnt; ++i) 1126 for (i = 0; i < timercnt; ++i)
889 timers [i]->at += rt_now - mn_now; 1127 ((WT)timers [i])->at += ev_rt_now - mn_now;
890 } 1128 }
891 1129
892 mn_now = rt_now; 1130 mn_now = ev_rt_now;
893 } 1131 }
894} 1132}
895 1133
896void 1134void
897ev_ref (EV_P) 1135ev_ref (EV_P)
920 { 1158 {
921 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1159 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
922 call_pending (EV_A); 1160 call_pending (EV_A);
923 } 1161 }
924 1162
1163 /* we might have forked, so reify kernel state if necessary */
1164 if (expect_false (postfork))
1165 loop_fork (EV_A);
1166
925 /* update fd-related kernel structures */ 1167 /* update fd-related kernel structures */
926 fd_reify (EV_A); 1168 fd_reify (EV_A);
927 1169
928 /* calculate blocking time */ 1170 /* calculate blocking time */
929 1171
930 /* we only need this for !monotonic clockor timers, but as we basically 1172 /* we only need this for !monotonic clock or timers, but as we basically
931 always have timers, we just calculate it always */ 1173 always have timers, we just calculate it always */
932#if EV_USE_MONOTONIC 1174#if EV_USE_MONOTONIC
933 if (expect_true (have_monotonic)) 1175 if (expect_true (have_monotonic))
934 time_update_monotonic (EV_A); 1176 time_update_monotonic (EV_A);
935 else 1177 else
936#endif 1178#endif
937 { 1179 {
938 rt_now = ev_time (); 1180 ev_rt_now = ev_time ();
939 mn_now = rt_now; 1181 mn_now = ev_rt_now;
940 } 1182 }
941 1183
942 if (flags & EVLOOP_NONBLOCK || idlecnt) 1184 if (flags & EVLOOP_NONBLOCK || idlecnt)
943 block = 0.; 1185 block = 0.;
944 else 1186 else
945 { 1187 {
946 block = MAX_BLOCKTIME; 1188 block = MAX_BLOCKTIME;
947 1189
948 if (timercnt) 1190 if (timercnt)
949 { 1191 {
950 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1192 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
951 if (block > to) block = to; 1193 if (block > to) block = to;
952 } 1194 }
953 1195
1196#if EV_PERIODICS
954 if (periodiccnt) 1197 if (periodiccnt)
955 { 1198 {
956 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1199 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
957 if (block > to) block = to; 1200 if (block > to) block = to;
958 } 1201 }
1202#endif
959 1203
960 if (block < 0.) block = 0.; 1204 if (block < 0.) block = 0.;
961 } 1205 }
962 1206
963 method_poll (EV_A_ block); 1207 method_poll (EV_A_ block);
964 1208
965 /* update rt_now, do magic */ 1209 /* update ev_rt_now, do magic */
966 time_update (EV_A); 1210 time_update (EV_A);
967 1211
968 /* queue pending timers and reschedule them */ 1212 /* queue pending timers and reschedule them */
969 timers_reify (EV_A); /* relative timers called last */ 1213 timers_reify (EV_A); /* relative timers called last */
1214#if EV_PERIODICS
970 periodics_reify (EV_A); /* absolute timers called first */ 1215 periodics_reify (EV_A); /* absolute timers called first */
1216#endif
971 1217
972 /* queue idle watchers unless io or timers are pending */ 1218 /* queue idle watchers unless io or timers are pending */
973 if (!pendingcnt) 1219 if (idlecnt && !any_pending (EV_A))
974 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1220 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
975 1221
976 /* queue check watchers, to be executed first */ 1222 /* queue check watchers, to be executed first */
977 if (checkcnt) 1223 if (checkcnt)
978 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1224 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1053 return; 1299 return;
1054 1300
1055 assert (("ev_io_start called with negative fd", fd >= 0)); 1301 assert (("ev_io_start called with negative fd", fd >= 0));
1056 1302
1057 ev_start (EV_A_ (W)w, 1); 1303 ev_start (EV_A_ (W)w, 1);
1058 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1304 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1059 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1305 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1060 1306
1061 fd_change (EV_A_ fd); 1307 fd_change (EV_A_ fd);
1062} 1308}
1063 1309
1066{ 1312{
1067 ev_clear_pending (EV_A_ (W)w); 1313 ev_clear_pending (EV_A_ (W)w);
1068 if (!ev_is_active (w)) 1314 if (!ev_is_active (w))
1069 return; 1315 return;
1070 1316
1317 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1318
1071 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1319 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1072 ev_stop (EV_A_ (W)w); 1320 ev_stop (EV_A_ (W)w);
1073 1321
1074 fd_change (EV_A_ w->fd); 1322 fd_change (EV_A_ w->fd);
1075} 1323}
1078ev_timer_start (EV_P_ struct ev_timer *w) 1326ev_timer_start (EV_P_ struct ev_timer *w)
1079{ 1327{
1080 if (ev_is_active (w)) 1328 if (ev_is_active (w))
1081 return; 1329 return;
1082 1330
1083 w->at += mn_now; 1331 ((WT)w)->at += mn_now;
1084 1332
1085 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1333 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1086 1334
1087 ev_start (EV_A_ (W)w, ++timercnt); 1335 ev_start (EV_A_ (W)w, ++timercnt);
1088 array_needsize (timers, timermax, timercnt, ); 1336 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1089 timers [timercnt - 1] = w; 1337 timers [timercnt - 1] = w;
1090 upheap ((WT *)timers, timercnt - 1); 1338 upheap ((WT *)timers, timercnt - 1);
1339
1340 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1091} 1341}
1092 1342
1093void 1343void
1094ev_timer_stop (EV_P_ struct ev_timer *w) 1344ev_timer_stop (EV_P_ struct ev_timer *w)
1095{ 1345{
1096 ev_clear_pending (EV_A_ (W)w); 1346 ev_clear_pending (EV_A_ (W)w);
1097 if (!ev_is_active (w)) 1347 if (!ev_is_active (w))
1098 return; 1348 return;
1099 1349
1350 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1351
1100 if (w->active < timercnt--) 1352 if (((W)w)->active < timercnt--)
1101 { 1353 {
1102 timers [w->active - 1] = timers [timercnt]; 1354 timers [((W)w)->active - 1] = timers [timercnt];
1103 downheap ((WT *)timers, timercnt, w->active - 1); 1355 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1104 } 1356 }
1105 1357
1106 w->at = w->repeat; 1358 ((WT)w)->at -= mn_now;
1107 1359
1108 ev_stop (EV_A_ (W)w); 1360 ev_stop (EV_A_ (W)w);
1109} 1361}
1110 1362
1111void 1363void
1112ev_timer_again (EV_P_ struct ev_timer *w) 1364ev_timer_again (EV_P_ struct ev_timer *w)
1113{ 1365{
1114 if (ev_is_active (w)) 1366 if (ev_is_active (w))
1115 { 1367 {
1116 if (w->repeat) 1368 if (w->repeat)
1117 {
1118 w->at = mn_now + w->repeat;
1119 downheap ((WT *)timers, timercnt, w->active - 1); 1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1120 }
1121 else 1370 else
1122 ev_timer_stop (EV_A_ w); 1371 ev_timer_stop (EV_A_ w);
1123 } 1372 }
1124 else if (w->repeat) 1373 else if (w->repeat)
1125 ev_timer_start (EV_A_ w); 1374 ev_timer_start (EV_A_ w);
1126} 1375}
1127 1376
1377#if EV_PERIODICS
1128void 1378void
1129ev_periodic_start (EV_P_ struct ev_periodic *w) 1379ev_periodic_start (EV_P_ struct ev_periodic *w)
1130{ 1380{
1131 if (ev_is_active (w)) 1381 if (ev_is_active (w))
1132 return; 1382 return;
1133 1383
1384 if (w->reschedule_cb)
1385 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1386 else if (w->interval)
1387 {
1134 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1388 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1135
1136 /* this formula differs from the one in periodic_reify because we do not always round up */ 1389 /* this formula differs from the one in periodic_reify because we do not always round up */
1137 if (w->interval)
1138 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1390 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1391 }
1139 1392
1140 ev_start (EV_A_ (W)w, ++periodiccnt); 1393 ev_start (EV_A_ (W)w, ++periodiccnt);
1141 array_needsize (periodics, periodicmax, periodiccnt, ); 1394 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1142 periodics [periodiccnt - 1] = w; 1395 periodics [periodiccnt - 1] = w;
1143 upheap ((WT *)periodics, periodiccnt - 1); 1396 upheap ((WT *)periodics, periodiccnt - 1);
1397
1398 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1144} 1399}
1145 1400
1146void 1401void
1147ev_periodic_stop (EV_P_ struct ev_periodic *w) 1402ev_periodic_stop (EV_P_ struct ev_periodic *w)
1148{ 1403{
1149 ev_clear_pending (EV_A_ (W)w); 1404 ev_clear_pending (EV_A_ (W)w);
1150 if (!ev_is_active (w)) 1405 if (!ev_is_active (w))
1151 return; 1406 return;
1152 1407
1408 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1409
1153 if (w->active < periodiccnt--) 1410 if (((W)w)->active < periodiccnt--)
1154 { 1411 {
1155 periodics [w->active - 1] = periodics [periodiccnt]; 1412 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1156 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1413 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1157 } 1414 }
1158 1415
1159 ev_stop (EV_A_ (W)w); 1416 ev_stop (EV_A_ (W)w);
1160} 1417}
1161 1418
1162void 1419void
1420ev_periodic_again (EV_P_ struct ev_periodic *w)
1421{
1422 /* TODO: use adjustheap and recalculation */
1423 ev_periodic_stop (EV_A_ w);
1424 ev_periodic_start (EV_A_ w);
1425}
1426#endif
1427
1428void
1163ev_idle_start (EV_P_ struct ev_idle *w) 1429ev_idle_start (EV_P_ struct ev_idle *w)
1164{ 1430{
1165 if (ev_is_active (w)) 1431 if (ev_is_active (w))
1166 return; 1432 return;
1167 1433
1168 ev_start (EV_A_ (W)w, ++idlecnt); 1434 ev_start (EV_A_ (W)w, ++idlecnt);
1169 array_needsize (idles, idlemax, idlecnt, ); 1435 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1170 idles [idlecnt - 1] = w; 1436 idles [idlecnt - 1] = w;
1171} 1437}
1172 1438
1173void 1439void
1174ev_idle_stop (EV_P_ struct ev_idle *w) 1440ev_idle_stop (EV_P_ struct ev_idle *w)
1175{ 1441{
1176 ev_clear_pending (EV_A_ (W)w); 1442 ev_clear_pending (EV_A_ (W)w);
1177 if (ev_is_active (w)) 1443 if (ev_is_active (w))
1178 return; 1444 return;
1179 1445
1180 idles [w->active - 1] = idles [--idlecnt]; 1446 idles [((W)w)->active - 1] = idles [--idlecnt];
1181 ev_stop (EV_A_ (W)w); 1447 ev_stop (EV_A_ (W)w);
1182} 1448}
1183 1449
1184void 1450void
1185ev_prepare_start (EV_P_ struct ev_prepare *w) 1451ev_prepare_start (EV_P_ struct ev_prepare *w)
1186{ 1452{
1187 if (ev_is_active (w)) 1453 if (ev_is_active (w))
1188 return; 1454 return;
1189 1455
1190 ev_start (EV_A_ (W)w, ++preparecnt); 1456 ev_start (EV_A_ (W)w, ++preparecnt);
1191 array_needsize (prepares, preparemax, preparecnt, ); 1457 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1192 prepares [preparecnt - 1] = w; 1458 prepares [preparecnt - 1] = w;
1193} 1459}
1194 1460
1195void 1461void
1196ev_prepare_stop (EV_P_ struct ev_prepare *w) 1462ev_prepare_stop (EV_P_ struct ev_prepare *w)
1197{ 1463{
1198 ev_clear_pending (EV_A_ (W)w); 1464 ev_clear_pending (EV_A_ (W)w);
1199 if (ev_is_active (w)) 1465 if (ev_is_active (w))
1200 return; 1466 return;
1201 1467
1202 prepares [w->active - 1] = prepares [--preparecnt]; 1468 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1203 ev_stop (EV_A_ (W)w); 1469 ev_stop (EV_A_ (W)w);
1204} 1470}
1205 1471
1206void 1472void
1207ev_check_start (EV_P_ struct ev_check *w) 1473ev_check_start (EV_P_ struct ev_check *w)
1208{ 1474{
1209 if (ev_is_active (w)) 1475 if (ev_is_active (w))
1210 return; 1476 return;
1211 1477
1212 ev_start (EV_A_ (W)w, ++checkcnt); 1478 ev_start (EV_A_ (W)w, ++checkcnt);
1213 array_needsize (checks, checkmax, checkcnt, ); 1479 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1214 checks [checkcnt - 1] = w; 1480 checks [checkcnt - 1] = w;
1215} 1481}
1216 1482
1217void 1483void
1218ev_check_stop (EV_P_ struct ev_check *w) 1484ev_check_stop (EV_P_ struct ev_check *w)
1219{ 1485{
1220 ev_clear_pending (EV_A_ (W)w); 1486 ev_clear_pending (EV_A_ (W)w);
1221 if (ev_is_active (w)) 1487 if (!ev_is_active (w))
1222 return; 1488 return;
1223 1489
1224 checks [w->active - 1] = checks [--checkcnt]; 1490 checks [((W)w)->active - 1] = checks [--checkcnt];
1225 ev_stop (EV_A_ (W)w); 1491 ev_stop (EV_A_ (W)w);
1226} 1492}
1227 1493
1228#ifndef SA_RESTART 1494#ifndef SA_RESTART
1229# define SA_RESTART 0 1495# define SA_RESTART 0
1239 return; 1505 return;
1240 1506
1241 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1507 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1242 1508
1243 ev_start (EV_A_ (W)w, 1); 1509 ev_start (EV_A_ (W)w, 1);
1244 array_needsize (signals, signalmax, w->signum, signals_init); 1510 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1245 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1511 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1246 1512
1247 if (!w->next) 1513 if (!((WL)w)->next)
1248 { 1514 {
1515#if WIN32
1516 signal (w->signum, sighandler);
1517#else
1249 struct sigaction sa; 1518 struct sigaction sa;
1250 sa.sa_handler = sighandler; 1519 sa.sa_handler = sighandler;
1251 sigfillset (&sa.sa_mask); 1520 sigfillset (&sa.sa_mask);
1252 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1521 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1253 sigaction (w->signum, &sa, 0); 1522 sigaction (w->signum, &sa, 0);
1523#endif
1254 } 1524 }
1255} 1525}
1256 1526
1257void 1527void
1258ev_signal_stop (EV_P_ struct ev_signal *w) 1528ev_signal_stop (EV_P_ struct ev_signal *w)
1283 1553
1284void 1554void
1285ev_child_stop (EV_P_ struct ev_child *w) 1555ev_child_stop (EV_P_ struct ev_child *w)
1286{ 1556{
1287 ev_clear_pending (EV_A_ (W)w); 1557 ev_clear_pending (EV_A_ (W)w);
1288 if (ev_is_active (w)) 1558 if (!ev_is_active (w))
1289 return; 1559 return;
1290 1560
1291 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1561 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1292 ev_stop (EV_A_ (W)w); 1562 ev_stop (EV_A_ (W)w);
1293} 1563}
1308 void (*cb)(int revents, void *arg) = once->cb; 1578 void (*cb)(int revents, void *arg) = once->cb;
1309 void *arg = once->arg; 1579 void *arg = once->arg;
1310 1580
1311 ev_io_stop (EV_A_ &once->io); 1581 ev_io_stop (EV_A_ &once->io);
1312 ev_timer_stop (EV_A_ &once->to); 1582 ev_timer_stop (EV_A_ &once->to);
1313 free (once); 1583 ev_free (once);
1314 1584
1315 cb (revents, arg); 1585 cb (revents, arg);
1316} 1586}
1317 1587
1318static void 1588static void
1328} 1598}
1329 1599
1330void 1600void
1331ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1601ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1332{ 1602{
1333 struct ev_once *once = malloc (sizeof (struct ev_once)); 1603 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1334 1604
1335 if (!once) 1605 if (!once)
1336 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1606 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1337 else 1607 else
1338 { 1608 {
1339 once->cb = cb; 1609 once->cb = cb;
1340 once->arg = arg; 1610 once->arg = arg;
1341 1611
1342 ev_watcher_init (&once->io, once_cb_io); 1612 ev_init (&once->io, once_cb_io);
1343 if (fd >= 0) 1613 if (fd >= 0)
1344 { 1614 {
1345 ev_io_set (&once->io, fd, events); 1615 ev_io_set (&once->io, fd, events);
1346 ev_io_start (EV_A_ &once->io); 1616 ev_io_start (EV_A_ &once->io);
1347 } 1617 }
1348 1618
1349 ev_watcher_init (&once->to, once_cb_to); 1619 ev_init (&once->to, once_cb_to);
1350 if (timeout >= 0.) 1620 if (timeout >= 0.)
1351 { 1621 {
1352 ev_timer_set (&once->to, timeout, 0.); 1622 ev_timer_set (&once->to, timeout, 0.);
1353 ev_timer_start (EV_A_ &once->to); 1623 ev_timer_start (EV_A_ &once->to);
1354 } 1624 }
1355 } 1625 }
1356} 1626}
1357 1627
1628#ifdef __cplusplus
1629}
1630#endif
1631

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines