ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.62 by root, Sun Nov 4 20:38:07 2007 UTC vs.
Revision 1.97 by root, Sun Nov 11 01:53:07 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
33 38
34# if HAVE_CLOCK_GETTIME 39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 44# define EV_USE_REALTIME 1
45# endif
37# endif 46# endif
38 47
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
40# define EV_USE_SELECT 1 49# define EV_USE_SELECT 1
41# endif 50# endif
42 51
43# if HAVE_POLL && HAVE_POLL_H 52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
44# define EV_USE_POLL 1 53# define EV_USE_POLL 1
45# endif 54# endif
46 55
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
48# define EV_USE_EPOLL 1 57# define EV_USE_EPOLL 1
49# endif 58# endif
50 59
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
52# define EV_USE_KQUEUE 1 61# define EV_USE_KQUEUE 1
53# endif 62# endif
54 63
55#endif 64#endif
56 65
57#include <math.h> 66#include <math.h>
58#include <stdlib.h> 67#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 68#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 69#include <stddef.h>
63 70
64#include <stdio.h> 71#include <stdio.h>
65 72
66#include <assert.h> 73#include <assert.h>
67#include <errno.h> 74#include <errno.h>
68#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
69#ifndef WIN32 80#ifndef WIN32
81# include <unistd.h>
82# include <sys/time.h>
70# include <sys/wait.h> 83# include <sys/wait.h>
71#endif 84#endif
72#include <sys/time.h>
73#include <time.h>
74
75/**/ 85/**/
76 86
77#ifndef EV_USE_MONOTONIC 87#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 88# define EV_USE_MONOTONIC 1
79#endif 89#endif
94# define EV_USE_KQUEUE 0 104# define EV_USE_KQUEUE 0
95#endif 105#endif
96 106
97#ifndef EV_USE_WIN32 107#ifndef EV_USE_WIN32
98# ifdef WIN32 108# ifdef WIN32
109# define EV_USE_WIN32 0 /* it does not exist, use select */
110# undef EV_USE_SELECT
99# define EV_USE_WIN32 1 111# define EV_USE_SELECT 1
100# else 112# else
101# define EV_USE_WIN32 0 113# define EV_USE_WIN32 0
102# endif 114# endif
103#endif 115#endif
104 116
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
127 139
140#ifdef EV_H
141# include EV_H
142#else
128#include "ev.h" 143# include "ev.h"
144#endif
129 145
130#if __GNUC__ >= 3 146#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 147# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 148# define inline inline
133#else 149#else
145typedef struct ev_watcher_list *WL; 161typedef struct ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 162typedef struct ev_watcher_time *WT;
147 163
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 165
166#include "ev_win32.c"
167
150/*****************************************************************************/ 168/*****************************************************************************/
151 169
170static void (*syserr_cb)(const char *msg);
171
172void ev_set_syserr_cb (void (*cb)(const char *msg))
173{
174 syserr_cb = cb;
175}
176
177static void
178syserr (const char *msg)
179{
180 if (!msg)
181 msg = "(libev) system error";
182
183 if (syserr_cb)
184 syserr_cb (msg);
185 else
186 {
187 perror (msg);
188 abort ();
189 }
190}
191
192static void *(*alloc)(void *ptr, long size);
193
194void ev_set_allocator (void *(*cb)(void *ptr, long size))
195{
196 alloc = cb;
197}
198
199static void *
200ev_realloc (void *ptr, long size)
201{
202 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
203
204 if (!ptr && size)
205 {
206 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
207 abort ();
208 }
209
210 return ptr;
211}
212
213#define ev_malloc(size) ev_realloc (0, (size))
214#define ev_free(ptr) ev_realloc ((ptr), 0)
215
216/*****************************************************************************/
217
152typedef struct 218typedef struct
153{ 219{
154 struct ev_watcher_list *head; 220 WL head;
155 unsigned char events; 221 unsigned char events;
156 unsigned char reify; 222 unsigned char reify;
157} ANFD; 223} ANFD;
158 224
159typedef struct 225typedef struct
162 int events; 228 int events;
163} ANPENDING; 229} ANPENDING;
164 230
165#if EV_MULTIPLICITY 231#if EV_MULTIPLICITY
166 232
167struct ev_loop 233 struct ev_loop
168{ 234 {
235 ev_tstamp ev_rt_now;
169# define VAR(name,decl) decl; 236 #define VAR(name,decl) decl;
170# include "ev_vars.h" 237 #include "ev_vars.h"
171};
172# undef VAR 238 #undef VAR
239 };
173# include "ev_wrap.h" 240 #include "ev_wrap.h"
241
242 struct ev_loop default_loop_struct;
243 static struct ev_loop *default_loop;
174 244
175#else 245#else
176 246
247 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 248 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 249 #include "ev_vars.h"
179# undef VAR 250 #undef VAR
251
252 static int default_loop;
180 253
181#endif 254#endif
182 255
183/*****************************************************************************/ 256/*****************************************************************************/
184 257
185inline ev_tstamp 258ev_tstamp
186ev_time (void) 259ev_time (void)
187{ 260{
188#if EV_USE_REALTIME 261#if EV_USE_REALTIME
189 struct timespec ts; 262 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 263 clock_gettime (CLOCK_REALTIME, &ts);
209#endif 282#endif
210 283
211 return ev_time (); 284 return ev_time ();
212} 285}
213 286
287#if EV_MULTIPLICITY
214ev_tstamp 288ev_tstamp
215ev_now (EV_P) 289ev_now (EV_P)
216{ 290{
217 return rt_now; 291 return ev_rt_now;
218} 292}
293#endif
219 294
220#define array_roundsize(base,n) ((n) | 4 & ~3) 295#define array_roundsize(type,n) ((n) | 4 & ~3)
221 296
222#define array_needsize(base,cur,cnt,init) \ 297#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 298 if (expect_false ((cnt) > cur)) \
224 { \ 299 { \
225 int newcnt = cur; \ 300 int newcnt = cur; \
226 do \ 301 do \
227 { \ 302 { \
228 newcnt = array_roundsize (base, newcnt << 1); \ 303 newcnt = array_roundsize (type, newcnt << 1); \
229 } \ 304 } \
230 while ((cnt) > newcnt); \ 305 while ((cnt) > newcnt); \
231 \ 306 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 307 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
233 init (base + cur, newcnt - cur); \ 308 init (base + cur, newcnt - cur); \
234 cur = newcnt; \ 309 cur = newcnt; \
235 } 310 }
311
312#define array_slim(type,stem) \
313 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
314 { \
315 stem ## max = array_roundsize (stem ## cnt >> 1); \
316 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
317 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
318 }
319
320/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
321/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
322#define array_free_microshit(stem) \
323 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
324
325#define array_free(stem, idx) \
326 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
236 327
237/*****************************************************************************/ 328/*****************************************************************************/
238 329
239static void 330static void
240anfds_init (ANFD *base, int count) 331anfds_init (ANFD *base, int count)
247 338
248 ++base; 339 ++base;
249 } 340 }
250} 341}
251 342
252static void 343void
253event (EV_P_ W w, int events) 344ev_feed_event (EV_P_ void *w, int revents)
254{ 345{
346 W w_ = (W)w;
347
255 if (w->pending) 348 if (w_->pending)
256 { 349 {
257 pendings [ABSPRI (w)][w->pending - 1].events |= events; 350 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
258 return; 351 return;
259 } 352 }
260 353
261 w->pending = ++pendingcnt [ABSPRI (w)]; 354 w_->pending = ++pendingcnt [ABSPRI (w_)];
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 355 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
263 pendings [ABSPRI (w)][w->pending - 1].w = w; 356 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
264 pendings [ABSPRI (w)][w->pending - 1].events = events; 357 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
265} 358}
266 359
267static void 360static void
268queue_events (EV_P_ W *events, int eventcnt, int type) 361queue_events (EV_P_ W *events, int eventcnt, int type)
269{ 362{
270 int i; 363 int i;
271 364
272 for (i = 0; i < eventcnt; ++i) 365 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type); 366 ev_feed_event (EV_A_ events [i], type);
274} 367}
275 368
276static void 369inline void
277fd_event (EV_P_ int fd, int events) 370fd_event (EV_P_ int fd, int revents)
278{ 371{
279 ANFD *anfd = anfds + fd; 372 ANFD *anfd = anfds + fd;
280 struct ev_io *w; 373 struct ev_io *w;
281 374
282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 375 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
283 { 376 {
284 int ev = w->events & events; 377 int ev = w->events & revents;
285 378
286 if (ev) 379 if (ev)
287 event (EV_A_ (W)w, ev); 380 ev_feed_event (EV_A_ (W)w, ev);
288 } 381 }
382}
383
384void
385ev_feed_fd_event (EV_P_ int fd, int revents)
386{
387 fd_event (EV_A_ fd, revents);
289} 388}
290 389
291/*****************************************************************************/ 390/*****************************************************************************/
292 391
293static void 392static void
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 405 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
307 events |= w->events; 406 events |= w->events;
308 407
309 anfd->reify = 0; 408 anfd->reify = 0;
310 409
311 if (anfd->events != events)
312 {
313 method_modify (EV_A_ fd, anfd->events, events); 410 method_modify (EV_A_ fd, anfd->events, events);
314 anfd->events = events; 411 anfd->events = events;
315 }
316 } 412 }
317 413
318 fdchangecnt = 0; 414 fdchangecnt = 0;
319} 415}
320 416
321static void 417static void
322fd_change (EV_P_ int fd) 418fd_change (EV_P_ int fd)
323{ 419{
324 if (anfds [fd].reify || fdchangecnt < 0) 420 if (anfds [fd].reify)
325 return; 421 return;
326 422
327 anfds [fd].reify = 1; 423 anfds [fd].reify = 1;
328 424
329 ++fdchangecnt; 425 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 426 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
331 fdchanges [fdchangecnt - 1] = fd; 427 fdchanges [fdchangecnt - 1] = fd;
332} 428}
333 429
334static void 430static void
335fd_kill (EV_P_ int fd) 431fd_kill (EV_P_ int fd)
337 struct ev_io *w; 433 struct ev_io *w;
338 434
339 while ((w = (struct ev_io *)anfds [fd].head)) 435 while ((w = (struct ev_io *)anfds [fd].head))
340 { 436 {
341 ev_io_stop (EV_A_ w); 437 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 438 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 439 }
440}
441
442static int
443fd_valid (int fd)
444{
445#ifdef WIN32
446 return !!win32_get_osfhandle (fd);
447#else
448 return fcntl (fd, F_GETFD) != -1;
449#endif
344} 450}
345 451
346/* called on EBADF to verify fds */ 452/* called on EBADF to verify fds */
347static void 453static void
348fd_ebadf (EV_P) 454fd_ebadf (EV_P)
349{ 455{
350 int fd; 456 int fd;
351 457
352 for (fd = 0; fd < anfdmax; ++fd) 458 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 459 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 460 if (!fd_valid (fd) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd); 461 fd_kill (EV_A_ fd);
356} 462}
357 463
358/* called on ENOMEM in select/poll to kill some fds and retry */ 464/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 465static void
362 int fd; 468 int fd;
363 469
364 for (fd = anfdmax; fd--; ) 470 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 471 if (anfds [fd].events)
366 { 472 {
367 close (fd);
368 fd_kill (EV_A_ fd); 473 fd_kill (EV_A_ fd);
369 return; 474 return;
370 } 475 }
371} 476}
372 477
373/* susually called after fork if method needs to re-arm all fds from scratch */ 478/* usually called after fork if method needs to re-arm all fds from scratch */
374static void 479static void
375fd_rearm_all (EV_P) 480fd_rearm_all (EV_P)
376{ 481{
377 int fd; 482 int fd;
378 483
426 531
427 heap [k] = w; 532 heap [k] = w;
428 ((W)heap [k])->active = k + 1; 533 ((W)heap [k])->active = k + 1;
429} 534}
430 535
536inline void
537adjustheap (WT *heap, int N, int k, ev_tstamp at)
538{
539 ev_tstamp old_at = heap [k]->at;
540 heap [k]->at = at;
541
542 if (old_at < at)
543 downheap (heap, N, k);
544 else
545 upheap (heap, k);
546}
547
431/*****************************************************************************/ 548/*****************************************************************************/
432 549
433typedef struct 550typedef struct
434{ 551{
435 struct ev_watcher_list *head; 552 WL head;
436 sig_atomic_t volatile gotsig; 553 sig_atomic_t volatile gotsig;
437} ANSIG; 554} ANSIG;
438 555
439static ANSIG *signals; 556static ANSIG *signals;
440static int signalmax; 557static int signalmax;
456} 573}
457 574
458static void 575static void
459sighandler (int signum) 576sighandler (int signum)
460{ 577{
578#if WIN32
579 signal (signum, sighandler);
580#endif
581
461 signals [signum - 1].gotsig = 1; 582 signals [signum - 1].gotsig = 1;
462 583
463 if (!gotsig) 584 if (!gotsig)
464 { 585 {
465 int old_errno = errno; 586 int old_errno = errno;
466 gotsig = 1; 587 gotsig = 1;
588#ifdef WIN32
589 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
590#else
467 write (sigpipe [1], &signum, 1); 591 write (sigpipe [1], &signum, 1);
592#endif
468 errno = old_errno; 593 errno = old_errno;
469 } 594 }
470} 595}
471 596
597void
598ev_feed_signal_event (EV_P_ int signum)
599{
600 WL w;
601
602#if EV_MULTIPLICITY
603 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
604#endif
605
606 --signum;
607
608 if (signum < 0 || signum >= signalmax)
609 return;
610
611 signals [signum].gotsig = 0;
612
613 for (w = signals [signum].head; w; w = w->next)
614 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
615}
616
472static void 617static void
473sigcb (EV_P_ struct ev_io *iow, int revents) 618sigcb (EV_P_ struct ev_io *iow, int revents)
474{ 619{
475 struct ev_watcher_list *w;
476 int signum; 620 int signum;
477 621
622#ifdef WIN32
623 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
624#else
478 read (sigpipe [0], &revents, 1); 625 read (sigpipe [0], &revents, 1);
626#endif
479 gotsig = 0; 627 gotsig = 0;
480 628
481 for (signum = signalmax; signum--; ) 629 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig) 630 if (signals [signum].gotsig)
483 { 631 ev_feed_signal_event (EV_A_ signum + 1);
484 signals [signum].gotsig = 0;
485
486 for (w = signals [signum].head; w; w = w->next)
487 event (EV_A_ (W)w, EV_SIGNAL);
488 }
489} 632}
490 633
491static void 634static void
492siginit (EV_P) 635siginit (EV_P)
493{ 636{
505 ev_unref (EV_A); /* child watcher should not keep loop alive */ 648 ev_unref (EV_A); /* child watcher should not keep loop alive */
506} 649}
507 650
508/*****************************************************************************/ 651/*****************************************************************************/
509 652
653static struct ev_child *childs [PID_HASHSIZE];
654
510#ifndef WIN32 655#ifndef WIN32
511 656
512static struct ev_child *childs [PID_HASHSIZE];
513static struct ev_signal childev; 657static struct ev_signal childev;
514 658
515#ifndef WCONTINUED 659#ifndef WCONTINUED
516# define WCONTINUED 0 660# define WCONTINUED 0
517#endif 661#endif
522 struct ev_child *w; 666 struct ev_child *w;
523 667
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 668 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid) 669 if (w->pid == pid || !w->pid)
526 { 670 {
527 w->priority = sw->priority; /* need to do it *now* */ 671 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid; 672 w->rpid = pid;
529 w->rstatus = status; 673 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD); 674 ev_feed_event (EV_A_ (W)w, EV_CHILD);
531 } 675 }
532} 676}
533 677
534static void 678static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 679childcb (EV_P_ struct ev_signal *sw, int revents)
537 int pid, status; 681 int pid, status;
538 682
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 683 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 684 {
541 /* make sure we are called again until all childs have been reaped */ 685 /* make sure we are called again until all childs have been reaped */
542 event (EV_A_ (W)sw, EV_SIGNAL); 686 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 687
544 child_reap (EV_A_ sw, pid, pid, status); 688 child_reap (EV_A_ sw, pid, pid, status);
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 689 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 } 690 }
547} 691}
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 748 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605 have_monotonic = 1; 749 have_monotonic = 1;
606 } 750 }
607#endif 751#endif
608 752
609 rt_now = ev_time (); 753 ev_rt_now = ev_time ();
610 mn_now = get_clock (); 754 mn_now = get_clock ();
611 now_floor = mn_now; 755 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now; 756 rtmn_diff = ev_rt_now - mn_now;
613 757
614 if (methods == EVMETHOD_AUTO) 758 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBEV_METHODS")) 759 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS")); 760 methods = atoi (getenv ("LIBEV_METHODS"));
617 else 761 else
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 775 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632#endif 776#endif
633#if EV_USE_SELECT 777#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 778 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635#endif 779#endif
780
781 ev_init (&sigev, sigcb);
782 ev_set_priority (&sigev, EV_MAXPRI);
636 } 783 }
637} 784}
638 785
639void 786void
640loop_destroy (EV_P) 787loop_destroy (EV_P)
641{ 788{
789 int i;
790
642#if EV_USE_WIN32 791#if EV_USE_WIN32
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 792 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
644#endif 793#endif
645#if EV_USE_KQUEUE 794#if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 795 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
653#endif 802#endif
654#if EV_USE_SELECT 803#if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 804 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
656#endif 805#endif
657 806
807 for (i = NUMPRI; i--; )
808 array_free (pending, [i]);
809
810 /* have to use the microsoft-never-gets-it-right macro */
811 array_free_microshit (fdchange);
812 array_free_microshit (timer);
813#if EV_PERIODICS
814 array_free_microshit (periodic);
815#endif
816 array_free_microshit (idle);
817 array_free_microshit (prepare);
818 array_free_microshit (check);
819
658 method = 0; 820 method = 0;
659 /*TODO*/
660} 821}
661 822
662void 823static void
663loop_fork (EV_P) 824loop_fork (EV_P)
664{ 825{
665 /*TODO*/
666#if EV_USE_EPOLL 826#if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 827 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
668#endif 828#endif
669#if EV_USE_KQUEUE 829#if EV_USE_KQUEUE
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 830 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
671#endif 831#endif
832
833 if (ev_is_active (&sigev))
834 {
835 /* default loop */
836
837 ev_ref (EV_A);
838 ev_io_stop (EV_A_ &sigev);
839 close (sigpipe [0]);
840 close (sigpipe [1]);
841
842 while (pipe (sigpipe))
843 syserr ("(libev) error creating pipe");
844
845 siginit (EV_A);
846 }
847
848 postfork = 0;
672} 849}
673 850
674#if EV_MULTIPLICITY 851#if EV_MULTIPLICITY
675struct ev_loop * 852struct ev_loop *
676ev_loop_new (int methods) 853ev_loop_new (int methods)
677{ 854{
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 855 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
856
857 memset (loop, 0, sizeof (struct ev_loop));
679 858
680 loop_init (EV_A_ methods); 859 loop_init (EV_A_ methods);
681 860
682 if (ev_method (EV_A)) 861 if (ev_method (EV_A))
683 return loop; 862 return loop;
687 866
688void 867void
689ev_loop_destroy (EV_P) 868ev_loop_destroy (EV_P)
690{ 869{
691 loop_destroy (EV_A); 870 loop_destroy (EV_A);
692 free (loop); 871 ev_free (loop);
693} 872}
694 873
695void 874void
696ev_loop_fork (EV_P) 875ev_loop_fork (EV_P)
697{ 876{
698 loop_fork (EV_A); 877 postfork = 1;
699} 878}
700 879
701#endif 880#endif
702 881
703#if EV_MULTIPLICITY 882#if EV_MULTIPLICITY
704struct ev_loop default_loop_struct;
705static struct ev_loop *default_loop;
706
707struct ev_loop * 883struct ev_loop *
708#else 884#else
709static int default_loop;
710
711int 885int
712#endif 886#endif
713ev_default_loop (int methods) 887ev_default_loop (int methods)
714{ 888{
715 if (sigpipe [0] == sigpipe [1]) 889 if (sigpipe [0] == sigpipe [1])
726 900
727 loop_init (EV_A_ methods); 901 loop_init (EV_A_ methods);
728 902
729 if (ev_method (EV_A)) 903 if (ev_method (EV_A))
730 { 904 {
731 ev_watcher_init (&sigev, sigcb);
732 ev_set_priority (&sigev, EV_MAXPRI);
733 siginit (EV_A); 905 siginit (EV_A);
734 906
735#ifndef WIN32 907#ifndef WIN32
736 ev_signal_init (&childev, childcb, SIGCHLD); 908 ev_signal_init (&childev, childcb, SIGCHLD);
737 ev_set_priority (&childev, EV_MAXPRI); 909 ev_set_priority (&childev, EV_MAXPRI);
751{ 923{
752#if EV_MULTIPLICITY 924#if EV_MULTIPLICITY
753 struct ev_loop *loop = default_loop; 925 struct ev_loop *loop = default_loop;
754#endif 926#endif
755 927
928#ifndef WIN32
756 ev_ref (EV_A); /* child watcher */ 929 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev); 930 ev_signal_stop (EV_A_ &childev);
931#endif
758 932
759 ev_ref (EV_A); /* signal watcher */ 933 ev_ref (EV_A); /* signal watcher */
760 ev_io_stop (EV_A_ &sigev); 934 ev_io_stop (EV_A_ &sigev);
761 935
762 close (sigpipe [0]); sigpipe [0] = 0; 936 close (sigpipe [0]); sigpipe [0] = 0;
770{ 944{
771#if EV_MULTIPLICITY 945#if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop; 946 struct ev_loop *loop = default_loop;
773#endif 947#endif
774 948
775 loop_fork (EV_A); 949 if (method)
776 950 postfork = 1;
777 ev_io_stop (EV_A_ &sigev);
778 close (sigpipe [0]);
779 close (sigpipe [1]);
780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
783 siginit (EV_A);
784} 951}
785 952
786/*****************************************************************************/ 953/*****************************************************************************/
954
955static int
956any_pending (EV_P)
957{
958 int pri;
959
960 for (pri = NUMPRI; pri--; )
961 if (pendingcnt [pri])
962 return 1;
963
964 return 0;
965}
787 966
788static void 967static void
789call_pending (EV_P) 968call_pending (EV_P)
790{ 969{
791 int pri; 970 int pri;
796 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 975 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
797 976
798 if (p->w) 977 if (p->w)
799 { 978 {
800 p->w->pending = 0; 979 p->w->pending = 0;
801 p->w->cb (EV_A_ p->w, p->events); 980 EV_CB_INVOKE (p->w, p->events);
802 } 981 }
803 } 982 }
804} 983}
805 984
806static void 985static void
807timers_reify (EV_P) 986timers_reify (EV_P)
808{ 987{
809 while (timercnt && timers [0]->at <= mn_now) 988 while (timercnt && ((WT)timers [0])->at <= mn_now)
810 { 989 {
811 struct ev_timer *w = timers [0]; 990 struct ev_timer *w = timers [0];
812 991
813 assert (("inactive timer on timer heap detected", ev_is_active (w))); 992 assert (("inactive timer on timer heap detected", ev_is_active (w)));
814 993
815 /* first reschedule or stop timer */ 994 /* first reschedule or stop timer */
816 if (w->repeat) 995 if (w->repeat)
817 { 996 {
818 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 997 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
998
819 w->at = mn_now + w->repeat; 999 ((WT)w)->at += w->repeat;
1000 if (((WT)w)->at < mn_now)
1001 ((WT)w)->at = mn_now;
1002
820 downheap ((WT *)timers, timercnt, 0); 1003 downheap ((WT *)timers, timercnt, 0);
821 } 1004 }
822 else 1005 else
823 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1006 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
824 1007
825 event (EV_A_ (W)w, EV_TIMEOUT); 1008 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
826 } 1009 }
827} 1010}
828 1011
1012#if EV_PERIODICS
829static void 1013static void
830periodics_reify (EV_P) 1014periodics_reify (EV_P)
831{ 1015{
832 while (periodiccnt && periodics [0]->at <= rt_now) 1016 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
833 { 1017 {
834 struct ev_periodic *w = periodics [0]; 1018 struct ev_periodic *w = periodics [0];
835 1019
836 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1020 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
837 1021
838 /* first reschedule or stop timer */ 1022 /* first reschedule or stop timer */
839 if (w->interval) 1023 if (w->reschedule_cb)
840 { 1024 {
1025 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1026
1027 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1028 downheap ((WT *)periodics, periodiccnt, 0);
1029 }
1030 else if (w->interval)
1031 {
841 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1032 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
842 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1033 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
843 downheap ((WT *)periodics, periodiccnt, 0); 1034 downheap ((WT *)periodics, periodiccnt, 0);
844 } 1035 }
845 else 1036 else
846 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1037 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
847 1038
848 event (EV_A_ (W)w, EV_PERIODIC); 1039 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
849 } 1040 }
850} 1041}
851 1042
852static void 1043static void
853periodics_reschedule (EV_P) 1044periodics_reschedule (EV_P)
857 /* adjust periodics after time jump */ 1048 /* adjust periodics after time jump */
858 for (i = 0; i < periodiccnt; ++i) 1049 for (i = 0; i < periodiccnt; ++i)
859 { 1050 {
860 struct ev_periodic *w = periodics [i]; 1051 struct ev_periodic *w = periodics [i];
861 1052
1053 if (w->reschedule_cb)
1054 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
862 if (w->interval) 1055 else if (w->interval)
863 {
864 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1056 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
865
866 if (fabs (diff) >= 1e-4)
867 {
868 ev_periodic_stop (EV_A_ w);
869 ev_periodic_start (EV_A_ w);
870
871 i = 0; /* restart loop, inefficient, but time jumps should be rare */
872 }
873 }
874 } 1057 }
1058
1059 /* now rebuild the heap */
1060 for (i = periodiccnt >> 1; i--; )
1061 downheap ((WT *)periodics, periodiccnt, i);
875} 1062}
1063#endif
876 1064
877inline int 1065inline int
878time_update_monotonic (EV_P) 1066time_update_monotonic (EV_P)
879{ 1067{
880 mn_now = get_clock (); 1068 mn_now = get_clock ();
881 1069
882 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1070 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
883 { 1071 {
884 rt_now = rtmn_diff + mn_now; 1072 ev_rt_now = rtmn_diff + mn_now;
885 return 0; 1073 return 0;
886 } 1074 }
887 else 1075 else
888 { 1076 {
889 now_floor = mn_now; 1077 now_floor = mn_now;
890 rt_now = ev_time (); 1078 ev_rt_now = ev_time ();
891 return 1; 1079 return 1;
892 } 1080 }
893} 1081}
894 1082
895static void 1083static void
904 { 1092 {
905 ev_tstamp odiff = rtmn_diff; 1093 ev_tstamp odiff = rtmn_diff;
906 1094
907 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1095 for (i = 4; --i; ) /* loop a few times, before making important decisions */
908 { 1096 {
909 rtmn_diff = rt_now - mn_now; 1097 rtmn_diff = ev_rt_now - mn_now;
910 1098
911 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1099 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
912 return; /* all is well */ 1100 return; /* all is well */
913 1101
914 rt_now = ev_time (); 1102 ev_rt_now = ev_time ();
915 mn_now = get_clock (); 1103 mn_now = get_clock ();
916 now_floor = mn_now; 1104 now_floor = mn_now;
917 } 1105 }
918 1106
1107# if EV_PERIODICS
919 periodics_reschedule (EV_A); 1108 periodics_reschedule (EV_A);
1109# endif
920 /* no timer adjustment, as the monotonic clock doesn't jump */ 1110 /* no timer adjustment, as the monotonic clock doesn't jump */
921 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1111 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
922 } 1112 }
923 } 1113 }
924 else 1114 else
925#endif 1115#endif
926 { 1116 {
927 rt_now = ev_time (); 1117 ev_rt_now = ev_time ();
928 1118
929 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1119 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
930 { 1120 {
1121#if EV_PERIODICS
931 periodics_reschedule (EV_A); 1122 periodics_reschedule (EV_A);
1123#endif
932 1124
933 /* adjust timers. this is easy, as the offset is the same for all */ 1125 /* adjust timers. this is easy, as the offset is the same for all */
934 for (i = 0; i < timercnt; ++i) 1126 for (i = 0; i < timercnt; ++i)
935 timers [i]->at += rt_now - mn_now; 1127 ((WT)timers [i])->at += ev_rt_now - mn_now;
936 } 1128 }
937 1129
938 mn_now = rt_now; 1130 mn_now = ev_rt_now;
939 } 1131 }
940} 1132}
941 1133
942void 1134void
943ev_ref (EV_P) 1135ev_ref (EV_P)
966 { 1158 {
967 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1159 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
968 call_pending (EV_A); 1160 call_pending (EV_A);
969 } 1161 }
970 1162
1163 /* we might have forked, so reify kernel state if necessary */
1164 if (expect_false (postfork))
1165 loop_fork (EV_A);
1166
971 /* update fd-related kernel structures */ 1167 /* update fd-related kernel structures */
972 fd_reify (EV_A); 1168 fd_reify (EV_A);
973 1169
974 /* calculate blocking time */ 1170 /* calculate blocking time */
975 1171
976 /* we only need this for !monotonic clockor timers, but as we basically 1172 /* we only need this for !monotonic clock or timers, but as we basically
977 always have timers, we just calculate it always */ 1173 always have timers, we just calculate it always */
978#if EV_USE_MONOTONIC 1174#if EV_USE_MONOTONIC
979 if (expect_true (have_monotonic)) 1175 if (expect_true (have_monotonic))
980 time_update_monotonic (EV_A); 1176 time_update_monotonic (EV_A);
981 else 1177 else
982#endif 1178#endif
983 { 1179 {
984 rt_now = ev_time (); 1180 ev_rt_now = ev_time ();
985 mn_now = rt_now; 1181 mn_now = ev_rt_now;
986 } 1182 }
987 1183
988 if (flags & EVLOOP_NONBLOCK || idlecnt) 1184 if (flags & EVLOOP_NONBLOCK || idlecnt)
989 block = 0.; 1185 block = 0.;
990 else 1186 else
991 { 1187 {
992 block = MAX_BLOCKTIME; 1188 block = MAX_BLOCKTIME;
993 1189
994 if (timercnt) 1190 if (timercnt)
995 { 1191 {
996 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1192 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
997 if (block > to) block = to; 1193 if (block > to) block = to;
998 } 1194 }
999 1195
1196#if EV_PERIODICS
1000 if (periodiccnt) 1197 if (periodiccnt)
1001 { 1198 {
1002 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1199 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
1003 if (block > to) block = to; 1200 if (block > to) block = to;
1004 } 1201 }
1202#endif
1005 1203
1006 if (block < 0.) block = 0.; 1204 if (block < 0.) block = 0.;
1007 } 1205 }
1008 1206
1009 method_poll (EV_A_ block); 1207 method_poll (EV_A_ block);
1010 1208
1011 /* update rt_now, do magic */ 1209 /* update ev_rt_now, do magic */
1012 time_update (EV_A); 1210 time_update (EV_A);
1013 1211
1014 /* queue pending timers and reschedule them */ 1212 /* queue pending timers and reschedule them */
1015 timers_reify (EV_A); /* relative timers called last */ 1213 timers_reify (EV_A); /* relative timers called last */
1214#if EV_PERIODICS
1016 periodics_reify (EV_A); /* absolute timers called first */ 1215 periodics_reify (EV_A); /* absolute timers called first */
1216#endif
1017 1217
1018 /* queue idle watchers unless io or timers are pending */ 1218 /* queue idle watchers unless io or timers are pending */
1019 if (!pendingcnt) 1219 if (idlecnt && !any_pending (EV_A))
1020 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1220 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
1021 1221
1022 /* queue check watchers, to be executed first */ 1222 /* queue check watchers, to be executed first */
1023 if (checkcnt) 1223 if (checkcnt)
1024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1224 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1099 return; 1299 return;
1100 1300
1101 assert (("ev_io_start called with negative fd", fd >= 0)); 1301 assert (("ev_io_start called with negative fd", fd >= 0));
1102 1302
1103 ev_start (EV_A_ (W)w, 1); 1303 ev_start (EV_A_ (W)w, 1);
1104 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1304 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1105 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1305 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1106 1306
1107 fd_change (EV_A_ fd); 1307 fd_change (EV_A_ fd);
1108} 1308}
1109 1309
1112{ 1312{
1113 ev_clear_pending (EV_A_ (W)w); 1313 ev_clear_pending (EV_A_ (W)w);
1114 if (!ev_is_active (w)) 1314 if (!ev_is_active (w))
1115 return; 1315 return;
1116 1316
1317 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1318
1117 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1319 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1118 ev_stop (EV_A_ (W)w); 1320 ev_stop (EV_A_ (W)w);
1119 1321
1120 fd_change (EV_A_ w->fd); 1322 fd_change (EV_A_ w->fd);
1121} 1323}
1124ev_timer_start (EV_P_ struct ev_timer *w) 1326ev_timer_start (EV_P_ struct ev_timer *w)
1125{ 1327{
1126 if (ev_is_active (w)) 1328 if (ev_is_active (w))
1127 return; 1329 return;
1128 1330
1129 w->at += mn_now; 1331 ((WT)w)->at += mn_now;
1130 1332
1131 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1333 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1132 1334
1133 ev_start (EV_A_ (W)w, ++timercnt); 1335 ev_start (EV_A_ (W)w, ++timercnt);
1134 array_needsize (timers, timermax, timercnt, ); 1336 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1135 timers [timercnt - 1] = w; 1337 timers [timercnt - 1] = w;
1136 upheap ((WT *)timers, timercnt - 1); 1338 upheap ((WT *)timers, timercnt - 1);
1137 1339
1138 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1340 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1139} 1341}
1151 { 1353 {
1152 timers [((W)w)->active - 1] = timers [timercnt]; 1354 timers [((W)w)->active - 1] = timers [timercnt];
1153 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1355 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1154 } 1356 }
1155 1357
1156 w->at = w->repeat; 1358 ((WT)w)->at -= mn_now;
1157 1359
1158 ev_stop (EV_A_ (W)w); 1360 ev_stop (EV_A_ (W)w);
1159} 1361}
1160 1362
1161void 1363void
1162ev_timer_again (EV_P_ struct ev_timer *w) 1364ev_timer_again (EV_P_ struct ev_timer *w)
1163{ 1365{
1164 if (ev_is_active (w)) 1366 if (ev_is_active (w))
1165 { 1367 {
1166 if (w->repeat) 1368 if (w->repeat)
1167 {
1168 w->at = mn_now + w->repeat;
1169 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1170 }
1171 else 1370 else
1172 ev_timer_stop (EV_A_ w); 1371 ev_timer_stop (EV_A_ w);
1173 } 1372 }
1174 else if (w->repeat) 1373 else if (w->repeat)
1175 ev_timer_start (EV_A_ w); 1374 ev_timer_start (EV_A_ w);
1176} 1375}
1177 1376
1377#if EV_PERIODICS
1178void 1378void
1179ev_periodic_start (EV_P_ struct ev_periodic *w) 1379ev_periodic_start (EV_P_ struct ev_periodic *w)
1180{ 1380{
1181 if (ev_is_active (w)) 1381 if (ev_is_active (w))
1182 return; 1382 return;
1183 1383
1384 if (w->reschedule_cb)
1385 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1386 else if (w->interval)
1387 {
1184 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1388 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1185
1186 /* this formula differs from the one in periodic_reify because we do not always round up */ 1389 /* this formula differs from the one in periodic_reify because we do not always round up */
1187 if (w->interval)
1188 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1390 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1391 }
1189 1392
1190 ev_start (EV_A_ (W)w, ++periodiccnt); 1393 ev_start (EV_A_ (W)w, ++periodiccnt);
1191 array_needsize (periodics, periodicmax, periodiccnt, ); 1394 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1192 periodics [periodiccnt - 1] = w; 1395 periodics [periodiccnt - 1] = w;
1193 upheap ((WT *)periodics, periodiccnt - 1); 1396 upheap ((WT *)periodics, periodiccnt - 1);
1194 1397
1195 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1398 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1196} 1399}
1212 1415
1213 ev_stop (EV_A_ (W)w); 1416 ev_stop (EV_A_ (W)w);
1214} 1417}
1215 1418
1216void 1419void
1420ev_periodic_again (EV_P_ struct ev_periodic *w)
1421{
1422 /* TODO: use adjustheap and recalculation */
1423 ev_periodic_stop (EV_A_ w);
1424 ev_periodic_start (EV_A_ w);
1425}
1426#endif
1427
1428void
1217ev_idle_start (EV_P_ struct ev_idle *w) 1429ev_idle_start (EV_P_ struct ev_idle *w)
1218{ 1430{
1219 if (ev_is_active (w)) 1431 if (ev_is_active (w))
1220 return; 1432 return;
1221 1433
1222 ev_start (EV_A_ (W)w, ++idlecnt); 1434 ev_start (EV_A_ (W)w, ++idlecnt);
1223 array_needsize (idles, idlemax, idlecnt, ); 1435 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1224 idles [idlecnt - 1] = w; 1436 idles [idlecnt - 1] = w;
1225} 1437}
1226 1438
1227void 1439void
1228ev_idle_stop (EV_P_ struct ev_idle *w) 1440ev_idle_stop (EV_P_ struct ev_idle *w)
1240{ 1452{
1241 if (ev_is_active (w)) 1453 if (ev_is_active (w))
1242 return; 1454 return;
1243 1455
1244 ev_start (EV_A_ (W)w, ++preparecnt); 1456 ev_start (EV_A_ (W)w, ++preparecnt);
1245 array_needsize (prepares, preparemax, preparecnt, ); 1457 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1246 prepares [preparecnt - 1] = w; 1458 prepares [preparecnt - 1] = w;
1247} 1459}
1248 1460
1249void 1461void
1250ev_prepare_stop (EV_P_ struct ev_prepare *w) 1462ev_prepare_stop (EV_P_ struct ev_prepare *w)
1262{ 1474{
1263 if (ev_is_active (w)) 1475 if (ev_is_active (w))
1264 return; 1476 return;
1265 1477
1266 ev_start (EV_A_ (W)w, ++checkcnt); 1478 ev_start (EV_A_ (W)w, ++checkcnt);
1267 array_needsize (checks, checkmax, checkcnt, ); 1479 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1268 checks [checkcnt - 1] = w; 1480 checks [checkcnt - 1] = w;
1269} 1481}
1270 1482
1271void 1483void
1272ev_check_stop (EV_P_ struct ev_check *w) 1484ev_check_stop (EV_P_ struct ev_check *w)
1273{ 1485{
1274 ev_clear_pending (EV_A_ (W)w); 1486 ev_clear_pending (EV_A_ (W)w);
1275 if (ev_is_active (w)) 1487 if (!ev_is_active (w))
1276 return; 1488 return;
1277 1489
1278 checks [((W)w)->active - 1] = checks [--checkcnt]; 1490 checks [((W)w)->active - 1] = checks [--checkcnt];
1279 ev_stop (EV_A_ (W)w); 1491 ev_stop (EV_A_ (W)w);
1280} 1492}
1293 return; 1505 return;
1294 1506
1295 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1507 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1296 1508
1297 ev_start (EV_A_ (W)w, 1); 1509 ev_start (EV_A_ (W)w, 1);
1298 array_needsize (signals, signalmax, w->signum, signals_init); 1510 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1299 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1511 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1300 1512
1301 if (!w->next) 1513 if (!((WL)w)->next)
1302 { 1514 {
1515#if WIN32
1516 signal (w->signum, sighandler);
1517#else
1303 struct sigaction sa; 1518 struct sigaction sa;
1304 sa.sa_handler = sighandler; 1519 sa.sa_handler = sighandler;
1305 sigfillset (&sa.sa_mask); 1520 sigfillset (&sa.sa_mask);
1306 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1521 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1307 sigaction (w->signum, &sa, 0); 1522 sigaction (w->signum, &sa, 0);
1523#endif
1308 } 1524 }
1309} 1525}
1310 1526
1311void 1527void
1312ev_signal_stop (EV_P_ struct ev_signal *w) 1528ev_signal_stop (EV_P_ struct ev_signal *w)
1337 1553
1338void 1554void
1339ev_child_stop (EV_P_ struct ev_child *w) 1555ev_child_stop (EV_P_ struct ev_child *w)
1340{ 1556{
1341 ev_clear_pending (EV_A_ (W)w); 1557 ev_clear_pending (EV_A_ (W)w);
1342 if (ev_is_active (w)) 1558 if (!ev_is_active (w))
1343 return; 1559 return;
1344 1560
1345 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1561 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1346 ev_stop (EV_A_ (W)w); 1562 ev_stop (EV_A_ (W)w);
1347} 1563}
1362 void (*cb)(int revents, void *arg) = once->cb; 1578 void (*cb)(int revents, void *arg) = once->cb;
1363 void *arg = once->arg; 1579 void *arg = once->arg;
1364 1580
1365 ev_io_stop (EV_A_ &once->io); 1581 ev_io_stop (EV_A_ &once->io);
1366 ev_timer_stop (EV_A_ &once->to); 1582 ev_timer_stop (EV_A_ &once->to);
1367 free (once); 1583 ev_free (once);
1368 1584
1369 cb (revents, arg); 1585 cb (revents, arg);
1370} 1586}
1371 1587
1372static void 1588static void
1382} 1598}
1383 1599
1384void 1600void
1385ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1601ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1386{ 1602{
1387 struct ev_once *once = malloc (sizeof (struct ev_once)); 1603 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1388 1604
1389 if (!once) 1605 if (!once)
1390 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1606 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1391 else 1607 else
1392 { 1608 {
1393 once->cb = cb; 1609 once->cb = cb;
1394 once->arg = arg; 1610 once->arg = arg;
1395 1611
1396 ev_watcher_init (&once->io, once_cb_io); 1612 ev_init (&once->io, once_cb_io);
1397 if (fd >= 0) 1613 if (fd >= 0)
1398 { 1614 {
1399 ev_io_set (&once->io, fd, events); 1615 ev_io_set (&once->io, fd, events);
1400 ev_io_start (EV_A_ &once->io); 1616 ev_io_start (EV_A_ &once->io);
1401 } 1617 }
1402 1618
1403 ev_watcher_init (&once->to, once_cb_to); 1619 ev_init (&once->to, once_cb_to);
1404 if (timeout >= 0.) 1620 if (timeout >= 0.)
1405 { 1621 {
1406 ev_timer_set (&once->to, timeout, 0.); 1622 ev_timer_set (&once->to, timeout, 0.);
1407 ev_timer_start (EV_A_ &once->to); 1623 ev_timer_start (EV_A_ &once->to);
1408 } 1624 }
1409 } 1625 }
1410} 1626}
1411 1627
1628#ifdef __cplusplus
1629}
1630#endif
1631

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines