ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.98 by root, Sun Nov 11 02:05:20 2007 UTC vs.
Revision 1.204 by root, Fri Jan 18 13:45:55 2008 UTC

2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
36#ifndef EV_STANDALONE 44#ifndef EV_STANDALONE
45# ifdef EV_CONFIG_H
46# include EV_CONFIG_H
47# else
37# include "config.h" 48# include "config.h"
49# endif
38 50
39# if HAVE_CLOCK_GETTIME 51# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 52# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 53# define EV_USE_MONOTONIC 1
42# endif 54# endif
43# ifndef EV_USE_REALTIME 55# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 56# define EV_USE_REALTIME 1
45# endif 57# endif
58# else
59# ifndef EV_USE_MONOTONIC
60# define EV_USE_MONOTONIC 0
61# endif
62# ifndef EV_USE_REALTIME
63# define EV_USE_REALTIME 0
64# endif
46# endif 65# endif
47 66
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
72# endif
50# endif 73# endif
51 74
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 75# ifndef EV_USE_SELECT
76# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 77# define EV_USE_SELECT 1
78# else
79# define EV_USE_SELECT 0
80# endif
54# endif 81# endif
55 82
56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 83# ifndef EV_USE_POLL
84# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 85# define EV_USE_POLL 1
86# else
87# define EV_USE_POLL 0
88# endif
58# endif 89# endif
59 90
91# ifndef EV_USE_EPOLL
92# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
93# define EV_USE_EPOLL 1
94# else
95# define EV_USE_EPOLL 0
96# endif
97# endif
98
99# ifndef EV_USE_KQUEUE
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 100# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
61# define EV_USE_KQUEUE 1 101# define EV_USE_KQUEUE 1
102# else
103# define EV_USE_KQUEUE 0
104# endif
105# endif
106
107# ifndef EV_USE_PORT
108# if HAVE_PORT_H && HAVE_PORT_CREATE
109# define EV_USE_PORT 1
110# else
111# define EV_USE_PORT 0
112# endif
113# endif
114
115# ifndef EV_USE_INOTIFY
116# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
117# define EV_USE_INOTIFY 1
118# else
119# define EV_USE_INOTIFY 0
120# endif
62# endif 121# endif
63 122
64#endif 123#endif
65 124
66#include <math.h> 125#include <math.h>
75#include <sys/types.h> 134#include <sys/types.h>
76#include <time.h> 135#include <time.h>
77 136
78#include <signal.h> 137#include <signal.h>
79 138
80#ifndef WIN32
81# include <unistd.h>
82# include <sys/time.h>
83# include <sys/wait.h>
84#endif
85/**/
86
87#ifndef EV_USE_MONOTONIC
88# define EV_USE_MONOTONIC 1
89#endif
90
91#ifndef EV_USE_SELECT
92# define EV_USE_SELECT 1
93#endif
94
95#ifndef EV_USE_POLL
96# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
97#endif
98
99#ifndef EV_USE_EPOLL
100# define EV_USE_EPOLL 0
101#endif
102
103#ifndef EV_USE_KQUEUE
104# define EV_USE_KQUEUE 0
105#endif
106
107#ifndef EV_USE_WIN32
108# ifdef WIN32
109# define EV_USE_WIN32 0 /* it does not exist, use select */
110# undef EV_USE_SELECT
111# define EV_USE_SELECT 1
112# else
113# define EV_USE_WIN32 0
114# endif
115#endif
116
117#ifndef EV_USE_REALTIME
118# define EV_USE_REALTIME 1
119#endif
120
121/**/
122
123#ifndef CLOCK_MONOTONIC
124# undef EV_USE_MONOTONIC
125# define EV_USE_MONOTONIC 0
126#endif
127
128#ifndef CLOCK_REALTIME
129# undef EV_USE_REALTIME
130# define EV_USE_REALTIME 0
131#endif
132
133/**/
134
135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
139
140#ifdef EV_H 139#ifdef EV_H
141# include EV_H 140# include EV_H
142#else 141#else
143# include "ev.h" 142# include "ev.h"
144#endif 143#endif
145 144
145#ifndef _WIN32
146# include <sys/time.h>
147# include <sys/wait.h>
148# include <unistd.h>
149#else
150# define WIN32_LEAN_AND_MEAN
151# include <windows.h>
152# ifndef EV_SELECT_IS_WINSOCKET
153# define EV_SELECT_IS_WINSOCKET 1
154# endif
155#endif
156
157/**/
158
159#ifndef EV_USE_MONOTONIC
160# define EV_USE_MONOTONIC 0
161#endif
162
163#ifndef EV_USE_REALTIME
164# define EV_USE_REALTIME 0
165#endif
166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
171#ifndef EV_USE_SELECT
172# define EV_USE_SELECT 1
173#endif
174
175#ifndef EV_USE_POLL
176# ifdef _WIN32
177# define EV_USE_POLL 0
178# else
179# define EV_USE_POLL 1
180# endif
181#endif
182
183#ifndef EV_USE_EPOLL
184# define EV_USE_EPOLL 0
185#endif
186
187#ifndef EV_USE_KQUEUE
188# define EV_USE_KQUEUE 0
189#endif
190
191#ifndef EV_USE_PORT
192# define EV_USE_PORT 0
193#endif
194
195#ifndef EV_USE_INOTIFY
196# define EV_USE_INOTIFY 0
197#endif
198
199#ifndef EV_PID_HASHSIZE
200# if EV_MINIMAL
201# define EV_PID_HASHSIZE 1
202# else
203# define EV_PID_HASHSIZE 16
204# endif
205#endif
206
207#ifndef EV_INOTIFY_HASHSIZE
208# if EV_MINIMAL
209# define EV_INOTIFY_HASHSIZE 1
210# else
211# define EV_INOTIFY_HASHSIZE 16
212# endif
213#endif
214
215/**/
216
217#ifndef CLOCK_MONOTONIC
218# undef EV_USE_MONOTONIC
219# define EV_USE_MONOTONIC 0
220#endif
221
222#ifndef CLOCK_REALTIME
223# undef EV_USE_REALTIME
224# define EV_USE_REALTIME 0
225#endif
226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
242#if EV_SELECT_IS_WINSOCKET
243# include <winsock.h>
244#endif
245
246/**/
247
248/*
249 * This is used to avoid floating point rounding problems.
250 * It is added to ev_rt_now when scheduling periodics
251 * to ensure progress, time-wise, even when rounding
252 * errors are against us.
253 * This value is good at least till the year 4000.
254 * Better solutions welcome.
255 */
256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
257
258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
261
146#if __GNUC__ >= 3 262#if __GNUC__ >= 4
147# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
148# define inline inline 264# define noinline __attribute__ ((noinline))
149#else 265#else
150# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
151# define inline static 267# define noinline
268# if __STDC_VERSION__ < 199901L
269# define inline
270# endif
152#endif 271#endif
153 272
154#define expect_false(expr) expect ((expr) != 0, 0) 273#define expect_false(expr) expect ((expr) != 0, 0)
155#define expect_true(expr) expect ((expr) != 0, 1) 274#define expect_true(expr) expect ((expr) != 0, 1)
275#define inline_size static inline
276
277#if EV_MINIMAL
278# define inline_speed static noinline
279#else
280# define inline_speed static inline
281#endif
156 282
157#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 283#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
158#define ABSPRI(w) ((w)->priority - EV_MINPRI) 284#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
159 285
286#define EMPTY /* required for microsofts broken pseudo-c compiler */
287#define EMPTY2(a,b) /* used to suppress some warnings */
288
160typedef struct ev_watcher *W; 289typedef ev_watcher *W;
161typedef struct ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
162typedef struct ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
163 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static sig_atomic_t have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
165 298
166#ifdef WIN32 299#ifdef _WIN32
167# include "ev_win32.c" 300# include "ev_win32.c"
168#endif 301#endif
169 302
170/*****************************************************************************/ 303/*****************************************************************************/
171 304
172static void (*syserr_cb)(const char *msg); 305static void (*syserr_cb)(const char *msg);
173 306
307void
174void ev_set_syserr_cb (void (*cb)(const char *msg)) 308ev_set_syserr_cb (void (*cb)(const char *msg))
175{ 309{
176 syserr_cb = cb; 310 syserr_cb = cb;
177} 311}
178 312
179static void 313static void noinline
180syserr (const char *msg) 314syserr (const char *msg)
181{ 315{
182 if (!msg) 316 if (!msg)
183 msg = "(libev) system error"; 317 msg = "(libev) system error";
184 318
191 } 325 }
192} 326}
193 327
194static void *(*alloc)(void *ptr, long size); 328static void *(*alloc)(void *ptr, long size);
195 329
330void
196void ev_set_allocator (void *(*cb)(void *ptr, long size)) 331ev_set_allocator (void *(*cb)(void *ptr, long size))
197{ 332{
198 alloc = cb; 333 alloc = cb;
199} 334}
200 335
201static void * 336inline_speed void *
202ev_realloc (void *ptr, long size) 337ev_realloc (void *ptr, long size)
203{ 338{
204 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 339 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
205 340
206 if (!ptr && size) 341 if (!ptr && size)
220typedef struct 355typedef struct
221{ 356{
222 WL head; 357 WL head;
223 unsigned char events; 358 unsigned char events;
224 unsigned char reify; 359 unsigned char reify;
360#if EV_SELECT_IS_WINSOCKET
361 SOCKET handle;
362#endif
225} ANFD; 363} ANFD;
226 364
227typedef struct 365typedef struct
228{ 366{
229 W w; 367 W w;
230 int events; 368 int events;
231} ANPENDING; 369} ANPENDING;
232 370
371#if EV_USE_INOTIFY
372typedef struct
373{
374 WL head;
375} ANFS;
376#endif
377
233#if EV_MULTIPLICITY 378#if EV_MULTIPLICITY
234 379
235 struct ev_loop 380 struct ev_loop
236 { 381 {
237 ev_tstamp ev_rt_now; 382 ev_tstamp ev_rt_now;
383 #define ev_rt_now ((loop)->ev_rt_now)
238 #define VAR(name,decl) decl; 384 #define VAR(name,decl) decl;
239 #include "ev_vars.h" 385 #include "ev_vars.h"
240 #undef VAR 386 #undef VAR
241 }; 387 };
242 #include "ev_wrap.h" 388 #include "ev_wrap.h"
243 389
244 struct ev_loop default_loop_struct; 390 static struct ev_loop default_loop_struct;
245 static struct ev_loop *default_loop; 391 struct ev_loop *ev_default_loop_ptr;
246 392
247#else 393#else
248 394
249 ev_tstamp ev_rt_now; 395 ev_tstamp ev_rt_now;
250 #define VAR(name,decl) static decl; 396 #define VAR(name,decl) static decl;
251 #include "ev_vars.h" 397 #include "ev_vars.h"
252 #undef VAR 398 #undef VAR
253 399
254 static int default_loop; 400 static int ev_default_loop_ptr;
255 401
256#endif 402#endif
257 403
258/*****************************************************************************/ 404/*****************************************************************************/
259 405
269 gettimeofday (&tv, 0); 415 gettimeofday (&tv, 0);
270 return tv.tv_sec + tv.tv_usec * 1e-6; 416 return tv.tv_sec + tv.tv_usec * 1e-6;
271#endif 417#endif
272} 418}
273 419
274inline ev_tstamp 420ev_tstamp inline_size
275get_clock (void) 421get_clock (void)
276{ 422{
277#if EV_USE_MONOTONIC 423#if EV_USE_MONOTONIC
278 if (expect_true (have_monotonic)) 424 if (expect_true (have_monotonic))
279 { 425 {
292{ 438{
293 return ev_rt_now; 439 return ev_rt_now;
294} 440}
295#endif 441#endif
296 442
297#define array_roundsize(type,n) ((n) | 4 & ~3) 443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
470int inline_size
471array_nextsize (int elem, int cur, int cnt)
472{
473 int ncur = cur + 1;
474
475 do
476 ncur <<= 1;
477 while (cnt > ncur);
478
479 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
480 if (elem * ncur > 4096)
481 {
482 ncur *= elem;
483 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
484 ncur = ncur - sizeof (void *) * 4;
485 ncur /= elem;
486 }
487
488 return ncur;
489}
490
491static noinline void *
492array_realloc (int elem, void *base, int *cur, int cnt)
493{
494 *cur = array_nextsize (elem, *cur, cnt);
495 return ev_realloc (base, elem * *cur);
496}
298 497
299#define array_needsize(type,base,cur,cnt,init) \ 498#define array_needsize(type,base,cur,cnt,init) \
300 if (expect_false ((cnt) > cur)) \ 499 if (expect_false ((cnt) > (cur))) \
301 { \ 500 { \
302 int newcnt = cur; \ 501 int ocur_ = (cur); \
303 do \ 502 (base) = (type *)array_realloc \
304 { \ 503 (sizeof (type), (base), &(cur), (cnt)); \
305 newcnt = array_roundsize (type, newcnt << 1); \ 504 init ((base) + (ocur_), (cur) - ocur_); \
306 } \
307 while ((cnt) > newcnt); \
308 \
309 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
310 init (base + cur, newcnt - cur); \
311 cur = newcnt; \
312 } 505 }
313 506
507#if 0
314#define array_slim(type,stem) \ 508#define array_slim(type,stem) \
315 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 509 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
316 { \ 510 { \
317 stem ## max = array_roundsize (stem ## cnt >> 1); \ 511 stem ## max = array_roundsize (stem ## cnt >> 1); \
318 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 512 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
319 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 513 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
320 } 514 }
321 515#endif
322/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
323/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
324#define array_free_microshit(stem) \
325 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
326 516
327#define array_free(stem, idx) \ 517#define array_free(stem, idx) \
328 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 518 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
329 519
330/*****************************************************************************/ 520/*****************************************************************************/
331 521
332static void 522void noinline
523ev_feed_event (EV_P_ void *w, int revents)
524{
525 W w_ = (W)w;
526 int pri = ABSPRI (w_);
527
528 if (expect_false (w_->pending))
529 pendings [pri][w_->pending - 1].events |= revents;
530 else
531 {
532 w_->pending = ++pendingcnt [pri];
533 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
534 pendings [pri][w_->pending - 1].w = w_;
535 pendings [pri][w_->pending - 1].events = revents;
536 }
537}
538
539void inline_speed
540queue_events (EV_P_ W *events, int eventcnt, int type)
541{
542 int i;
543
544 for (i = 0; i < eventcnt; ++i)
545 ev_feed_event (EV_A_ events [i], type);
546}
547
548/*****************************************************************************/
549
550void inline_size
333anfds_init (ANFD *base, int count) 551anfds_init (ANFD *base, int count)
334{ 552{
335 while (count--) 553 while (count--)
336 { 554 {
337 base->head = 0; 555 base->head = 0;
340 558
341 ++base; 559 ++base;
342 } 560 }
343} 561}
344 562
345void 563void inline_speed
346ev_feed_event (EV_P_ void *w, int revents)
347{
348 W w_ = (W)w;
349
350 if (w_->pending)
351 {
352 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
353 return;
354 }
355
356 w_->pending = ++pendingcnt [ABSPRI (w_)];
357 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
358 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
359 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
360}
361
362static void
363queue_events (EV_P_ W *events, int eventcnt, int type)
364{
365 int i;
366
367 for (i = 0; i < eventcnt; ++i)
368 ev_feed_event (EV_A_ events [i], type);
369}
370
371inline void
372fd_event (EV_P_ int fd, int revents) 564fd_event (EV_P_ int fd, int revents)
373{ 565{
374 ANFD *anfd = anfds + fd; 566 ANFD *anfd = anfds + fd;
375 struct ev_io *w; 567 ev_io *w;
376 568
377 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 569 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
378 { 570 {
379 int ev = w->events & revents; 571 int ev = w->events & revents;
380 572
381 if (ev) 573 if (ev)
382 ev_feed_event (EV_A_ (W)w, ev); 574 ev_feed_event (EV_A_ (W)w, ev);
384} 576}
385 577
386void 578void
387ev_feed_fd_event (EV_P_ int fd, int revents) 579ev_feed_fd_event (EV_P_ int fd, int revents)
388{ 580{
581 if (fd >= 0 && fd < anfdmax)
389 fd_event (EV_A_ fd, revents); 582 fd_event (EV_A_ fd, revents);
390} 583}
391 584
392/*****************************************************************************/ 585void inline_size
393
394static void
395fd_reify (EV_P) 586fd_reify (EV_P)
396{ 587{
397 int i; 588 int i;
398 589
399 for (i = 0; i < fdchangecnt; ++i) 590 for (i = 0; i < fdchangecnt; ++i)
400 { 591 {
401 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
402 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
403 struct ev_io *w; 594 ev_io *w;
404 595
405 int events = 0; 596 unsigned char events = 0;
406 597
407 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
408 events |= w->events; 599 events |= (unsigned char)w->events;
409 600
601#if EV_SELECT_IS_WINSOCKET
602 if (events)
603 {
604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
608 anfd->handle = _get_osfhandle (fd);
609 #endif
610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
611 }
612#endif
613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
410 anfd->reify = 0; 618 anfd->reify = 0;
411
412 method_modify (EV_A_ fd, anfd->events, events);
413 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
414 } 624 }
415 625
416 fdchangecnt = 0; 626 fdchangecnt = 0;
417} 627}
418 628
419static void 629void inline_size
420fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
421{ 631{
422 if (anfds [fd].reify) 632 unsigned char reify = anfds [fd].reify;
423 return;
424
425 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
426 634
635 if (expect_true (!reify))
636 {
427 ++fdchangecnt; 637 ++fdchangecnt;
428 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
429 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
430} 641}
431 642
432static void 643void inline_speed
433fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
434{ 645{
435 struct ev_io *w; 646 ev_io *w;
436 647
437 while ((w = (struct ev_io *)anfds [fd].head)) 648 while ((w = (ev_io *)anfds [fd].head))
438 { 649 {
439 ev_io_stop (EV_A_ w); 650 ev_io_stop (EV_A_ w);
440 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 651 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
441 } 652 }
442} 653}
443 654
444static int 655int inline_size
445fd_valid (int fd) 656fd_valid (int fd)
446{ 657{
447#ifdef WIN32 658#ifdef _WIN32
448 return !!win32_get_osfhandle (fd); 659 return _get_osfhandle (fd) != -1;
449#else 660#else
450 return fcntl (fd, F_GETFD) != -1; 661 return fcntl (fd, F_GETFD) != -1;
451#endif 662#endif
452} 663}
453 664
454/* called on EBADF to verify fds */ 665/* called on EBADF to verify fds */
455static void 666static void noinline
456fd_ebadf (EV_P) 667fd_ebadf (EV_P)
457{ 668{
458 int fd; 669 int fd;
459 670
460 for (fd = 0; fd < anfdmax; ++fd) 671 for (fd = 0; fd < anfdmax; ++fd)
462 if (!fd_valid (fd) == -1 && errno == EBADF) 673 if (!fd_valid (fd) == -1 && errno == EBADF)
463 fd_kill (EV_A_ fd); 674 fd_kill (EV_A_ fd);
464} 675}
465 676
466/* called on ENOMEM in select/poll to kill some fds and retry */ 677/* called on ENOMEM in select/poll to kill some fds and retry */
467static void 678static void noinline
468fd_enomem (EV_P) 679fd_enomem (EV_P)
469{ 680{
470 int fd; 681 int fd;
471 682
472 for (fd = anfdmax; fd--; ) 683 for (fd = anfdmax; fd--; )
475 fd_kill (EV_A_ fd); 686 fd_kill (EV_A_ fd);
476 return; 687 return;
477 } 688 }
478} 689}
479 690
480/* usually called after fork if method needs to re-arm all fds from scratch */ 691/* usually called after fork if backend needs to re-arm all fds from scratch */
481static void 692static void noinline
482fd_rearm_all (EV_P) 693fd_rearm_all (EV_P)
483{ 694{
484 int fd; 695 int fd;
485 696
486 /* this should be highly optimised to not do anything but set a flag */
487 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
488 if (anfds [fd].events) 698 if (anfds [fd].events)
489 { 699 {
490 anfds [fd].events = 0; 700 anfds [fd].events = 0;
491 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
492 } 702 }
493} 703}
494 704
495/*****************************************************************************/ 705/*****************************************************************************/
496 706
497static void 707void inline_speed
498upheap (WT *heap, int k) 708upheap (WT *heap, int k)
499{ 709{
500 WT w = heap [k]; 710 WT w = heap [k];
501 711
502 while (k && heap [k >> 1]->at > w->at) 712 while (k)
503 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
504 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
505 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
506 k >>= 1; 721 k = p;
507 } 722 }
508 723
509 heap [k] = w; 724 heap [k] = w;
510 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
511
512} 726}
513 727
514static void 728void inline_speed
515downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
516{ 730{
517 WT w = heap [k]; 731 WT w = heap [k];
518 732
519 while (k < (N >> 1)) 733 for (;;)
520 { 734 {
521 int j = k << 1; 735 int c = (k << 1) + 1;
522 736
523 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
524 ++j;
525
526 if (w->at <= heap [j]->at)
527 break; 738 break;
528 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
529 heap [k] = heap [j]; 746 heap [k] = heap [c];
530 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
531 k = j; 749 k = c;
532 } 750 }
533 751
534 heap [k] = w; 752 heap [k] = w;
535 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
536} 754}
537 755
538inline void 756void inline_size
539adjustheap (WT *heap, int N, int k, ev_tstamp at) 757adjustheap (WT *heap, int N, int k)
540{ 758{
541 ev_tstamp old_at = heap [k]->at; 759 upheap (heap, k);
542 heap [k]->at = at;
543
544 if (old_at < at)
545 downheap (heap, N, k); 760 downheap (heap, N, k);
546 else
547 upheap (heap, k);
548} 761}
549 762
550/*****************************************************************************/ 763/*****************************************************************************/
551 764
552typedef struct 765typedef struct
558static ANSIG *signals; 771static ANSIG *signals;
559static int signalmax; 772static int signalmax;
560 773
561static int sigpipe [2]; 774static int sigpipe [2];
562static sig_atomic_t volatile gotsig; 775static sig_atomic_t volatile gotsig;
563static struct ev_io sigev; 776static ev_io sigev;
564 777
565static void 778void inline_size
566signals_init (ANSIG *base, int count) 779signals_init (ANSIG *base, int count)
567{ 780{
568 while (count--) 781 while (count--)
569 { 782 {
570 base->head = 0; 783 base->head = 0;
575} 788}
576 789
577static void 790static void
578sighandler (int signum) 791sighandler (int signum)
579{ 792{
580#if WIN32 793#if _WIN32
581 signal (signum, sighandler); 794 signal (signum, sighandler);
582#endif 795#endif
583 796
584 signals [signum - 1].gotsig = 1; 797 signals [signum - 1].gotsig = 1;
585 798
586 if (!gotsig) 799 if (!gotsig)
587 { 800 {
588 int old_errno = errno; 801 int old_errno = errno;
589 gotsig = 1; 802 gotsig = 1;
590#ifdef WIN32
591 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
592#else
593 write (sigpipe [1], &signum, 1); 803 write (sigpipe [1], &signum, 1);
594#endif
595 errno = old_errno; 804 errno = old_errno;
596 } 805 }
597} 806}
598 807
599void 808void noinline
600ev_feed_signal_event (EV_P_ int signum) 809ev_feed_signal_event (EV_P_ int signum)
601{ 810{
602 WL w; 811 WL w;
603 812
604#if EV_MULTIPLICITY 813#if EV_MULTIPLICITY
605 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 814 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
606#endif 815#endif
607 816
608 --signum; 817 --signum;
609 818
610 if (signum < 0 || signum >= signalmax) 819 if (signum < 0 || signum >= signalmax)
615 for (w = signals [signum].head; w; w = w->next) 824 for (w = signals [signum].head; w; w = w->next)
616 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 825 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
617} 826}
618 827
619static void 828static void
620sigcb (EV_P_ struct ev_io *iow, int revents) 829sigcb (EV_P_ ev_io *iow, int revents)
621{ 830{
622 int signum; 831 int signum;
623 832
624#ifdef WIN32
625 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
626#else
627 read (sigpipe [0], &revents, 1); 833 read (sigpipe [0], &revents, 1);
628#endif
629 gotsig = 0; 834 gotsig = 0;
630 835
631 for (signum = signalmax; signum--; ) 836 for (signum = signalmax; signum--; )
632 if (signals [signum].gotsig) 837 if (signals [signum].gotsig)
633 ev_feed_signal_event (EV_A_ signum + 1); 838 ev_feed_signal_event (EV_A_ signum + 1);
634} 839}
635 840
636static void 841void inline_speed
842fd_intern (int fd)
843{
844#ifdef _WIN32
845 int arg = 1;
846 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
847#else
848 fcntl (fd, F_SETFD, FD_CLOEXEC);
849 fcntl (fd, F_SETFL, O_NONBLOCK);
850#endif
851}
852
853static void noinline
637siginit (EV_P) 854siginit (EV_P)
638{ 855{
639#ifndef WIN32 856 fd_intern (sigpipe [0]);
640 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 857 fd_intern (sigpipe [1]);
641 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
642
643 /* rather than sort out wether we really need nb, set it */
644 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
645 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
646#endif
647 858
648 ev_io_set (&sigev, sigpipe [0], EV_READ); 859 ev_io_set (&sigev, sigpipe [0], EV_READ);
649 ev_io_start (EV_A_ &sigev); 860 ev_io_start (EV_A_ &sigev);
650 ev_unref (EV_A); /* child watcher should not keep loop alive */ 861 ev_unref (EV_A); /* child watcher should not keep loop alive */
651} 862}
652 863
653/*****************************************************************************/ 864/*****************************************************************************/
654 865
655static struct ev_child *childs [PID_HASHSIZE]; 866static WL childs [EV_PID_HASHSIZE];
656 867
657#ifndef WIN32 868#ifndef _WIN32
658 869
659static struct ev_signal childev; 870static ev_signal childev;
871
872void inline_speed
873child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
874{
875 ev_child *w;
876
877 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
878 if (w->pid == pid || !w->pid)
879 {
880 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
881 w->rpid = pid;
882 w->rstatus = status;
883 ev_feed_event (EV_A_ (W)w, EV_CHILD);
884 }
885}
660 886
661#ifndef WCONTINUED 887#ifndef WCONTINUED
662# define WCONTINUED 0 888# define WCONTINUED 0
663#endif 889#endif
664 890
665static void 891static void
666child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
667{
668 struct ev_child *w;
669
670 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
671 if (w->pid == pid || !w->pid)
672 {
673 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
674 w->rpid = pid;
675 w->rstatus = status;
676 ev_feed_event (EV_A_ (W)w, EV_CHILD);
677 }
678}
679
680static void
681childcb (EV_P_ struct ev_signal *sw, int revents) 892childcb (EV_P_ ev_signal *sw, int revents)
682{ 893{
683 int pid, status; 894 int pid, status;
684 895
896 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
685 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 897 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
686 { 898 if (!WCONTINUED
899 || errno != EINVAL
900 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
901 return;
902
687 /* make sure we are called again until all childs have been reaped */ 903 /* make sure we are called again until all childs have been reaped */
904 /* we need to do it this way so that the callback gets called before we continue */
688 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 905 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
689 906
690 child_reap (EV_A_ sw, pid, pid, status); 907 child_reap (EV_A_ sw, pid, pid, status);
908 if (EV_PID_HASHSIZE > 1)
691 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 909 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
692 }
693} 910}
694 911
695#endif 912#endif
696 913
697/*****************************************************************************/ 914/*****************************************************************************/
698 915
916#if EV_USE_PORT
917# include "ev_port.c"
918#endif
699#if EV_USE_KQUEUE 919#if EV_USE_KQUEUE
700# include "ev_kqueue.c" 920# include "ev_kqueue.c"
701#endif 921#endif
702#if EV_USE_EPOLL 922#if EV_USE_EPOLL
703# include "ev_epoll.c" 923# include "ev_epoll.c"
720{ 940{
721 return EV_VERSION_MINOR; 941 return EV_VERSION_MINOR;
722} 942}
723 943
724/* return true if we are running with elevated privileges and should ignore env variables */ 944/* return true if we are running with elevated privileges and should ignore env variables */
725static int 945int inline_size
726enable_secure (void) 946enable_secure (void)
727{ 947{
728#ifdef WIN32 948#ifdef _WIN32
729 return 0; 949 return 0;
730#else 950#else
731 return getuid () != geteuid () 951 return getuid () != geteuid ()
732 || getgid () != getegid (); 952 || getgid () != getegid ();
733#endif 953#endif
734} 954}
735 955
736int 956unsigned int
737ev_method (EV_P) 957ev_supported_backends (void)
738{ 958{
739 return method; 959 unsigned int flags = 0;
740}
741 960
742static void 961 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
743loop_init (EV_P_ int methods) 962 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
963 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
964 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
965 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
966
967 return flags;
968}
969
970unsigned int
971ev_recommended_backends (void)
744{ 972{
745 if (!method) 973 unsigned int flags = ev_supported_backends ();
974
975#ifndef __NetBSD__
976 /* kqueue is borked on everything but netbsd apparently */
977 /* it usually doesn't work correctly on anything but sockets and pipes */
978 flags &= ~EVBACKEND_KQUEUE;
979#endif
980#ifdef __APPLE__
981 // flags &= ~EVBACKEND_KQUEUE; for documentation
982 flags &= ~EVBACKEND_POLL;
983#endif
984
985 return flags;
986}
987
988unsigned int
989ev_embeddable_backends (void)
990{
991 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
992
993 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
994 /* please fix it and tell me how to detect the fix */
995 flags &= ~EVBACKEND_EPOLL;
996
997 return flags;
998}
999
1000unsigned int
1001ev_backend (EV_P)
1002{
1003 return backend;
1004}
1005
1006unsigned int
1007ev_loop_count (EV_P)
1008{
1009 return loop_count;
1010}
1011
1012void
1013ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1014{
1015 io_blocktime = interval;
1016}
1017
1018void
1019ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1020{
1021 timeout_blocktime = interval;
1022}
1023
1024static void noinline
1025loop_init (EV_P_ unsigned int flags)
1026{
1027 if (!backend)
746 { 1028 {
747#if EV_USE_MONOTONIC 1029#if EV_USE_MONOTONIC
748 { 1030 {
749 struct timespec ts; 1031 struct timespec ts;
750 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1032 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
755 ev_rt_now = ev_time (); 1037 ev_rt_now = ev_time ();
756 mn_now = get_clock (); 1038 mn_now = get_clock ();
757 now_floor = mn_now; 1039 now_floor = mn_now;
758 rtmn_diff = ev_rt_now - mn_now; 1040 rtmn_diff = ev_rt_now - mn_now;
759 1041
760 if (methods == EVMETHOD_AUTO) 1042 io_blocktime = 0.;
761 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1043 timeout_blocktime = 0.;
1044
1045 /* pid check not overridable via env */
1046#ifndef _WIN32
1047 if (flags & EVFLAG_FORKCHECK)
1048 curpid = getpid ();
1049#endif
1050
1051 if (!(flags & EVFLAG_NOENV)
1052 && !enable_secure ()
1053 && getenv ("LIBEV_FLAGS"))
762 methods = atoi (getenv ("LIBEV_METHODS")); 1054 flags = atoi (getenv ("LIBEV_FLAGS"));
763 else
764 methods = EVMETHOD_ANY;
765 1055
766 method = 0; 1056 if (!(flags & 0x0000ffffUL))
1057 flags |= ev_recommended_backends ();
1058
1059 backend = 0;
1060 backend_fd = -1;
767#if EV_USE_WIN32 1061#if EV_USE_INOTIFY
768 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1062 fs_fd = -2;
1063#endif
1064
1065#if EV_USE_PORT
1066 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
769#endif 1067#endif
770#if EV_USE_KQUEUE 1068#if EV_USE_KQUEUE
771 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1069 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
772#endif 1070#endif
773#if EV_USE_EPOLL 1071#if EV_USE_EPOLL
774 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1072 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
775#endif 1073#endif
776#if EV_USE_POLL 1074#if EV_USE_POLL
777 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1075 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
778#endif 1076#endif
779#if EV_USE_SELECT 1077#if EV_USE_SELECT
780 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1078 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
781#endif 1079#endif
782 1080
783 ev_init (&sigev, sigcb); 1081 ev_init (&sigev, sigcb);
784 ev_set_priority (&sigev, EV_MAXPRI); 1082 ev_set_priority (&sigev, EV_MAXPRI);
785 } 1083 }
786} 1084}
787 1085
788void 1086static void noinline
789loop_destroy (EV_P) 1087loop_destroy (EV_P)
790{ 1088{
791 int i; 1089 int i;
792 1090
793#if EV_USE_WIN32 1091#if EV_USE_INOTIFY
794 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1092 if (fs_fd >= 0)
1093 close (fs_fd);
1094#endif
1095
1096 if (backend_fd >= 0)
1097 close (backend_fd);
1098
1099#if EV_USE_PORT
1100 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
795#endif 1101#endif
796#if EV_USE_KQUEUE 1102#if EV_USE_KQUEUE
797 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1103 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
798#endif 1104#endif
799#if EV_USE_EPOLL 1105#if EV_USE_EPOLL
800 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1106 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
801#endif 1107#endif
802#if EV_USE_POLL 1108#if EV_USE_POLL
803 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1109 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
804#endif 1110#endif
805#if EV_USE_SELECT 1111#if EV_USE_SELECT
806 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1112 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
807#endif 1113#endif
808 1114
809 for (i = NUMPRI; i--; ) 1115 for (i = NUMPRI; i--; )
1116 {
810 array_free (pending, [i]); 1117 array_free (pending, [i]);
1118#if EV_IDLE_ENABLE
1119 array_free (idle, [i]);
1120#endif
1121 }
1122
1123 ev_free (anfds); anfdmax = 0;
811 1124
812 /* have to use the microsoft-never-gets-it-right macro */ 1125 /* have to use the microsoft-never-gets-it-right macro */
813 array_free_microshit (fdchange); 1126 array_free (fdchange, EMPTY);
814 array_free_microshit (timer); 1127 array_free (timer, EMPTY);
815#if EV_PERIODICS 1128#if EV_PERIODIC_ENABLE
816 array_free_microshit (periodic); 1129 array_free (periodic, EMPTY);
817#endif 1130#endif
818 array_free_microshit (idle); 1131#if EV_FORK_ENABLE
819 array_free_microshit (prepare); 1132 array_free (fork, EMPTY);
820 array_free_microshit (check); 1133#endif
1134 array_free (prepare, EMPTY);
1135 array_free (check, EMPTY);
821 1136
822 method = 0; 1137 backend = 0;
823} 1138}
824 1139
825static void 1140void inline_size infy_fork (EV_P);
1141
1142void inline_size
826loop_fork (EV_P) 1143loop_fork (EV_P)
827{ 1144{
1145#if EV_USE_PORT
1146 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1147#endif
1148#if EV_USE_KQUEUE
1149 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1150#endif
828#if EV_USE_EPOLL 1151#if EV_USE_EPOLL
829 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1152 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
830#endif 1153#endif
831#if EV_USE_KQUEUE 1154#if EV_USE_INOTIFY
832 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1155 infy_fork (EV_A);
833#endif 1156#endif
834 1157
835 if (ev_is_active (&sigev)) 1158 if (ev_is_active (&sigev))
836 { 1159 {
837 /* default loop */ 1160 /* default loop */
843 1166
844 while (pipe (sigpipe)) 1167 while (pipe (sigpipe))
845 syserr ("(libev) error creating pipe"); 1168 syserr ("(libev) error creating pipe");
846 1169
847 siginit (EV_A); 1170 siginit (EV_A);
1171 sigcb (EV_A_ &sigev, EV_READ);
848 } 1172 }
849 1173
850 postfork = 0; 1174 postfork = 0;
851} 1175}
852 1176
853#if EV_MULTIPLICITY 1177#if EV_MULTIPLICITY
854struct ev_loop * 1178struct ev_loop *
855ev_loop_new (int methods) 1179ev_loop_new (unsigned int flags)
856{ 1180{
857 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1181 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
858 1182
859 memset (loop, 0, sizeof (struct ev_loop)); 1183 memset (loop, 0, sizeof (struct ev_loop));
860 1184
861 loop_init (EV_A_ methods); 1185 loop_init (EV_A_ flags);
862 1186
863 if (ev_method (EV_A)) 1187 if (ev_backend (EV_A))
864 return loop; 1188 return loop;
865 1189
866 return 0; 1190 return 0;
867} 1191}
868 1192
874} 1198}
875 1199
876void 1200void
877ev_loop_fork (EV_P) 1201ev_loop_fork (EV_P)
878{ 1202{
879 postfork = 1; 1203 postfork = 1; // must be in line with ev_default_fork
880} 1204}
881 1205
882#endif 1206#endif
883 1207
884#if EV_MULTIPLICITY 1208#if EV_MULTIPLICITY
885struct ev_loop * 1209struct ev_loop *
1210ev_default_loop_init (unsigned int flags)
886#else 1211#else
887int 1212int
1213ev_default_loop (unsigned int flags)
888#endif 1214#endif
889ev_default_loop (int methods)
890{ 1215{
891 if (sigpipe [0] == sigpipe [1]) 1216 if (sigpipe [0] == sigpipe [1])
892 if (pipe (sigpipe)) 1217 if (pipe (sigpipe))
893 return 0; 1218 return 0;
894 1219
895 if (!default_loop) 1220 if (!ev_default_loop_ptr)
896 { 1221 {
897#if EV_MULTIPLICITY 1222#if EV_MULTIPLICITY
898 struct ev_loop *loop = default_loop = &default_loop_struct; 1223 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
899#else 1224#else
900 default_loop = 1; 1225 ev_default_loop_ptr = 1;
901#endif 1226#endif
902 1227
903 loop_init (EV_A_ methods); 1228 loop_init (EV_A_ flags);
904 1229
905 if (ev_method (EV_A)) 1230 if (ev_backend (EV_A))
906 { 1231 {
907 siginit (EV_A); 1232 siginit (EV_A);
908 1233
909#ifndef WIN32 1234#ifndef _WIN32
910 ev_signal_init (&childev, childcb, SIGCHLD); 1235 ev_signal_init (&childev, childcb, SIGCHLD);
911 ev_set_priority (&childev, EV_MAXPRI); 1236 ev_set_priority (&childev, EV_MAXPRI);
912 ev_signal_start (EV_A_ &childev); 1237 ev_signal_start (EV_A_ &childev);
913 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1238 ev_unref (EV_A); /* child watcher should not keep loop alive */
914#endif 1239#endif
915 } 1240 }
916 else 1241 else
917 default_loop = 0; 1242 ev_default_loop_ptr = 0;
918 } 1243 }
919 1244
920 return default_loop; 1245 return ev_default_loop_ptr;
921} 1246}
922 1247
923void 1248void
924ev_default_destroy (void) 1249ev_default_destroy (void)
925{ 1250{
926#if EV_MULTIPLICITY 1251#if EV_MULTIPLICITY
927 struct ev_loop *loop = default_loop; 1252 struct ev_loop *loop = ev_default_loop_ptr;
928#endif 1253#endif
929 1254
930#ifndef WIN32 1255#ifndef _WIN32
931 ev_ref (EV_A); /* child watcher */ 1256 ev_ref (EV_A); /* child watcher */
932 ev_signal_stop (EV_A_ &childev); 1257 ev_signal_stop (EV_A_ &childev);
933#endif 1258#endif
934 1259
935 ev_ref (EV_A); /* signal watcher */ 1260 ev_ref (EV_A); /* signal watcher */
943 1268
944void 1269void
945ev_default_fork (void) 1270ev_default_fork (void)
946{ 1271{
947#if EV_MULTIPLICITY 1272#if EV_MULTIPLICITY
948 struct ev_loop *loop = default_loop; 1273 struct ev_loop *loop = ev_default_loop_ptr;
949#endif 1274#endif
950 1275
951 if (method) 1276 if (backend)
952 postfork = 1; 1277 postfork = 1; // must be in line with ev_loop_fork
953} 1278}
954 1279
955/*****************************************************************************/ 1280/*****************************************************************************/
956 1281
957static int 1282void
958any_pending (EV_P) 1283ev_invoke (EV_P_ void *w, int revents)
959{ 1284{
960 int pri; 1285 EV_CB_INVOKE ((W)w, revents);
961
962 for (pri = NUMPRI; pri--; )
963 if (pendingcnt [pri])
964 return 1;
965
966 return 0;
967} 1286}
968 1287
969static void 1288void inline_speed
970call_pending (EV_P) 1289call_pending (EV_P)
971{ 1290{
972 int pri; 1291 int pri;
973 1292
974 for (pri = NUMPRI; pri--; ) 1293 for (pri = NUMPRI; pri--; )
975 while (pendingcnt [pri]) 1294 while (pendingcnt [pri])
976 { 1295 {
977 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1296 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
978 1297
979 if (p->w) 1298 if (expect_true (p->w))
980 { 1299 {
1300 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1301
981 p->w->pending = 0; 1302 p->w->pending = 0;
982 EV_CB_INVOKE (p->w, p->events); 1303 EV_CB_INVOKE (p->w, p->events);
983 } 1304 }
984 } 1305 }
985} 1306}
986 1307
987static void 1308void inline_size
988timers_reify (EV_P) 1309timers_reify (EV_P)
989{ 1310{
990 while (timercnt && ((WT)timers [0])->at <= mn_now) 1311 while (timercnt && ((WT)timers [0])->at <= mn_now)
991 { 1312 {
992 struct ev_timer *w = timers [0]; 1313 ev_timer *w = (ev_timer *)timers [0];
993 1314
994 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1315 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
995 1316
996 /* first reschedule or stop timer */ 1317 /* first reschedule or stop timer */
997 if (w->repeat) 1318 if (w->repeat)
998 { 1319 {
999 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1320 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1000 1321
1001 ((WT)w)->at += w->repeat; 1322 ((WT)w)->at += w->repeat;
1002 if (((WT)w)->at < mn_now) 1323 if (((WT)w)->at < mn_now)
1003 ((WT)w)->at = mn_now; 1324 ((WT)w)->at = mn_now;
1004 1325
1005 downheap ((WT *)timers, timercnt, 0); 1326 downheap (timers, timercnt, 0);
1006 } 1327 }
1007 else 1328 else
1008 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1329 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1009 1330
1010 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1331 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1011 } 1332 }
1012} 1333}
1013 1334
1014#if EV_PERIODICS 1335#if EV_PERIODIC_ENABLE
1015static void 1336void inline_size
1016periodics_reify (EV_P) 1337periodics_reify (EV_P)
1017{ 1338{
1018 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1339 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1019 { 1340 {
1020 struct ev_periodic *w = periodics [0]; 1341 ev_periodic *w = (ev_periodic *)periodics [0];
1021 1342
1022 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1343 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1023 1344
1024 /* first reschedule or stop timer */ 1345 /* first reschedule or stop timer */
1025 if (w->reschedule_cb) 1346 if (w->reschedule_cb)
1026 { 1347 {
1027 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1348 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1028
1029 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1349 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1030 downheap ((WT *)periodics, periodiccnt, 0); 1350 downheap (periodics, periodiccnt, 0);
1031 } 1351 }
1032 else if (w->interval) 1352 else if (w->interval)
1033 { 1353 {
1034 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1354 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1355 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1035 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1356 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1036 downheap ((WT *)periodics, periodiccnt, 0); 1357 downheap (periodics, periodiccnt, 0);
1037 } 1358 }
1038 else 1359 else
1039 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1360 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1040 1361
1041 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1362 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1042 } 1363 }
1043} 1364}
1044 1365
1045static void 1366static void noinline
1046periodics_reschedule (EV_P) 1367periodics_reschedule (EV_P)
1047{ 1368{
1048 int i; 1369 int i;
1049 1370
1050 /* adjust periodics after time jump */ 1371 /* adjust periodics after time jump */
1051 for (i = 0; i < periodiccnt; ++i) 1372 for (i = 0; i < periodiccnt; ++i)
1052 { 1373 {
1053 struct ev_periodic *w = periodics [i]; 1374 ev_periodic *w = (ev_periodic *)periodics [i];
1054 1375
1055 if (w->reschedule_cb) 1376 if (w->reschedule_cb)
1056 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1377 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1057 else if (w->interval) 1378 else if (w->interval)
1058 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1379 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1059 } 1380 }
1060 1381
1061 /* now rebuild the heap */ 1382 /* now rebuild the heap */
1062 for (i = periodiccnt >> 1; i--; ) 1383 for (i = periodiccnt >> 1; i--; )
1063 downheap ((WT *)periodics, periodiccnt, i); 1384 downheap (periodics, periodiccnt, i);
1064} 1385}
1065#endif 1386#endif
1066 1387
1067inline int 1388#if EV_IDLE_ENABLE
1068time_update_monotonic (EV_P) 1389void inline_size
1390idle_reify (EV_P)
1069{ 1391{
1392 if (expect_false (idleall))
1393 {
1394 int pri;
1395
1396 for (pri = NUMPRI; pri--; )
1397 {
1398 if (pendingcnt [pri])
1399 break;
1400
1401 if (idlecnt [pri])
1402 {
1403 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1404 break;
1405 }
1406 }
1407 }
1408}
1409#endif
1410
1411void inline_speed
1412time_update (EV_P_ ev_tstamp max_block)
1413{
1414 int i;
1415
1416#if EV_USE_MONOTONIC
1417 if (expect_true (have_monotonic))
1418 {
1419 ev_tstamp odiff = rtmn_diff;
1420
1070 mn_now = get_clock (); 1421 mn_now = get_clock ();
1071 1422
1423 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1424 /* interpolate in the meantime */
1072 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1425 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1073 { 1426 {
1074 ev_rt_now = rtmn_diff + mn_now; 1427 ev_rt_now = rtmn_diff + mn_now;
1075 return 0; 1428 return;
1076 } 1429 }
1077 else 1430
1078 {
1079 now_floor = mn_now; 1431 now_floor = mn_now;
1080 ev_rt_now = ev_time (); 1432 ev_rt_now = ev_time ();
1081 return 1;
1082 }
1083}
1084 1433
1085static void 1434 /* loop a few times, before making important decisions.
1086time_update (EV_P) 1435 * on the choice of "4": one iteration isn't enough,
1087{ 1436 * in case we get preempted during the calls to
1088 int i; 1437 * ev_time and get_clock. a second call is almost guaranteed
1089 1438 * to succeed in that case, though. and looping a few more times
1090#if EV_USE_MONOTONIC 1439 * doesn't hurt either as we only do this on time-jumps or
1091 if (expect_true (have_monotonic)) 1440 * in the unlikely event of having been preempted here.
1092 { 1441 */
1093 if (time_update_monotonic (EV_A)) 1442 for (i = 4; --i; )
1094 { 1443 {
1095 ev_tstamp odiff = rtmn_diff;
1096
1097 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1098 {
1099 rtmn_diff = ev_rt_now - mn_now; 1444 rtmn_diff = ev_rt_now - mn_now;
1100 1445
1101 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1446 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1102 return; /* all is well */ 1447 return; /* all is well */
1103 1448
1104 ev_rt_now = ev_time (); 1449 ev_rt_now = ev_time ();
1105 mn_now = get_clock (); 1450 mn_now = get_clock ();
1106 now_floor = mn_now; 1451 now_floor = mn_now;
1107 } 1452 }
1108 1453
1109# if EV_PERIODICS 1454# if EV_PERIODIC_ENABLE
1455 periodics_reschedule (EV_A);
1456# endif
1457 /* no timer adjustment, as the monotonic clock doesn't jump */
1458 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1459 }
1460 else
1461#endif
1462 {
1463 ev_rt_now = ev_time ();
1464
1465 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1466 {
1467#if EV_PERIODIC_ENABLE
1110 periodics_reschedule (EV_A); 1468 periodics_reschedule (EV_A);
1111# endif 1469#endif
1112 /* no timer adjustment, as the monotonic clock doesn't jump */
1113 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1114 }
1115 }
1116 else
1117#endif
1118 {
1119 ev_rt_now = ev_time ();
1120
1121 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1122 {
1123#if EV_PERIODICS
1124 periodics_reschedule (EV_A);
1125#endif
1126
1127 /* adjust timers. this is easy, as the offset is the same for all */ 1470 /* adjust timers. this is easy, as the offset is the same for all of them */
1128 for (i = 0; i < timercnt; ++i) 1471 for (i = 0; i < timercnt; ++i)
1129 ((WT)timers [i])->at += ev_rt_now - mn_now; 1472 ((WT)timers [i])->at += ev_rt_now - mn_now;
1130 } 1473 }
1131 1474
1132 mn_now = ev_rt_now; 1475 mn_now = ev_rt_now;
1148static int loop_done; 1491static int loop_done;
1149 1492
1150void 1493void
1151ev_loop (EV_P_ int flags) 1494ev_loop (EV_P_ int flags)
1152{ 1495{
1153 double block;
1154 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1496 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1497 ? EVUNLOOP_ONE
1498 : EVUNLOOP_CANCEL;
1499
1500 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1155 1501
1156 do 1502 do
1157 { 1503 {
1504#ifndef _WIN32
1505 if (expect_false (curpid)) /* penalise the forking check even more */
1506 if (expect_false (getpid () != curpid))
1507 {
1508 curpid = getpid ();
1509 postfork = 1;
1510 }
1511#endif
1512
1513#if EV_FORK_ENABLE
1514 /* we might have forked, so queue fork handlers */
1515 if (expect_false (postfork))
1516 if (forkcnt)
1517 {
1518 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1519 call_pending (EV_A);
1520 }
1521#endif
1522
1158 /* queue check watchers (and execute them) */ 1523 /* queue prepare watchers (and execute them) */
1159 if (expect_false (preparecnt)) 1524 if (expect_false (preparecnt))
1160 { 1525 {
1161 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1526 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1162 call_pending (EV_A); 1527 call_pending (EV_A);
1163 } 1528 }
1164 1529
1530 if (expect_false (!activecnt))
1531 break;
1532
1165 /* we might have forked, so reify kernel state if necessary */ 1533 /* we might have forked, so reify kernel state if necessary */
1166 if (expect_false (postfork)) 1534 if (expect_false (postfork))
1167 loop_fork (EV_A); 1535 loop_fork (EV_A);
1168 1536
1169 /* update fd-related kernel structures */ 1537 /* update fd-related kernel structures */
1170 fd_reify (EV_A); 1538 fd_reify (EV_A);
1171 1539
1172 /* calculate blocking time */ 1540 /* calculate blocking time */
1541 {
1542 ev_tstamp waittime = 0.;
1543 ev_tstamp sleeptime = 0.;
1173 1544
1174 /* we only need this for !monotonic clock or timers, but as we basically 1545 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1175 always have timers, we just calculate it always */
1176#if EV_USE_MONOTONIC
1177 if (expect_true (have_monotonic))
1178 time_update_monotonic (EV_A);
1179 else
1180#endif
1181 { 1546 {
1182 ev_rt_now = ev_time (); 1547 /* update time to cancel out callback processing overhead */
1183 mn_now = ev_rt_now; 1548 time_update (EV_A_ 1e100);
1184 }
1185 1549
1186 if (flags & EVLOOP_NONBLOCK || idlecnt)
1187 block = 0.;
1188 else
1189 {
1190 block = MAX_BLOCKTIME; 1550 waittime = MAX_BLOCKTIME;
1191 1551
1192 if (timercnt) 1552 if (timercnt)
1193 { 1553 {
1194 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1554 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1195 if (block > to) block = to; 1555 if (waittime > to) waittime = to;
1196 } 1556 }
1197 1557
1198#if EV_PERIODICS 1558#if EV_PERIODIC_ENABLE
1199 if (periodiccnt) 1559 if (periodiccnt)
1200 { 1560 {
1201 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1561 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1202 if (block > to) block = to; 1562 if (waittime > to) waittime = to;
1203 } 1563 }
1204#endif 1564#endif
1205 1565
1206 if (block < 0.) block = 0.; 1566 if (expect_false (waittime < timeout_blocktime))
1567 waittime = timeout_blocktime;
1568
1569 sleeptime = waittime - backend_fudge;
1570
1571 if (expect_true (sleeptime > io_blocktime))
1572 sleeptime = io_blocktime;
1573
1574 if (sleeptime)
1575 {
1576 ev_sleep (sleeptime);
1577 waittime -= sleeptime;
1578 }
1207 } 1579 }
1208 1580
1209 method_poll (EV_A_ block); 1581 ++loop_count;
1582 backend_poll (EV_A_ waittime);
1210 1583
1211 /* update ev_rt_now, do magic */ 1584 /* update ev_rt_now, do magic */
1212 time_update (EV_A); 1585 time_update (EV_A_ waittime + sleeptime);
1586 }
1213 1587
1214 /* queue pending timers and reschedule them */ 1588 /* queue pending timers and reschedule them */
1215 timers_reify (EV_A); /* relative timers called last */ 1589 timers_reify (EV_A); /* relative timers called last */
1216#if EV_PERIODICS 1590#if EV_PERIODIC_ENABLE
1217 periodics_reify (EV_A); /* absolute timers called first */ 1591 periodics_reify (EV_A); /* absolute timers called first */
1218#endif 1592#endif
1219 1593
1594#if EV_IDLE_ENABLE
1220 /* queue idle watchers unless io or timers are pending */ 1595 /* queue idle watchers unless other events are pending */
1221 if (idlecnt && !any_pending (EV_A)) 1596 idle_reify (EV_A);
1222 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1597#endif
1223 1598
1224 /* queue check watchers, to be executed first */ 1599 /* queue check watchers, to be executed first */
1225 if (checkcnt) 1600 if (expect_false (checkcnt))
1226 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1601 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1227 1602
1228 call_pending (EV_A); 1603 call_pending (EV_A);
1604
1229 } 1605 }
1230 while (activecnt && !loop_done); 1606 while (expect_true (activecnt && !loop_done));
1231 1607
1232 if (loop_done != 2) 1608 if (loop_done == EVUNLOOP_ONE)
1233 loop_done = 0; 1609 loop_done = EVUNLOOP_CANCEL;
1234} 1610}
1235 1611
1236void 1612void
1237ev_unloop (EV_P_ int how) 1613ev_unloop (EV_P_ int how)
1238{ 1614{
1239 loop_done = how; 1615 loop_done = how;
1240} 1616}
1241 1617
1242/*****************************************************************************/ 1618/*****************************************************************************/
1243 1619
1244inline void 1620void inline_size
1245wlist_add (WL *head, WL elem) 1621wlist_add (WL *head, WL elem)
1246{ 1622{
1247 elem->next = *head; 1623 elem->next = *head;
1248 *head = elem; 1624 *head = elem;
1249} 1625}
1250 1626
1251inline void 1627void inline_size
1252wlist_del (WL *head, WL elem) 1628wlist_del (WL *head, WL elem)
1253{ 1629{
1254 while (*head) 1630 while (*head)
1255 { 1631 {
1256 if (*head == elem) 1632 if (*head == elem)
1261 1637
1262 head = &(*head)->next; 1638 head = &(*head)->next;
1263 } 1639 }
1264} 1640}
1265 1641
1266inline void 1642void inline_speed
1267ev_clear_pending (EV_P_ W w) 1643clear_pending (EV_P_ W w)
1268{ 1644{
1269 if (w->pending) 1645 if (w->pending)
1270 { 1646 {
1271 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1647 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1272 w->pending = 0; 1648 w->pending = 0;
1273 } 1649 }
1274} 1650}
1275 1651
1276inline void 1652int
1653ev_clear_pending (EV_P_ void *w)
1654{
1655 W w_ = (W)w;
1656 int pending = w_->pending;
1657
1658 if (expect_true (pending))
1659 {
1660 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1661 w_->pending = 0;
1662 p->w = 0;
1663 return p->events;
1664 }
1665 else
1666 return 0;
1667}
1668
1669void inline_size
1670pri_adjust (EV_P_ W w)
1671{
1672 int pri = w->priority;
1673 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1674 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1675 w->priority = pri;
1676}
1677
1678void inline_speed
1277ev_start (EV_P_ W w, int active) 1679ev_start (EV_P_ W w, int active)
1278{ 1680{
1279 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1681 pri_adjust (EV_A_ w);
1280 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1281
1282 w->active = active; 1682 w->active = active;
1283 ev_ref (EV_A); 1683 ev_ref (EV_A);
1284} 1684}
1285 1685
1286inline void 1686void inline_size
1287ev_stop (EV_P_ W w) 1687ev_stop (EV_P_ W w)
1288{ 1688{
1289 ev_unref (EV_A); 1689 ev_unref (EV_A);
1290 w->active = 0; 1690 w->active = 0;
1291} 1691}
1292 1692
1293/*****************************************************************************/ 1693/*****************************************************************************/
1294 1694
1295void 1695void noinline
1296ev_io_start (EV_P_ struct ev_io *w) 1696ev_io_start (EV_P_ ev_io *w)
1297{ 1697{
1298 int fd = w->fd; 1698 int fd = w->fd;
1299 1699
1300 if (ev_is_active (w)) 1700 if (expect_false (ev_is_active (w)))
1301 return; 1701 return;
1302 1702
1303 assert (("ev_io_start called with negative fd", fd >= 0)); 1703 assert (("ev_io_start called with negative fd", fd >= 0));
1304 1704
1305 ev_start (EV_A_ (W)w, 1); 1705 ev_start (EV_A_ (W)w, 1);
1306 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1706 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1307 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1707 wlist_add (&anfds[fd].head, (WL)w);
1308 1708
1309 fd_change (EV_A_ fd); 1709 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1710 w->events &= ~EV_IOFDSET;
1310} 1711}
1311 1712
1312void 1713void noinline
1313ev_io_stop (EV_P_ struct ev_io *w) 1714ev_io_stop (EV_P_ ev_io *w)
1314{ 1715{
1315 ev_clear_pending (EV_A_ (W)w); 1716 clear_pending (EV_A_ (W)w);
1316 if (!ev_is_active (w)) 1717 if (expect_false (!ev_is_active (w)))
1317 return; 1718 return;
1318 1719
1319 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1720 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1320 1721
1321 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1722 wlist_del (&anfds[w->fd].head, (WL)w);
1322 ev_stop (EV_A_ (W)w); 1723 ev_stop (EV_A_ (W)w);
1323 1724
1324 fd_change (EV_A_ w->fd); 1725 fd_change (EV_A_ w->fd, 1);
1325} 1726}
1326 1727
1327void 1728void noinline
1328ev_timer_start (EV_P_ struct ev_timer *w) 1729ev_timer_start (EV_P_ ev_timer *w)
1730{
1731 if (expect_false (ev_is_active (w)))
1732 return;
1733
1734 ((WT)w)->at += mn_now;
1735
1736 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1737
1738 ev_start (EV_A_ (W)w, ++timercnt);
1739 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1740 timers [timercnt - 1] = (WT)w;
1741 upheap (timers, timercnt - 1);
1742
1743 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1744}
1745
1746void noinline
1747ev_timer_stop (EV_P_ ev_timer *w)
1748{
1749 clear_pending (EV_A_ (W)w);
1750 if (expect_false (!ev_is_active (w)))
1751 return;
1752
1753 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1754
1755 {
1756 int active = ((W)w)->active;
1757
1758 if (expect_true (--active < --timercnt))
1759 {
1760 timers [active] = timers [timercnt];
1761 adjustheap (timers, timercnt, active);
1762 }
1763 }
1764
1765 ((WT)w)->at -= mn_now;
1766
1767 ev_stop (EV_A_ (W)w);
1768}
1769
1770void noinline
1771ev_timer_again (EV_P_ ev_timer *w)
1329{ 1772{
1330 if (ev_is_active (w)) 1773 if (ev_is_active (w))
1331 return;
1332
1333 ((WT)w)->at += mn_now;
1334
1335 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1336
1337 ev_start (EV_A_ (W)w, ++timercnt);
1338 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1339 timers [timercnt - 1] = w;
1340 upheap ((WT *)timers, timercnt - 1);
1341
1342 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1343}
1344
1345void
1346ev_timer_stop (EV_P_ struct ev_timer *w)
1347{
1348 ev_clear_pending (EV_A_ (W)w);
1349 if (!ev_is_active (w))
1350 return;
1351
1352 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1353
1354 if (((W)w)->active < timercnt--)
1355 {
1356 timers [((W)w)->active - 1] = timers [timercnt];
1357 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1358 }
1359
1360 ((WT)w)->at -= mn_now;
1361
1362 ev_stop (EV_A_ (W)w);
1363}
1364
1365void
1366ev_timer_again (EV_P_ struct ev_timer *w)
1367{
1368 if (ev_is_active (w))
1369 { 1774 {
1370 if (w->repeat) 1775 if (w->repeat)
1776 {
1777 ((WT)w)->at = mn_now + w->repeat;
1371 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat); 1778 adjustheap (timers, timercnt, ((W)w)->active - 1);
1779 }
1372 else 1780 else
1373 ev_timer_stop (EV_A_ w); 1781 ev_timer_stop (EV_A_ w);
1374 } 1782 }
1375 else if (w->repeat) 1783 else if (w->repeat)
1784 {
1785 w->at = w->repeat;
1376 ev_timer_start (EV_A_ w); 1786 ev_timer_start (EV_A_ w);
1787 }
1377} 1788}
1378 1789
1379#if EV_PERIODICS 1790#if EV_PERIODIC_ENABLE
1380void 1791void noinline
1381ev_periodic_start (EV_P_ struct ev_periodic *w) 1792ev_periodic_start (EV_P_ ev_periodic *w)
1382{ 1793{
1383 if (ev_is_active (w)) 1794 if (expect_false (ev_is_active (w)))
1384 return; 1795 return;
1385 1796
1386 if (w->reschedule_cb) 1797 if (w->reschedule_cb)
1387 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1798 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1388 else if (w->interval) 1799 else if (w->interval)
1389 { 1800 {
1390 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1801 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1391 /* this formula differs from the one in periodic_reify because we do not always round up */ 1802 /* this formula differs from the one in periodic_reify because we do not always round up */
1392 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1803 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1393 } 1804 }
1805 else
1806 ((WT)w)->at = w->offset;
1394 1807
1395 ev_start (EV_A_ (W)w, ++periodiccnt); 1808 ev_start (EV_A_ (W)w, ++periodiccnt);
1396 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1809 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1397 periodics [periodiccnt - 1] = w; 1810 periodics [periodiccnt - 1] = (WT)w;
1398 upheap ((WT *)periodics, periodiccnt - 1); 1811 upheap (periodics, periodiccnt - 1);
1399 1812
1400 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1813 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1401} 1814}
1402 1815
1403void 1816void noinline
1404ev_periodic_stop (EV_P_ struct ev_periodic *w) 1817ev_periodic_stop (EV_P_ ev_periodic *w)
1405{ 1818{
1406 ev_clear_pending (EV_A_ (W)w); 1819 clear_pending (EV_A_ (W)w);
1407 if (!ev_is_active (w)) 1820 if (expect_false (!ev_is_active (w)))
1408 return; 1821 return;
1409 1822
1410 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1823 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1411 1824
1412 if (((W)w)->active < periodiccnt--) 1825 {
1826 int active = ((W)w)->active;
1827
1828 if (expect_true (--active < --periodiccnt))
1413 { 1829 {
1414 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1830 periodics [active] = periodics [periodiccnt];
1415 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1831 adjustheap (periodics, periodiccnt, active);
1416 } 1832 }
1833 }
1417 1834
1418 ev_stop (EV_A_ (W)w); 1835 ev_stop (EV_A_ (W)w);
1419} 1836}
1420 1837
1421void 1838void noinline
1422ev_periodic_again (EV_P_ struct ev_periodic *w) 1839ev_periodic_again (EV_P_ ev_periodic *w)
1423{ 1840{
1424 /* TODO: use adjustheap and recalculation */ 1841 /* TODO: use adjustheap and recalculation */
1425 ev_periodic_stop (EV_A_ w); 1842 ev_periodic_stop (EV_A_ w);
1426 ev_periodic_start (EV_A_ w); 1843 ev_periodic_start (EV_A_ w);
1427} 1844}
1428#endif 1845#endif
1429 1846
1430void
1431ev_idle_start (EV_P_ struct ev_idle *w)
1432{
1433 if (ev_is_active (w))
1434 return;
1435
1436 ev_start (EV_A_ (W)w, ++idlecnt);
1437 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1438 idles [idlecnt - 1] = w;
1439}
1440
1441void
1442ev_idle_stop (EV_P_ struct ev_idle *w)
1443{
1444 ev_clear_pending (EV_A_ (W)w);
1445 if (ev_is_active (w))
1446 return;
1447
1448 idles [((W)w)->active - 1] = idles [--idlecnt];
1449 ev_stop (EV_A_ (W)w);
1450}
1451
1452void
1453ev_prepare_start (EV_P_ struct ev_prepare *w)
1454{
1455 if (ev_is_active (w))
1456 return;
1457
1458 ev_start (EV_A_ (W)w, ++preparecnt);
1459 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1460 prepares [preparecnt - 1] = w;
1461}
1462
1463void
1464ev_prepare_stop (EV_P_ struct ev_prepare *w)
1465{
1466 ev_clear_pending (EV_A_ (W)w);
1467 if (ev_is_active (w))
1468 return;
1469
1470 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1471 ev_stop (EV_A_ (W)w);
1472}
1473
1474void
1475ev_check_start (EV_P_ struct ev_check *w)
1476{
1477 if (ev_is_active (w))
1478 return;
1479
1480 ev_start (EV_A_ (W)w, ++checkcnt);
1481 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1482 checks [checkcnt - 1] = w;
1483}
1484
1485void
1486ev_check_stop (EV_P_ struct ev_check *w)
1487{
1488 ev_clear_pending (EV_A_ (W)w);
1489 if (!ev_is_active (w))
1490 return;
1491
1492 checks [((W)w)->active - 1] = checks [--checkcnt];
1493 ev_stop (EV_A_ (W)w);
1494}
1495
1496#ifndef SA_RESTART 1847#ifndef SA_RESTART
1497# define SA_RESTART 0 1848# define SA_RESTART 0
1498#endif 1849#endif
1499 1850
1500void 1851void noinline
1501ev_signal_start (EV_P_ struct ev_signal *w) 1852ev_signal_start (EV_P_ ev_signal *w)
1502{ 1853{
1503#if EV_MULTIPLICITY 1854#if EV_MULTIPLICITY
1504 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1855 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1505#endif 1856#endif
1506 if (ev_is_active (w)) 1857 if (expect_false (ev_is_active (w)))
1507 return; 1858 return;
1508 1859
1509 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1860 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1510 1861
1862 {
1863#ifndef _WIN32
1864 sigset_t full, prev;
1865 sigfillset (&full);
1866 sigprocmask (SIG_SETMASK, &full, &prev);
1867#endif
1868
1869 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1870
1871#ifndef _WIN32
1872 sigprocmask (SIG_SETMASK, &prev, 0);
1873#endif
1874 }
1875
1511 ev_start (EV_A_ (W)w, 1); 1876 ev_start (EV_A_ (W)w, 1);
1512 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1513 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1877 wlist_add (&signals [w->signum - 1].head, (WL)w);
1514 1878
1515 if (!((WL)w)->next) 1879 if (!((WL)w)->next)
1516 { 1880 {
1517#if WIN32 1881#if _WIN32
1518 signal (w->signum, sighandler); 1882 signal (w->signum, sighandler);
1519#else 1883#else
1520 struct sigaction sa; 1884 struct sigaction sa;
1521 sa.sa_handler = sighandler; 1885 sa.sa_handler = sighandler;
1522 sigfillset (&sa.sa_mask); 1886 sigfillset (&sa.sa_mask);
1524 sigaction (w->signum, &sa, 0); 1888 sigaction (w->signum, &sa, 0);
1525#endif 1889#endif
1526 } 1890 }
1527} 1891}
1528 1892
1529void 1893void noinline
1530ev_signal_stop (EV_P_ struct ev_signal *w) 1894ev_signal_stop (EV_P_ ev_signal *w)
1531{ 1895{
1532 ev_clear_pending (EV_A_ (W)w); 1896 clear_pending (EV_A_ (W)w);
1533 if (!ev_is_active (w)) 1897 if (expect_false (!ev_is_active (w)))
1534 return; 1898 return;
1535 1899
1536 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1900 wlist_del (&signals [w->signum - 1].head, (WL)w);
1537 ev_stop (EV_A_ (W)w); 1901 ev_stop (EV_A_ (W)w);
1538 1902
1539 if (!signals [w->signum - 1].head) 1903 if (!signals [w->signum - 1].head)
1540 signal (w->signum, SIG_DFL); 1904 signal (w->signum, SIG_DFL);
1541} 1905}
1542 1906
1543void 1907void
1544ev_child_start (EV_P_ struct ev_child *w) 1908ev_child_start (EV_P_ ev_child *w)
1545{ 1909{
1546#if EV_MULTIPLICITY 1910#if EV_MULTIPLICITY
1547 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1911 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1548#endif 1912#endif
1549 if (ev_is_active (w)) 1913 if (expect_false (ev_is_active (w)))
1550 return; 1914 return;
1551 1915
1552 ev_start (EV_A_ (W)w, 1); 1916 ev_start (EV_A_ (W)w, 1);
1553 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1917 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1554} 1918}
1555 1919
1556void 1920void
1557ev_child_stop (EV_P_ struct ev_child *w) 1921ev_child_stop (EV_P_ ev_child *w)
1558{ 1922{
1559 ev_clear_pending (EV_A_ (W)w); 1923 clear_pending (EV_A_ (W)w);
1560 if (!ev_is_active (w)) 1924 if (expect_false (!ev_is_active (w)))
1561 return; 1925 return;
1562 1926
1563 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1927 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1564 ev_stop (EV_A_ (W)w); 1928 ev_stop (EV_A_ (W)w);
1565} 1929}
1566 1930
1931#if EV_STAT_ENABLE
1932
1933# ifdef _WIN32
1934# undef lstat
1935# define lstat(a,b) _stati64 (a,b)
1936# endif
1937
1938#define DEF_STAT_INTERVAL 5.0074891
1939#define MIN_STAT_INTERVAL 0.1074891
1940
1941static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1942
1943#if EV_USE_INOTIFY
1944# define EV_INOTIFY_BUFSIZE 8192
1945
1946static void noinline
1947infy_add (EV_P_ ev_stat *w)
1948{
1949 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1950
1951 if (w->wd < 0)
1952 {
1953 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1954
1955 /* monitor some parent directory for speedup hints */
1956 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1957 {
1958 char path [4096];
1959 strcpy (path, w->path);
1960
1961 do
1962 {
1963 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1964 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1965
1966 char *pend = strrchr (path, '/');
1967
1968 if (!pend)
1969 break; /* whoops, no '/', complain to your admin */
1970
1971 *pend = 0;
1972 w->wd = inotify_add_watch (fs_fd, path, mask);
1973 }
1974 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1975 }
1976 }
1977 else
1978 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1979
1980 if (w->wd >= 0)
1981 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1982}
1983
1984static void noinline
1985infy_del (EV_P_ ev_stat *w)
1986{
1987 int slot;
1988 int wd = w->wd;
1989
1990 if (wd < 0)
1991 return;
1992
1993 w->wd = -2;
1994 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1995 wlist_del (&fs_hash [slot].head, (WL)w);
1996
1997 /* remove this watcher, if others are watching it, they will rearm */
1998 inotify_rm_watch (fs_fd, wd);
1999}
2000
2001static void noinline
2002infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2003{
2004 if (slot < 0)
2005 /* overflow, need to check for all hahs slots */
2006 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2007 infy_wd (EV_A_ slot, wd, ev);
2008 else
2009 {
2010 WL w_;
2011
2012 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2013 {
2014 ev_stat *w = (ev_stat *)w_;
2015 w_ = w_->next; /* lets us remove this watcher and all before it */
2016
2017 if (w->wd == wd || wd == -1)
2018 {
2019 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2020 {
2021 w->wd = -1;
2022 infy_add (EV_A_ w); /* re-add, no matter what */
2023 }
2024
2025 stat_timer_cb (EV_A_ &w->timer, 0);
2026 }
2027 }
2028 }
2029}
2030
2031static void
2032infy_cb (EV_P_ ev_io *w, int revents)
2033{
2034 char buf [EV_INOTIFY_BUFSIZE];
2035 struct inotify_event *ev = (struct inotify_event *)buf;
2036 int ofs;
2037 int len = read (fs_fd, buf, sizeof (buf));
2038
2039 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2040 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2041}
2042
2043void inline_size
2044infy_init (EV_P)
2045{
2046 if (fs_fd != -2)
2047 return;
2048
2049 fs_fd = inotify_init ();
2050
2051 if (fs_fd >= 0)
2052 {
2053 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2054 ev_set_priority (&fs_w, EV_MAXPRI);
2055 ev_io_start (EV_A_ &fs_w);
2056 }
2057}
2058
2059void inline_size
2060infy_fork (EV_P)
2061{
2062 int slot;
2063
2064 if (fs_fd < 0)
2065 return;
2066
2067 close (fs_fd);
2068 fs_fd = inotify_init ();
2069
2070 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2071 {
2072 WL w_ = fs_hash [slot].head;
2073 fs_hash [slot].head = 0;
2074
2075 while (w_)
2076 {
2077 ev_stat *w = (ev_stat *)w_;
2078 w_ = w_->next; /* lets us add this watcher */
2079
2080 w->wd = -1;
2081
2082 if (fs_fd >= 0)
2083 infy_add (EV_A_ w); /* re-add, no matter what */
2084 else
2085 ev_timer_start (EV_A_ &w->timer);
2086 }
2087
2088 }
2089}
2090
2091#endif
2092
2093void
2094ev_stat_stat (EV_P_ ev_stat *w)
2095{
2096 if (lstat (w->path, &w->attr) < 0)
2097 w->attr.st_nlink = 0;
2098 else if (!w->attr.st_nlink)
2099 w->attr.st_nlink = 1;
2100}
2101
2102static void noinline
2103stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2104{
2105 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2106
2107 /* we copy this here each the time so that */
2108 /* prev has the old value when the callback gets invoked */
2109 w->prev = w->attr;
2110 ev_stat_stat (EV_A_ w);
2111
2112 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2113 if (
2114 w->prev.st_dev != w->attr.st_dev
2115 || w->prev.st_ino != w->attr.st_ino
2116 || w->prev.st_mode != w->attr.st_mode
2117 || w->prev.st_nlink != w->attr.st_nlink
2118 || w->prev.st_uid != w->attr.st_uid
2119 || w->prev.st_gid != w->attr.st_gid
2120 || w->prev.st_rdev != w->attr.st_rdev
2121 || w->prev.st_size != w->attr.st_size
2122 || w->prev.st_atime != w->attr.st_atime
2123 || w->prev.st_mtime != w->attr.st_mtime
2124 || w->prev.st_ctime != w->attr.st_ctime
2125 ) {
2126 #if EV_USE_INOTIFY
2127 infy_del (EV_A_ w);
2128 infy_add (EV_A_ w);
2129 ev_stat_stat (EV_A_ w); /* avoid race... */
2130 #endif
2131
2132 ev_feed_event (EV_A_ w, EV_STAT);
2133 }
2134}
2135
2136void
2137ev_stat_start (EV_P_ ev_stat *w)
2138{
2139 if (expect_false (ev_is_active (w)))
2140 return;
2141
2142 /* since we use memcmp, we need to clear any padding data etc. */
2143 memset (&w->prev, 0, sizeof (ev_statdata));
2144 memset (&w->attr, 0, sizeof (ev_statdata));
2145
2146 ev_stat_stat (EV_A_ w);
2147
2148 if (w->interval < MIN_STAT_INTERVAL)
2149 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2150
2151 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2152 ev_set_priority (&w->timer, ev_priority (w));
2153
2154#if EV_USE_INOTIFY
2155 infy_init (EV_A);
2156
2157 if (fs_fd >= 0)
2158 infy_add (EV_A_ w);
2159 else
2160#endif
2161 ev_timer_start (EV_A_ &w->timer);
2162
2163 ev_start (EV_A_ (W)w, 1);
2164}
2165
2166void
2167ev_stat_stop (EV_P_ ev_stat *w)
2168{
2169 clear_pending (EV_A_ (W)w);
2170 if (expect_false (!ev_is_active (w)))
2171 return;
2172
2173#if EV_USE_INOTIFY
2174 infy_del (EV_A_ w);
2175#endif
2176 ev_timer_stop (EV_A_ &w->timer);
2177
2178 ev_stop (EV_A_ (W)w);
2179}
2180#endif
2181
2182#if EV_IDLE_ENABLE
2183void
2184ev_idle_start (EV_P_ ev_idle *w)
2185{
2186 if (expect_false (ev_is_active (w)))
2187 return;
2188
2189 pri_adjust (EV_A_ (W)w);
2190
2191 {
2192 int active = ++idlecnt [ABSPRI (w)];
2193
2194 ++idleall;
2195 ev_start (EV_A_ (W)w, active);
2196
2197 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2198 idles [ABSPRI (w)][active - 1] = w;
2199 }
2200}
2201
2202void
2203ev_idle_stop (EV_P_ ev_idle *w)
2204{
2205 clear_pending (EV_A_ (W)w);
2206 if (expect_false (!ev_is_active (w)))
2207 return;
2208
2209 {
2210 int active = ((W)w)->active;
2211
2212 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2213 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2214
2215 ev_stop (EV_A_ (W)w);
2216 --idleall;
2217 }
2218}
2219#endif
2220
2221void
2222ev_prepare_start (EV_P_ ev_prepare *w)
2223{
2224 if (expect_false (ev_is_active (w)))
2225 return;
2226
2227 ev_start (EV_A_ (W)w, ++preparecnt);
2228 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2229 prepares [preparecnt - 1] = w;
2230}
2231
2232void
2233ev_prepare_stop (EV_P_ ev_prepare *w)
2234{
2235 clear_pending (EV_A_ (W)w);
2236 if (expect_false (!ev_is_active (w)))
2237 return;
2238
2239 {
2240 int active = ((W)w)->active;
2241 prepares [active - 1] = prepares [--preparecnt];
2242 ((W)prepares [active - 1])->active = active;
2243 }
2244
2245 ev_stop (EV_A_ (W)w);
2246}
2247
2248void
2249ev_check_start (EV_P_ ev_check *w)
2250{
2251 if (expect_false (ev_is_active (w)))
2252 return;
2253
2254 ev_start (EV_A_ (W)w, ++checkcnt);
2255 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2256 checks [checkcnt - 1] = w;
2257}
2258
2259void
2260ev_check_stop (EV_P_ ev_check *w)
2261{
2262 clear_pending (EV_A_ (W)w);
2263 if (expect_false (!ev_is_active (w)))
2264 return;
2265
2266 {
2267 int active = ((W)w)->active;
2268 checks [active - 1] = checks [--checkcnt];
2269 ((W)checks [active - 1])->active = active;
2270 }
2271
2272 ev_stop (EV_A_ (W)w);
2273}
2274
2275#if EV_EMBED_ENABLE
2276void noinline
2277ev_embed_sweep (EV_P_ ev_embed *w)
2278{
2279 ev_loop (w->other, EVLOOP_NONBLOCK);
2280}
2281
2282static void
2283embed_io_cb (EV_P_ ev_io *io, int revents)
2284{
2285 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2286
2287 if (ev_cb (w))
2288 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2289 else
2290 ev_loop (w->other, EVLOOP_NONBLOCK);
2291}
2292
2293static void
2294embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2295{
2296 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2297
2298 {
2299 struct ev_loop *loop = w->other;
2300
2301 while (fdchangecnt)
2302 {
2303 fd_reify (EV_A);
2304 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2305 }
2306 }
2307}
2308
2309#if 0
2310static void
2311embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2312{
2313 ev_idle_stop (EV_A_ idle);
2314}
2315#endif
2316
2317void
2318ev_embed_start (EV_P_ ev_embed *w)
2319{
2320 if (expect_false (ev_is_active (w)))
2321 return;
2322
2323 {
2324 struct ev_loop *loop = w->other;
2325 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2326 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2327 }
2328
2329 ev_set_priority (&w->io, ev_priority (w));
2330 ev_io_start (EV_A_ &w->io);
2331
2332 ev_prepare_init (&w->prepare, embed_prepare_cb);
2333 ev_set_priority (&w->prepare, EV_MINPRI);
2334 ev_prepare_start (EV_A_ &w->prepare);
2335
2336 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2337
2338 ev_start (EV_A_ (W)w, 1);
2339}
2340
2341void
2342ev_embed_stop (EV_P_ ev_embed *w)
2343{
2344 clear_pending (EV_A_ (W)w);
2345 if (expect_false (!ev_is_active (w)))
2346 return;
2347
2348 ev_io_stop (EV_A_ &w->io);
2349 ev_prepare_stop (EV_A_ &w->prepare);
2350
2351 ev_stop (EV_A_ (W)w);
2352}
2353#endif
2354
2355#if EV_FORK_ENABLE
2356void
2357ev_fork_start (EV_P_ ev_fork *w)
2358{
2359 if (expect_false (ev_is_active (w)))
2360 return;
2361
2362 ev_start (EV_A_ (W)w, ++forkcnt);
2363 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2364 forks [forkcnt - 1] = w;
2365}
2366
2367void
2368ev_fork_stop (EV_P_ ev_fork *w)
2369{
2370 clear_pending (EV_A_ (W)w);
2371 if (expect_false (!ev_is_active (w)))
2372 return;
2373
2374 {
2375 int active = ((W)w)->active;
2376 forks [active - 1] = forks [--forkcnt];
2377 ((W)forks [active - 1])->active = active;
2378 }
2379
2380 ev_stop (EV_A_ (W)w);
2381}
2382#endif
2383
1567/*****************************************************************************/ 2384/*****************************************************************************/
1568 2385
1569struct ev_once 2386struct ev_once
1570{ 2387{
1571 struct ev_io io; 2388 ev_io io;
1572 struct ev_timer to; 2389 ev_timer to;
1573 void (*cb)(int revents, void *arg); 2390 void (*cb)(int revents, void *arg);
1574 void *arg; 2391 void *arg;
1575}; 2392};
1576 2393
1577static void 2394static void
1586 2403
1587 cb (revents, arg); 2404 cb (revents, arg);
1588} 2405}
1589 2406
1590static void 2407static void
1591once_cb_io (EV_P_ struct ev_io *w, int revents) 2408once_cb_io (EV_P_ ev_io *w, int revents)
1592{ 2409{
1593 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2410 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1594} 2411}
1595 2412
1596static void 2413static void
1597once_cb_to (EV_P_ struct ev_timer *w, int revents) 2414once_cb_to (EV_P_ ev_timer *w, int revents)
1598{ 2415{
1599 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2416 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1600} 2417}
1601 2418
1602void 2419void
1603ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2420ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1604{ 2421{
1605 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2422 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1606 2423
1607 if (!once) 2424 if (expect_false (!once))
2425 {
1608 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2426 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1609 else 2427 return;
1610 { 2428 }
2429
1611 once->cb = cb; 2430 once->cb = cb;
1612 once->arg = arg; 2431 once->arg = arg;
1613 2432
1614 ev_init (&once->io, once_cb_io); 2433 ev_init (&once->io, once_cb_io);
1615 if (fd >= 0) 2434 if (fd >= 0)
1616 { 2435 {
1617 ev_io_set (&once->io, fd, events); 2436 ev_io_set (&once->io, fd, events);
1618 ev_io_start (EV_A_ &once->io); 2437 ev_io_start (EV_A_ &once->io);
1619 } 2438 }
1620 2439
1621 ev_init (&once->to, once_cb_to); 2440 ev_init (&once->to, once_cb_to);
1622 if (timeout >= 0.) 2441 if (timeout >= 0.)
1623 { 2442 {
1624 ev_timer_set (&once->to, timeout, 0.); 2443 ev_timer_set (&once->to, timeout, 0.);
1625 ev_timer_start (EV_A_ &once->to); 2444 ev_timer_start (EV_A_ &once->to);
1626 }
1627 } 2445 }
1628} 2446}
2447
2448#if EV_MULTIPLICITY
2449 #include "ev_wrap.h"
2450#endif
1629 2451
1630#ifdef __cplusplus 2452#ifdef __cplusplus
1631} 2453}
1632#endif 2454#endif
1633 2455

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines