ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.98 by root, Sun Nov 11 02:05:20 2007 UTC vs.
Revision 1.240 by root, Thu May 8 21:21:41 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
43# ifndef EV_USE_REALTIME 56# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
45# endif 58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
46# endif 66# endif
47 67
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
50# endif 74# endif
51 75
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
54# endif 82# endif
55 83
56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
58# endif 90# endif
59 91
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
62# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
63 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
64#endif 132#endif
65 133
66#include <math.h> 134#include <math.h>
67#include <stdlib.h> 135#include <stdlib.h>
68#include <fcntl.h> 136#include <fcntl.h>
75#include <sys/types.h> 143#include <sys/types.h>
76#include <time.h> 144#include <time.h>
77 145
78#include <signal.h> 146#include <signal.h>
79 147
80#ifndef WIN32
81# include <unistd.h>
82# include <sys/time.h>
83# include <sys/wait.h>
84#endif
85/**/
86
87#ifndef EV_USE_MONOTONIC
88# define EV_USE_MONOTONIC 1
89#endif
90
91#ifndef EV_USE_SELECT
92# define EV_USE_SELECT 1
93#endif
94
95#ifndef EV_USE_POLL
96# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
97#endif
98
99#ifndef EV_USE_EPOLL
100# define EV_USE_EPOLL 0
101#endif
102
103#ifndef EV_USE_KQUEUE
104# define EV_USE_KQUEUE 0
105#endif
106
107#ifndef EV_USE_WIN32
108# ifdef WIN32
109# define EV_USE_WIN32 0 /* it does not exist, use select */
110# undef EV_USE_SELECT
111# define EV_USE_SELECT 1
112# else
113# define EV_USE_WIN32 0
114# endif
115#endif
116
117#ifndef EV_USE_REALTIME
118# define EV_USE_REALTIME 1
119#endif
120
121/**/
122
123#ifndef CLOCK_MONOTONIC
124# undef EV_USE_MONOTONIC
125# define EV_USE_MONOTONIC 0
126#endif
127
128#ifndef CLOCK_REALTIME
129# undef EV_USE_REALTIME
130# define EV_USE_REALTIME 0
131#endif
132
133/**/
134
135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
139
140#ifdef EV_H 148#ifdef EV_H
141# include EV_H 149# include EV_H
142#else 150#else
143# include "ev.h" 151# include "ev.h"
144#endif 152#endif
145 153
154#ifndef _WIN32
155# include <sys/time.h>
156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
163# endif
164#endif
165
166/* this block tries to deduce configuration from header-defined symbols and defaults */
167
168#ifndef EV_USE_MONOTONIC
169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
178#endif
179
180#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1
182#endif
183
184#ifndef EV_USE_POLL
185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
189# endif
190#endif
191
192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
196# define EV_USE_EPOLL 0
197# endif
198#endif
199
200#ifndef EV_USE_KQUEUE
201# define EV_USE_KQUEUE 0
202#endif
203
204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241
242#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0
245#endif
246
247#ifndef CLOCK_REALTIME
248# undef EV_USE_REALTIME
249# define EV_USE_REALTIME 0
250#endif
251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif
270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298
146#if __GNUC__ >= 3 299#if __GNUC__ >= 4
147# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
148# define inline inline 301# define noinline __attribute__ ((noinline))
149#else 302#else
150# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
151# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
152#endif 308#endif
153 309
154#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
155#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
156 319
157#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
158#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
159 322
323#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */
325
160typedef struct ev_watcher *W; 326typedef ev_watcher *W;
161typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
162typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
163 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
165 338
166#ifdef WIN32 339#ifdef _WIN32
167# include "ev_win32.c" 340# include "ev_win32.c"
168#endif 341#endif
169 342
170/*****************************************************************************/ 343/*****************************************************************************/
171 344
172static void (*syserr_cb)(const char *msg); 345static void (*syserr_cb)(const char *msg);
173 346
347void
174void ev_set_syserr_cb (void (*cb)(const char *msg)) 348ev_set_syserr_cb (void (*cb)(const char *msg))
175{ 349{
176 syserr_cb = cb; 350 syserr_cb = cb;
177} 351}
178 352
179static void 353static void noinline
180syserr (const char *msg) 354syserr (const char *msg)
181{ 355{
182 if (!msg) 356 if (!msg)
183 msg = "(libev) system error"; 357 msg = "(libev) system error";
184 358
189 perror (msg); 363 perror (msg);
190 abort (); 364 abort ();
191 } 365 }
192} 366}
193 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
194static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
195 384
385void
196void ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
197{ 387{
198 alloc = cb; 388 alloc = cb;
199} 389}
200 390
201static void * 391inline_speed void *
202ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
203{ 393{
204 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
205 395
206 if (!ptr && size) 396 if (!ptr && size)
207 { 397 {
208 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
209 abort (); 399 abort ();
220typedef struct 410typedef struct
221{ 411{
222 WL head; 412 WL head;
223 unsigned char events; 413 unsigned char events;
224 unsigned char reify; 414 unsigned char reify;
415#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle;
417#endif
225} ANFD; 418} ANFD;
226 419
227typedef struct 420typedef struct
228{ 421{
229 W w; 422 W w;
230 int events; 423 int events;
231} ANPENDING; 424} ANPENDING;
232 425
426#if EV_USE_INOTIFY
427typedef struct
428{
429 WL head;
430} ANFS;
431#endif
432
233#if EV_MULTIPLICITY 433#if EV_MULTIPLICITY
234 434
235 struct ev_loop 435 struct ev_loop
236 { 436 {
237 ev_tstamp ev_rt_now; 437 ev_tstamp ev_rt_now;
438 #define ev_rt_now ((loop)->ev_rt_now)
238 #define VAR(name,decl) decl; 439 #define VAR(name,decl) decl;
239 #include "ev_vars.h" 440 #include "ev_vars.h"
240 #undef VAR 441 #undef VAR
241 }; 442 };
242 #include "ev_wrap.h" 443 #include "ev_wrap.h"
243 444
244 struct ev_loop default_loop_struct; 445 static struct ev_loop default_loop_struct;
245 static struct ev_loop *default_loop; 446 struct ev_loop *ev_default_loop_ptr;
246 447
247#else 448#else
248 449
249 ev_tstamp ev_rt_now; 450 ev_tstamp ev_rt_now;
250 #define VAR(name,decl) static decl; 451 #define VAR(name,decl) static decl;
251 #include "ev_vars.h" 452 #include "ev_vars.h"
252 #undef VAR 453 #undef VAR
253 454
254 static int default_loop; 455 static int ev_default_loop_ptr;
255 456
256#endif 457#endif
257 458
258/*****************************************************************************/ 459/*****************************************************************************/
259 460
269 gettimeofday (&tv, 0); 470 gettimeofday (&tv, 0);
270 return tv.tv_sec + tv.tv_usec * 1e-6; 471 return tv.tv_sec + tv.tv_usec * 1e-6;
271#endif 472#endif
272} 473}
273 474
274inline ev_tstamp 475ev_tstamp inline_size
275get_clock (void) 476get_clock (void)
276{ 477{
277#if EV_USE_MONOTONIC 478#if EV_USE_MONOTONIC
278 if (expect_true (have_monotonic)) 479 if (expect_true (have_monotonic))
279 { 480 {
292{ 493{
293 return ev_rt_now; 494 return ev_rt_now;
294} 495}
295#endif 496#endif
296 497
297#define array_roundsize(type,n) ((n) | 4 & ~3) 498void
499ev_sleep (ev_tstamp delay)
500{
501 if (delay > 0.)
502 {
503#if EV_USE_NANOSLEEP
504 struct timespec ts;
505
506 ts.tv_sec = (time_t)delay;
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0);
510#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3));
512#else
513 struct timeval tv;
514
515 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517
518 select (0, 0, 0, 0, &tv);
519#endif
520 }
521}
522
523/*****************************************************************************/
524
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526
527int inline_size
528array_nextsize (int elem, int cur, int cnt)
529{
530 int ncur = cur + 1;
531
532 do
533 ncur <<= 1;
534 while (cnt > ncur);
535
536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
538 {
539 ncur *= elem;
540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
541 ncur = ncur - sizeof (void *) * 4;
542 ncur /= elem;
543 }
544
545 return ncur;
546}
547
548static noinline void *
549array_realloc (int elem, void *base, int *cur, int cnt)
550{
551 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur);
553}
298 554
299#define array_needsize(type,base,cur,cnt,init) \ 555#define array_needsize(type,base,cur,cnt,init) \
300 if (expect_false ((cnt) > cur)) \ 556 if (expect_false ((cnt) > (cur))) \
301 { \ 557 { \
302 int newcnt = cur; \ 558 int ocur_ = (cur); \
303 do \ 559 (base) = (type *)array_realloc \
304 { \ 560 (sizeof (type), (base), &(cur), (cnt)); \
305 newcnt = array_roundsize (type, newcnt << 1); \ 561 init ((base) + (ocur_), (cur) - ocur_); \
306 } \
307 while ((cnt) > newcnt); \
308 \
309 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
310 init (base + cur, newcnt - cur); \
311 cur = newcnt; \
312 } 562 }
313 563
564#if 0
314#define array_slim(type,stem) \ 565#define array_slim(type,stem) \
315 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 566 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
316 { \ 567 { \
317 stem ## max = array_roundsize (stem ## cnt >> 1); \ 568 stem ## max = array_roundsize (stem ## cnt >> 1); \
318 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 569 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
319 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
320 } 571 }
321 572#endif
322/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
323/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
324#define array_free_microshit(stem) \
325 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
326 573
327#define array_free(stem, idx) \ 574#define array_free(stem, idx) \
328 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
329 576
330/*****************************************************************************/ 577/*****************************************************************************/
331 578
332static void 579void noinline
580ev_feed_event (EV_P_ void *w, int revents)
581{
582 W w_ = (W)w;
583 int pri = ABSPRI (w_);
584
585 if (expect_false (w_->pending))
586 pendings [pri][w_->pending - 1].events |= revents;
587 else
588 {
589 w_->pending = ++pendingcnt [pri];
590 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
591 pendings [pri][w_->pending - 1].w = w_;
592 pendings [pri][w_->pending - 1].events = revents;
593 }
594}
595
596void inline_speed
597queue_events (EV_P_ W *events, int eventcnt, int type)
598{
599 int i;
600
601 for (i = 0; i < eventcnt; ++i)
602 ev_feed_event (EV_A_ events [i], type);
603}
604
605/*****************************************************************************/
606
607void inline_size
333anfds_init (ANFD *base, int count) 608anfds_init (ANFD *base, int count)
334{ 609{
335 while (count--) 610 while (count--)
336 { 611 {
337 base->head = 0; 612 base->head = 0;
340 615
341 ++base; 616 ++base;
342 } 617 }
343} 618}
344 619
345void 620void inline_speed
346ev_feed_event (EV_P_ void *w, int revents)
347{
348 W w_ = (W)w;
349
350 if (w_->pending)
351 {
352 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
353 return;
354 }
355
356 w_->pending = ++pendingcnt [ABSPRI (w_)];
357 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
358 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
359 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
360}
361
362static void
363queue_events (EV_P_ W *events, int eventcnt, int type)
364{
365 int i;
366
367 for (i = 0; i < eventcnt; ++i)
368 ev_feed_event (EV_A_ events [i], type);
369}
370
371inline void
372fd_event (EV_P_ int fd, int revents) 621fd_event (EV_P_ int fd, int revents)
373{ 622{
374 ANFD *anfd = anfds + fd; 623 ANFD *anfd = anfds + fd;
375 struct ev_io *w; 624 ev_io *w;
376 625
377 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 626 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
378 { 627 {
379 int ev = w->events & revents; 628 int ev = w->events & revents;
380 629
381 if (ev) 630 if (ev)
382 ev_feed_event (EV_A_ (W)w, ev); 631 ev_feed_event (EV_A_ (W)w, ev);
384} 633}
385 634
386void 635void
387ev_feed_fd_event (EV_P_ int fd, int revents) 636ev_feed_fd_event (EV_P_ int fd, int revents)
388{ 637{
638 if (fd >= 0 && fd < anfdmax)
389 fd_event (EV_A_ fd, revents); 639 fd_event (EV_A_ fd, revents);
390} 640}
391 641
392/*****************************************************************************/ 642void inline_size
393
394static void
395fd_reify (EV_P) 643fd_reify (EV_P)
396{ 644{
397 int i; 645 int i;
398 646
399 for (i = 0; i < fdchangecnt; ++i) 647 for (i = 0; i < fdchangecnt; ++i)
400 { 648 {
401 int fd = fdchanges [i]; 649 int fd = fdchanges [i];
402 ANFD *anfd = anfds + fd; 650 ANFD *anfd = anfds + fd;
403 struct ev_io *w; 651 ev_io *w;
404 652
405 int events = 0; 653 unsigned char events = 0;
406 654
407 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 655 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
408 events |= w->events; 656 events |= (unsigned char)w->events;
409 657
658#if EV_SELECT_IS_WINSOCKET
659 if (events)
660 {
661 unsigned long argp;
662 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else
665 anfd->handle = _get_osfhandle (fd);
666 #endif
667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
668 }
669#endif
670
671 {
672 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify;
674
410 anfd->reify = 0; 675 anfd->reify = 0;
411
412 method_modify (EV_A_ fd, anfd->events, events);
413 anfd->events = events; 676 anfd->events = events;
677
678 if (o_events != events || o_reify & EV_IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events);
680 }
414 } 681 }
415 682
416 fdchangecnt = 0; 683 fdchangecnt = 0;
417} 684}
418 685
419static void 686void inline_size
420fd_change (EV_P_ int fd) 687fd_change (EV_P_ int fd, int flags)
421{ 688{
422 if (anfds [fd].reify) 689 unsigned char reify = anfds [fd].reify;
423 return;
424
425 anfds [fd].reify = 1; 690 anfds [fd].reify |= flags;
426 691
692 if (expect_true (!reify))
693 {
427 ++fdchangecnt; 694 ++fdchangecnt;
428 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
429 fdchanges [fdchangecnt - 1] = fd; 696 fdchanges [fdchangecnt - 1] = fd;
697 }
430} 698}
431 699
432static void 700void inline_speed
433fd_kill (EV_P_ int fd) 701fd_kill (EV_P_ int fd)
434{ 702{
435 struct ev_io *w; 703 ev_io *w;
436 704
437 while ((w = (struct ev_io *)anfds [fd].head)) 705 while ((w = (ev_io *)anfds [fd].head))
438 { 706 {
439 ev_io_stop (EV_A_ w); 707 ev_io_stop (EV_A_ w);
440 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 708 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
441 } 709 }
442} 710}
443 711
444static int 712int inline_size
445fd_valid (int fd) 713fd_valid (int fd)
446{ 714{
447#ifdef WIN32 715#ifdef _WIN32
448 return !!win32_get_osfhandle (fd); 716 return _get_osfhandle (fd) != -1;
449#else 717#else
450 return fcntl (fd, F_GETFD) != -1; 718 return fcntl (fd, F_GETFD) != -1;
451#endif 719#endif
452} 720}
453 721
454/* called on EBADF to verify fds */ 722/* called on EBADF to verify fds */
455static void 723static void noinline
456fd_ebadf (EV_P) 724fd_ebadf (EV_P)
457{ 725{
458 int fd; 726 int fd;
459 727
460 for (fd = 0; fd < anfdmax; ++fd) 728 for (fd = 0; fd < anfdmax; ++fd)
462 if (!fd_valid (fd) == -1 && errno == EBADF) 730 if (!fd_valid (fd) == -1 && errno == EBADF)
463 fd_kill (EV_A_ fd); 731 fd_kill (EV_A_ fd);
464} 732}
465 733
466/* called on ENOMEM in select/poll to kill some fds and retry */ 734/* called on ENOMEM in select/poll to kill some fds and retry */
467static void 735static void noinline
468fd_enomem (EV_P) 736fd_enomem (EV_P)
469{ 737{
470 int fd; 738 int fd;
471 739
472 for (fd = anfdmax; fd--; ) 740 for (fd = anfdmax; fd--; )
475 fd_kill (EV_A_ fd); 743 fd_kill (EV_A_ fd);
476 return; 744 return;
477 } 745 }
478} 746}
479 747
480/* usually called after fork if method needs to re-arm all fds from scratch */ 748/* usually called after fork if backend needs to re-arm all fds from scratch */
481static void 749static void noinline
482fd_rearm_all (EV_P) 750fd_rearm_all (EV_P)
483{ 751{
484 int fd; 752 int fd;
485 753
486 /* this should be highly optimised to not do anything but set a flag */
487 for (fd = 0; fd < anfdmax; ++fd) 754 for (fd = 0; fd < anfdmax; ++fd)
488 if (anfds [fd].events) 755 if (anfds [fd].events)
489 { 756 {
490 anfds [fd].events = 0; 757 anfds [fd].events = 0;
491 fd_change (EV_A_ fd); 758 fd_change (EV_A_ fd, EV_IOFDSET | 1);
492 } 759 }
493} 760}
494 761
495/*****************************************************************************/ 762/*****************************************************************************/
496 763
497static void 764/*
765 * at the moment we allow libev the luxury of two heaps,
766 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
767 * which is more cache-efficient.
768 * the difference is about 5% with 50000+ watchers.
769 */
770#define USE_4HEAP !EV_MINIMAL
771#if USE_4HEAP
772
773#define DHEAP 4
774#define HEAP0 (DHEAP - 1) /* index of first element in heap */
775
776/* towards the root */
777void inline_speed
498upheap (WT *heap, int k) 778upheap (WT *heap, int k)
499{ 779{
500 WT w = heap [k]; 780 WT w = heap [k];
781 ev_tstamp w_at = w->at;
501 782
502 while (k && heap [k >> 1]->at > w->at) 783 for (;;)
503 { 784 {
785 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
786
787 if (p == k || heap [p]->at <= w_at)
788 break;
789
504 heap [k] = heap [k >> 1]; 790 heap [k] = heap [p];
505 ((W)heap [k])->active = k + 1; 791 ev_active (heap [k]) = k;
506 k >>= 1; 792 k = p;
507 } 793 }
508 794
509 heap [k] = w; 795 heap [k] = w;
510 ((W)heap [k])->active = k + 1; 796 ev_active (heap [k]) = k;
511
512} 797}
513 798
514static void 799/* away from the root */
800void inline_speed
515downheap (WT *heap, int N, int k) 801downheap (WT *heap, int N, int k)
516{ 802{
517 WT w = heap [k]; 803 WT w = heap [k];
804 WT *E = heap + N + HEAP0;
518 805
519 while (k < (N >> 1)) 806 for (;;)
520 { 807 {
521 int j = k << 1; 808 ev_tstamp minat;
809 WT *minpos;
810 WT *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
522 811
523 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 812 // find minimum child
813 if (expect_true (pos + DHEAP - 1 < E))
524 ++j; 814 {
525 815 /* fast path */ (minpos = pos + 0), (minat = (*minpos)->at);
526 if (w->at <= heap [j]->at) 816 if (pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
817 if (pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
818 if (pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
819 }
820 else if (pos < E)
821 {
822 /* slow path */ (minpos = pos + 0), (minat = (*minpos)->at);
823 if (pos + 1 < E && pos [1]->at < minat) (minpos = pos + 1), (minat = (*minpos)->at);
824 if (pos + 2 < E && pos [2]->at < minat) (minpos = pos + 2), (minat = (*minpos)->at);
825 if (pos + 3 < E && pos [3]->at < minat) (minpos = pos + 3), (minat = (*minpos)->at);
826 }
827 else
527 break; 828 break;
528 829
529 heap [k] = heap [j]; 830 if (w->at <= minat)
530 ((W)heap [k])->active = k + 1; 831 break;
531 k = j; 832
833 ev_active (*minpos) = k;
834 heap [k] = *minpos;
835
836 k = minpos - heap;
532 } 837 }
533 838
534 heap [k] = w; 839 heap [k] = w;
840 ev_active (heap [k]) = k;
841}
842
843#else // 4HEAP
844
845#define HEAP0 1
846
847/* towards the root */
848void inline_speed
849upheap (WT *heap, int k)
850{
851 WT w = heap [k];
852
853 for (;;)
854 {
855 int p = k >> 1;
856
857 /* maybe we could use a dummy element at heap [0]? */
858 if (!p || heap [p]->at <= w->at)
859 break;
860
861 heap [k] = heap [p];
862 ev_active (heap [k]) = k;
863 k = p;
864 }
865
866 heap [k] = w;
867 ev_active (heap [k]) = k;
868}
869
870/* away from the root */
871void inline_speed
872downheap (WT *heap, int N, int k)
873{
874 WT w = heap [k];
875
876 for (;;)
877 {
878 int c = k << 1;
879
880 if (c > N)
881 break;
882
883 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
884 ? 1 : 0;
885
886 if (w->at <= heap [c]->at)
887 break;
888
889 heap [k] = heap [c];
535 ((W)heap [k])->active = k + 1; 890 ((W)heap [k])->active = k;
536} 891
892 k = c;
893 }
537 894
538inline void 895 heap [k] = w;
896 ev_active (heap [k]) = k;
897}
898#endif
899
900void inline_size
539adjustheap (WT *heap, int N, int k, ev_tstamp at) 901adjustheap (WT *heap, int N, int k)
540{ 902{
541 ev_tstamp old_at = heap [k]->at; 903 upheap (heap, k);
542 heap [k]->at = at;
543
544 if (old_at < at)
545 downheap (heap, N, k); 904 downheap (heap, N, k);
546 else
547 upheap (heap, k);
548} 905}
549 906
550/*****************************************************************************/ 907/*****************************************************************************/
551 908
552typedef struct 909typedef struct
553{ 910{
554 WL head; 911 WL head;
555 sig_atomic_t volatile gotsig; 912 EV_ATOMIC_T gotsig;
556} ANSIG; 913} ANSIG;
557 914
558static ANSIG *signals; 915static ANSIG *signals;
559static int signalmax; 916static int signalmax;
560 917
561static int sigpipe [2]; 918static EV_ATOMIC_T gotsig;
562static sig_atomic_t volatile gotsig;
563static struct ev_io sigev;
564 919
565static void 920void inline_size
566signals_init (ANSIG *base, int count) 921signals_init (ANSIG *base, int count)
567{ 922{
568 while (count--) 923 while (count--)
569 { 924 {
570 base->head = 0; 925 base->head = 0;
572 927
573 ++base; 928 ++base;
574 } 929 }
575} 930}
576 931
932/*****************************************************************************/
933
934void inline_speed
935fd_intern (int fd)
936{
937#ifdef _WIN32
938 int arg = 1;
939 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
940#else
941 fcntl (fd, F_SETFD, FD_CLOEXEC);
942 fcntl (fd, F_SETFL, O_NONBLOCK);
943#endif
944}
945
946static void noinline
947evpipe_init (EV_P)
948{
949 if (!ev_is_active (&pipeev))
950 {
951#if EV_USE_EVENTFD
952 if ((evfd = eventfd (0, 0)) >= 0)
953 {
954 evpipe [0] = -1;
955 fd_intern (evfd);
956 ev_io_set (&pipeev, evfd, EV_READ);
957 }
958 else
959#endif
960 {
961 while (pipe (evpipe))
962 syserr ("(libev) error creating signal/async pipe");
963
964 fd_intern (evpipe [0]);
965 fd_intern (evpipe [1]);
966 ev_io_set (&pipeev, evpipe [0], EV_READ);
967 }
968
969 ev_io_start (EV_A_ &pipeev);
970 ev_unref (EV_A); /* watcher should not keep loop alive */
971 }
972}
973
974void inline_size
975evpipe_write (EV_P_ EV_ATOMIC_T *flag)
976{
977 if (!*flag)
978 {
979 int old_errno = errno; /* save errno because write might clobber it */
980
981 *flag = 1;
982
983#if EV_USE_EVENTFD
984 if (evfd >= 0)
985 {
986 uint64_t counter = 1;
987 write (evfd, &counter, sizeof (uint64_t));
988 }
989 else
990#endif
991 write (evpipe [1], &old_errno, 1);
992
993 errno = old_errno;
994 }
995}
996
577static void 997static void
998pipecb (EV_P_ ev_io *iow, int revents)
999{
1000#if EV_USE_EVENTFD
1001 if (evfd >= 0)
1002 {
1003 uint64_t counter;
1004 read (evfd, &counter, sizeof (uint64_t));
1005 }
1006 else
1007#endif
1008 {
1009 char dummy;
1010 read (evpipe [0], &dummy, 1);
1011 }
1012
1013 if (gotsig && ev_is_default_loop (EV_A))
1014 {
1015 int signum;
1016 gotsig = 0;
1017
1018 for (signum = signalmax; signum--; )
1019 if (signals [signum].gotsig)
1020 ev_feed_signal_event (EV_A_ signum + 1);
1021 }
1022
1023#if EV_ASYNC_ENABLE
1024 if (gotasync)
1025 {
1026 int i;
1027 gotasync = 0;
1028
1029 for (i = asynccnt; i--; )
1030 if (asyncs [i]->sent)
1031 {
1032 asyncs [i]->sent = 0;
1033 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1034 }
1035 }
1036#endif
1037}
1038
1039/*****************************************************************************/
1040
1041static void
578sighandler (int signum) 1042ev_sighandler (int signum)
579{ 1043{
1044#if EV_MULTIPLICITY
1045 struct ev_loop *loop = &default_loop_struct;
1046#endif
1047
580#if WIN32 1048#if _WIN32
581 signal (signum, sighandler); 1049 signal (signum, ev_sighandler);
582#endif 1050#endif
583 1051
584 signals [signum - 1].gotsig = 1; 1052 signals [signum - 1].gotsig = 1;
585 1053 evpipe_write (EV_A_ &gotsig);
586 if (!gotsig)
587 {
588 int old_errno = errno;
589 gotsig = 1;
590#ifdef WIN32
591 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
592#else
593 write (sigpipe [1], &signum, 1);
594#endif
595 errno = old_errno;
596 }
597} 1054}
598 1055
599void 1056void noinline
600ev_feed_signal_event (EV_P_ int signum) 1057ev_feed_signal_event (EV_P_ int signum)
601{ 1058{
602 WL w; 1059 WL w;
603 1060
604#if EV_MULTIPLICITY 1061#if EV_MULTIPLICITY
605 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 1062 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
606#endif 1063#endif
607 1064
608 --signum; 1065 --signum;
609 1066
610 if (signum < 0 || signum >= signalmax) 1067 if (signum < 0 || signum >= signalmax)
614 1071
615 for (w = signals [signum].head; w; w = w->next) 1072 for (w = signals [signum].head; w; w = w->next)
616 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1073 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
617} 1074}
618 1075
619static void
620sigcb (EV_P_ struct ev_io *iow, int revents)
621{
622 int signum;
623
624#ifdef WIN32
625 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
626#else
627 read (sigpipe [0], &revents, 1);
628#endif
629 gotsig = 0;
630
631 for (signum = signalmax; signum--; )
632 if (signals [signum].gotsig)
633 ev_feed_signal_event (EV_A_ signum + 1);
634}
635
636static void
637siginit (EV_P)
638{
639#ifndef WIN32
640 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
641 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
642
643 /* rather than sort out wether we really need nb, set it */
644 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
645 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
646#endif
647
648 ev_io_set (&sigev, sigpipe [0], EV_READ);
649 ev_io_start (EV_A_ &sigev);
650 ev_unref (EV_A); /* child watcher should not keep loop alive */
651}
652
653/*****************************************************************************/ 1076/*****************************************************************************/
654 1077
655static struct ev_child *childs [PID_HASHSIZE]; 1078static WL childs [EV_PID_HASHSIZE];
656 1079
657#ifndef WIN32 1080#ifndef _WIN32
658 1081
659static struct ev_signal childev; 1082static ev_signal childev;
1083
1084#ifndef WIFCONTINUED
1085# define WIFCONTINUED(status) 0
1086#endif
1087
1088void inline_speed
1089child_reap (EV_P_ int chain, int pid, int status)
1090{
1091 ev_child *w;
1092 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1093
1094 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1095 {
1096 if ((w->pid == pid || !w->pid)
1097 && (!traced || (w->flags & 1)))
1098 {
1099 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1100 w->rpid = pid;
1101 w->rstatus = status;
1102 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1103 }
1104 }
1105}
660 1106
661#ifndef WCONTINUED 1107#ifndef WCONTINUED
662# define WCONTINUED 0 1108# define WCONTINUED 0
663#endif 1109#endif
664 1110
665static void 1111static void
666child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
667{
668 struct ev_child *w;
669
670 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
671 if (w->pid == pid || !w->pid)
672 {
673 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
674 w->rpid = pid;
675 w->rstatus = status;
676 ev_feed_event (EV_A_ (W)w, EV_CHILD);
677 }
678}
679
680static void
681childcb (EV_P_ struct ev_signal *sw, int revents) 1112childcb (EV_P_ ev_signal *sw, int revents)
682{ 1113{
683 int pid, status; 1114 int pid, status;
684 1115
1116 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
685 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1117 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
686 { 1118 if (!WCONTINUED
1119 || errno != EINVAL
1120 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1121 return;
1122
687 /* make sure we are called again until all childs have been reaped */ 1123 /* make sure we are called again until all children have been reaped */
1124 /* we need to do it this way so that the callback gets called before we continue */
688 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1125 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
689 1126
690 child_reap (EV_A_ sw, pid, pid, status); 1127 child_reap (EV_A_ pid, pid, status);
1128 if (EV_PID_HASHSIZE > 1)
691 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1129 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
692 }
693} 1130}
694 1131
695#endif 1132#endif
696 1133
697/*****************************************************************************/ 1134/*****************************************************************************/
698 1135
1136#if EV_USE_PORT
1137# include "ev_port.c"
1138#endif
699#if EV_USE_KQUEUE 1139#if EV_USE_KQUEUE
700# include "ev_kqueue.c" 1140# include "ev_kqueue.c"
701#endif 1141#endif
702#if EV_USE_EPOLL 1142#if EV_USE_EPOLL
703# include "ev_epoll.c" 1143# include "ev_epoll.c"
720{ 1160{
721 return EV_VERSION_MINOR; 1161 return EV_VERSION_MINOR;
722} 1162}
723 1163
724/* return true if we are running with elevated privileges and should ignore env variables */ 1164/* return true if we are running with elevated privileges and should ignore env variables */
725static int 1165int inline_size
726enable_secure (void) 1166enable_secure (void)
727{ 1167{
728#ifdef WIN32 1168#ifdef _WIN32
729 return 0; 1169 return 0;
730#else 1170#else
731 return getuid () != geteuid () 1171 return getuid () != geteuid ()
732 || getgid () != getegid (); 1172 || getgid () != getegid ();
733#endif 1173#endif
734} 1174}
735 1175
736int 1176unsigned int
737ev_method (EV_P) 1177ev_supported_backends (void)
738{ 1178{
739 return method; 1179 unsigned int flags = 0;
740}
741 1180
742static void 1181 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
743loop_init (EV_P_ int methods) 1182 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1183 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1184 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1185 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1186
1187 return flags;
1188}
1189
1190unsigned int
1191ev_recommended_backends (void)
744{ 1192{
745 if (!method) 1193 unsigned int flags = ev_supported_backends ();
1194
1195#ifndef __NetBSD__
1196 /* kqueue is borked on everything but netbsd apparently */
1197 /* it usually doesn't work correctly on anything but sockets and pipes */
1198 flags &= ~EVBACKEND_KQUEUE;
1199#endif
1200#ifdef __APPLE__
1201 // flags &= ~EVBACKEND_KQUEUE; for documentation
1202 flags &= ~EVBACKEND_POLL;
1203#endif
1204
1205 return flags;
1206}
1207
1208unsigned int
1209ev_embeddable_backends (void)
1210{
1211 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1212
1213 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1214 /* please fix it and tell me how to detect the fix */
1215 flags &= ~EVBACKEND_EPOLL;
1216
1217 return flags;
1218}
1219
1220unsigned int
1221ev_backend (EV_P)
1222{
1223 return backend;
1224}
1225
1226unsigned int
1227ev_loop_count (EV_P)
1228{
1229 return loop_count;
1230}
1231
1232void
1233ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1234{
1235 io_blocktime = interval;
1236}
1237
1238void
1239ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1240{
1241 timeout_blocktime = interval;
1242}
1243
1244static void noinline
1245loop_init (EV_P_ unsigned int flags)
1246{
1247 if (!backend)
746 { 1248 {
747#if EV_USE_MONOTONIC 1249#if EV_USE_MONOTONIC
748 { 1250 {
749 struct timespec ts; 1251 struct timespec ts;
750 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1252 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
751 have_monotonic = 1; 1253 have_monotonic = 1;
752 } 1254 }
753#endif 1255#endif
754 1256
755 ev_rt_now = ev_time (); 1257 ev_rt_now = ev_time ();
756 mn_now = get_clock (); 1258 mn_now = get_clock ();
757 now_floor = mn_now; 1259 now_floor = mn_now;
758 rtmn_diff = ev_rt_now - mn_now; 1260 rtmn_diff = ev_rt_now - mn_now;
759 1261
760 if (methods == EVMETHOD_AUTO) 1262 io_blocktime = 0.;
761 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1263 timeout_blocktime = 0.;
1264 backend = 0;
1265 backend_fd = -1;
1266 gotasync = 0;
1267#if EV_USE_INOTIFY
1268 fs_fd = -2;
1269#endif
1270
1271 /* pid check not overridable via env */
1272#ifndef _WIN32
1273 if (flags & EVFLAG_FORKCHECK)
1274 curpid = getpid ();
1275#endif
1276
1277 if (!(flags & EVFLAG_NOENV)
1278 && !enable_secure ()
1279 && getenv ("LIBEV_FLAGS"))
762 methods = atoi (getenv ("LIBEV_METHODS")); 1280 flags = atoi (getenv ("LIBEV_FLAGS"));
763 else
764 methods = EVMETHOD_ANY;
765 1281
766 method = 0; 1282 if (!(flags & 0x0000ffffU))
767#if EV_USE_WIN32 1283 flags |= ev_recommended_backends ();
768 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1284
1285#if EV_USE_PORT
1286 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
769#endif 1287#endif
770#if EV_USE_KQUEUE 1288#if EV_USE_KQUEUE
771 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1289 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
772#endif 1290#endif
773#if EV_USE_EPOLL 1291#if EV_USE_EPOLL
774 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1292 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
775#endif 1293#endif
776#if EV_USE_POLL 1294#if EV_USE_POLL
777 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1295 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
778#endif 1296#endif
779#if EV_USE_SELECT 1297#if EV_USE_SELECT
780 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1298 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
781#endif 1299#endif
782 1300
783 ev_init (&sigev, sigcb); 1301 ev_init (&pipeev, pipecb);
784 ev_set_priority (&sigev, EV_MAXPRI); 1302 ev_set_priority (&pipeev, EV_MAXPRI);
785 } 1303 }
786} 1304}
787 1305
788void 1306static void noinline
789loop_destroy (EV_P) 1307loop_destroy (EV_P)
790{ 1308{
791 int i; 1309 int i;
792 1310
1311 if (ev_is_active (&pipeev))
1312 {
1313 ev_ref (EV_A); /* signal watcher */
1314 ev_io_stop (EV_A_ &pipeev);
1315
1316#if EV_USE_EVENTFD
1317 if (evfd >= 0)
1318 close (evfd);
1319#endif
1320
1321 if (evpipe [0] >= 0)
1322 {
1323 close (evpipe [0]);
1324 close (evpipe [1]);
1325 }
1326 }
1327
793#if EV_USE_WIN32 1328#if EV_USE_INOTIFY
794 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1329 if (fs_fd >= 0)
1330 close (fs_fd);
1331#endif
1332
1333 if (backend_fd >= 0)
1334 close (backend_fd);
1335
1336#if EV_USE_PORT
1337 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
795#endif 1338#endif
796#if EV_USE_KQUEUE 1339#if EV_USE_KQUEUE
797 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1340 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
798#endif 1341#endif
799#if EV_USE_EPOLL 1342#if EV_USE_EPOLL
800 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1343 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
801#endif 1344#endif
802#if EV_USE_POLL 1345#if EV_USE_POLL
803 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1346 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
804#endif 1347#endif
805#if EV_USE_SELECT 1348#if EV_USE_SELECT
806 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1349 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
807#endif 1350#endif
808 1351
809 for (i = NUMPRI; i--; ) 1352 for (i = NUMPRI; i--; )
1353 {
810 array_free (pending, [i]); 1354 array_free (pending, [i]);
1355#if EV_IDLE_ENABLE
1356 array_free (idle, [i]);
1357#endif
1358 }
1359
1360 ev_free (anfds); anfdmax = 0;
811 1361
812 /* have to use the microsoft-never-gets-it-right macro */ 1362 /* have to use the microsoft-never-gets-it-right macro */
813 array_free_microshit (fdchange); 1363 array_free (fdchange, EMPTY);
814 array_free_microshit (timer); 1364 array_free (timer, EMPTY);
815#if EV_PERIODICS 1365#if EV_PERIODIC_ENABLE
816 array_free_microshit (periodic); 1366 array_free (periodic, EMPTY);
817#endif 1367#endif
818 array_free_microshit (idle); 1368#if EV_FORK_ENABLE
819 array_free_microshit (prepare); 1369 array_free (fork, EMPTY);
820 array_free_microshit (check); 1370#endif
1371 array_free (prepare, EMPTY);
1372 array_free (check, EMPTY);
1373#if EV_ASYNC_ENABLE
1374 array_free (async, EMPTY);
1375#endif
821 1376
822 method = 0; 1377 backend = 0;
823} 1378}
824 1379
825static void 1380#if EV_USE_INOTIFY
1381void inline_size infy_fork (EV_P);
1382#endif
1383
1384void inline_size
826loop_fork (EV_P) 1385loop_fork (EV_P)
827{ 1386{
1387#if EV_USE_PORT
1388 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1389#endif
1390#if EV_USE_KQUEUE
1391 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1392#endif
828#if EV_USE_EPOLL 1393#if EV_USE_EPOLL
829 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1394 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
830#endif 1395#endif
831#if EV_USE_KQUEUE 1396#if EV_USE_INOTIFY
832 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1397 infy_fork (EV_A);
833#endif 1398#endif
834 1399
835 if (ev_is_active (&sigev)) 1400 if (ev_is_active (&pipeev))
836 { 1401 {
837 /* default loop */ 1402 /* this "locks" the handlers against writing to the pipe */
1403 /* while we modify the fd vars */
1404 gotsig = 1;
1405#if EV_ASYNC_ENABLE
1406 gotasync = 1;
1407#endif
838 1408
839 ev_ref (EV_A); 1409 ev_ref (EV_A);
840 ev_io_stop (EV_A_ &sigev); 1410 ev_io_stop (EV_A_ &pipeev);
1411
1412#if EV_USE_EVENTFD
1413 if (evfd >= 0)
1414 close (evfd);
1415#endif
1416
1417 if (evpipe [0] >= 0)
1418 {
841 close (sigpipe [0]); 1419 close (evpipe [0]);
842 close (sigpipe [1]); 1420 close (evpipe [1]);
1421 }
843 1422
844 while (pipe (sigpipe))
845 syserr ("(libev) error creating pipe");
846
847 siginit (EV_A); 1423 evpipe_init (EV_A);
1424 /* now iterate over everything, in case we missed something */
1425 pipecb (EV_A_ &pipeev, EV_READ);
848 } 1426 }
849 1427
850 postfork = 0; 1428 postfork = 0;
851} 1429}
852 1430
853#if EV_MULTIPLICITY 1431#if EV_MULTIPLICITY
854struct ev_loop * 1432struct ev_loop *
855ev_loop_new (int methods) 1433ev_loop_new (unsigned int flags)
856{ 1434{
857 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1435 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
858 1436
859 memset (loop, 0, sizeof (struct ev_loop)); 1437 memset (loop, 0, sizeof (struct ev_loop));
860 1438
861 loop_init (EV_A_ methods); 1439 loop_init (EV_A_ flags);
862 1440
863 if (ev_method (EV_A)) 1441 if (ev_backend (EV_A))
864 return loop; 1442 return loop;
865 1443
866 return 0; 1444 return 0;
867} 1445}
868 1446
874} 1452}
875 1453
876void 1454void
877ev_loop_fork (EV_P) 1455ev_loop_fork (EV_P)
878{ 1456{
879 postfork = 1; 1457 postfork = 1; /* must be in line with ev_default_fork */
880} 1458}
881
882#endif 1459#endif
883 1460
884#if EV_MULTIPLICITY 1461#if EV_MULTIPLICITY
885struct ev_loop * 1462struct ev_loop *
1463ev_default_loop_init (unsigned int flags)
886#else 1464#else
887int 1465int
1466ev_default_loop (unsigned int flags)
888#endif 1467#endif
889ev_default_loop (int methods)
890{ 1468{
891 if (sigpipe [0] == sigpipe [1])
892 if (pipe (sigpipe))
893 return 0;
894
895 if (!default_loop) 1469 if (!ev_default_loop_ptr)
896 { 1470 {
897#if EV_MULTIPLICITY 1471#if EV_MULTIPLICITY
898 struct ev_loop *loop = default_loop = &default_loop_struct; 1472 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
899#else 1473#else
900 default_loop = 1; 1474 ev_default_loop_ptr = 1;
901#endif 1475#endif
902 1476
903 loop_init (EV_A_ methods); 1477 loop_init (EV_A_ flags);
904 1478
905 if (ev_method (EV_A)) 1479 if (ev_backend (EV_A))
906 { 1480 {
907 siginit (EV_A);
908
909#ifndef WIN32 1481#ifndef _WIN32
910 ev_signal_init (&childev, childcb, SIGCHLD); 1482 ev_signal_init (&childev, childcb, SIGCHLD);
911 ev_set_priority (&childev, EV_MAXPRI); 1483 ev_set_priority (&childev, EV_MAXPRI);
912 ev_signal_start (EV_A_ &childev); 1484 ev_signal_start (EV_A_ &childev);
913 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1485 ev_unref (EV_A); /* child watcher should not keep loop alive */
914#endif 1486#endif
915 } 1487 }
916 else 1488 else
917 default_loop = 0; 1489 ev_default_loop_ptr = 0;
918 } 1490 }
919 1491
920 return default_loop; 1492 return ev_default_loop_ptr;
921} 1493}
922 1494
923void 1495void
924ev_default_destroy (void) 1496ev_default_destroy (void)
925{ 1497{
926#if EV_MULTIPLICITY 1498#if EV_MULTIPLICITY
927 struct ev_loop *loop = default_loop; 1499 struct ev_loop *loop = ev_default_loop_ptr;
928#endif 1500#endif
929 1501
930#ifndef WIN32 1502#ifndef _WIN32
931 ev_ref (EV_A); /* child watcher */ 1503 ev_ref (EV_A); /* child watcher */
932 ev_signal_stop (EV_A_ &childev); 1504 ev_signal_stop (EV_A_ &childev);
933#endif 1505#endif
934 1506
935 ev_ref (EV_A); /* signal watcher */
936 ev_io_stop (EV_A_ &sigev);
937
938 close (sigpipe [0]); sigpipe [0] = 0;
939 close (sigpipe [1]); sigpipe [1] = 0;
940
941 loop_destroy (EV_A); 1507 loop_destroy (EV_A);
942} 1508}
943 1509
944void 1510void
945ev_default_fork (void) 1511ev_default_fork (void)
946{ 1512{
947#if EV_MULTIPLICITY 1513#if EV_MULTIPLICITY
948 struct ev_loop *loop = default_loop; 1514 struct ev_loop *loop = ev_default_loop_ptr;
949#endif 1515#endif
950 1516
951 if (method) 1517 if (backend)
952 postfork = 1; 1518 postfork = 1; /* must be in line with ev_loop_fork */
953} 1519}
954 1520
955/*****************************************************************************/ 1521/*****************************************************************************/
956 1522
957static int 1523void
958any_pending (EV_P) 1524ev_invoke (EV_P_ void *w, int revents)
959{ 1525{
960 int pri; 1526 EV_CB_INVOKE ((W)w, revents);
961
962 for (pri = NUMPRI; pri--; )
963 if (pendingcnt [pri])
964 return 1;
965
966 return 0;
967} 1527}
968 1528
969static void 1529void inline_speed
970call_pending (EV_P) 1530call_pending (EV_P)
971{ 1531{
972 int pri; 1532 int pri;
973 1533
974 for (pri = NUMPRI; pri--; ) 1534 for (pri = NUMPRI; pri--; )
975 while (pendingcnt [pri]) 1535 while (pendingcnt [pri])
976 { 1536 {
977 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1537 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
978 1538
979 if (p->w) 1539 if (expect_true (p->w))
980 { 1540 {
1541 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1542
981 p->w->pending = 0; 1543 p->w->pending = 0;
982 EV_CB_INVOKE (p->w, p->events); 1544 EV_CB_INVOKE (p->w, p->events);
983 } 1545 }
984 } 1546 }
985} 1547}
986 1548
987static void 1549#if EV_IDLE_ENABLE
1550void inline_size
1551idle_reify (EV_P)
1552{
1553 if (expect_false (idleall))
1554 {
1555 int pri;
1556
1557 for (pri = NUMPRI; pri--; )
1558 {
1559 if (pendingcnt [pri])
1560 break;
1561
1562 if (idlecnt [pri])
1563 {
1564 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1565 break;
1566 }
1567 }
1568 }
1569}
1570#endif
1571
1572void inline_size
988timers_reify (EV_P) 1573timers_reify (EV_P)
989{ 1574{
990 while (timercnt && ((WT)timers [0])->at <= mn_now) 1575 while (timercnt && ev_at (timers [HEAP0]) <= mn_now)
991 { 1576 {
992 struct ev_timer *w = timers [0]; 1577 ev_timer *w = (ev_timer *)timers [HEAP0];
993 1578
994 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1579 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
995 1580
996 /* first reschedule or stop timer */ 1581 /* first reschedule or stop timer */
997 if (w->repeat) 1582 if (w->repeat)
998 { 1583 {
999 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1584 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1000 1585
1001 ((WT)w)->at += w->repeat; 1586 ev_at (w) += w->repeat;
1002 if (((WT)w)->at < mn_now) 1587 if (ev_at (w) < mn_now)
1003 ((WT)w)->at = mn_now; 1588 ev_at (w) = mn_now;
1004 1589
1005 downheap ((WT *)timers, timercnt, 0); 1590 downheap (timers, timercnt, HEAP0);
1006 } 1591 }
1007 else 1592 else
1008 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1593 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1009 1594
1010 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1595 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1011 } 1596 }
1012} 1597}
1013 1598
1014#if EV_PERIODICS 1599#if EV_PERIODIC_ENABLE
1015static void 1600void inline_size
1016periodics_reify (EV_P) 1601periodics_reify (EV_P)
1017{ 1602{
1018 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1603 while (periodiccnt && ev_at (periodics [HEAP0]) <= ev_rt_now)
1019 { 1604 {
1020 struct ev_periodic *w = periodics [0]; 1605 ev_periodic *w = (ev_periodic *)periodics [HEAP0];
1021 1606
1022 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1607 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1023 1608
1024 /* first reschedule or stop timer */ 1609 /* first reschedule or stop timer */
1025 if (w->reschedule_cb) 1610 if (w->reschedule_cb)
1026 { 1611 {
1027 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1612 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1028
1029 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1613 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1030 downheap ((WT *)periodics, periodiccnt, 0); 1614 downheap (periodics, periodiccnt, 1);
1031 } 1615 }
1032 else if (w->interval) 1616 else if (w->interval)
1033 { 1617 {
1034 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1618 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1619 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1035 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1620 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1036 downheap ((WT *)periodics, periodiccnt, 0); 1621 downheap (periodics, periodiccnt, HEAP0);
1037 } 1622 }
1038 else 1623 else
1039 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1624 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1040 1625
1041 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1626 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1042 } 1627 }
1043} 1628}
1044 1629
1045static void 1630static void noinline
1046periodics_reschedule (EV_P) 1631periodics_reschedule (EV_P)
1047{ 1632{
1048 int i; 1633 int i;
1049 1634
1050 /* adjust periodics after time jump */ 1635 /* adjust periodics after time jump */
1051 for (i = 0; i < periodiccnt; ++i) 1636 for (i = 1; i <= periodiccnt; ++i)
1052 { 1637 {
1053 struct ev_periodic *w = periodics [i]; 1638 ev_periodic *w = (ev_periodic *)periodics [i];
1054 1639
1055 if (w->reschedule_cb) 1640 if (w->reschedule_cb)
1056 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1641 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1057 else if (w->interval) 1642 else if (w->interval)
1058 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1643 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1059 } 1644 }
1060 1645
1061 /* now rebuild the heap */ 1646 /* now rebuild the heap */
1062 for (i = periodiccnt >> 1; i--; ) 1647 for (i = periodiccnt >> 1; --i; )
1063 downheap ((WT *)periodics, periodiccnt, i); 1648 downheap (periodics, periodiccnt, i + HEAP0);
1064} 1649}
1065#endif 1650#endif
1066 1651
1067inline int 1652void inline_speed
1068time_update_monotonic (EV_P) 1653time_update (EV_P_ ev_tstamp max_block)
1069{ 1654{
1655 int i;
1656
1657#if EV_USE_MONOTONIC
1658 if (expect_true (have_monotonic))
1659 {
1660 ev_tstamp odiff = rtmn_diff;
1661
1070 mn_now = get_clock (); 1662 mn_now = get_clock ();
1071 1663
1664 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1665 /* interpolate in the meantime */
1072 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1666 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1073 { 1667 {
1074 ev_rt_now = rtmn_diff + mn_now; 1668 ev_rt_now = rtmn_diff + mn_now;
1075 return 0; 1669 return;
1076 } 1670 }
1077 else 1671
1078 {
1079 now_floor = mn_now; 1672 now_floor = mn_now;
1080 ev_rt_now = ev_time (); 1673 ev_rt_now = ev_time ();
1081 return 1;
1082 }
1083}
1084 1674
1085static void 1675 /* loop a few times, before making important decisions.
1086time_update (EV_P) 1676 * on the choice of "4": one iteration isn't enough,
1087{ 1677 * in case we get preempted during the calls to
1088 int i; 1678 * ev_time and get_clock. a second call is almost guaranteed
1089 1679 * to succeed in that case, though. and looping a few more times
1090#if EV_USE_MONOTONIC 1680 * doesn't hurt either as we only do this on time-jumps or
1091 if (expect_true (have_monotonic)) 1681 * in the unlikely event of having been preempted here.
1092 { 1682 */
1093 if (time_update_monotonic (EV_A)) 1683 for (i = 4; --i; )
1094 { 1684 {
1095 ev_tstamp odiff = rtmn_diff;
1096
1097 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1098 {
1099 rtmn_diff = ev_rt_now - mn_now; 1685 rtmn_diff = ev_rt_now - mn_now;
1100 1686
1101 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1687 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1102 return; /* all is well */ 1688 return; /* all is well */
1103 1689
1104 ev_rt_now = ev_time (); 1690 ev_rt_now = ev_time ();
1105 mn_now = get_clock (); 1691 mn_now = get_clock ();
1106 now_floor = mn_now; 1692 now_floor = mn_now;
1107 } 1693 }
1108 1694
1109# if EV_PERIODICS 1695# if EV_PERIODIC_ENABLE
1696 periodics_reschedule (EV_A);
1697# endif
1698 /* no timer adjustment, as the monotonic clock doesn't jump */
1699 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1700 }
1701 else
1702#endif
1703 {
1704 ev_rt_now = ev_time ();
1705
1706 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1707 {
1708#if EV_PERIODIC_ENABLE
1110 periodics_reschedule (EV_A); 1709 periodics_reschedule (EV_A);
1111# endif 1710#endif
1112 /* no timer adjustment, as the monotonic clock doesn't jump */ 1711 /* adjust timers. this is easy, as the offset is the same for all of them */
1113 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1712 for (i = 1; i <= timercnt; ++i)
1713 ev_at (timers [i]) += ev_rt_now - mn_now;
1114 } 1714 }
1115 }
1116 else
1117#endif
1118 {
1119 ev_rt_now = ev_time ();
1120
1121 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1122 {
1123#if EV_PERIODICS
1124 periodics_reschedule (EV_A);
1125#endif
1126
1127 /* adjust timers. this is easy, as the offset is the same for all */
1128 for (i = 0; i < timercnt; ++i)
1129 ((WT)timers [i])->at += ev_rt_now - mn_now;
1130 }
1131 1715
1132 mn_now = ev_rt_now; 1716 mn_now = ev_rt_now;
1133 } 1717 }
1134} 1718}
1135 1719
1148static int loop_done; 1732static int loop_done;
1149 1733
1150void 1734void
1151ev_loop (EV_P_ int flags) 1735ev_loop (EV_P_ int flags)
1152{ 1736{
1153 double block; 1737 loop_done = EVUNLOOP_CANCEL;
1154 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1738
1739 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1155 1740
1156 do 1741 do
1157 { 1742 {
1743#ifndef _WIN32
1744 if (expect_false (curpid)) /* penalise the forking check even more */
1745 if (expect_false (getpid () != curpid))
1746 {
1747 curpid = getpid ();
1748 postfork = 1;
1749 }
1750#endif
1751
1752#if EV_FORK_ENABLE
1753 /* we might have forked, so queue fork handlers */
1754 if (expect_false (postfork))
1755 if (forkcnt)
1756 {
1757 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1758 call_pending (EV_A);
1759 }
1760#endif
1761
1158 /* queue check watchers (and execute them) */ 1762 /* queue prepare watchers (and execute them) */
1159 if (expect_false (preparecnt)) 1763 if (expect_false (preparecnt))
1160 { 1764 {
1161 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1765 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1162 call_pending (EV_A); 1766 call_pending (EV_A);
1163 } 1767 }
1164 1768
1769 if (expect_false (!activecnt))
1770 break;
1771
1165 /* we might have forked, so reify kernel state if necessary */ 1772 /* we might have forked, so reify kernel state if necessary */
1166 if (expect_false (postfork)) 1773 if (expect_false (postfork))
1167 loop_fork (EV_A); 1774 loop_fork (EV_A);
1168 1775
1169 /* update fd-related kernel structures */ 1776 /* update fd-related kernel structures */
1170 fd_reify (EV_A); 1777 fd_reify (EV_A);
1171 1778
1172 /* calculate blocking time */ 1779 /* calculate blocking time */
1780 {
1781 ev_tstamp waittime = 0.;
1782 ev_tstamp sleeptime = 0.;
1173 1783
1174 /* we only need this for !monotonic clock or timers, but as we basically 1784 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1175 always have timers, we just calculate it always */
1176#if EV_USE_MONOTONIC
1177 if (expect_true (have_monotonic))
1178 time_update_monotonic (EV_A);
1179 else
1180#endif
1181 { 1785 {
1182 ev_rt_now = ev_time (); 1786 /* update time to cancel out callback processing overhead */
1183 mn_now = ev_rt_now; 1787 time_update (EV_A_ 1e100);
1184 }
1185 1788
1186 if (flags & EVLOOP_NONBLOCK || idlecnt)
1187 block = 0.;
1188 else
1189 {
1190 block = MAX_BLOCKTIME; 1789 waittime = MAX_BLOCKTIME;
1191 1790
1192 if (timercnt) 1791 if (timercnt)
1193 { 1792 {
1194 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1793 ev_tstamp to = ev_at (timers [HEAP0]) - mn_now + backend_fudge;
1195 if (block > to) block = to; 1794 if (waittime > to) waittime = to;
1196 } 1795 }
1197 1796
1198#if EV_PERIODICS 1797#if EV_PERIODIC_ENABLE
1199 if (periodiccnt) 1798 if (periodiccnt)
1200 { 1799 {
1201 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1800 ev_tstamp to = ev_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1202 if (block > to) block = to; 1801 if (waittime > to) waittime = to;
1203 } 1802 }
1204#endif 1803#endif
1205 1804
1206 if (block < 0.) block = 0.; 1805 if (expect_false (waittime < timeout_blocktime))
1806 waittime = timeout_blocktime;
1807
1808 sleeptime = waittime - backend_fudge;
1809
1810 if (expect_true (sleeptime > io_blocktime))
1811 sleeptime = io_blocktime;
1812
1813 if (sleeptime)
1814 {
1815 ev_sleep (sleeptime);
1816 waittime -= sleeptime;
1817 }
1207 } 1818 }
1208 1819
1209 method_poll (EV_A_ block); 1820 ++loop_count;
1821 backend_poll (EV_A_ waittime);
1210 1822
1211 /* update ev_rt_now, do magic */ 1823 /* update ev_rt_now, do magic */
1212 time_update (EV_A); 1824 time_update (EV_A_ waittime + sleeptime);
1825 }
1213 1826
1214 /* queue pending timers and reschedule them */ 1827 /* queue pending timers and reschedule them */
1215 timers_reify (EV_A); /* relative timers called last */ 1828 timers_reify (EV_A); /* relative timers called last */
1216#if EV_PERIODICS 1829#if EV_PERIODIC_ENABLE
1217 periodics_reify (EV_A); /* absolute timers called first */ 1830 periodics_reify (EV_A); /* absolute timers called first */
1218#endif 1831#endif
1219 1832
1833#if EV_IDLE_ENABLE
1220 /* queue idle watchers unless io or timers are pending */ 1834 /* queue idle watchers unless other events are pending */
1221 if (idlecnt && !any_pending (EV_A)) 1835 idle_reify (EV_A);
1222 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1836#endif
1223 1837
1224 /* queue check watchers, to be executed first */ 1838 /* queue check watchers, to be executed first */
1225 if (checkcnt) 1839 if (expect_false (checkcnt))
1226 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1840 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1227 1841
1228 call_pending (EV_A); 1842 call_pending (EV_A);
1229 } 1843 }
1230 while (activecnt && !loop_done); 1844 while (expect_true (
1845 activecnt
1846 && !loop_done
1847 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1848 ));
1231 1849
1232 if (loop_done != 2) 1850 if (loop_done == EVUNLOOP_ONE)
1233 loop_done = 0; 1851 loop_done = EVUNLOOP_CANCEL;
1234} 1852}
1235 1853
1236void 1854void
1237ev_unloop (EV_P_ int how) 1855ev_unloop (EV_P_ int how)
1238{ 1856{
1239 loop_done = how; 1857 loop_done = how;
1240} 1858}
1241 1859
1242/*****************************************************************************/ 1860/*****************************************************************************/
1243 1861
1244inline void 1862void inline_size
1245wlist_add (WL *head, WL elem) 1863wlist_add (WL *head, WL elem)
1246{ 1864{
1247 elem->next = *head; 1865 elem->next = *head;
1248 *head = elem; 1866 *head = elem;
1249} 1867}
1250 1868
1251inline void 1869void inline_size
1252wlist_del (WL *head, WL elem) 1870wlist_del (WL *head, WL elem)
1253{ 1871{
1254 while (*head) 1872 while (*head)
1255 { 1873 {
1256 if (*head == elem) 1874 if (*head == elem)
1261 1879
1262 head = &(*head)->next; 1880 head = &(*head)->next;
1263 } 1881 }
1264} 1882}
1265 1883
1266inline void 1884void inline_speed
1267ev_clear_pending (EV_P_ W w) 1885clear_pending (EV_P_ W w)
1268{ 1886{
1269 if (w->pending) 1887 if (w->pending)
1270 { 1888 {
1271 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1889 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1272 w->pending = 0; 1890 w->pending = 0;
1273 } 1891 }
1274} 1892}
1275 1893
1276inline void 1894int
1895ev_clear_pending (EV_P_ void *w)
1896{
1897 W w_ = (W)w;
1898 int pending = w_->pending;
1899
1900 if (expect_true (pending))
1901 {
1902 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1903 w_->pending = 0;
1904 p->w = 0;
1905 return p->events;
1906 }
1907 else
1908 return 0;
1909}
1910
1911void inline_size
1912pri_adjust (EV_P_ W w)
1913{
1914 int pri = w->priority;
1915 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1916 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1917 w->priority = pri;
1918}
1919
1920void inline_speed
1277ev_start (EV_P_ W w, int active) 1921ev_start (EV_P_ W w, int active)
1278{ 1922{
1279 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1923 pri_adjust (EV_A_ w);
1280 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1281
1282 w->active = active; 1924 w->active = active;
1283 ev_ref (EV_A); 1925 ev_ref (EV_A);
1284} 1926}
1285 1927
1286inline void 1928void inline_size
1287ev_stop (EV_P_ W w) 1929ev_stop (EV_P_ W w)
1288{ 1930{
1289 ev_unref (EV_A); 1931 ev_unref (EV_A);
1290 w->active = 0; 1932 w->active = 0;
1291} 1933}
1292 1934
1293/*****************************************************************************/ 1935/*****************************************************************************/
1294 1936
1295void 1937void noinline
1296ev_io_start (EV_P_ struct ev_io *w) 1938ev_io_start (EV_P_ ev_io *w)
1297{ 1939{
1298 int fd = w->fd; 1940 int fd = w->fd;
1299 1941
1300 if (ev_is_active (w)) 1942 if (expect_false (ev_is_active (w)))
1301 return; 1943 return;
1302 1944
1303 assert (("ev_io_start called with negative fd", fd >= 0)); 1945 assert (("ev_io_start called with negative fd", fd >= 0));
1304 1946
1305 ev_start (EV_A_ (W)w, 1); 1947 ev_start (EV_A_ (W)w, 1);
1306 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1948 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1307 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1949 wlist_add (&anfds[fd].head, (WL)w);
1308 1950
1309 fd_change (EV_A_ fd); 1951 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1952 w->events &= ~EV_IOFDSET;
1310} 1953}
1311 1954
1312void 1955void noinline
1313ev_io_stop (EV_P_ struct ev_io *w) 1956ev_io_stop (EV_P_ ev_io *w)
1314{ 1957{
1315 ev_clear_pending (EV_A_ (W)w); 1958 clear_pending (EV_A_ (W)w);
1316 if (!ev_is_active (w)) 1959 if (expect_false (!ev_is_active (w)))
1317 return; 1960 return;
1318 1961
1319 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1962 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1320 1963
1321 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1964 wlist_del (&anfds[w->fd].head, (WL)w);
1322 ev_stop (EV_A_ (W)w); 1965 ev_stop (EV_A_ (W)w);
1323 1966
1324 fd_change (EV_A_ w->fd); 1967 fd_change (EV_A_ w->fd, 1);
1325} 1968}
1326 1969
1327void 1970void noinline
1328ev_timer_start (EV_P_ struct ev_timer *w) 1971ev_timer_start (EV_P_ ev_timer *w)
1972{
1973 if (expect_false (ev_is_active (w)))
1974 return;
1975
1976 ev_at (w) += mn_now;
1977
1978 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1979
1980 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1981 array_needsize (WT, timers, timermax, timercnt + HEAP0, EMPTY2);
1982 timers [ev_active (w)] = (WT)w;
1983 upheap (timers, ev_active (w));
1984
1985 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1986}
1987
1988void noinline
1989ev_timer_stop (EV_P_ ev_timer *w)
1990{
1991 clear_pending (EV_A_ (W)w);
1992 if (expect_false (!ev_is_active (w)))
1993 return;
1994
1995 {
1996 int active = ev_active (w);
1997
1998 assert (("internal timer heap corruption", timers [active] == (WT)w));
1999
2000 if (expect_true (active < timercnt + HEAP0 - 1))
2001 {
2002 timers [active] = timers [timercnt + HEAP0 - 1];
2003 adjustheap (timers, timercnt, active);
2004 }
2005
2006 --timercnt;
2007 }
2008
2009 ev_at (w) -= mn_now;
2010
2011 ev_stop (EV_A_ (W)w);
2012}
2013
2014void noinline
2015ev_timer_again (EV_P_ ev_timer *w)
1329{ 2016{
1330 if (ev_is_active (w)) 2017 if (ev_is_active (w))
1331 return;
1332
1333 ((WT)w)->at += mn_now;
1334
1335 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1336
1337 ev_start (EV_A_ (W)w, ++timercnt);
1338 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1339 timers [timercnt - 1] = w;
1340 upheap ((WT *)timers, timercnt - 1);
1341
1342 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1343}
1344
1345void
1346ev_timer_stop (EV_P_ struct ev_timer *w)
1347{
1348 ev_clear_pending (EV_A_ (W)w);
1349 if (!ev_is_active (w))
1350 return;
1351
1352 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1353
1354 if (((W)w)->active < timercnt--)
1355 {
1356 timers [((W)w)->active - 1] = timers [timercnt];
1357 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1358 }
1359
1360 ((WT)w)->at -= mn_now;
1361
1362 ev_stop (EV_A_ (W)w);
1363}
1364
1365void
1366ev_timer_again (EV_P_ struct ev_timer *w)
1367{
1368 if (ev_is_active (w))
1369 { 2018 {
1370 if (w->repeat) 2019 if (w->repeat)
1371 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat); 2020 {
2021 ev_at (w) = mn_now + w->repeat;
2022 adjustheap (timers, timercnt, ev_active (w));
2023 }
1372 else 2024 else
1373 ev_timer_stop (EV_A_ w); 2025 ev_timer_stop (EV_A_ w);
1374 } 2026 }
1375 else if (w->repeat) 2027 else if (w->repeat)
2028 {
2029 ev_at (w) = w->repeat;
1376 ev_timer_start (EV_A_ w); 2030 ev_timer_start (EV_A_ w);
2031 }
1377} 2032}
1378 2033
1379#if EV_PERIODICS 2034#if EV_PERIODIC_ENABLE
1380void 2035void noinline
1381ev_periodic_start (EV_P_ struct ev_periodic *w) 2036ev_periodic_start (EV_P_ ev_periodic *w)
1382{ 2037{
1383 if (ev_is_active (w)) 2038 if (expect_false (ev_is_active (w)))
1384 return; 2039 return;
1385 2040
1386 if (w->reschedule_cb) 2041 if (w->reschedule_cb)
1387 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2042 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1388 else if (w->interval) 2043 else if (w->interval)
1389 { 2044 {
1390 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2045 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1391 /* this formula differs from the one in periodic_reify because we do not always round up */ 2046 /* this formula differs from the one in periodic_reify because we do not always round up */
1392 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2047 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1393 } 2048 }
2049 else
2050 ev_at (w) = w->offset;
1394 2051
1395 ev_start (EV_A_ (W)w, ++periodiccnt); 2052 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1396 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 2053 array_needsize (WT, periodics, periodicmax, periodiccnt + HEAP0, EMPTY2);
1397 periodics [periodiccnt - 1] = w; 2054 periodics [ev_active (w)] = (WT)w;
1398 upheap ((WT *)periodics, periodiccnt - 1); 2055 upheap (periodics, ev_active (w));
1399 2056
1400 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2057 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/
1401} 2058}
1402 2059
1403void 2060void noinline
1404ev_periodic_stop (EV_P_ struct ev_periodic *w) 2061ev_periodic_stop (EV_P_ ev_periodic *w)
1405{ 2062{
1406 ev_clear_pending (EV_A_ (W)w); 2063 clear_pending (EV_A_ (W)w);
1407 if (!ev_is_active (w)) 2064 if (expect_false (!ev_is_active (w)))
1408 return; 2065 return;
1409 2066
2067 {
2068 int active = ev_active (w);
2069
1410 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2070 assert (("internal periodic heap corruption", periodics [active] == (WT)w));
1411 2071
1412 if (((W)w)->active < periodiccnt--) 2072 if (expect_true (active < periodiccnt + HEAP0 - 1))
1413 { 2073 {
1414 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 2074 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1415 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 2075 adjustheap (periodics, periodiccnt, active);
1416 } 2076 }
2077
2078 --periodiccnt;
2079 }
1417 2080
1418 ev_stop (EV_A_ (W)w); 2081 ev_stop (EV_A_ (W)w);
1419} 2082}
1420 2083
1421void 2084void noinline
1422ev_periodic_again (EV_P_ struct ev_periodic *w) 2085ev_periodic_again (EV_P_ ev_periodic *w)
1423{ 2086{
1424 /* TODO: use adjustheap and recalculation */ 2087 /* TODO: use adjustheap and recalculation */
1425 ev_periodic_stop (EV_A_ w); 2088 ev_periodic_stop (EV_A_ w);
1426 ev_periodic_start (EV_A_ w); 2089 ev_periodic_start (EV_A_ w);
1427} 2090}
1428#endif 2091#endif
1429 2092
1430void
1431ev_idle_start (EV_P_ struct ev_idle *w)
1432{
1433 if (ev_is_active (w))
1434 return;
1435
1436 ev_start (EV_A_ (W)w, ++idlecnt);
1437 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1438 idles [idlecnt - 1] = w;
1439}
1440
1441void
1442ev_idle_stop (EV_P_ struct ev_idle *w)
1443{
1444 ev_clear_pending (EV_A_ (W)w);
1445 if (ev_is_active (w))
1446 return;
1447
1448 idles [((W)w)->active - 1] = idles [--idlecnt];
1449 ev_stop (EV_A_ (W)w);
1450}
1451
1452void
1453ev_prepare_start (EV_P_ struct ev_prepare *w)
1454{
1455 if (ev_is_active (w))
1456 return;
1457
1458 ev_start (EV_A_ (W)w, ++preparecnt);
1459 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1460 prepares [preparecnt - 1] = w;
1461}
1462
1463void
1464ev_prepare_stop (EV_P_ struct ev_prepare *w)
1465{
1466 ev_clear_pending (EV_A_ (W)w);
1467 if (ev_is_active (w))
1468 return;
1469
1470 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1471 ev_stop (EV_A_ (W)w);
1472}
1473
1474void
1475ev_check_start (EV_P_ struct ev_check *w)
1476{
1477 if (ev_is_active (w))
1478 return;
1479
1480 ev_start (EV_A_ (W)w, ++checkcnt);
1481 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1482 checks [checkcnt - 1] = w;
1483}
1484
1485void
1486ev_check_stop (EV_P_ struct ev_check *w)
1487{
1488 ev_clear_pending (EV_A_ (W)w);
1489 if (!ev_is_active (w))
1490 return;
1491
1492 checks [((W)w)->active - 1] = checks [--checkcnt];
1493 ev_stop (EV_A_ (W)w);
1494}
1495
1496#ifndef SA_RESTART 2093#ifndef SA_RESTART
1497# define SA_RESTART 0 2094# define SA_RESTART 0
1498#endif 2095#endif
1499 2096
1500void 2097void noinline
1501ev_signal_start (EV_P_ struct ev_signal *w) 2098ev_signal_start (EV_P_ ev_signal *w)
1502{ 2099{
1503#if EV_MULTIPLICITY 2100#if EV_MULTIPLICITY
1504 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2101 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1505#endif 2102#endif
1506 if (ev_is_active (w)) 2103 if (expect_false (ev_is_active (w)))
1507 return; 2104 return;
1508 2105
1509 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2106 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1510 2107
2108 evpipe_init (EV_A);
2109
2110 {
2111#ifndef _WIN32
2112 sigset_t full, prev;
2113 sigfillset (&full);
2114 sigprocmask (SIG_SETMASK, &full, &prev);
2115#endif
2116
2117 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2118
2119#ifndef _WIN32
2120 sigprocmask (SIG_SETMASK, &prev, 0);
2121#endif
2122 }
2123
1511 ev_start (EV_A_ (W)w, 1); 2124 ev_start (EV_A_ (W)w, 1);
1512 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1513 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2125 wlist_add (&signals [w->signum - 1].head, (WL)w);
1514 2126
1515 if (!((WL)w)->next) 2127 if (!((WL)w)->next)
1516 { 2128 {
1517#if WIN32 2129#if _WIN32
1518 signal (w->signum, sighandler); 2130 signal (w->signum, ev_sighandler);
1519#else 2131#else
1520 struct sigaction sa; 2132 struct sigaction sa;
1521 sa.sa_handler = sighandler; 2133 sa.sa_handler = ev_sighandler;
1522 sigfillset (&sa.sa_mask); 2134 sigfillset (&sa.sa_mask);
1523 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2135 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1524 sigaction (w->signum, &sa, 0); 2136 sigaction (w->signum, &sa, 0);
1525#endif 2137#endif
1526 } 2138 }
1527} 2139}
1528 2140
1529void 2141void noinline
1530ev_signal_stop (EV_P_ struct ev_signal *w) 2142ev_signal_stop (EV_P_ ev_signal *w)
1531{ 2143{
1532 ev_clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1533 if (!ev_is_active (w)) 2145 if (expect_false (!ev_is_active (w)))
1534 return; 2146 return;
1535 2147
1536 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2148 wlist_del (&signals [w->signum - 1].head, (WL)w);
1537 ev_stop (EV_A_ (W)w); 2149 ev_stop (EV_A_ (W)w);
1538 2150
1539 if (!signals [w->signum - 1].head) 2151 if (!signals [w->signum - 1].head)
1540 signal (w->signum, SIG_DFL); 2152 signal (w->signum, SIG_DFL);
1541} 2153}
1542 2154
1543void 2155void
1544ev_child_start (EV_P_ struct ev_child *w) 2156ev_child_start (EV_P_ ev_child *w)
1545{ 2157{
1546#if EV_MULTIPLICITY 2158#if EV_MULTIPLICITY
1547 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2159 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1548#endif 2160#endif
1549 if (ev_is_active (w)) 2161 if (expect_false (ev_is_active (w)))
1550 return; 2162 return;
1551 2163
1552 ev_start (EV_A_ (W)w, 1); 2164 ev_start (EV_A_ (W)w, 1);
1553 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2165 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1554} 2166}
1555 2167
1556void 2168void
1557ev_child_stop (EV_P_ struct ev_child *w) 2169ev_child_stop (EV_P_ ev_child *w)
1558{ 2170{
1559 ev_clear_pending (EV_A_ (W)w); 2171 clear_pending (EV_A_ (W)w);
1560 if (!ev_is_active (w)) 2172 if (expect_false (!ev_is_active (w)))
1561 return; 2173 return;
1562 2174
1563 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2175 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1564 ev_stop (EV_A_ (W)w); 2176 ev_stop (EV_A_ (W)w);
1565} 2177}
1566 2178
2179#if EV_STAT_ENABLE
2180
2181# ifdef _WIN32
2182# undef lstat
2183# define lstat(a,b) _stati64 (a,b)
2184# endif
2185
2186#define DEF_STAT_INTERVAL 5.0074891
2187#define MIN_STAT_INTERVAL 0.1074891
2188
2189static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2190
2191#if EV_USE_INOTIFY
2192# define EV_INOTIFY_BUFSIZE 8192
2193
2194static void noinline
2195infy_add (EV_P_ ev_stat *w)
2196{
2197 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2198
2199 if (w->wd < 0)
2200 {
2201 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2202
2203 /* monitor some parent directory for speedup hints */
2204 /* note that exceeding the hardcoded limit is not a correctness issue, */
2205 /* but an efficiency issue only */
2206 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2207 {
2208 char path [4096];
2209 strcpy (path, w->path);
2210
2211 do
2212 {
2213 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2214 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2215
2216 char *pend = strrchr (path, '/');
2217
2218 if (!pend)
2219 break; /* whoops, no '/', complain to your admin */
2220
2221 *pend = 0;
2222 w->wd = inotify_add_watch (fs_fd, path, mask);
2223 }
2224 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2225 }
2226 }
2227 else
2228 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2229
2230 if (w->wd >= 0)
2231 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2232}
2233
2234static void noinline
2235infy_del (EV_P_ ev_stat *w)
2236{
2237 int slot;
2238 int wd = w->wd;
2239
2240 if (wd < 0)
2241 return;
2242
2243 w->wd = -2;
2244 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2245 wlist_del (&fs_hash [slot].head, (WL)w);
2246
2247 /* remove this watcher, if others are watching it, they will rearm */
2248 inotify_rm_watch (fs_fd, wd);
2249}
2250
2251static void noinline
2252infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2253{
2254 if (slot < 0)
2255 /* overflow, need to check for all hahs slots */
2256 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2257 infy_wd (EV_A_ slot, wd, ev);
2258 else
2259 {
2260 WL w_;
2261
2262 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2263 {
2264 ev_stat *w = (ev_stat *)w_;
2265 w_ = w_->next; /* lets us remove this watcher and all before it */
2266
2267 if (w->wd == wd || wd == -1)
2268 {
2269 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2270 {
2271 w->wd = -1;
2272 infy_add (EV_A_ w); /* re-add, no matter what */
2273 }
2274
2275 stat_timer_cb (EV_A_ &w->timer, 0);
2276 }
2277 }
2278 }
2279}
2280
2281static void
2282infy_cb (EV_P_ ev_io *w, int revents)
2283{
2284 char buf [EV_INOTIFY_BUFSIZE];
2285 struct inotify_event *ev = (struct inotify_event *)buf;
2286 int ofs;
2287 int len = read (fs_fd, buf, sizeof (buf));
2288
2289 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2290 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2291}
2292
2293void inline_size
2294infy_init (EV_P)
2295{
2296 if (fs_fd != -2)
2297 return;
2298
2299 fs_fd = inotify_init ();
2300
2301 if (fs_fd >= 0)
2302 {
2303 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2304 ev_set_priority (&fs_w, EV_MAXPRI);
2305 ev_io_start (EV_A_ &fs_w);
2306 }
2307}
2308
2309void inline_size
2310infy_fork (EV_P)
2311{
2312 int slot;
2313
2314 if (fs_fd < 0)
2315 return;
2316
2317 close (fs_fd);
2318 fs_fd = inotify_init ();
2319
2320 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2321 {
2322 WL w_ = fs_hash [slot].head;
2323 fs_hash [slot].head = 0;
2324
2325 while (w_)
2326 {
2327 ev_stat *w = (ev_stat *)w_;
2328 w_ = w_->next; /* lets us add this watcher */
2329
2330 w->wd = -1;
2331
2332 if (fs_fd >= 0)
2333 infy_add (EV_A_ w); /* re-add, no matter what */
2334 else
2335 ev_timer_start (EV_A_ &w->timer);
2336 }
2337
2338 }
2339}
2340
2341#endif
2342
2343void
2344ev_stat_stat (EV_P_ ev_stat *w)
2345{
2346 if (lstat (w->path, &w->attr) < 0)
2347 w->attr.st_nlink = 0;
2348 else if (!w->attr.st_nlink)
2349 w->attr.st_nlink = 1;
2350}
2351
2352static void noinline
2353stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2354{
2355 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2356
2357 /* we copy this here each the time so that */
2358 /* prev has the old value when the callback gets invoked */
2359 w->prev = w->attr;
2360 ev_stat_stat (EV_A_ w);
2361
2362 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2363 if (
2364 w->prev.st_dev != w->attr.st_dev
2365 || w->prev.st_ino != w->attr.st_ino
2366 || w->prev.st_mode != w->attr.st_mode
2367 || w->prev.st_nlink != w->attr.st_nlink
2368 || w->prev.st_uid != w->attr.st_uid
2369 || w->prev.st_gid != w->attr.st_gid
2370 || w->prev.st_rdev != w->attr.st_rdev
2371 || w->prev.st_size != w->attr.st_size
2372 || w->prev.st_atime != w->attr.st_atime
2373 || w->prev.st_mtime != w->attr.st_mtime
2374 || w->prev.st_ctime != w->attr.st_ctime
2375 ) {
2376 #if EV_USE_INOTIFY
2377 infy_del (EV_A_ w);
2378 infy_add (EV_A_ w);
2379 ev_stat_stat (EV_A_ w); /* avoid race... */
2380 #endif
2381
2382 ev_feed_event (EV_A_ w, EV_STAT);
2383 }
2384}
2385
2386void
2387ev_stat_start (EV_P_ ev_stat *w)
2388{
2389 if (expect_false (ev_is_active (w)))
2390 return;
2391
2392 /* since we use memcmp, we need to clear any padding data etc. */
2393 memset (&w->prev, 0, sizeof (ev_statdata));
2394 memset (&w->attr, 0, sizeof (ev_statdata));
2395
2396 ev_stat_stat (EV_A_ w);
2397
2398 if (w->interval < MIN_STAT_INTERVAL)
2399 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2400
2401 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2402 ev_set_priority (&w->timer, ev_priority (w));
2403
2404#if EV_USE_INOTIFY
2405 infy_init (EV_A);
2406
2407 if (fs_fd >= 0)
2408 infy_add (EV_A_ w);
2409 else
2410#endif
2411 ev_timer_start (EV_A_ &w->timer);
2412
2413 ev_start (EV_A_ (W)w, 1);
2414}
2415
2416void
2417ev_stat_stop (EV_P_ ev_stat *w)
2418{
2419 clear_pending (EV_A_ (W)w);
2420 if (expect_false (!ev_is_active (w)))
2421 return;
2422
2423#if EV_USE_INOTIFY
2424 infy_del (EV_A_ w);
2425#endif
2426 ev_timer_stop (EV_A_ &w->timer);
2427
2428 ev_stop (EV_A_ (W)w);
2429}
2430#endif
2431
2432#if EV_IDLE_ENABLE
2433void
2434ev_idle_start (EV_P_ ev_idle *w)
2435{
2436 if (expect_false (ev_is_active (w)))
2437 return;
2438
2439 pri_adjust (EV_A_ (W)w);
2440
2441 {
2442 int active = ++idlecnt [ABSPRI (w)];
2443
2444 ++idleall;
2445 ev_start (EV_A_ (W)w, active);
2446
2447 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2448 idles [ABSPRI (w)][active - 1] = w;
2449 }
2450}
2451
2452void
2453ev_idle_stop (EV_P_ ev_idle *w)
2454{
2455 clear_pending (EV_A_ (W)w);
2456 if (expect_false (!ev_is_active (w)))
2457 return;
2458
2459 {
2460 int active = ev_active (w);
2461
2462 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2463 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2464
2465 ev_stop (EV_A_ (W)w);
2466 --idleall;
2467 }
2468}
2469#endif
2470
2471void
2472ev_prepare_start (EV_P_ ev_prepare *w)
2473{
2474 if (expect_false (ev_is_active (w)))
2475 return;
2476
2477 ev_start (EV_A_ (W)w, ++preparecnt);
2478 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2479 prepares [preparecnt - 1] = w;
2480}
2481
2482void
2483ev_prepare_stop (EV_P_ ev_prepare *w)
2484{
2485 clear_pending (EV_A_ (W)w);
2486 if (expect_false (!ev_is_active (w)))
2487 return;
2488
2489 {
2490 int active = ev_active (w);
2491
2492 prepares [active - 1] = prepares [--preparecnt];
2493 ev_active (prepares [active - 1]) = active;
2494 }
2495
2496 ev_stop (EV_A_ (W)w);
2497}
2498
2499void
2500ev_check_start (EV_P_ ev_check *w)
2501{
2502 if (expect_false (ev_is_active (w)))
2503 return;
2504
2505 ev_start (EV_A_ (W)w, ++checkcnt);
2506 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2507 checks [checkcnt - 1] = w;
2508}
2509
2510void
2511ev_check_stop (EV_P_ ev_check *w)
2512{
2513 clear_pending (EV_A_ (W)w);
2514 if (expect_false (!ev_is_active (w)))
2515 return;
2516
2517 {
2518 int active = ev_active (w);
2519
2520 checks [active - 1] = checks [--checkcnt];
2521 ev_active (checks [active - 1]) = active;
2522 }
2523
2524 ev_stop (EV_A_ (W)w);
2525}
2526
2527#if EV_EMBED_ENABLE
2528void noinline
2529ev_embed_sweep (EV_P_ ev_embed *w)
2530{
2531 ev_loop (w->other, EVLOOP_NONBLOCK);
2532}
2533
2534static void
2535embed_io_cb (EV_P_ ev_io *io, int revents)
2536{
2537 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2538
2539 if (ev_cb (w))
2540 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2541 else
2542 ev_loop (w->other, EVLOOP_NONBLOCK);
2543}
2544
2545static void
2546embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2547{
2548 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2549
2550 {
2551 struct ev_loop *loop = w->other;
2552
2553 while (fdchangecnt)
2554 {
2555 fd_reify (EV_A);
2556 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2557 }
2558 }
2559}
2560
2561#if 0
2562static void
2563embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2564{
2565 ev_idle_stop (EV_A_ idle);
2566}
2567#endif
2568
2569void
2570ev_embed_start (EV_P_ ev_embed *w)
2571{
2572 if (expect_false (ev_is_active (w)))
2573 return;
2574
2575 {
2576 struct ev_loop *loop = w->other;
2577 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2578 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2579 }
2580
2581 ev_set_priority (&w->io, ev_priority (w));
2582 ev_io_start (EV_A_ &w->io);
2583
2584 ev_prepare_init (&w->prepare, embed_prepare_cb);
2585 ev_set_priority (&w->prepare, EV_MINPRI);
2586 ev_prepare_start (EV_A_ &w->prepare);
2587
2588 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2589
2590 ev_start (EV_A_ (W)w, 1);
2591}
2592
2593void
2594ev_embed_stop (EV_P_ ev_embed *w)
2595{
2596 clear_pending (EV_A_ (W)w);
2597 if (expect_false (!ev_is_active (w)))
2598 return;
2599
2600 ev_io_stop (EV_A_ &w->io);
2601 ev_prepare_stop (EV_A_ &w->prepare);
2602
2603 ev_stop (EV_A_ (W)w);
2604}
2605#endif
2606
2607#if EV_FORK_ENABLE
2608void
2609ev_fork_start (EV_P_ ev_fork *w)
2610{
2611 if (expect_false (ev_is_active (w)))
2612 return;
2613
2614 ev_start (EV_A_ (W)w, ++forkcnt);
2615 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2616 forks [forkcnt - 1] = w;
2617}
2618
2619void
2620ev_fork_stop (EV_P_ ev_fork *w)
2621{
2622 clear_pending (EV_A_ (W)w);
2623 if (expect_false (!ev_is_active (w)))
2624 return;
2625
2626 {
2627 int active = ev_active (w);
2628
2629 forks [active - 1] = forks [--forkcnt];
2630 ev_active (forks [active - 1]) = active;
2631 }
2632
2633 ev_stop (EV_A_ (W)w);
2634}
2635#endif
2636
2637#if EV_ASYNC_ENABLE
2638void
2639ev_async_start (EV_P_ ev_async *w)
2640{
2641 if (expect_false (ev_is_active (w)))
2642 return;
2643
2644 evpipe_init (EV_A);
2645
2646 ev_start (EV_A_ (W)w, ++asynccnt);
2647 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2648 asyncs [asynccnt - 1] = w;
2649}
2650
2651void
2652ev_async_stop (EV_P_ ev_async *w)
2653{
2654 clear_pending (EV_A_ (W)w);
2655 if (expect_false (!ev_is_active (w)))
2656 return;
2657
2658 {
2659 int active = ev_active (w);
2660
2661 asyncs [active - 1] = asyncs [--asynccnt];
2662 ev_active (asyncs [active - 1]) = active;
2663 }
2664
2665 ev_stop (EV_A_ (W)w);
2666}
2667
2668void
2669ev_async_send (EV_P_ ev_async *w)
2670{
2671 w->sent = 1;
2672 evpipe_write (EV_A_ &gotasync);
2673}
2674#endif
2675
1567/*****************************************************************************/ 2676/*****************************************************************************/
1568 2677
1569struct ev_once 2678struct ev_once
1570{ 2679{
1571 struct ev_io io; 2680 ev_io io;
1572 struct ev_timer to; 2681 ev_timer to;
1573 void (*cb)(int revents, void *arg); 2682 void (*cb)(int revents, void *arg);
1574 void *arg; 2683 void *arg;
1575}; 2684};
1576 2685
1577static void 2686static void
1586 2695
1587 cb (revents, arg); 2696 cb (revents, arg);
1588} 2697}
1589 2698
1590static void 2699static void
1591once_cb_io (EV_P_ struct ev_io *w, int revents) 2700once_cb_io (EV_P_ ev_io *w, int revents)
1592{ 2701{
1593 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2702 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1594} 2703}
1595 2704
1596static void 2705static void
1597once_cb_to (EV_P_ struct ev_timer *w, int revents) 2706once_cb_to (EV_P_ ev_timer *w, int revents)
1598{ 2707{
1599 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2708 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1600} 2709}
1601 2710
1602void 2711void
1603ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2712ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1604{ 2713{
1605 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2714 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1606 2715
1607 if (!once) 2716 if (expect_false (!once))
2717 {
1608 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2718 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1609 else 2719 return;
1610 { 2720 }
2721
1611 once->cb = cb; 2722 once->cb = cb;
1612 once->arg = arg; 2723 once->arg = arg;
1613 2724
1614 ev_init (&once->io, once_cb_io); 2725 ev_init (&once->io, once_cb_io);
1615 if (fd >= 0) 2726 if (fd >= 0)
1616 { 2727 {
1617 ev_io_set (&once->io, fd, events); 2728 ev_io_set (&once->io, fd, events);
1618 ev_io_start (EV_A_ &once->io); 2729 ev_io_start (EV_A_ &once->io);
1619 } 2730 }
1620 2731
1621 ev_init (&once->to, once_cb_to); 2732 ev_init (&once->to, once_cb_to);
1622 if (timeout >= 0.) 2733 if (timeout >= 0.)
1623 { 2734 {
1624 ev_timer_set (&once->to, timeout, 0.); 2735 ev_timer_set (&once->to, timeout, 0.);
1625 ev_timer_start (EV_A_ &once->to); 2736 ev_timer_start (EV_A_ &once->to);
1626 }
1627 } 2737 }
1628} 2738}
2739
2740#if EV_MULTIPLICITY
2741 #include "ev_wrap.h"
2742#endif
1629 2743
1630#ifdef __cplusplus 2744#ifdef __cplusplus
1631} 2745}
1632#endif 2746#endif
1633 2747

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines