ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.58 by root, Sun Nov 4 16:52:52 2007 UTC vs.
Revision 1.98 by root, Sun Nov 11 02:05:20 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31#ifndef EV_EMBED 31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE
32# include "config.h" 37# include "config.h"
38
39# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1
42# endif
43# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1
45# endif
46# endif
47
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT)
49# define EV_USE_SELECT 1
50# endif
51
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL)
53# define EV_USE_POLL 1
54# endif
55
56# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL)
57# define EV_USE_EPOLL 1
58# endif
59
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE)
61# define EV_USE_KQUEUE 1
62# endif
63
33#endif 64#endif
34 65
35#include <math.h> 66#include <math.h>
36#include <stdlib.h> 67#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 68#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 69#include <stddef.h>
41 70
42#include <stdio.h> 71#include <stdio.h>
43 72
44#include <assert.h> 73#include <assert.h>
45#include <errno.h> 74#include <errno.h>
46#include <sys/types.h> 75#include <sys/types.h>
76#include <time.h>
77
78#include <signal.h>
79
47#ifndef WIN32 80#ifndef WIN32
81# include <unistd.h>
82# include <sys/time.h>
48# include <sys/wait.h> 83# include <sys/wait.h>
49#endif 84#endif
50#include <sys/time.h>
51#include <time.h>
52
53/**/ 85/**/
54 86
55#ifndef EV_USE_MONOTONIC 87#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1 88# define EV_USE_MONOTONIC 1
57#endif 89#endif
58 90
59#ifndef EV_USE_SELECT 91#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
61#endif 93#endif
62 94
63#ifndef EV_USEV_POLL 95#ifndef EV_USE_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */ 96# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif 97#endif
66 98
67#ifndef EV_USE_EPOLL 99#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0 100# define EV_USE_EPOLL 0
69#endif 101#endif
70 102
71#ifndef EV_USE_KQUEUE 103#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0 104# define EV_USE_KQUEUE 0
105#endif
106
107#ifndef EV_USE_WIN32
108# ifdef WIN32
109# define EV_USE_WIN32 0 /* it does not exist, use select */
110# undef EV_USE_SELECT
111# define EV_USE_SELECT 1
112# else
113# define EV_USE_WIN32 0
114# endif
73#endif 115#endif
74 116
75#ifndef EV_USE_REALTIME 117#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1 118# define EV_USE_REALTIME 1
77#endif 119#endif
93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 135#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 136#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */ 137#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 138/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
97 139
98#ifndef EV_EMBED 140#ifdef EV_H
141# include EV_H
142#else
99# include "ev.h" 143# include "ev.h"
100#endif 144#endif
101 145
102#if __GNUC__ >= 3 146#if __GNUC__ >= 3
103# define expect(expr,value) __builtin_expect ((expr),(value)) 147# define expect(expr,value) __builtin_expect ((expr),(value))
117typedef struct ev_watcher_list *WL; 161typedef struct ev_watcher_list *WL;
118typedef struct ev_watcher_time *WT; 162typedef struct ev_watcher_time *WT;
119 163
120static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 164static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
121 165
166#ifdef WIN32
167# include "ev_win32.c"
168#endif
169
122/*****************************************************************************/ 170/*****************************************************************************/
123 171
172static void (*syserr_cb)(const char *msg);
173
174void ev_set_syserr_cb (void (*cb)(const char *msg))
175{
176 syserr_cb = cb;
177}
178
179static void
180syserr (const char *msg)
181{
182 if (!msg)
183 msg = "(libev) system error";
184
185 if (syserr_cb)
186 syserr_cb (msg);
187 else
188 {
189 perror (msg);
190 abort ();
191 }
192}
193
194static void *(*alloc)(void *ptr, long size);
195
196void ev_set_allocator (void *(*cb)(void *ptr, long size))
197{
198 alloc = cb;
199}
200
201static void *
202ev_realloc (void *ptr, long size)
203{
204 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
205
206 if (!ptr && size)
207 {
208 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
209 abort ();
210 }
211
212 return ptr;
213}
214
215#define ev_malloc(size) ev_realloc (0, (size))
216#define ev_free(ptr) ev_realloc ((ptr), 0)
217
218/*****************************************************************************/
219
124typedef struct 220typedef struct
125{ 221{
126 struct ev_watcher_list *head; 222 WL head;
127 unsigned char events; 223 unsigned char events;
128 unsigned char reify; 224 unsigned char reify;
129} ANFD; 225} ANFD;
130 226
131typedef struct 227typedef struct
134 int events; 230 int events;
135} ANPENDING; 231} ANPENDING;
136 232
137#if EV_MULTIPLICITY 233#if EV_MULTIPLICITY
138 234
139struct ev_loop 235 struct ev_loop
140{ 236 {
237 ev_tstamp ev_rt_now;
141# define VAR(name,decl) decl; 238 #define VAR(name,decl) decl;
142# include "ev_vars.h" 239 #include "ev_vars.h"
143};
144# undef VAR 240 #undef VAR
241 };
145# include "ev_wrap.h" 242 #include "ev_wrap.h"
243
244 struct ev_loop default_loop_struct;
245 static struct ev_loop *default_loop;
146 246
147#else 247#else
148 248
249 ev_tstamp ev_rt_now;
149# define VAR(name,decl) static decl; 250 #define VAR(name,decl) static decl;
150# include "ev_vars.h" 251 #include "ev_vars.h"
151# undef VAR 252 #undef VAR
253
254 static int default_loop;
152 255
153#endif 256#endif
154 257
155/*****************************************************************************/ 258/*****************************************************************************/
156 259
157inline ev_tstamp 260ev_tstamp
158ev_time (void) 261ev_time (void)
159{ 262{
160#if EV_USE_REALTIME 263#if EV_USE_REALTIME
161 struct timespec ts; 264 struct timespec ts;
162 clock_gettime (CLOCK_REALTIME, &ts); 265 clock_gettime (CLOCK_REALTIME, &ts);
181#endif 284#endif
182 285
183 return ev_time (); 286 return ev_time ();
184} 287}
185 288
289#if EV_MULTIPLICITY
186ev_tstamp 290ev_tstamp
187ev_now (EV_P) 291ev_now (EV_P)
188{ 292{
189 return rt_now; 293 return ev_rt_now;
190} 294}
295#endif
191 296
192#define array_roundsize(base,n) ((n) | 4 & ~3) 297#define array_roundsize(type,n) ((n) | 4 & ~3)
193 298
194#define array_needsize(base,cur,cnt,init) \ 299#define array_needsize(type,base,cur,cnt,init) \
195 if (expect_false ((cnt) > cur)) \ 300 if (expect_false ((cnt) > cur)) \
196 { \ 301 { \
197 int newcnt = cur; \ 302 int newcnt = cur; \
198 do \ 303 do \
199 { \ 304 { \
200 newcnt = array_roundsize (base, newcnt << 1); \ 305 newcnt = array_roundsize (type, newcnt << 1); \
201 } \ 306 } \
202 while ((cnt) > newcnt); \ 307 while ((cnt) > newcnt); \
203 \ 308 \
204 base = realloc (base, sizeof (*base) * (newcnt)); \ 309 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
205 init (base + cur, newcnt - cur); \ 310 init (base + cur, newcnt - cur); \
206 cur = newcnt; \ 311 cur = newcnt; \
207 } 312 }
313
314#define array_slim(type,stem) \
315 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
316 { \
317 stem ## max = array_roundsize (stem ## cnt >> 1); \
318 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
319 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
320 }
321
322/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
323/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
324#define array_free_microshit(stem) \
325 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
326
327#define array_free(stem, idx) \
328 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
208 329
209/*****************************************************************************/ 330/*****************************************************************************/
210 331
211static void 332static void
212anfds_init (ANFD *base, int count) 333anfds_init (ANFD *base, int count)
219 340
220 ++base; 341 ++base;
221 } 342 }
222} 343}
223 344
224static void 345void
225event (EV_P_ W w, int events) 346ev_feed_event (EV_P_ void *w, int revents)
226{ 347{
348 W w_ = (W)w;
349
227 if (w->pending) 350 if (w_->pending)
228 { 351 {
229 pendings [ABSPRI (w)][w->pending - 1].events |= events; 352 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
230 return; 353 return;
231 } 354 }
232 355
233 w->pending = ++pendingcnt [ABSPRI (w)]; 356 w_->pending = ++pendingcnt [ABSPRI (w_)];
234 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], ); 357 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
235 pendings [ABSPRI (w)][w->pending - 1].w = w; 358 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
236 pendings [ABSPRI (w)][w->pending - 1].events = events; 359 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
237} 360}
238 361
239static void 362static void
240queue_events (EV_P_ W *events, int eventcnt, int type) 363queue_events (EV_P_ W *events, int eventcnt, int type)
241{ 364{
242 int i; 365 int i;
243 366
244 for (i = 0; i < eventcnt; ++i) 367 for (i = 0; i < eventcnt; ++i)
245 event (EV_A_ events [i], type); 368 ev_feed_event (EV_A_ events [i], type);
246} 369}
247 370
248static void 371inline void
249fd_event (EV_P_ int fd, int events) 372fd_event (EV_P_ int fd, int revents)
250{ 373{
251 ANFD *anfd = anfds + fd; 374 ANFD *anfd = anfds + fd;
252 struct ev_io *w; 375 struct ev_io *w;
253 376
254 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 377 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
255 { 378 {
256 int ev = w->events & events; 379 int ev = w->events & revents;
257 380
258 if (ev) 381 if (ev)
259 event (EV_A_ (W)w, ev); 382 ev_feed_event (EV_A_ (W)w, ev);
260 } 383 }
384}
385
386void
387ev_feed_fd_event (EV_P_ int fd, int revents)
388{
389 fd_event (EV_A_ fd, revents);
261} 390}
262 391
263/*****************************************************************************/ 392/*****************************************************************************/
264 393
265static void 394static void
278 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 407 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
279 events |= w->events; 408 events |= w->events;
280 409
281 anfd->reify = 0; 410 anfd->reify = 0;
282 411
283 if (anfd->events != events)
284 {
285 method_modify (EV_A_ fd, anfd->events, events); 412 method_modify (EV_A_ fd, anfd->events, events);
286 anfd->events = events; 413 anfd->events = events;
287 }
288 } 414 }
289 415
290 fdchangecnt = 0; 416 fdchangecnt = 0;
291} 417}
292 418
293static void 419static void
294fd_change (EV_P_ int fd) 420fd_change (EV_P_ int fd)
295{ 421{
296 if (anfds [fd].reify || fdchangecnt < 0) 422 if (anfds [fd].reify)
297 return; 423 return;
298 424
299 anfds [fd].reify = 1; 425 anfds [fd].reify = 1;
300 426
301 ++fdchangecnt; 427 ++fdchangecnt;
302 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 428 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
303 fdchanges [fdchangecnt - 1] = fd; 429 fdchanges [fdchangecnt - 1] = fd;
304} 430}
305 431
306static void 432static void
307fd_kill (EV_P_ int fd) 433fd_kill (EV_P_ int fd)
309 struct ev_io *w; 435 struct ev_io *w;
310 436
311 while ((w = (struct ev_io *)anfds [fd].head)) 437 while ((w = (struct ev_io *)anfds [fd].head))
312 { 438 {
313 ev_io_stop (EV_A_ w); 439 ev_io_stop (EV_A_ w);
314 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 440 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
315 } 441 }
442}
443
444static int
445fd_valid (int fd)
446{
447#ifdef WIN32
448 return !!win32_get_osfhandle (fd);
449#else
450 return fcntl (fd, F_GETFD) != -1;
451#endif
316} 452}
317 453
318/* called on EBADF to verify fds */ 454/* called on EBADF to verify fds */
319static void 455static void
320fd_ebadf (EV_P) 456fd_ebadf (EV_P)
321{ 457{
322 int fd; 458 int fd;
323 459
324 for (fd = 0; fd < anfdmax; ++fd) 460 for (fd = 0; fd < anfdmax; ++fd)
325 if (anfds [fd].events) 461 if (anfds [fd].events)
326 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 462 if (!fd_valid (fd) == -1 && errno == EBADF)
327 fd_kill (EV_A_ fd); 463 fd_kill (EV_A_ fd);
328} 464}
329 465
330/* called on ENOMEM in select/poll to kill some fds and retry */ 466/* called on ENOMEM in select/poll to kill some fds and retry */
331static void 467static void
332fd_enomem (EV_P) 468fd_enomem (EV_P)
333{ 469{
334 int fd = anfdmax; 470 int fd;
335 471
336 while (fd--) 472 for (fd = anfdmax; fd--; )
337 if (anfds [fd].events) 473 if (anfds [fd].events)
338 { 474 {
339 close (fd);
340 fd_kill (EV_A_ fd); 475 fd_kill (EV_A_ fd);
341 return; 476 return;
342 } 477 }
343} 478}
344 479
345/* susually called after fork if method needs to re-arm all fds from scratch */ 480/* usually called after fork if method needs to re-arm all fds from scratch */
346static void 481static void
347fd_rearm_all (EV_P) 482fd_rearm_all (EV_P)
348{ 483{
349 int fd; 484 int fd;
350 485
351 /* this should be highly optimised to not do anything but set a flag */ 486 /* this should be highly optimised to not do anything but set a flag */
352 for (fd = 0; fd < anfdmax; ++fd) 487 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 488 if (anfds [fd].events)
354 { 489 {
355 anfds [fd].events = 0; 490 anfds [fd].events = 0;
356 fd_change (fd); 491 fd_change (EV_A_ fd);
357 } 492 }
358} 493}
359 494
360/*****************************************************************************/ 495/*****************************************************************************/
361 496
365 WT w = heap [k]; 500 WT w = heap [k];
366 501
367 while (k && heap [k >> 1]->at > w->at) 502 while (k && heap [k >> 1]->at > w->at)
368 { 503 {
369 heap [k] = heap [k >> 1]; 504 heap [k] = heap [k >> 1];
370 heap [k]->active = k + 1; 505 ((W)heap [k])->active = k + 1;
371 k >>= 1; 506 k >>= 1;
372 } 507 }
373 508
374 heap [k] = w; 509 heap [k] = w;
375 heap [k]->active = k + 1; 510 ((W)heap [k])->active = k + 1;
376 511
377} 512}
378 513
379static void 514static void
380downheap (WT *heap, int N, int k) 515downheap (WT *heap, int N, int k)
390 525
391 if (w->at <= heap [j]->at) 526 if (w->at <= heap [j]->at)
392 break; 527 break;
393 528
394 heap [k] = heap [j]; 529 heap [k] = heap [j];
395 heap [k]->active = k + 1; 530 ((W)heap [k])->active = k + 1;
396 k = j; 531 k = j;
397 } 532 }
398 533
399 heap [k] = w; 534 heap [k] = w;
400 heap [k]->active = k + 1; 535 ((W)heap [k])->active = k + 1;
536}
537
538inline void
539adjustheap (WT *heap, int N, int k, ev_tstamp at)
540{
541 ev_tstamp old_at = heap [k]->at;
542 heap [k]->at = at;
543
544 if (old_at < at)
545 downheap (heap, N, k);
546 else
547 upheap (heap, k);
401} 548}
402 549
403/*****************************************************************************/ 550/*****************************************************************************/
404 551
405typedef struct 552typedef struct
406{ 553{
407 struct ev_watcher_list *head; 554 WL head;
408 sig_atomic_t volatile gotsig; 555 sig_atomic_t volatile gotsig;
409} ANSIG; 556} ANSIG;
410 557
411static ANSIG *signals; 558static ANSIG *signals;
412static int signalmax; 559static int signalmax;
413 560
414static int sigpipe [2]; 561static int sigpipe [2];
415static sig_atomic_t volatile gotsig; 562static sig_atomic_t volatile gotsig;
563static struct ev_io sigev;
416 564
417static void 565static void
418signals_init (ANSIG *base, int count) 566signals_init (ANSIG *base, int count)
419{ 567{
420 while (count--) 568 while (count--)
427} 575}
428 576
429static void 577static void
430sighandler (int signum) 578sighandler (int signum)
431{ 579{
580#if WIN32
581 signal (signum, sighandler);
582#endif
583
432 signals [signum - 1].gotsig = 1; 584 signals [signum - 1].gotsig = 1;
433 585
434 if (!gotsig) 586 if (!gotsig)
435 { 587 {
436 int old_errno = errno; 588 int old_errno = errno;
437 gotsig = 1; 589 gotsig = 1;
590#ifdef WIN32
591 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
592#else
438 write (sigpipe [1], &signum, 1); 593 write (sigpipe [1], &signum, 1);
594#endif
439 errno = old_errno; 595 errno = old_errno;
440 } 596 }
441} 597}
442 598
599void
600ev_feed_signal_event (EV_P_ int signum)
601{
602 WL w;
603
604#if EV_MULTIPLICITY
605 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
606#endif
607
608 --signum;
609
610 if (signum < 0 || signum >= signalmax)
611 return;
612
613 signals [signum].gotsig = 0;
614
615 for (w = signals [signum].head; w; w = w->next)
616 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
617}
618
443static void 619static void
444sigcb (EV_P_ struct ev_io *iow, int revents) 620sigcb (EV_P_ struct ev_io *iow, int revents)
445{ 621{
446 struct ev_watcher_list *w;
447 int signum; 622 int signum;
448 623
624#ifdef WIN32
625 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
626#else
449 read (sigpipe [0], &revents, 1); 627 read (sigpipe [0], &revents, 1);
628#endif
450 gotsig = 0; 629 gotsig = 0;
451 630
452 for (signum = signalmax; signum--; ) 631 for (signum = signalmax; signum--; )
453 if (signals [signum].gotsig) 632 if (signals [signum].gotsig)
454 { 633 ev_feed_signal_event (EV_A_ signum + 1);
455 signals [signum].gotsig = 0;
456
457 for (w = signals [signum].head; w; w = w->next)
458 event (EV_A_ (W)w, EV_SIGNAL);
459 }
460} 634}
461 635
462static void 636static void
463siginit (EV_P) 637siginit (EV_P)
464{ 638{
476 ev_unref (EV_A); /* child watcher should not keep loop alive */ 650 ev_unref (EV_A); /* child watcher should not keep loop alive */
477} 651}
478 652
479/*****************************************************************************/ 653/*****************************************************************************/
480 654
655static struct ev_child *childs [PID_HASHSIZE];
656
481#ifndef WIN32 657#ifndef WIN32
658
659static struct ev_signal childev;
482 660
483#ifndef WCONTINUED 661#ifndef WCONTINUED
484# define WCONTINUED 0 662# define WCONTINUED 0
485#endif 663#endif
486 664
490 struct ev_child *w; 668 struct ev_child *w;
491 669
492 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next) 670 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
493 if (w->pid == pid || !w->pid) 671 if (w->pid == pid || !w->pid)
494 { 672 {
495 w->priority = sw->priority; /* need to do it *now* */ 673 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
496 w->rpid = pid; 674 w->rpid = pid;
497 w->rstatus = status; 675 w->rstatus = status;
498 event (EV_A_ (W)w, EV_CHILD); 676 ev_feed_event (EV_A_ (W)w, EV_CHILD);
499 } 677 }
500} 678}
501 679
502static void 680static void
503childcb (EV_P_ struct ev_signal *sw, int revents) 681childcb (EV_P_ struct ev_signal *sw, int revents)
505 int pid, status; 683 int pid, status;
506 684
507 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 685 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
508 { 686 {
509 /* make sure we are called again until all childs have been reaped */ 687 /* make sure we are called again until all childs have been reaped */
510 event (EV_A_ (W)sw, EV_SIGNAL); 688 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
511 689
512 child_reap (EV_A_ sw, pid, pid, status); 690 child_reap (EV_A_ sw, pid, pid, status);
513 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 691 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
514 } 692 }
515} 693}
522# include "ev_kqueue.c" 700# include "ev_kqueue.c"
523#endif 701#endif
524#if EV_USE_EPOLL 702#if EV_USE_EPOLL
525# include "ev_epoll.c" 703# include "ev_epoll.c"
526#endif 704#endif
527#if EV_USEV_POLL 705#if EV_USE_POLL
528# include "ev_poll.c" 706# include "ev_poll.c"
529#endif 707#endif
530#if EV_USE_SELECT 708#if EV_USE_SELECT
531# include "ev_select.c" 709# include "ev_select.c"
532#endif 710#endif
572 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 750 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
573 have_monotonic = 1; 751 have_monotonic = 1;
574 } 752 }
575#endif 753#endif
576 754
577 rt_now = ev_time (); 755 ev_rt_now = ev_time ();
578 mn_now = get_clock (); 756 mn_now = get_clock ();
579 now_floor = mn_now; 757 now_floor = mn_now;
580 rtmn_diff = rt_now - mn_now; 758 rtmn_diff = ev_rt_now - mn_now;
581 759
582 if (methods == EVMETHOD_AUTO) 760 if (methods == EVMETHOD_AUTO)
583 if (!enable_secure () && getenv ("LIBEV_METHODS")) 761 if (!enable_secure () && getenv ("LIBEV_METHODS"))
584 methods = atoi (getenv ("LIBEV_METHODS")); 762 methods = atoi (getenv ("LIBEV_METHODS"));
585 else 763 else
586 methods = EVMETHOD_ANY; 764 methods = EVMETHOD_ANY;
587 765
588 method = 0; 766 method = 0;
767#if EV_USE_WIN32
768 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
769#endif
589#if EV_USE_KQUEUE 770#if EV_USE_KQUEUE
590 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 771 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
591#endif 772#endif
592#if EV_USE_EPOLL 773#if EV_USE_EPOLL
593 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 774 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
594#endif 775#endif
595#if EV_USEV_POLL 776#if EV_USE_POLL
596 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 777 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
597#endif 778#endif
598#if EV_USE_SELECT 779#if EV_USE_SELECT
599 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 780 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
600#endif 781#endif
782
783 ev_init (&sigev, sigcb);
784 ev_set_priority (&sigev, EV_MAXPRI);
601 } 785 }
602} 786}
603 787
604void 788void
605loop_destroy (EV_P) 789loop_destroy (EV_P)
606{ 790{
791 int i;
792
793#if EV_USE_WIN32
794 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
795#endif
607#if EV_USE_KQUEUE 796#if EV_USE_KQUEUE
608 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 797 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
609#endif 798#endif
610#if EV_USE_EPOLL 799#if EV_USE_EPOLL
611 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 800 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
612#endif 801#endif
613#if EV_USEV_POLL 802#if EV_USE_POLL
614 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 803 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
615#endif 804#endif
616#if EV_USE_SELECT 805#if EV_USE_SELECT
617 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 806 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
618#endif 807#endif
619 808
809 for (i = NUMPRI; i--; )
810 array_free (pending, [i]);
811
812 /* have to use the microsoft-never-gets-it-right macro */
813 array_free_microshit (fdchange);
814 array_free_microshit (timer);
815#if EV_PERIODICS
816 array_free_microshit (periodic);
817#endif
818 array_free_microshit (idle);
819 array_free_microshit (prepare);
820 array_free_microshit (check);
821
620 method = 0; 822 method = 0;
621 /*TODO*/
622} 823}
623 824
624void 825static void
625loop_fork (EV_P) 826loop_fork (EV_P)
626{ 827{
627 /*TODO*/
628#if EV_USE_EPOLL 828#if EV_USE_EPOLL
629 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 829 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
630#endif 830#endif
631#if EV_USE_KQUEUE 831#if EV_USE_KQUEUE
632 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 832 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
633#endif 833#endif
834
835 if (ev_is_active (&sigev))
836 {
837 /* default loop */
838
839 ev_ref (EV_A);
840 ev_io_stop (EV_A_ &sigev);
841 close (sigpipe [0]);
842 close (sigpipe [1]);
843
844 while (pipe (sigpipe))
845 syserr ("(libev) error creating pipe");
846
847 siginit (EV_A);
848 }
849
850 postfork = 0;
634} 851}
635 852
636#if EV_MULTIPLICITY 853#if EV_MULTIPLICITY
637struct ev_loop * 854struct ev_loop *
638ev_loop_new (int methods) 855ev_loop_new (int methods)
639{ 856{
640 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 857 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
858
859 memset (loop, 0, sizeof (struct ev_loop));
641 860
642 loop_init (EV_A_ methods); 861 loop_init (EV_A_ methods);
643 862
644 if (ev_methods (EV_A)) 863 if (ev_method (EV_A))
645 return loop; 864 return loop;
646 865
647 return 0; 866 return 0;
648} 867}
649 868
650void 869void
651ev_loop_destroy (EV_P) 870ev_loop_destroy (EV_P)
652{ 871{
653 loop_destroy (EV_A); 872 loop_destroy (EV_A);
654 free (loop); 873 ev_free (loop);
655} 874}
656 875
657void 876void
658ev_loop_fork (EV_P) 877ev_loop_fork (EV_P)
659{ 878{
660 loop_fork (EV_A); 879 postfork = 1;
661} 880}
662 881
663#endif 882#endif
664 883
665#if EV_MULTIPLICITY 884#if EV_MULTIPLICITY
666struct ev_loop default_loop_struct;
667static struct ev_loop *default_loop;
668
669struct ev_loop * 885struct ev_loop *
670#else 886#else
671static int default_loop;
672
673int 887int
674#endif 888#endif
675ev_default_loop (int methods) 889ev_default_loop (int methods)
676{ 890{
677 if (sigpipe [0] == sigpipe [1]) 891 if (sigpipe [0] == sigpipe [1])
688 902
689 loop_init (EV_A_ methods); 903 loop_init (EV_A_ methods);
690 904
691 if (ev_method (EV_A)) 905 if (ev_method (EV_A))
692 { 906 {
693 ev_watcher_init (&sigev, sigcb);
694 ev_set_priority (&sigev, EV_MAXPRI);
695 siginit (EV_A); 907 siginit (EV_A);
696 908
697#ifndef WIN32 909#ifndef WIN32
698 ev_signal_init (&childev, childcb, SIGCHLD); 910 ev_signal_init (&childev, childcb, SIGCHLD);
699 ev_set_priority (&childev, EV_MAXPRI); 911 ev_set_priority (&childev, EV_MAXPRI);
713{ 925{
714#if EV_MULTIPLICITY 926#if EV_MULTIPLICITY
715 struct ev_loop *loop = default_loop; 927 struct ev_loop *loop = default_loop;
716#endif 928#endif
717 929
930#ifndef WIN32
718 ev_ref (EV_A); /* child watcher */ 931 ev_ref (EV_A); /* child watcher */
719 ev_signal_stop (EV_A_ &childev); 932 ev_signal_stop (EV_A_ &childev);
933#endif
720 934
721 ev_ref (EV_A); /* signal watcher */ 935 ev_ref (EV_A); /* signal watcher */
722 ev_io_stop (EV_A_ &sigev); 936 ev_io_stop (EV_A_ &sigev);
723 937
724 close (sigpipe [0]); sigpipe [0] = 0; 938 close (sigpipe [0]); sigpipe [0] = 0;
726 940
727 loop_destroy (EV_A); 941 loop_destroy (EV_A);
728} 942}
729 943
730void 944void
731ev_default_fork (EV_P) 945ev_default_fork (void)
732{ 946{
733 loop_fork (EV_A); 947#if EV_MULTIPLICITY
948 struct ev_loop *loop = default_loop;
949#endif
734 950
735 ev_io_stop (EV_A_ &sigev); 951 if (method)
736 close (sigpipe [0]); 952 postfork = 1;
737 close (sigpipe [1]);
738 pipe (sigpipe);
739
740 ev_ref (EV_A); /* signal watcher */
741 siginit (EV_A);
742} 953}
743 954
744/*****************************************************************************/ 955/*****************************************************************************/
956
957static int
958any_pending (EV_P)
959{
960 int pri;
961
962 for (pri = NUMPRI; pri--; )
963 if (pendingcnt [pri])
964 return 1;
965
966 return 0;
967}
745 968
746static void 969static void
747call_pending (EV_P) 970call_pending (EV_P)
748{ 971{
749 int pri; 972 int pri;
754 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 977 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
755 978
756 if (p->w) 979 if (p->w)
757 { 980 {
758 p->w->pending = 0; 981 p->w->pending = 0;
759 p->w->cb (EV_A_ p->w, p->events); 982 EV_CB_INVOKE (p->w, p->events);
760 } 983 }
761 } 984 }
762} 985}
763 986
764static void 987static void
765timers_reify (EV_P) 988timers_reify (EV_P)
766{ 989{
767 while (timercnt && timers [0]->at <= mn_now) 990 while (timercnt && ((WT)timers [0])->at <= mn_now)
768 { 991 {
769 struct ev_timer *w = timers [0]; 992 struct ev_timer *w = timers [0];
993
994 assert (("inactive timer on timer heap detected", ev_is_active (w)));
770 995
771 /* first reschedule or stop timer */ 996 /* first reschedule or stop timer */
772 if (w->repeat) 997 if (w->repeat)
773 { 998 {
774 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 999 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1000
775 w->at = mn_now + w->repeat; 1001 ((WT)w)->at += w->repeat;
1002 if (((WT)w)->at < mn_now)
1003 ((WT)w)->at = mn_now;
1004
776 downheap ((WT *)timers, timercnt, 0); 1005 downheap ((WT *)timers, timercnt, 0);
777 } 1006 }
778 else 1007 else
779 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1008 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
780 1009
781 event (EV_A_ (W)w, EV_TIMEOUT); 1010 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
782 } 1011 }
783} 1012}
784 1013
1014#if EV_PERIODICS
785static void 1015static void
786periodics_reify (EV_P) 1016periodics_reify (EV_P)
787{ 1017{
788 while (periodiccnt && periodics [0]->at <= rt_now) 1018 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
789 { 1019 {
790 struct ev_periodic *w = periodics [0]; 1020 struct ev_periodic *w = periodics [0];
791 1021
1022 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1023
792 /* first reschedule or stop timer */ 1024 /* first reschedule or stop timer */
793 if (w->interval) 1025 if (w->reschedule_cb)
794 { 1026 {
1027 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1028
1029 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1030 downheap ((WT *)periodics, periodiccnt, 0);
1031 }
1032 else if (w->interval)
1033 {
795 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1034 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
796 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1035 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
797 downheap ((WT *)periodics, periodiccnt, 0); 1036 downheap ((WT *)periodics, periodiccnt, 0);
798 } 1037 }
799 else 1038 else
800 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1039 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
801 1040
802 event (EV_A_ (W)w, EV_PERIODIC); 1041 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
803 } 1042 }
804} 1043}
805 1044
806static void 1045static void
807periodics_reschedule (EV_P) 1046periodics_reschedule (EV_P)
811 /* adjust periodics after time jump */ 1050 /* adjust periodics after time jump */
812 for (i = 0; i < periodiccnt; ++i) 1051 for (i = 0; i < periodiccnt; ++i)
813 { 1052 {
814 struct ev_periodic *w = periodics [i]; 1053 struct ev_periodic *w = periodics [i];
815 1054
1055 if (w->reschedule_cb)
1056 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
816 if (w->interval) 1057 else if (w->interval)
817 {
818 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1058 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
819
820 if (fabs (diff) >= 1e-4)
821 {
822 ev_periodic_stop (EV_A_ w);
823 ev_periodic_start (EV_A_ w);
824
825 i = 0; /* restart loop, inefficient, but time jumps should be rare */
826 }
827 }
828 } 1059 }
1060
1061 /* now rebuild the heap */
1062 for (i = periodiccnt >> 1; i--; )
1063 downheap ((WT *)periodics, periodiccnt, i);
829} 1064}
1065#endif
830 1066
831inline int 1067inline int
832time_update_monotonic (EV_P) 1068time_update_monotonic (EV_P)
833{ 1069{
834 mn_now = get_clock (); 1070 mn_now = get_clock ();
835 1071
836 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1072 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
837 { 1073 {
838 rt_now = rtmn_diff + mn_now; 1074 ev_rt_now = rtmn_diff + mn_now;
839 return 0; 1075 return 0;
840 } 1076 }
841 else 1077 else
842 { 1078 {
843 now_floor = mn_now; 1079 now_floor = mn_now;
844 rt_now = ev_time (); 1080 ev_rt_now = ev_time ();
845 return 1; 1081 return 1;
846 } 1082 }
847} 1083}
848 1084
849static void 1085static void
858 { 1094 {
859 ev_tstamp odiff = rtmn_diff; 1095 ev_tstamp odiff = rtmn_diff;
860 1096
861 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1097 for (i = 4; --i; ) /* loop a few times, before making important decisions */
862 { 1098 {
863 rtmn_diff = rt_now - mn_now; 1099 rtmn_diff = ev_rt_now - mn_now;
864 1100
865 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1101 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
866 return; /* all is well */ 1102 return; /* all is well */
867 1103
868 rt_now = ev_time (); 1104 ev_rt_now = ev_time ();
869 mn_now = get_clock (); 1105 mn_now = get_clock ();
870 now_floor = mn_now; 1106 now_floor = mn_now;
871 } 1107 }
872 1108
1109# if EV_PERIODICS
873 periodics_reschedule (EV_A); 1110 periodics_reschedule (EV_A);
1111# endif
874 /* no timer adjustment, as the monotonic clock doesn't jump */ 1112 /* no timer adjustment, as the monotonic clock doesn't jump */
875 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1113 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
876 } 1114 }
877 } 1115 }
878 else 1116 else
879#endif 1117#endif
880 { 1118 {
881 rt_now = ev_time (); 1119 ev_rt_now = ev_time ();
882 1120
883 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1121 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
884 { 1122 {
1123#if EV_PERIODICS
885 periodics_reschedule (EV_A); 1124 periodics_reschedule (EV_A);
1125#endif
886 1126
887 /* adjust timers. this is easy, as the offset is the same for all */ 1127 /* adjust timers. this is easy, as the offset is the same for all */
888 for (i = 0; i < timercnt; ++i) 1128 for (i = 0; i < timercnt; ++i)
889 timers [i]->at += rt_now - mn_now; 1129 ((WT)timers [i])->at += ev_rt_now - mn_now;
890 } 1130 }
891 1131
892 mn_now = rt_now; 1132 mn_now = ev_rt_now;
893 } 1133 }
894} 1134}
895 1135
896void 1136void
897ev_ref (EV_P) 1137ev_ref (EV_P)
920 { 1160 {
921 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1161 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
922 call_pending (EV_A); 1162 call_pending (EV_A);
923 } 1163 }
924 1164
1165 /* we might have forked, so reify kernel state if necessary */
1166 if (expect_false (postfork))
1167 loop_fork (EV_A);
1168
925 /* update fd-related kernel structures */ 1169 /* update fd-related kernel structures */
926 fd_reify (EV_A); 1170 fd_reify (EV_A);
927 1171
928 /* calculate blocking time */ 1172 /* calculate blocking time */
929 1173
930 /* we only need this for !monotonic clockor timers, but as we basically 1174 /* we only need this for !monotonic clock or timers, but as we basically
931 always have timers, we just calculate it always */ 1175 always have timers, we just calculate it always */
932#if EV_USE_MONOTONIC 1176#if EV_USE_MONOTONIC
933 if (expect_true (have_monotonic)) 1177 if (expect_true (have_monotonic))
934 time_update_monotonic (EV_A); 1178 time_update_monotonic (EV_A);
935 else 1179 else
936#endif 1180#endif
937 { 1181 {
938 rt_now = ev_time (); 1182 ev_rt_now = ev_time ();
939 mn_now = rt_now; 1183 mn_now = ev_rt_now;
940 } 1184 }
941 1185
942 if (flags & EVLOOP_NONBLOCK || idlecnt) 1186 if (flags & EVLOOP_NONBLOCK || idlecnt)
943 block = 0.; 1187 block = 0.;
944 else 1188 else
945 { 1189 {
946 block = MAX_BLOCKTIME; 1190 block = MAX_BLOCKTIME;
947 1191
948 if (timercnt) 1192 if (timercnt)
949 { 1193 {
950 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1194 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
951 if (block > to) block = to; 1195 if (block > to) block = to;
952 } 1196 }
953 1197
1198#if EV_PERIODICS
954 if (periodiccnt) 1199 if (periodiccnt)
955 { 1200 {
956 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1201 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
957 if (block > to) block = to; 1202 if (block > to) block = to;
958 } 1203 }
1204#endif
959 1205
960 if (block < 0.) block = 0.; 1206 if (block < 0.) block = 0.;
961 } 1207 }
962 1208
963 method_poll (EV_A_ block); 1209 method_poll (EV_A_ block);
964 1210
965 /* update rt_now, do magic */ 1211 /* update ev_rt_now, do magic */
966 time_update (EV_A); 1212 time_update (EV_A);
967 1213
968 /* queue pending timers and reschedule them */ 1214 /* queue pending timers and reschedule them */
969 timers_reify (EV_A); /* relative timers called last */ 1215 timers_reify (EV_A); /* relative timers called last */
1216#if EV_PERIODICS
970 periodics_reify (EV_A); /* absolute timers called first */ 1217 periodics_reify (EV_A); /* absolute timers called first */
1218#endif
971 1219
972 /* queue idle watchers unless io or timers are pending */ 1220 /* queue idle watchers unless io or timers are pending */
973 if (!pendingcnt) 1221 if (idlecnt && !any_pending (EV_A))
974 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1222 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
975 1223
976 /* queue check watchers, to be executed first */ 1224 /* queue check watchers, to be executed first */
977 if (checkcnt) 1225 if (checkcnt)
978 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1226 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1053 return; 1301 return;
1054 1302
1055 assert (("ev_io_start called with negative fd", fd >= 0)); 1303 assert (("ev_io_start called with negative fd", fd >= 0));
1056 1304
1057 ev_start (EV_A_ (W)w, 1); 1305 ev_start (EV_A_ (W)w, 1);
1058 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1306 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1059 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1307 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1060 1308
1061 fd_change (EV_A_ fd); 1309 fd_change (EV_A_ fd);
1062} 1310}
1063 1311
1066{ 1314{
1067 ev_clear_pending (EV_A_ (W)w); 1315 ev_clear_pending (EV_A_ (W)w);
1068 if (!ev_is_active (w)) 1316 if (!ev_is_active (w))
1069 return; 1317 return;
1070 1318
1319 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1320
1071 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1321 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1072 ev_stop (EV_A_ (W)w); 1322 ev_stop (EV_A_ (W)w);
1073 1323
1074 fd_change (EV_A_ w->fd); 1324 fd_change (EV_A_ w->fd);
1075} 1325}
1078ev_timer_start (EV_P_ struct ev_timer *w) 1328ev_timer_start (EV_P_ struct ev_timer *w)
1079{ 1329{
1080 if (ev_is_active (w)) 1330 if (ev_is_active (w))
1081 return; 1331 return;
1082 1332
1083 w->at += mn_now; 1333 ((WT)w)->at += mn_now;
1084 1334
1085 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1335 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1086 1336
1087 ev_start (EV_A_ (W)w, ++timercnt); 1337 ev_start (EV_A_ (W)w, ++timercnt);
1088 array_needsize (timers, timermax, timercnt, ); 1338 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1089 timers [timercnt - 1] = w; 1339 timers [timercnt - 1] = w;
1090 upheap ((WT *)timers, timercnt - 1); 1340 upheap ((WT *)timers, timercnt - 1);
1341
1342 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1091} 1343}
1092 1344
1093void 1345void
1094ev_timer_stop (EV_P_ struct ev_timer *w) 1346ev_timer_stop (EV_P_ struct ev_timer *w)
1095{ 1347{
1096 ev_clear_pending (EV_A_ (W)w); 1348 ev_clear_pending (EV_A_ (W)w);
1097 if (!ev_is_active (w)) 1349 if (!ev_is_active (w))
1098 return; 1350 return;
1099 1351
1352 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1353
1100 if (w->active < timercnt--) 1354 if (((W)w)->active < timercnt--)
1101 { 1355 {
1102 timers [w->active - 1] = timers [timercnt]; 1356 timers [((W)w)->active - 1] = timers [timercnt];
1103 downheap ((WT *)timers, timercnt, w->active - 1); 1357 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1104 } 1358 }
1105 1359
1106 w->at = w->repeat; 1360 ((WT)w)->at -= mn_now;
1107 1361
1108 ev_stop (EV_A_ (W)w); 1362 ev_stop (EV_A_ (W)w);
1109} 1363}
1110 1364
1111void 1365void
1112ev_timer_again (EV_P_ struct ev_timer *w) 1366ev_timer_again (EV_P_ struct ev_timer *w)
1113{ 1367{
1114 if (ev_is_active (w)) 1368 if (ev_is_active (w))
1115 { 1369 {
1116 if (w->repeat) 1370 if (w->repeat)
1117 {
1118 w->at = mn_now + w->repeat;
1119 downheap ((WT *)timers, timercnt, w->active - 1); 1371 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
1120 }
1121 else 1372 else
1122 ev_timer_stop (EV_A_ w); 1373 ev_timer_stop (EV_A_ w);
1123 } 1374 }
1124 else if (w->repeat) 1375 else if (w->repeat)
1125 ev_timer_start (EV_A_ w); 1376 ev_timer_start (EV_A_ w);
1126} 1377}
1127 1378
1379#if EV_PERIODICS
1128void 1380void
1129ev_periodic_start (EV_P_ struct ev_periodic *w) 1381ev_periodic_start (EV_P_ struct ev_periodic *w)
1130{ 1382{
1131 if (ev_is_active (w)) 1383 if (ev_is_active (w))
1132 return; 1384 return;
1133 1385
1386 if (w->reschedule_cb)
1387 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1388 else if (w->interval)
1389 {
1134 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1390 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1135
1136 /* this formula differs from the one in periodic_reify because we do not always round up */ 1391 /* this formula differs from the one in periodic_reify because we do not always round up */
1137 if (w->interval)
1138 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1392 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1393 }
1139 1394
1140 ev_start (EV_A_ (W)w, ++periodiccnt); 1395 ev_start (EV_A_ (W)w, ++periodiccnt);
1141 array_needsize (periodics, periodicmax, periodiccnt, ); 1396 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
1142 periodics [periodiccnt - 1] = w; 1397 periodics [periodiccnt - 1] = w;
1143 upheap ((WT *)periodics, periodiccnt - 1); 1398 upheap ((WT *)periodics, periodiccnt - 1);
1399
1400 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1144} 1401}
1145 1402
1146void 1403void
1147ev_periodic_stop (EV_P_ struct ev_periodic *w) 1404ev_periodic_stop (EV_P_ struct ev_periodic *w)
1148{ 1405{
1149 ev_clear_pending (EV_A_ (W)w); 1406 ev_clear_pending (EV_A_ (W)w);
1150 if (!ev_is_active (w)) 1407 if (!ev_is_active (w))
1151 return; 1408 return;
1152 1409
1410 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1411
1153 if (w->active < periodiccnt--) 1412 if (((W)w)->active < periodiccnt--)
1154 { 1413 {
1155 periodics [w->active - 1] = periodics [periodiccnt]; 1414 periodics [((W)w)->active - 1] = periodics [periodiccnt];
1156 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1415 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
1157 } 1416 }
1158 1417
1159 ev_stop (EV_A_ (W)w); 1418 ev_stop (EV_A_ (W)w);
1160} 1419}
1161 1420
1162void 1421void
1422ev_periodic_again (EV_P_ struct ev_periodic *w)
1423{
1424 /* TODO: use adjustheap and recalculation */
1425 ev_periodic_stop (EV_A_ w);
1426 ev_periodic_start (EV_A_ w);
1427}
1428#endif
1429
1430void
1163ev_idle_start (EV_P_ struct ev_idle *w) 1431ev_idle_start (EV_P_ struct ev_idle *w)
1164{ 1432{
1165 if (ev_is_active (w)) 1433 if (ev_is_active (w))
1166 return; 1434 return;
1167 1435
1168 ev_start (EV_A_ (W)w, ++idlecnt); 1436 ev_start (EV_A_ (W)w, ++idlecnt);
1169 array_needsize (idles, idlemax, idlecnt, ); 1437 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1170 idles [idlecnt - 1] = w; 1438 idles [idlecnt - 1] = w;
1171} 1439}
1172 1440
1173void 1441void
1174ev_idle_stop (EV_P_ struct ev_idle *w) 1442ev_idle_stop (EV_P_ struct ev_idle *w)
1175{ 1443{
1176 ev_clear_pending (EV_A_ (W)w); 1444 ev_clear_pending (EV_A_ (W)w);
1177 if (ev_is_active (w)) 1445 if (ev_is_active (w))
1178 return; 1446 return;
1179 1447
1180 idles [w->active - 1] = idles [--idlecnt]; 1448 idles [((W)w)->active - 1] = idles [--idlecnt];
1181 ev_stop (EV_A_ (W)w); 1449 ev_stop (EV_A_ (W)w);
1182} 1450}
1183 1451
1184void 1452void
1185ev_prepare_start (EV_P_ struct ev_prepare *w) 1453ev_prepare_start (EV_P_ struct ev_prepare *w)
1186{ 1454{
1187 if (ev_is_active (w)) 1455 if (ev_is_active (w))
1188 return; 1456 return;
1189 1457
1190 ev_start (EV_A_ (W)w, ++preparecnt); 1458 ev_start (EV_A_ (W)w, ++preparecnt);
1191 array_needsize (prepares, preparemax, preparecnt, ); 1459 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1192 prepares [preparecnt - 1] = w; 1460 prepares [preparecnt - 1] = w;
1193} 1461}
1194 1462
1195void 1463void
1196ev_prepare_stop (EV_P_ struct ev_prepare *w) 1464ev_prepare_stop (EV_P_ struct ev_prepare *w)
1197{ 1465{
1198 ev_clear_pending (EV_A_ (W)w); 1466 ev_clear_pending (EV_A_ (W)w);
1199 if (ev_is_active (w)) 1467 if (ev_is_active (w))
1200 return; 1468 return;
1201 1469
1202 prepares [w->active - 1] = prepares [--preparecnt]; 1470 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1203 ev_stop (EV_A_ (W)w); 1471 ev_stop (EV_A_ (W)w);
1204} 1472}
1205 1473
1206void 1474void
1207ev_check_start (EV_P_ struct ev_check *w) 1475ev_check_start (EV_P_ struct ev_check *w)
1208{ 1476{
1209 if (ev_is_active (w)) 1477 if (ev_is_active (w))
1210 return; 1478 return;
1211 1479
1212 ev_start (EV_A_ (W)w, ++checkcnt); 1480 ev_start (EV_A_ (W)w, ++checkcnt);
1213 array_needsize (checks, checkmax, checkcnt, ); 1481 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1214 checks [checkcnt - 1] = w; 1482 checks [checkcnt - 1] = w;
1215} 1483}
1216 1484
1217void 1485void
1218ev_check_stop (EV_P_ struct ev_check *w) 1486ev_check_stop (EV_P_ struct ev_check *w)
1219{ 1487{
1220 ev_clear_pending (EV_A_ (W)w); 1488 ev_clear_pending (EV_A_ (W)w);
1221 if (ev_is_active (w)) 1489 if (!ev_is_active (w))
1222 return; 1490 return;
1223 1491
1224 checks [w->active - 1] = checks [--checkcnt]; 1492 checks [((W)w)->active - 1] = checks [--checkcnt];
1225 ev_stop (EV_A_ (W)w); 1493 ev_stop (EV_A_ (W)w);
1226} 1494}
1227 1495
1228#ifndef SA_RESTART 1496#ifndef SA_RESTART
1229# define SA_RESTART 0 1497# define SA_RESTART 0
1239 return; 1507 return;
1240 1508
1241 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1509 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1242 1510
1243 ev_start (EV_A_ (W)w, 1); 1511 ev_start (EV_A_ (W)w, 1);
1244 array_needsize (signals, signalmax, w->signum, signals_init); 1512 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1245 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1513 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1246 1514
1247 if (!w->next) 1515 if (!((WL)w)->next)
1248 { 1516 {
1517#if WIN32
1518 signal (w->signum, sighandler);
1519#else
1249 struct sigaction sa; 1520 struct sigaction sa;
1250 sa.sa_handler = sighandler; 1521 sa.sa_handler = sighandler;
1251 sigfillset (&sa.sa_mask); 1522 sigfillset (&sa.sa_mask);
1252 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1523 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1253 sigaction (w->signum, &sa, 0); 1524 sigaction (w->signum, &sa, 0);
1525#endif
1254 } 1526 }
1255} 1527}
1256 1528
1257void 1529void
1258ev_signal_stop (EV_P_ struct ev_signal *w) 1530ev_signal_stop (EV_P_ struct ev_signal *w)
1283 1555
1284void 1556void
1285ev_child_stop (EV_P_ struct ev_child *w) 1557ev_child_stop (EV_P_ struct ev_child *w)
1286{ 1558{
1287 ev_clear_pending (EV_A_ (W)w); 1559 ev_clear_pending (EV_A_ (W)w);
1288 if (ev_is_active (w)) 1560 if (!ev_is_active (w))
1289 return; 1561 return;
1290 1562
1291 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1563 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1292 ev_stop (EV_A_ (W)w); 1564 ev_stop (EV_A_ (W)w);
1293} 1565}
1308 void (*cb)(int revents, void *arg) = once->cb; 1580 void (*cb)(int revents, void *arg) = once->cb;
1309 void *arg = once->arg; 1581 void *arg = once->arg;
1310 1582
1311 ev_io_stop (EV_A_ &once->io); 1583 ev_io_stop (EV_A_ &once->io);
1312 ev_timer_stop (EV_A_ &once->to); 1584 ev_timer_stop (EV_A_ &once->to);
1313 free (once); 1585 ev_free (once);
1314 1586
1315 cb (revents, arg); 1587 cb (revents, arg);
1316} 1588}
1317 1589
1318static void 1590static void
1328} 1600}
1329 1601
1330void 1602void
1331ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1603ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1332{ 1604{
1333 struct ev_once *once = malloc (sizeof (struct ev_once)); 1605 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1334 1606
1335 if (!once) 1607 if (!once)
1336 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 1608 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1337 else 1609 else
1338 { 1610 {
1339 once->cb = cb; 1611 once->cb = cb;
1340 once->arg = arg; 1612 once->arg = arg;
1341 1613
1342 ev_watcher_init (&once->io, once_cb_io); 1614 ev_init (&once->io, once_cb_io);
1343 if (fd >= 0) 1615 if (fd >= 0)
1344 { 1616 {
1345 ev_io_set (&once->io, fd, events); 1617 ev_io_set (&once->io, fd, events);
1346 ev_io_start (EV_A_ &once->io); 1618 ev_io_start (EV_A_ &once->io);
1347 } 1619 }
1348 1620
1349 ev_watcher_init (&once->to, once_cb_to); 1621 ev_init (&once->to, once_cb_to);
1350 if (timeout >= 0.) 1622 if (timeout >= 0.)
1351 { 1623 {
1352 ev_timer_set (&once->to, timeout, 0.); 1624 ev_timer_set (&once->to, timeout, 0.);
1353 ev_timer_start (EV_A_ &once->to); 1625 ev_timer_start (EV_A_ &once->to);
1354 } 1626 }
1355 } 1627 }
1356} 1628}
1357 1629
1630#ifdef __cplusplus
1631}
1632#endif
1633

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines